Sample records for longitudinal relaxation times

  1. Longitudinal relaxation of initially straight flexible and stiff polymers

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The

  2. Magnetic resonance imaging relaxation time in Alzheimer's disease.

    PubMed

    Tang, Xiang; Cai, Feng; Ding, Dong-Xue; Zhang, Lu-Lu; Cai, Xiu-Ying; Fang, Qi

    2018-05-05

    The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Longitudinal Relaxation of Ferromagnetic Grains

    NASA Astrophysics Data System (ADS)

    Würger, Alois

    1998-07-01

    We study the activated longitudinal dynamics of a small single-domain magnet with uniaxial anisotropy, coupled to quantum noise. The smallest finite eigenvalue λ1 = γ0e-EB/kBT of the relaxation matrix is evaluated in a controlled approximation. For white noise we find γ0~T-1 at moderate temperatures and γ0 = const at very low T. Coupling to elastic waves leads to a prefactor that is linear in T or constant, depending on temperature. At very low T, the discreteness of the energy spectrum is crucial.

  4. Saturation capability of short phase modulated pulses facilitates the measurement of longitudinal relaxation times of quadrupolar nuclei.

    PubMed

    Makrinich, Maria; Gupta, Rupal; Polenova, Tatyana; Goldbourt, Amir

    The ability of various pulse types, which are commonly applied for distance measurements, to saturate or invert quadrupolar spin polarization has been compared by observing their effect on magnetization recovery curves under magic-angle spinning. A selective central transition inversion pulse yields a bi-exponential recovery for a diamagnetic sample with a spin-3/2, consistent with the existence of two processes: the fluctuations of the electric field gradients with identical single (W 1 ) and double (W 2 ) quantum quadrupolar-driven relaxation rates, and spin exchange between the central transition of one spin and satellite transitions of a dipolar-coupled similar spin. Using a phase modulated pulse, developed for distance measurements in quadrupolar spins (Nimerovsky et al., JMR 244, 2014, 107-113) and suggested for achieving the complete saturation of all quadrupolar spin energy levels, a mono-exponential relaxation model fits the data, compatible with elimination of the spin exchange processes. Other pulses such as an adiabatic pulse lasting one-third of a rotor period, and a two-rotor-period long continuous-wave pulse, both used for distance measurements under special experimental conditions, yield good fits to bi-exponential functions with varying coefficients and time constants due to variations in initial conditions. Those values are a measure of the extent of saturation obtained from these pulses. An empirical fit of the recovery curves to a stretched exponential function can provide general recovery times. A stretching parameter very close to unity, as obtained for a phase modulated pulse but not for other cases, suggests that in this case recovery times and longitudinal relaxation times are similar. The results are experimentally demonstrated for compounds containing 11 B (spin-3/2) and 51 V (spin-7/2). We propose that accurate spin lattice relaxation rates can be measured by a short phase modulated pulse (<1-2ms), similarly to the "true T 1 " measured

  5. Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin).

    PubMed

    Meinerz, Kelsey; Beeman, Scott C; Duan, Chong; Bretthorst, G Larry; Garbow, Joel R; Ackerman, Joseph J H

    2018-01-01

    Recently, a number of MRI protocols have been reported that seek to exploit the effect of dissolved oxygen (O 2 , paramagnetic) on the longitudinal 1 H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms, and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1 H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo . Bayesian-based model selection was applied to a cohort of five competing relaxation models: (i) monoexponential, (ii) stretched-exponential, (iii) biexponential, (iv) Gaussian (normal) R 1 -distribution, and (v) gamma R 1 -distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.

  6. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.

    2014-10-01

    Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values

  7. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  8. Longitudinal nuclear spin relaxation of ortho- and para-hydrogen dissolved in organic solvents.

    PubMed

    Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel

    2007-10-25

    The longitudinal relaxation time of ortho-hydrogen (the spin isomer directly observable by NMR) has been measured in various organic solvents as a function of temperature. Experimental data are perfectly interpreted by postulating two mechanisms, namely intramolecular dipolar interaction and spin-rotation, with activation energies specific to these two mechanisms and to the solvent in which hydrogen is dissolved. This permits a clear separation of the two contributions at any temperature. Contrary to the self-diffusion coefficients at a given temperature, the rotational correlation times extracted from the dipolar relaxation contribution do not exhibit any definite trend with respect to solvent viscosity. Likewise, the spin-rotation correlation time obeys Hubbard's relation only in the case of hydrogen dissolved in acetone-d6, yielding in that case a spin-rotation constant in agreement with literature data. Concerning para-hydrogen, which is NMR-silent, the only feasible approach is to dissolve para-enriched hydrogen in these solvents and to follow the back-conversion of the para-isomer into the ortho-isomer. Experimentally, this conversion has been observed to be exponential, with a time constant assumed to be the relaxation time of the singlet state (the spin state of the para-isomer). A theory, based on intermolecular dipolar interactions, has been worked out for explaining the very large values of these relaxation times which appear to be solvent-dependent.

  9. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    NASA Astrophysics Data System (ADS)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  10. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  11. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    PubMed

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  12. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent

    PubMed Central

    Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.

    2016-01-01

    Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055

  13. 17O Relaxation Times in the Rat Brain at 16.4T

    PubMed Central

    Wiesner, Hannes M.; Balla, Dávid Z.; Shajan, G.; Scheffler, Klaus; Uğurbil, Kâmil; Chen, Wei; Uludağ, Kâmil; Pohmann, Rolf

    2015-01-01

    Purpose Measurement of the cerebral metabolic rate of oxygen (CMRO2) via direct imaging of the 17O signal can be a valuable tool in neuroscientific research. However, knowledge of the longitudinal and transverse relaxation times of different brain tissue types is required, which is difficult to obtain because of the low sensitivity of natural abundance H217O measurements. Methods Using the improved sensitivity at a field strength of 16.4 T, relaxation time measurements in the rat brain were performed in vivo and postmortem with relatively high spatial resolutions, using a chemical shift imaging sequence. Results In vivo relaxation times of rat brain were found to be T1 = 6.84 ± 0.67 ms and T2* = 1.77 ± 0.04 ms. Postmortem H217O relaxometry at enriched concentrations after inhalation of 17O2 showed similar T2* values for gray (1.87 ± 0.04 ms) and white matter, significantly longer than muscle (1.27 ± 0.05 ms) and shorter than CSF (2.30 ± 0.16 ms). Conclusion Relaxation times of brain H217O were measured for the first time in vivo in different types of tissues with high spatial resolution. Since the relaxation times of H217O are expected to be independent of field strength, our results should help in optimizing the acquisition parameters for experiments also at other MRI field strengths. PMID:26098931

  14. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancementmore » is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.« less

  15. A novel pattern of longitudinal muscle contraction with subthreshold pharyngeal stimulus: a possible mechanism of lower esophageal sphincter relaxation.

    PubMed

    Leslie, Eric; Bhargava, Valmik; Mittal, Ravinder K

    2012-03-01

    A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3-5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons.

  16. A novel pattern of longitudinal muscle contraction with subthreshold pharyngeal stimulus: a possible mechanism of lower esophageal sphincter relaxation

    PubMed Central

    Leslie, Eric; Bhargava, Valmik

    2012-01-01

    A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3–5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons. PMID:22173917

  17. Pharmacological identification of β-adrenoceptor subtypes mediating isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle.

    PubMed

    Chino, Daisuke; Sone, Tomoyo; Yamazaki, Kumi; Tsuruoka, Yuri; Yamagishi, Risa; Shiina, Shunsuke; Obara, Keisuke; Yamaki, Fumiko; Higai, Koji; Tanaka, Yoshio

    2018-01-01

    Object We aimed to identify the β-adrenoceptor (β-AR) subtypes involved in isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle using pharmacological and biochemical approaches. Methods Longitudinal smooth muscle was prepared from the male guinea pig ascending colon and contracted with histamine prior to comparing the relaxant responses to three catecholamines (isoprenaline, adrenaline, and noradrenaline). The inhibitory effects of subtype-selective β-AR antagonists on isoprenaline-induced relaxation were then investigated. Results The relaxant potencies of the catecholamines were ranked as: isoprenaline > noradrenaline ≈ adrenaline, whereas the rank order was isoprenaline > noradrenaline > adrenaline in the presence of propranolol (a non-selective β-AR antagonist; 3 × 10 -7 M). Atenolol (a selective β 1 -AR antagonist; 3 × 10 -7 -10 -6  M) acted as a competitive antagonist of isoprenaline-induced relaxation, and the pA 2 value was calculated to be 6.49 (95% confidence interval: 6.34-6.83). The relaxation to isoprenaline was not affected by ICI-118,551 (a selective β 2 -AR antagonist) at 10 -9 -10 -8  M, but was competitively antagonized by 10 -7 -3 × 10 -7  M, with a pA 2 value of 7.41 (95% confidence interval: 7.18-8.02). In the presence of propranolol (3 × 10 -7 M), the relaxant effect of isoprenaline was competitively antagonized by bupranolol (a non-selective β-AR antagonist), with a pA 2 value of 5.90 (95% confidence interval: 5.73-6.35). Conclusion These findings indicated that the β-AR subtypes involved in isoprenaline-induced relaxation of colonic longitudinal guinea pig muscles are β 1 -AR and β 3 -AR.

  18. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    PubMed

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  19. NMR permeability estimators in 'chalk' carbonate rocks obtained under different relaxation times and MICP size scalings

    NASA Astrophysics Data System (ADS)

    Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Guedes Domingues, Ana Beatriz; Bagueira de Vasconcellos Azeredo, Rodrigo

    2016-07-01

    The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.

  20. Measurement of 15N longitudinal relaxation rates in 15NH4+ spin systems to characterise rotational correlation times and chemical exchange

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming

    2017-06-01

    Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that 15N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of 15N-based spin density operator elements of 15NH4+ spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the 15NH4+ spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the 15NH4+ ion as well as report on chemical exchange events of the 15NH4+ ion. Applications to 15NH4+ in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of 15NH4+ bound to a 41 kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for 15N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.

  1. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    PubMed

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  2. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  3. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  4. In vivo measurement of the longitudinal relaxation time of arterial blood (T1a) in the mouse using a pulsed arterial spin labeling approach.

    PubMed

    Thomas, David L; Lythgoe, Mark F; Gadian, David G; Ordidge, Roger J

    2006-04-01

    A novel method for measuring the longitudinal relaxation time of arterial blood (T1a) is presented. Knowledge of T1a is essential for accurately quantifying cerebral perfusion using arterial spin labeling (ASL) techniques. The method is based on the flow-sensitive alternating inversion recovery (FAIR) pulsed ASL (PASL) approach. We modified the standard FAIR acquisition scheme by incorporating a global saturation pulse at the beginning of the recovery period. With this approach the FAIR tissue signal difference has a simple monoexponential dependence on the recovery time, with T1a as the time constant. Therefore, FAIR measurements performed over a range of recovery times can be fitted to a monoexponential recovery curve and T1a can be calculated directly. This eliminates many of the difficulties associated with the measurement of T1a. Experiments performed in vivo in the mouse at 2.35T produced a mean value of 1.51 s for T1a, consistent with previously published values. (c) 2006 Wiley-Liss, Inc.

  5. First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.

    2015-07-01

    The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized, we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov state model of the kinetics in the unfolded state and folding of the miniprotein NTL9 (where NTL9 is the N -terminal domain of the ribosomal protein L9), constructed from a 2.9 ms simulation provided by D. E. Shaw Research.

  6. First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins.

    PubMed

    Dai, Wei; Sengupta, Anirvan M; Levy, Ronald M

    2015-07-24

    The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized, we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov state model of the kinetics in the unfolded state and folding of the miniprotein NTL9 (where NTL9 is the N-terminal domain of the ribosomal protein L9), constructed from a 2.9 ms simulation provided by D. E. Shaw Research.

  7. Gradient-induced Longitudinal Relaxation of Hyperpolarized Noble Gases in the Fringe Fields of Superconducting Magnets Used for Magnetic Resonance

    PubMed Central

    Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan

    2010-01-01

    When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10−3 s−1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. PMID:21134771

  8. Gradient-induced longitudinal relaxation of hyperpolarized noble gases in the fringe fields of superconducting magnets used for magnetic resonance.

    PubMed

    Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan

    2011-02-01

    When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    NASA Astrophysics Data System (ADS)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  10. Relaxation Time of High-Density Amorphous Ice

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  11. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  12. Magnetic Resonance T1 Relaxation Time of Venous Thrombus Is Determined by Iron Processing and Predicts Susceptibility to Lysis

    PubMed Central

    Modarai, Bijan; Blume, Ulrike; Humphries, Julia; Patel, Ashish S.; Phinikaridou, Alkystis; Evans, Colin E.; Mattock, Katherine; Grover, Steven P.; Ahmad, Anwar; Lyons, Oliver T.; Attia, Rizwan Q.; Renné, Thomas; Premaratne, Sobath; Wiethoff, Andrea J.; Botnar, René M.; Schaeffter, Tobias; Waltham, Matthew; Smith, Alberto

    2014-01-01

    Background The magnetic resonance longitudinal relaxation time (T1) changes with thrombus age in humans. In this study, we investigate the possible mechanisms that give rise to the T1 signal in venous thrombi and whether changes in T1 relaxation time are informative of the susceptibility to lysis. Methods and Results Venous thrombosis was induced in the vena cava of BALB/C mice, and temporal changes in T1 relaxation time correlated with thrombus composition. The mean T1 relaxation time of thrombus was shortest at 7days following thrombus induction and returned to that of blood as the thrombus resolved. T1 relaxation time was related to thrombus methemoglobin formation and further processing. Studies in inducible nitric oxide synthase (iNOS−/−)–deficient mice revealed that inducible nitric oxide synthase mediates oxidation of erythrocyte lysis–derived iron to paramagnetic Fe3+, which causes thrombus T1 relaxation time shortening. Studies using chemokine receptor-2–deficient mice (Ccr2−/−) revealed that the return of the T1 signal to that of blood is regulated by removal of Fe3+ by macrophages that accumulate in the thrombus during its resolution. Quantification of T1 relaxation time was a good predictor of successful thrombolysis with a cutoff point of <747 ms having a sensitivity and specificity to predict successful lysis of 83% and 94%, respectively. Conclusions The source of the T1 signal in the thrombus results from the oxidation of iron (released from the lysis of trapped erythrocytes in the thrombus) to its paramagnetic Fe3+ form. Quantification of T1 relaxation time appears to be a good predictor of the success of thrombolysis. PMID:23820077

  13. Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood.

    PubMed

    Pilkinton, David T; Hiraki, Teruyuki; Detre, John A; Greenberg, Joel H; Reddy, Ravinder

    2012-06-01

    Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Copyright © 2011 Wiley-Liss, Inc.

  14. Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment.

    PubMed

    Kim, Hee Kyung; Laor, Tal; Horn, Paul S; Wong, Brenda

    2010-01-01

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. ELEVEN BOYS WITH DMD (AGE RANGE: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.

  15. Immersed boundary lattice Boltzmann model based on multiple relaxation times

    NASA Astrophysics Data System (ADS)

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli

    2012-01-01

    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  16. Resistivity scaling and electron relaxation times in metallic nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart

    2014-08-14

    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less

  17. Longitudinal change in patellofemoral cartilage thickness, cartilage T2 relaxation times, and subchondral bone plate area in adolescent vs mature athletes.

    PubMed

    Culvenor, Adam G; Wirth, Wolfgang; Maschek, Susanne; Boeth, Heide; Diederichs, Gerd; Duda, Georg; Eckstein, Felix

    2017-07-01

    Patellofemoral cartilage changes have been evaluated in knee trauma and osteoarthritis; however, little is known about changes in patellar and trochlear cartilage thickness, T2 relaxation-time and subchondral bone plate area (tAB) during growth. Our prospective study aimed to explore longitudinal change in patellofemoral cartilage thickness, T2 and tAB in adolescent athletes, and to compare these data with those of mature (i.e., adult) athletes. 20 adolescent (age 16±1years) and 20 mature (46±5years) volleyball players were studied over 2-years (10 men and 10 women each group). 1.5T MRI 3D-VIBE and multi-echo spin-echo sequences were acquired at baseline and 2-year follow-up. Using manual segmentation and 3D reconstruction, longitudinal changes in patellar and trochlear cartilage thickness, patellar cartilage T2 (mono-exponential decay curve with five echoes [9.7-67.9ms]), and patellar and trochlear tAB were determined. The annual increase in both patellar and trochlear cartilage thickness was 0.8% (95% confidence interval [CI] 0.6, 1.0) and 0.6% (0.3, 0.9), for adolescent males and females respectively; the longitudinal gain in patellar and trochlear tAB was 1.3% (1.1, 1.5) and 0.5% (0.2, 0.8), and 1.6% (1.1, 2.2) and 0.8% (0.3, 0.7) for adolescent males and females, respectively (no significant between-sex differences). Mature athletes showed smaller gains in tAB, and loss of <1% of cartilage thickness annually. While no significant sex-differences existed in adolescent patellar T2 changes, mature males gained significantly greater T2 than mature females (p=0.002-0.013). Patellar and trochlear cartilage thickness and tAB were observed to increase in young athletes in late adolescence, without significant differences between sexes. Mature athletes displayed patellar cartilage loss (and T2 increases in mature males), potentially reflecting degenerative changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  19. Generalized Elliott-Yafet spin-relaxation time for arbitrary spin mixing

    NASA Astrophysics Data System (ADS)

    Vollmar, Svenja; Hilton, David J.; Schneider, Hans Christian

    2017-08-01

    We extend our recent result for the spin-relaxation time due to acoustic electron-phonon scattering in degenerate bands with spin mixing [New J. Phys. 18, 023012 (2016), 10.1088/1367-2630/18/2/023012] to include interactions with optical phonons, and present a numerical evaluation of the spin-relaxation time for intraband hole-phonon scattering in the heavy-hole (HH) bands of bulk GaAs. Comparing our computed spin-relaxation times to the conventional Elliott-Yafet result quantitatively demonstrates that the latter underestimates the spin-relaxation time because it does not correctly describe how electron-phonon interactions change the (vector) spin expectation value of the single-particle states. We show that the conventional Elliott-Yafet spin relaxation time is a special case of our result for weak spin mixing.

  20. Dependence of Brownian and Néel relaxation times on magnetic field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization

  1. Graphene oxide-gadolinium (III) oxide nanoparticle composite: a novel MR contrast agent with high longitudinal and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Venkatesha, N.; Poojar, Pavan; Geethanath, Sairam; Srivastava, Chandan

    2014-12-01

    Production of bio-compatible contrast agent materials to enhance the sensitivity of the magnetic resonance imaging (MRI) technique is a highly active area in MRI related research. This work illustrates the potential of a new material: graphene oxide-gadolinium (III) oxide nanoparticle (GO-Gd2O3) composite in yielding both transverse (16.3 mM-1 s-1) and longitudinal relaxivity (40 mM-1 s-1) values which are significantly higher than the proton relaxivity values achieved using the gadolinium based contrast agents currently used in MRI. Such high proton relaxivity values can facilitate low dosage of GO-Gd2O3 composite for obtaining both T1 and T2 weighted high signal-to-noise ratio images in MRI.

  2. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  3. Two-Relaxation-Time Lattice Boltzmann Method for Advective-Diffusive-Reactive Transport

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.

    2016-12-01

    The lattice Boltzmann method (LBM) has been applied to study a wide range of reactive transport in porous and fractured media. The single-relaxation-time (SRT) LBM, employing single relaxation time, is the most popular LBM due to its simplicity of understanding and implementation. Nevertheless, the SRT LBM may suffer from numerical instability for small value of the relaxation time. By contrast, the multiple-relaxation-time (MRT) LBM, employing multiple relaxation times, can improve the numerical stability through tuning the multiple relaxation times, but the complexity of implementing this method restricts its applications. The two-relaxation-time (TRT) LBM, which employs two relaxation times, combines the advantages of SRT and MRT LBMs. The TRT LBM can produce simulations with better accuracy and stability than the SRT one, and is easier to implement than the MRT one. This work evaluated the numerical accuracy and stability of the TRT method by comparing the simulation results with analytical solutions of Gaussian hill transport and Taylor dispersion under different advective velocities. The accuracy generally increased with the tunable relaxation time τ, and the stability first increased and then decreased as τ increased, showing an optimal TRT method emerging the best numerical stability. The free selection of τ enabled the TRT LBM to simulate the Gaussian hill transport and Taylor dispersion under relatively high advective velocity, under which the SRT LBM suffered from numerical instability. Finally, the TRT method was applied to study the contaminant degradation by chemotactic microorganisms in porous media, which acted as a reprehensive of reactive transport in this study, and well predicted the evolution of microorganisms and degradation of contaminants for different transport scenarios. To sum up, the TRT LBM produced simulation results with good accuracy and stability for various advective-diffusive-reactive transport through tuning the relaxation

  4. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  5. Flip-angle profile of slice-selective excitation and the measurement of the MR longitudinal relaxation time with steady-state magnetization

    NASA Astrophysics Data System (ADS)

    Hsu, Jung-Jiin

    2015-08-01

    In MRI, the flip angle (FA) of slice-selective excitation is not uniform across the slice-thickness dimension. This work investigates the effect of the non-uniform FA profile on the accuracy of a commonly-used method for the measurement, in which the T1 value, i.e., the longitudinal relaxation time, is determined from the steady-state signals of an equally-spaced RF pulse train. By using the numerical solutions of the Bloch equation, it is shown that, because of the non-uniform FA profile, the outcome of the T1 measurement depends significantly on T1 of the specimen and on the FA and the inter-pulse spacing τ of the pulse train. A new method to restore the accuracy of the T1 measurement is described. Different from the existing approaches, the new method also removes the FA profile effect for the measurement of the FA, which is normally a part of the T1 measurement. In addition, the new method does not involve theoretical modeling, approximation, or modification to the underlying principle of the T1 measurement. An imaging experiment is performed, which shows that the new method can remove the FA-, the τ-, and the T1-dependence and produce T1 measurements in excellent agreement with the ones obtained from a gold standard method (the inversion-recovery method).

  6. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  7. The shear and bulk relaxation times from the general correlation functions

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  8. NMR T1 relaxation time measurements and calculations with translational and rotational components for liquid electrolytes containing LiBF4 and propylene carbonate.

    PubMed

    Richardson, P M; Voice, A M; Ward, I M

    2013-12-07

    Longitudinal relaxation (T1) measurements of (19)F, (7)Li, and (1)H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.

  9. Mindfulness meditation and relaxation training increases time sensitivity.

    PubMed

    Droit-Volet, S; Fanget, M; Dambrun, M

    2015-01-01

    Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A Prussian Blue-Based Core-Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity.

    PubMed

    Cai, Xiaojun; Gao, Wei; Ma, Ming; Wu, Meiying; Zhang, Linlin; Zheng, Yuanyi; Chen, Hangrong; Shi, Jianlin

    2015-11-04

    Novel core-shell hollow mesoporous Prussian blue @ Mn-containing Prussian blue analogue (HMPB@MnPBA) nanoparticles, designated as HMPB-Mn) as an intelligent theranostic nanoagent, are successfully constructed by coating a similarly crystal-structured MnPBA onto HMPB. This can be used as a pH-responsive T1 -weighted magnetic resonance imaging contrast agent with ultrahigh longitudinal relaxivity (r1 = 7.43 m m(-1) s(-1) ), and achieves the real-time monitoring of drug release. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    PubMed

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  12. The time dependence of rock healing as a universal relaxation process, a tutorial

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie

    2017-01-01

    The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.

  13. Measurement of the Water Relaxation Time of ɛ-Polylysine Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Shirakashi, Ryo; Amano, Yuki; Yamada, Jun

    2017-05-01

    ɛ-Polylysine is an effective food preservative. In this paper, the β-relaxation time of ɛ-polylysine aqueous solutions, which represents the rotational speed of a single water molecule, was measured by broadband dielectric spectroscopy at various temperatures and concentrations. The broadband dielectric spectrum of each sample containing water ranging from 35 wt% to 75 wt% at temperatures ranging from 0°C to 25°C was measured using a co-axial semirigid cable probe. The measured dielectric spectra of the samples were composed of several Debye relaxation peaks, including a shortest single molecular rotational relaxation time of water, the β-relaxation time, longer than that of pure water. This result represents that ɛ-polylysine suppresses the molecular kinetics of water. It is also found that the β-relaxation time of an ɛ-polylysine solution that contained more than 35 wt% water showed a typical Arrhenius plot in the temperature range from 0°C to 25°C. The activation energy of each sample depends on the water content ratio of the sample. As indicated by its long β-relaxation time, ɛ-polylysine is expected to possess high abilities of suppressing freezing and ice coarsening.

  14. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping

    2017-11-01

    This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.

  15. Direct Visualization of Short Transverse Relaxation Time Component (ViSTa)

    PubMed Central

    Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E.; Detre, John A.; Lee, Jongho

    2013-01-01

    White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2 < 40 ms; T2* < 25 ms at 3T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2* signal decay is measured to estimate myelin water fraction based on T2 or T2* differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2* signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirms that after suppression of long T1 signals, the image is dominated by short T2* in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination. PMID:23796545

  16. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D

    NASA Technical Reports Server (NTRS)

    dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.

  17. Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter

    NASA Astrophysics Data System (ADS)

    Zhao, Yinjian

    2018-05-01

    A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.

  18. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    NASA Astrophysics Data System (ADS)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  19. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  20. Relaxation rates of low-field gas-phase ^129Xe storage cells

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  1. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    NASA Astrophysics Data System (ADS)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  2. Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried

    2011-12-01

    The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.

  3. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    NASA Astrophysics Data System (ADS)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  4. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  5. [Evaluation of NMR relaxation method as a diagnostic tool for donor blood analysis and patients with hematologic diseases and burns].

    PubMed

    Gangardt, M G; Popova, O V; Shmarov, D A; Kariakina, N F; Papish, E A; Kozinets, G I

    2002-08-01

    Diagnostic value of the NMR-relaxation method in the blood plasma was estimated in the patients with different pathologies. The time of hydrogen nuclei longitudinal relaxation (T1) in the health donors of the blood, in the patients with oncopathology (hemoblastoses) and in the cases with anemia and burning disease were investigated. The time of the longitudinal relaxation (T1) was measured by automated NMR-relaxometer "Palma" (Russia). The working frequency was equal to 35 MHz, the temperature was 45 +/- 0.1 degrees C. For the single measurement 0.2 ml of blood obtained from heparinized venous blood 1.5 hours after its taking was used. The time of the longitudinal relaxation (T1) was shown to be 1.78 +/- 0.02 in the health donors, 1.70 +/- 0.06 s in cases with anemia, 1.97 +/- 0.48 c in patients with leucosis, 2.40 +/- 0.12 s in patients with burns. The sensitivity and the specificity of diagnostics of leucosis based upon the results of the only single T1 measurement in blood plasma were concluded to be 75%. It proves the significant T1 change both in patients with anemia and burning disease of the II-III degree. However it is evidently insufficient for selective use of NMR-relaxation blood plasma (serum) in the diagnostics of anemia and leucosis. The data obtained prove also the possibility of use of NMR-relaxation blood plasma (serum) for control of the hemostasis state during treatment or remission.

  6. Short relaxation times but long transient times in both simple and complex reaction networks

    PubMed Central

    Henry, Adrien; Martin, Olivier C.

    2016-01-01

    When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726

  7. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco; Corti, Maurizio

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, twomore » stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.« less

  8. Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport

    DOE PAGES

    Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael

    2016-04-20

    Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their naturalmore » dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.« less

  9. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    PubMed Central

    Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of

  10. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    PubMed

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and

  11. Relaxation Time Distribution (RTD) of Spectral Induced Polarization (SIP) data from environmental studies

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.

    2015-12-01

    In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.

  12. Effects of Stress and Relaxation on Time Perception

    DTIC Science & Technology

    2003-01-01

    were included in the writings of such renowned philosophers as St. Augustine, Rene Descartes, Thomas Hobbes, John Lock, and Immanuel Kant (Nichols...progressive muscle relaxation exercise, or control (n = 39) - listening to a biography on tape. Multiple measures of time production, time estimation...39) � listening to a biography on tape. Multiple measures of time production, time estimation, perceived rate, and attention to time domains (past

  13. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    NASA Astrophysics Data System (ADS)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  14. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation.

    PubMed

    Giraud, Nicolas; Blackledge, Martin; Goldman, Maurice; Böckmann, Anja; Lesage, Anne; Penin, François; Emsley, Lyndon

    2005-12-28

    A detailed analysis of nitrogen-15 longitudinal relaxation times in microcrystalline proteins is presented. A theoretical model to quantitatively interpret relaxation times is developed in terms of motional amplitude and characteristic time scale. Different averaging schemes are examined in order to propose an analysis of relaxation curves that takes into account the specificity of MAS experiments. In particular, it is shown that magic angle spinning averages the relaxation rate experienced by a single spin over one rotor period, resulting in individual relaxation curves that are dependent on the orientation of their corresponding carousel with respect to the rotor axis. Powder averaging thus leads to a nonexponential behavior in the observed decay curves. We extract dynamic information from experimental decay curves, using a diffusion in a cone model. We apply this study to the analysis of spin-lattice relaxation rates of the microcrystalline protein Crh at two different fields and determine differential dynamic parameters for several residues in the protein.

  15. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  16. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-02-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  17. The effects of bone on proton NMR relaxation times of surrounding liquids

    NASA Technical Reports Server (NTRS)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  18. Pair plasma relaxation time scales.

    PubMed

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  19. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  20. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. [F-16

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Ogburn, M. E.; Gilbert, W. P.; Kibler, K. S.; Brown, P. W.; Deal, P. L.

    1979-01-01

    A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall.

  1. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, whichmore » results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.« less

  2. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    NASA Astrophysics Data System (ADS)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  3. After stress comes relax(ation)

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    2015-11-01

    Viscoelastic materials take a finite time to relax and dissipate stress and this time scale is directly connected to the microstructure of the material itself. In their paper, Gomez-Solano and Bechinger (2015 New J. Phys. 17 103032) perform ‘miniaturized’ mechanical tests on a range of viscoelastic materials by dragging a micron-sized bead across them using optical tweezers. Upon switching off all the external forces, they watch the bead recoil to its original position and by tracking its motion they pinpoint the relaxation time of the material. These experiments open up a new range of possibilities to characterize stress relaxation at the microscale just by watching it.

  4. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zhiwei; Halle, Bertil, E-mail: bertil.halle@bpc.lu.se

    2016-07-21

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with amore » single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.« less

  5. Will spin-relaxation times in molecular magnets permit quantum information processing?

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang

    2007-03-01

    Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.

  6. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  7. Longitudinal muscle dysfunction in achalasia esophagus and its relevance.

    PubMed

    Mittal, Ravinder K; Hong, Su Jin; Bhargava, Valmik

    2013-04-01

    Muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. Goal of this review is to summarize the role of longitudinal muscle in physiology and pathophysiology of esophageal sensory and motor function. Simultaneous manometry and ultrasound imaging that measure circular and longitudinal muscle contraction respectively reveal that during peristalsis 2 layers of the esophagus contract in perfect synchrony. On the other hand, during transient relaxation of the lower esophageal sphincter (LES), longitudinal muscle contracts independently of circular muscle. Recent studies provide novel insights, i.e., longitudinal muscle contraction of the esophagus induces LES relaxation and possibly descending relaxation of the esophagus. In achalasia esophagus and other motility disorders there is discoordination between the 2 muscle layers. Longitudinal muscle contraction patterns are different in the recently described three types of achalasia identified by high-resolution manometry. Robust contraction of the longitudinal muscle in type II achalasia causes pan-esophageal pressurization and is the mechanism of whatever little esophageal emptying that take place in the absence of peristalsis and impaired LES relaxation. It may be that preserved longitudinal muscle contraction is also the reason for superior outcome to medical/surgical therapy in type II achalasia esophagus. Prolonged contractions of longitudinal muscles of the esophagus is a possible mechanism of heartburn and "angina like" pain seen in esophageal motility disorders and possibly achalasia esophagus. Novel techniques to record longitudinal muscle contraction are on the horizon. Neuro-pharmacologic control of circular and longitudinal muscles is different, which provides an important opportunity for the development of novel pharmacological therapies to treat sensory and motor disorders of the esophagus.

  8. Longitudinal Muscle Dysfunction in Achalasia Esophagus and Its Relevance

    PubMed Central

    Hong, Su Jin; Bhargava, Valmik

    2013-01-01

    Muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. Goal of this review is to summarize the role of longitudinal muscle in physiology and pathophysiology of esophageal sensory and motor function. Simultaneous manometry and ultrasound imaging that measure circular and longitudinal muscle contraction respectively reveal that during peristalsis 2 layers of the esophagus contract in perfect synchrony. On the other hand, during transient relaxation of the lower esophageal sphincter (LES), longitudinal muscle contracts independently of circular muscle. Recent studies provide novel insights, i.e., longitudinal muscle contraction of the esophagus induces LES relaxation and possibly descending relaxation of the esophagus. In achalasia esophagus and other motility disorders there is discoordination between the 2 muscle layers. Longitudinal muscle contraction patterns are different in the recently described three types of achalasia identified by high-resolution manometry. Robust contraction of the longitudinal muscle in type II achalasia causes pan-esophageal pressurization and is the mechanism of whatever little esophageal emptying that take place in the absence of peristalsis and impaired LES relaxation. It may be that preserved longitudinal muscle contraction is also the reason for superior outcome to medical/surgical therapy in type II achalasia esophagus. Prolonged contractions of longitudinal muscles of the esophagus is a possible mechanism of heartburn and "angina like" pain seen in esophageal motility disorders and possibly achalasia esophagus. Novel techniques to record longitudinal muscle contraction are on the horizon. Neuro-pharmacologic control of circular and longitudinal muscles is different, which provides an important opportunity for the development of novel pharmacological therapies to treat sensory and motor disorders of the esophagus. PMID:23667744

  9. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    NASA Astrophysics Data System (ADS)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-06-01

    We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s, which is about six times faster than in the frequency domain. This substantial reduction of the measurement time allows for continuous monitoring of the bead dynamics vs. time and opens for time-resolved studies, e.g., of binding kinetics.

  10. Tracking Temperature-Dependent Relaxation Times of Ferritin Nanomagnets with a Wideband Quantum Spectrometer

    NASA Astrophysics Data System (ADS)

    Schäfer-Nolte, Eike; Schlipf, Lukas; Ternes, Markus; Reinhard, Friedemann; Kern, Klaus; Wrachtrup, Jörg

    2014-11-01

    We demonstrate the tracking of the spin dynamics of ensemble and individual magnetic ferritin proteins from cryogenic up to room temperature using the nitrogen-vacancy color center in diamond as a magnetic sensor. We employ different detection protocols to probe the influence of the ferritin nanomagnets on the longitudinal and transverse relaxation of the nitrogen-vacancy center, which enables magnetic sensing over a wide frequency range from Hz to GHz. The temperature dependence of the observed spectral features can be well understood by the thermally induced magnetization reversals of the ferritin and enables the determination of the anisotropy barrier of single ferritin molecules.

  11. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeff<58.8 ±0.4 % , the suspensions exhibited a relaxation behavior consistent with a generalized Newtonian fluid in which the relaxation is determined by the steady-state relationship between shear stress and shear rate. However, for larger weight fraction 58.8 %<ϕeff<61.0 % , near the liquid-solid transition ϕc=61.0 ±0.7 % , we found relaxation behaviors qualitatively and quantitatively different from the generalized Newtonian model. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian

  12. Detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field.

    PubMed

    Jiménez-Aquino, J I; Romero-Bastida, M

    2011-07-01

    The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.

  13. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation

    NASA Astrophysics Data System (ADS)

    Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.

    2011-07-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.

  14. Characterizing Time in Longitudinal Trauma Research

    PubMed Central

    King, Daniel W.; King, Lynda A.; McArdle, John J.; Grimm, Kevin; Jones, Russell T.; Ollendick, Thomas H.

    2006-01-01

    Despite the proliferation of longitudinal trauma research, careful attention to timing of assessments is often lacking. Patterns in timing of assessments, alternative time structures, and the treatment of time as an outcome are discussed and illustrated using trauma data. PMID:16612827

  15. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions.

    PubMed

    Chen, Pan; Terenzi, Camilla; Furó, István; Berglund, Lars A; Wohlert, Jakob

    2018-05-15

    Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent 13 C NMR longitudinal relaxation times ( T 1 ) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain-chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

  16. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles

    2018-04-01

    We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.

  17. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    NASA Astrophysics Data System (ADS)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  18. Extracting Diffusion Constants from Echo-Time-Dependent PFG NMR Data Using Relaxation-Time Information

    NASA Astrophysics Data System (ADS)

    Vandusschoten, D.; Dejager, P. A.; Vanas, H.

    Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.

  19. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  20. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.

    PubMed

    Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S

    2014-01-01

    To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global T1ρ relaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  2. Rate variation and estimation of divergence times using strict and relaxed clocks.

    PubMed

    Brown, Richard P; Yang, Ziheng

    2011-09-26

    Understanding causes of biological diversity may be greatly enhanced by knowledge of divergence times. Strict and relaxed clock models are used in Bayesian estimation of divergence times. We examined whether: i) strict clock models are generally more appropriate in shallow phylogenies where rate variation is expected to be low, ii) the likelihood ratio test of the clock (LRT) reliably informs which model is appropriate for dating divergence times. Strict and relaxed models were used to analyse sequences simulated under different levels of rate variation. Published shallow phylogenies (Black bass, Primate-sucking lice, Podarcis lizards, Gallotiinae lizards, and Caprinae mammals) were also analysed to determine natural levels of rate variation relative to the performance of the different models. Strict clock analyses performed well on data simulated under the independent rates model when the standard deviation of log rate on branches, σ, was low (≤ 0.1), but were inappropriate when σ>0.1 (95% of rates fall within 0.0082-0.0121 subs/site/Ma when σ = 0.1, for a mean rate of 0.01). The independent rates relaxed clock model performed well at all levels of rate variation, although posterior intervals on times were significantly wider than for the strict clock. The strict clock is therefore superior when rate variation is low. The performance of a correlated rates relaxed clock model was similar to the strict clock. Increased numbers of independent loci led to slightly narrower posteriors under the relaxed clock while older root ages provided proportionately narrower posteriors. The LRT had low power for σ = 0.01-0.1, but high power for σ = 0.5-2.0. Posterior means of σ2 were useful for assessing rate variation in published datasets. Estimates of natural levels of rate variation ranged from 0.05-3.38 for different partitions. Differences in divergence times between relaxed and strict clock analyses were greater in two datasets with higher σ2 for one or more

  3. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.

    PubMed

    Karasawa, N; Mitsutake, A; Takano, H

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  4. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    NASA Astrophysics Data System (ADS)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  5. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  6. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    NASA Astrophysics Data System (ADS)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  7. Isovolumic relaxation time varies predictably with its time constant and aortic and left atrial pressures: implications for the noninvasive evaluation of ventricular relaxation.

    PubMed

    Thomas, J D; Flachskampf, F A; Chen, C; Guererro, J L; Picard, M H; Levine, R A; Weyman, A E

    1992-11-01

    The isovolumic relaxation time (IVRT) is an important noninvasive index of left ventricular diastolic function. Despite its widespread use, however, the IVRT has not been related analytically to invasive parameters of ventricular function. Establishing such a relationship would make the IVRT more useful by itself and perhaps allow it to be combined more precisely with other noninvasive parameters of ventricular filling. The purpose of this study was to validate such a quantitative relationship. Assuming isovolumic relaxation to be a monoexponential decay of ventricular pressure (pv) to a zero-pressure asymptote, it was postulated that the time interval from aortic valve closure (when pv = p(o)) until mitral valve opening (when pv = left atrial pressure, pA) would be given analytically by IVRT = tau[log(p(o))-log(pA)], where tau is the time constant of isovolumic relaxation and log is to the base e. To test this hypothesis we analyzed data from six canine experiments in which ventricular preload and afterload were controlled nonpharmacologically. In addition, tau was adjusted with the use of beta-adrenergic blockade and calcium infusion, as well as with hypothermia. In each experiment data were collected before and after the surgical formation of mitral stenosis, performed to permit the study of a wide range of left atrial pressures. High-fidelity left atrial, left ventricular, and aortic root pressures were digitized, the IVRT was measured from the aortic dicrotic notch until the left atrioventricular pressure crossover point, and tau was calculated by nonlinear least-squares regression.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    DOE PAGES

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; ...

    2018-04-24

    Here, we show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio ofmore » the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the β λ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ς/τ R for gases obeying Bose-Einstein statistics.« less

  9. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun

    Here, we show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio ofmore » the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the β λ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ς/τ R for gases obeying Bose-Einstein statistics.« less

  10. Relaxation times measurement in single and multiply excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.

    2018-05-01

    Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.

  11. Effects of cross-correlated noises on the relaxation time of the bistable system

    NASA Astrophysics Data System (ADS)

    Xie, Chong-Wei; Mei, Dong-Cheng

    2003-11-01

    The stationary correlation function and the associated relaxation time for a general system driven by cross-correlated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of lambda (the correlated intensity between noises) exhibits very different behaviours for alphaD (alpha and D, respectively, stand for the intensities of additive and multiplicative noises). When alpha>D, Tc increases with increasing lambda. But when alpha

  12. Slowed Relaxation in Fatigued Skeletal Muscle Fibers of Xenopus and Mouse

    PubMed Central

    Westerblad, Håkan; Lännergren, Jan; Allen, David G.

    1997-01-01

    Slowing of relaxation is an important characteristic of skeletal muscle fatigue. The aim of the present study was to quantify the relative contribution of altered Ca2+ handling (calcium component) and factors down-stream to Ca2+ (cross-bridge component) to the slowing of relaxation in fatigued fibers of Xenopus and mouse. Two types of Xenopus fibers were used: easily fatigued, type 1 fibers and fatigue resistant, type 2 fibers. In these Xenopus fibers the free myoplasmic [Ca2+] ([Ca2+]i) was measured with indo-1, and the relaxation of Ca2+-derived force, constructed from tetanic [Ca2+]i records and in vivo [Ca2+]i-force curves, was analyzed. An alternative method was used in both Xenopus and mouse fibers: fibers were rapidly shortened during the initial phase of relaxation, and the time to the peak of force redevelopment was measured. These two methods gave similar results and showed proportional slowing of the calcium and cross-bridge components of relaxation in both fatigued type 1 and type 2 Xenopus fibers, whereas only the cross-bridge component was slowed in fatigued mouse fibers. Ca2+ removal from the myoplasm during relaxation was markedly less effective in Xenopus fibers as compared to mouse fibers. Fatigued Xenopus fibers displayed a reduced rate of sarcoplasmic reticulum Ca2+ uptake and increased sarcoplasmic reticulum Ca2+ leak. Some fibers were stretched at various times during relaxation. The resistance to these stretches was increased during fatigue, especially in Xenopus fibers, which indicates that longitudinal movements during relaxation had become less pronounced and this might contribute to the increased cross-bridge component of relaxation in fatigue. In conclusion, slowing of relaxation in fatigued Xenopus fibers is caused by impaired Ca2+ handling and altered cross-bridge kinetics, whereas the slowing in mouse fibers is only due to altered cross-bridge kinetics. PMID:9089444

  13. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.

    PubMed

    Johnson, W R; Nilsen, J

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  14. Measurement of short transverse relaxation times by pseudo-echo nutation experiments.

    PubMed

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-05-03

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Time-dependent efficacy of longitudinal biomarker for clinical endpoint.

    PubMed

    Kolamunnage-Dona, Ruwanthi; Williamson, Paula R

    2018-06-01

    Joint modelling of longitudinal biomarker and event-time processes has gained its popularity in recent years as they yield more accurate and precise estimates. Considering this modelling framework, a new methodology for evaluating the time-dependent efficacy of a longitudinal biomarker for clinical endpoint is proposed in this article. In particular, the proposed model assesses how well longitudinally repeated measurements of a biomarker over various time periods (0,t) distinguish between individuals who developed the disease by time t and individuals who remain disease-free beyond time t. The receiver operating characteristic curve is used to provide the corresponding efficacy summaries at various t based on the association between longitudinal biomarker trajectory and risk of clinical endpoint prior to each time point. The model also allows detecting the time period over which a biomarker should be monitored for its best discriminatory value. The proposed approach is evaluated through simulation and illustrated on the motivating dataset from a prospective observational study of biomarkers to diagnose the onset of sepsis.

  16. Measurement of Relaxation Time of Excess Carriers in Si and CIGS Solar Cells by Modulated Electroluminescence Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatavkar, Sanchit; Muniappan, Kulasekaran; Kannan, Chinna V.

    Excess carrier lifetime plays a crucial role in determining the efficiency of solar cells. In this paper, we use the frequency dependence of inphase and quadrature components of modulated electroluminescence (MEL) to measure the relaxation time (decay) of excess carriers. The advantage of the MEL technique is that the relaxation time is obtained directly from the angular frequency at which the quadrature component peaks. It does not need knowledge of the material parameters like mobility, etc., and can be used for any finished solar cells which have detectable light emission. The experiment is easy to perform with standard electrical equipment.more » For silicon solar cells, the relaxation time is dominated by recombination and hence, the relaxation time is indeed the excess carrier lifetime. In contrast, for the CIGS solar cells investigated here, the relaxation time is dominated by trapping and emission from shallow minority carrier traps.« less

  17. Measurement of Relaxation Time of Excess Carriers in Si and CIGS Solar Cells by Modulated Electroluminescence Technique

    DOE PAGES

    Khatavkar, Sanchit; Muniappan, Kulasekaran; Kannan, Chinna V.; ...

    2017-11-10

    Excess carrier lifetime plays a crucial role in determining the efficiency of solar cells. In this paper, we use the frequency dependence of inphase and quadrature components of modulated electroluminescence (MEL) to measure the relaxation time (decay) of excess carriers. The advantage of the MEL technique is that the relaxation time is obtained directly from the angular frequency at which the quadrature component peaks. It does not need knowledge of the material parameters like mobility, etc., and can be used for any finished solar cells which have detectable light emission. The experiment is easy to perform with standard electrical equipment.more » For silicon solar cells, the relaxation time is dominated by recombination and hence, the relaxation time is indeed the excess carrier lifetime. In contrast, for the CIGS solar cells investigated here, the relaxation time is dominated by trapping and emission from shallow minority carrier traps.« less

  18. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur

    PubMed Central

    Jungmann, P.M.; Kraus, M.S.; Nardo, L.; Liebl, H.; Alizai, H.; Joseph, G.B.; Liu, F.; Lynch, J.; McCulloch, C.E.; Nevitt, M.C.; Link, T.M.

    2014-01-01

    Purpose To study the natural evolution of cartilage T2 relaxation times in knees with various extents of morphological cartilage abnormalities, assessed with 3T MRI from the Osteoarthritis Initiative. Materials and Methods Right knee MRIs of 245, 45–60 year old individuals without radiographic OA were included. Cartilage was segmented and T2 maps were generated in five compartments (patella, medial and lateral femoral condyle, medial and lateral tibia) at baseline and two-year follow-up. We examined the association of T2 values and two-year change of T2 values with various Whole-Organ MR Imaging Scores (WORMS). Statistical analysis was performed with ANOVA and Students t-tests. Results Higher baseline T2 was associated with more severe cartilage defects at baseline and subsequent cartilage loss (P<0.001). However, longitudinal T2 change was inversely associated with both baseline (P=0.038) and follow-up (P=0.002) severity of cartilage defects. Knees that developed new cartilage defects had smaller increases in T2 than subjects without defects (P=0.045). Individuals with higher baseline T2 showed smaller T2 increases over time (P<0.001). Conclusion An inverse correlation of longitudinal T2 changes versus baseline T2 values and morphological cartilage abnormalities suggests that once morphological cartilage defects occur, T2 values may be limited for evaluating further cartilage degradation. PMID:24038491

  19. Relaxation-optimized transfer of spin order in Ising spin chains

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis; Glaser, Steffen J.; Khaneja, Navin

    2005-12-01

    In this paper, we present relaxation optimized methods for the transfer of bilinear spin correlations along Ising spin chains. These relaxation optimized methods can be used as a building block for the transfer of polarization between distant spins on a spin chain, a problem that is ubiquitous in multidimensional nuclear magnetic resonance spectroscopy of proteins. Compared to standard techniques, significant reduction in relaxation losses is achieved by these optimized methods when transverse relaxation rates are much larger than the longitudinal relaxation rates and comparable to couplings between spins. We derive an upper bound on the efficiency of the transfer of the spin order along a chain of spins in the presence of relaxation and show that this bound can be approached by the relaxation optimized pulse sequences presented in the paper.

  20. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter

    DOE PAGES

    Johnson, W. R.; Nilsen, J.

    2016-03-14

    Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less

  1. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    PubMed

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  2. Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties

    NASA Astrophysics Data System (ADS)

    Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.

    2018-05-01

    We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.

  3. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  4. Hemoglobin magnetism in aqueous solution probed by muon spin relaxation and future applications to brain research

    PubMed Central

    Nagamine, Kanetada; Shimomura, Koichiro; Miyadera, Haruo; Kim, Yong-Jae; Scheicher, Ralph Hendrik; Das, Tara Prasad; Schultz, Jerome Samson

    2007-01-01

    A marked difference in spin relaxation behavior due to hemoglobin magnetism was found for positive muons (μ+) in deoxyhemoglobin in comparison with that observed in oxyhemoglobin in aqueous solution at room temperature under zero and external longitudinal magnetic fields upto 0.4 Tesla. At the same time, small but significant unique relaxation pattern was observed in nonmagnetic oxyhemoglobin. Combined with our previous measurements on hemoglobin in human blood, application of this type of measurement to the studies of the level of oxygenation in various regions of the human brain is suggested. PMID:24019590

  5. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    PubMed

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Longitudinal analysis of MR spin-spin relaxation times (T2) in medial femorotibial cartilage of adolescent vs mature athletes: dependence of deep and superficial zone properties on sex and age.

    PubMed

    Wirth, W; Eckstein, F; Boeth, H; Diederichs, G; Hudelmaier, M; Duda, G N

    2014-10-01

    Cartilage spin-spin magnetic resonance imaging (MRI) relaxation time (T2) represents a promising imaging biomarker of "early" osteoarthritis (OA) known to be associated with cartilage composition (collagen integrity, orientation, and hydration). However, no longitudinal imaging studies have been conducted to examine cartilage maturation in healthy subjects thus far. Therefore, we explore T2 change in the deep and superficial cartilage layers at the end of adolescence. Twenty adolescent and 20 mature volleyball athletes were studied (each 10 men and 10 women). Multi-echo spin-echo (MESE) images were acquired at baseline and 2-year follow-up. After segmentation, cartilage T2 was calculated in the deep and superficial cartilage layers of the medial tibial (MT) and the central, weight-bearing part of the medial femoral condyle (cMF), using five echoes (TE 19.4-58.2 ms). 16 adolescent (6 men, 10 women, baseline age 15.8 ± 0.5 years) and 17 mature (nine men, eight women, age 46.5 ± 5.2 years) athletes had complete baseline and follow-up images of sufficient quality to compute T2. In adolescents, a longitudinal decrease in T2 was observed in the deep layers of MT (-2.0 ms; 95% confidence interval (CI): [-3.4, -0.6] ms; P < 0.01) and cMF (-1.3 ms; [-2.4, -0.3] ms; P < 0.05), without obvious differences between males and females. No significant change was observed in the superficial layers, or in the deep or superficial layers of the mature athletes. In this first pilot study on quantitative imaging of cartilage maturation in healthy, athletic subjects, we find evidence of cartilage compositional change in deep cartilage layers of the medial femorotibial compartment in adolescents, most likely related to organizational changes in the collagen matrix. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Joint modeling of longitudinal data and discrete-time survival outcome.

    PubMed

    Qiu, Feiyou; Stein, Catherine M; Elston, Robert C

    2016-08-01

    A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete-time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0. © The Author(s) 2013.

  8. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  9. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  10. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  11. Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected ¹³C CPMG relaxation dispersion.

    PubMed

    Weininger, Ulrich; Respondek, Michal; Akke, Mikael

    2012-09-01

    Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.

  12. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Mongkolsuttirat, Kittisun

    Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured

  13. The SPORT-NMR Software: A Tool for Determining Relaxation Times in Unresolved NMR Spectra

    NASA Astrophysics Data System (ADS)

    Geppi, Marco; Forte, Claudia

    1999-03-01

    A software package which allows the correct determination of individual relaxation times for all the nonequivalent nuclei in poorly resolved NMR spectra is described. The procedure used, based on the fitting of each spectrum in the series recorded in the relaxation experiment, should improve the analysis of relaxation data in terms of quantitative dynamic information, especially in anisotropic phases. Tests on simulated data and experimental examples concerning1H and13CT1ρmeasurement in a solid copolymer and2HT1ZandT1Qmeasurement in a liquid crystal are shown and discussed.

  14. Relaxation time: a proton NMR-based approach as a metric to measure reactivity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Paruthi, Archini; Misra, Superb K.

    2017-08-01

    The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.

  15. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux.

    PubMed

    Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor

    2017-08-01

    Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.

  16. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics

    PubMed Central

    Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar

    2000-01-01

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere

  17. Structural Relaxation of Vit4Amorphous Alloy by the Enthalpy Relaxation

    NASA Astrophysics Data System (ADS)

    O'Reilly, James; Hammond, Vincent

    2002-03-01

    The structural relaxation of an amorphous alloy designated Vit4 has been investigated as a function of thermal history using differential scanning calorimetry. Results indicate that the width of the glass transition region is approximately 30 °C, which is broader than molecular or polymeric glasses but similar to inorganic glasses. The broad transition implies a large distribution of relaxation times, a low activation energy, or a combination of these effects. The Tool-Narayanaswamy model for structural relaxation has been used to analyze the change in fictive temperature that occurs for a series of cooling rates. The activation energy calculated from these data the is 187 kJ/mol, a value that is low compared to other glasses. Using optimization programs, the other relaxation parameters, the characteristic relaxation time, the non-linearity parameter, x, and the fractional exponent of distribution of relaxation times, b, were determined from the experimental specific heat curves. Although the parameters were in good agreement with values typical of other glassy materials, there appears to be less correlation between them than is observed in molecular and polymeric glasses. The results obtained in this study indicate that the structural relaxation of Vit 4 is similar to other glasses except for a low activation energy with high glass transition. This could be due to a low free volume or configurational entropy. The width of the glass transition could result from a large distribution of relaxation times or a low activation energy. The exponent of the distribution of relaxation times, b, is 0.45±0.1 and the non-linearity parameter, x =0.5±0.2. The structural relaxation of Vit 4 is dominated by a low activation energy which is related to the atomic jump motion of hard spheres. The DCp at Tg should be 11.7 J/mol. deg per bead according to Wunderlich’s rule. This means that the change in Cp at Tg in Vit4 can be accounted for by one bead although there are five metal

  18. Longitudinal muscle of the esophagus: its role in esophageal health and disease.

    PubMed

    Mittal, Ravinder K

    2013-07-01

    The muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. The function of the longitudinal muscle and its role in bolus propulsion are not clear. The goal of this review is to summarize what is known of the role of the longitudinal muscle in health, as well as in sensory and motor disorders of the esophagus. Simultaneous manometry and ultrasound imaging reveal that, during peristalsis, the two muscle layers of the esophagus contract in perfect synchrony. On the contrary, during transient lower esophageal sphincter (LES) relaxation, longitudinal muscle contracts independent of the circular muscle. Recent studies have provided novel insights into the role of the longitudinal muscle in LES relaxation and descending relaxation of the esophagus. In certain diseases (e.g. some motility disorders of the esophagus), there is discoordination between the two muscle layers, which likely plays an important role in the genesis of dysphagia and delayed esophageal emptying. There is close temporal correlation between prolonged contractions of the longitudinal muscles of the esophagus and esophageal 'angina-like' pain. Novel techniques to record longitudinal muscle contraction are reviewed. Longitudinal muscles of the esophagus play a key role in the physiology and pathophysiology of esophageal sensory and motor function. Neuro-pharmacologic controls of circular and longitudinal muscle are different, which provides an opportunity for the development of novel pharmacological therapies in the treatment of esophageal sensory and motor disorders.

  19. Bayesian relaxed clock estimation of divergence times in foraminifera.

    PubMed

    Groussin, Mathieu; Pawlowski, Jan; Yang, Ziheng

    2011-10-01

    Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  1. Transmitted light relaxation and microstructure evolution of ferrofluids under gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Li, Decai; Li, Feng; Zhu, Quanshui; Xie, Yu

    2015-03-01

    Using light transmission experiments and optical microscope observations with a longitudinal gradient magnetic field configuration, the relationship between the behavior of the transmitted light relaxation and the microstructure evolution of ionic ferrofluids in the central region of an axisymmetric field is investigated. Under a low-gradient magnetic field, there are two types of relaxation process. When a field is applied, the transmitted light intensity decreases to a minimum within a time on the order of 101-102 s. It is then gradually restored, approaching its initial value within a time on the order of 102 s. This is type I relaxation, which corresponds to the formation of magnetic columns. After the transmission reaches this value, it either increases or decreases slowly, stabilizing within a time on the order of 103 s, according to the direction of the field gradient. This is a type II relaxation, which results from the shadowing effect, corresponding to the motion of the magnetic columns under the application of a gradient force. Under a magnetic field with a centripetal high-gradient (magnetic materials subjected to a force pointing toward the center of the axisymmetric field), the transmitted light intensity decreases monotonously and more slowly than that under a low-gradient field. Magnetic transport and separation resulted from magnetophoresis under high-gradient fields, changing the formation dynamics of the local columns and influencing the final state of the column system.

  2. Surface Tension: Mechanics, Thermodynamics, and Relaxation Times

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-06-01

    A microscopic analysis is presented of the existing definitions of equilibrium surface tension, which can be divided into two types: mechanical and thermodynamic. Each type of definition can be studied from the presentation below according to thermodynamic hypotheses or molecular calculations. An analysis of the planar interface is given and its generalization for curved (spherical) interfaces is considered. The distinction between approaches describing the surface tension of metastable and equilibrium droplets is discussed. Based on nonequilibrium thermodynamics, it is shown that the introduction of metastable droplets is due to a violation of the relationship between the times of impulse and chemical potential relaxation in condensed phases. Problems of calculating the surface tension in nonequilibrium situations are created.

  3. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures

    PubMed Central

    Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S.

    2014-01-01

    SUMMARY Objective The purpose of this work was to review the current literature on cartilage and meniscal T2 relaxation time. Methods Electronic searches in PubMed were performed to identify relevant studies about T2 relaxation time measurements as non-invasive biomarker for knee osteoarthritis (OA) and cartilage repair procedures. Results Initial osteoarthritic changes include proteoglycan loss, deterioration of the collagen network, and increased water content within the articular cartilage and menisci. T2 relaxation time measurements are affected by these pathophysiological processes. It was demonstrated that cartilage and meniscal T2 relaxation time values were significantly increased in subjects with compared to those without radiographic OA and focal knee lesions, respectively. Subjects with OA risk factors such as overweight/obesity showed significantly greater cartilage T2 values than normal controls. Elevated cartilage and meniscal T2 relaxation times were found in subjects with vs without knee pain. Increased cartilage T2 at baseline predicted morphologic degeneration in the cartilage, meniscus, and bone marrow over 3 years. Furthermore, cartilage repair tissue could be non-invasively assessed by using T2 mapping. Reproducibility errors for T2 measurements were reported to be smaller than the T2 differences in healthy and diseased cartilage indicating that T2 relaxation time may be a reliable discriminatory biomarker. Conclusions Cartilage and meniscal T2 mapping may be suitable as non-invasive biomarker to diagnose early stages of knee OA and to monitor therapy of OA. PMID:23896316

  4. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    PubMed

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  5. Two-Relaxation-Time Lattice Boltzmann Method and its Application to Advective-Diffusive-Reactive Transport

    DOE PAGES

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; ...

    2017-09-05

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less

  6. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  7. Two-Relaxation-Time Lattice Boltzmann Method and its Application to Advective-Diffusive-Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less

  8. Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Jun; Song, Xiao-Xia; Tang, Qun

    2013-05-01

    Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or

  9. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  10. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  11. Effects of cross correlation on the relaxation time of a bistable system driven by cross-correlated noise

    NASA Astrophysics Data System (ADS)

    Mei, Dongcheng; Xie, Chongwei; Zhang, Li

    2003-11-01

    We study the effects of correlations between additive and multiplicative noise on relaxation time in a bistable system driven by cross-correlated noise. Using the projection-operator method, we derived an analytic expression for the relaxation time Tc of the system, which is the function of additive (α) and multiplicative (D) noise intensities, correlation intensity λ of noise, and correlation time τ of noise. After introducing a noise intensity ratio and a dimensionless parameter R=D/α, and then performing numerical computations, we find the following: (i) For the case of R<1, the relaxation time Tc increases as R increases. (ii) For the cases of R⩾1, there is a one-peak structure on the Tc-R plot and the effects of cross-correlated noise on the relaxation time are very notable. (iii) For the case of R<1, Tc almost does not change with both λ and τ, and for the cases of R⩾1, Tc decreases as λ increases, however Tc increases as τ increases. λ and τ play opposite roles in Tc, i.e., λ enhances the fluctuation decay of dynamical variable and τ slows down the fluctuation decay of dynamical variable.

  12. Dielectric relaxation studies of binary mixture of β-picoline and methanol using time domain reflectometry at different temperatures

    NASA Astrophysics Data System (ADS)

    Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.

    2016-08-01

    Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.

  13. Solute-solvent contact by intermolecular cross relaxation. I. The nature of the water-hydrophobic interface.

    PubMed

    Nordstierna, Lars; Yushmanov, Pavel V; Furó, István

    2006-08-21

    Intermolecular cross-relaxation rates between solute and solvent were measured by {1H} 19F nuclear magnetic resonance experiments in aqueous molecular solutions of ammonium perfluoro-octanoate and sodium trifluoroacetate. The experiments performed at three different magnetic fields provide frequency-dependent cross-relaxation rates which demonstrate clearly the lack of extreme narrowing for nuclear spin relaxation by diffusionally modulated intermolecular interactions. Supplemented by suitable intramolecular cross-relaxation, longitudinal relaxation, and self-diffusion data, the obtained cross-relaxation rates are evaluated within the framework of recent relaxation models and provide information about the hydrophobic hydration. In particular, water dynamics around the trifluoromethyl group in ammonium perfluoro-octanoate are more retarded than that in the smaller trifluoroacetate.

  14. Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features

    PubMed Central

    Seo, Mirinae; Jahng, Geon-Ho; Sohn, Yu-Mee; Rhee, Sun Jung; Oh, Jang-Hoon; Won, Kyu-Yeoun

    2017-01-01

    Objective The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Materials and Methods Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Results Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). Conclusion The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer. PMID:28096732

  15. Rayleigh-Brillouin scattering studies of the rotation-translation coupling and bulk viscosity relaxation of liquids composed of anisotropic molecules: p-Anisaldehyde and aniline

    NASA Astrophysics Data System (ADS)

    O'Steen, B. L.; Wang, C. H.; Fytas, G.

    1984-04-01

    The coupling of reorientational motion to longitudinal acoustic modes was investigated by studying the Rayleigh-Brillouin spectra of aniline and p-anisaldehyde over a wide range of scattering angles. Aniline and p-anisaldehyde were chosen for investigation since their depolarized spectra at the temperature of interest show a pronounced coupling between orientation and shear modes. The experimental results for attenuation and velocity of the longitudinal waves show that there is indeed relaxation in the shear viscosity. However, shear relaxation due to the coupling of the longitudinal acoustic mode to reorientation plays only a minor role in causing the dispersion of the hypersonic longitudinal waves. To account for the large dispersion, it is essential to consider the mechanism associated with the relaxation of the bulk viscosity through the T-V energy transfer.

  16. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  17. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  18. Spin relaxation in n-type GaAs quantum wells from a fully microscopic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, M. W.; Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2007-01-15

    We perform a full microscopic investigation on the spin relaxation in n-type (001) GaAs quantum wells with an Al{sub 0.4}Ga{sub 0.6}As barrier due to the D'yakonov-Perel' mechanism from nearly 20 K to room temperature by constructing and numerically solving the kinetic spin Bloch equations. We consider all the relevant scattering such as the electron-acoustic-phonon, the electron-longitudinal-optical-phonon, the electron-nonmagnetic-impurity, and the electron-electron Coulomb scattering to the spin relaxation. The spin relaxation times calculated from our theory with a fitting spin splitting parameter are in good agreement with the experimental data by Ohno et al. [Physica E (Amsterdam) 6, 817 (2000)] overmore » the whole temperature regime (from 20 to 300 K). The value of the fitted spin splitting parameter agrees with many experiments and theoretical calculations. We further show the temperature dependence of the spin relaxation time under various conditions such as electron density, impurity density, and well width. We predict a peak solely due to the Coulomb scattering in the spin relaxation time at low temperature (<50 K) in samples with low electron density (e.g., density less than 1x10{sup 11} cm{sup -2}) but high mobility. This peak disappears in samples with high electron density (e.g., 2x10{sup 11} cm{sup -2}) and/or low mobility. The hot-electron spin kinetics at low temperature is also addressed with many features quite different from the high-temperature case predicted.« less

  19. Cross-sectional and longitudinal study of the impact of posterior meniscus horn lesions on adjacent cartilage composition, patient-reported outcomes and gait biomechanics in subjects without radiographic osteoarthritis.

    PubMed

    Russell, C; Pedoia, V; Souza, R B; Majumdar, S

    2017-05-01

    The aim of this study was to assess cross-sectional and longitudinal effects of meniscal lesions on adjacent cartilage T 1ρ and T 2 relaxation times, patient-reported outcomes and gait biomechanics. Thirty patients with no cartilage morphological defects reported by Whole Organ MRI Score (WORMS) magnetic resonance imaging (MRI) grading and no radiographic osteoarthritis (OA) (Kellgren--Lawrence (KL) ≤ 1) were selected, 15 with posterior meniscus horn lesions and 15 matched controls without meniscal lesions. All were imaged on a 3T MR scanner for three consecutive years, except those who dropped from the study. Sagittal and frontal plane kinematic gait data were acquired at baseline. The Knee Injury and Osteoarthritis Outcome Score (KOOS) survey was taken each time. All images were automatically segmented and registered to an atlas for voxel-by-voxel cross-sectional and longitudinal analyses. Relaxation time comparisons between groups showed elevated T 1ρ of the lateral tibia (LP) and elevated T 2 of the medial tibia (MT) and LT at 1 and 2 years in the lesion group. Longitudinal comparisons within each group revealed greater relaxation time elevations over one and 2 years in the group with lesions. KOOS Quality of Life (QOL) was significantly different between the groups at all time points (P < 0.05), as were other KOOS subcategories. No significant differences in the frontal or sagittal biomechanics were observed between the groups at baseline. Individuals with healthy cartilage and posterior meniscal horn lesions have increased relaxation times when compared to matched controls, increased relaxation time changes over 2 years, and consistently report a lower KOOS QOL, yet show no difference in gait biomechanics. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. On the nonlinear variation of dc conductivity with dielectric relaxation time

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove

    2006-09-01

    The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.

  1. Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Xuguang; Rischke, Dirk H.; Institut fuer Theoretische Physik, J.W. Goethe-Universitaet, D-60438 Frankfurt am Main

    2011-02-15

    The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predictedmore » {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.« less

  2. Role of relaxation and time-dependent formation of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Privalov, Timofei; Gel'mukhanov, Faris; Ågren, Hans

    2001-10-01

    A fundamental problem of x-ray spectroscopy is the role of relaxation of the electronic subsystem in the field of the transient core hole. The main intention of the present study is to explore the dynamics due to core-hole relaxation in the whole time domain, and to find out how it is manifested in finite molecular systems in comparison with solids. A technique is developed based on a reduction of the Noziéres-De Dominicis equation to a set of linear algebraic equations. The developed time-dependent formalism is applied to a numerical investigation of a one-dimensional tight-binding model. The formation of the x-ray profiles is explored on the real time scale, and the role of interaction with the core hole, band filling, and the final-state rule are investigated for systems of different size. The formation of spectra of the infinite translational invariant system is studied by extensions of the finite systems. We found that the dynamics of finite systems, like molecules, differs qualitatively from solids: Contrary to the latter the time lapse of the Noziéres-De Dominicis domain for finite systems is squeezed between the inverse bandwidth and the revival time, which is proportional to the system size. For small molecules this means that there is no time for a ``Mahan-Noziéres-De Dominicis singularity'' to develop. Comparison with the strict solution of the Noziéres-De Dominicis equation shows that the adiabatic approximation describes x-ray absorption and emission considerably better than the fast approximation. This explains the suppression of the relaxation effects in x-ray emission of, e.g., gas phase and surface adsorbed molecules, but also that these effects are essential for the absorption case. There is still a quantitative distinction between the adiabatic approximation and the strict approach, which becomes more important for larger systems. Adopting the so-called finite state rule by von Barth and Grossman also for molecules, an almost complete

  3. Bedroom media, sedentary time and screen-time in children: a longitudinal analysis

    PubMed Central

    2013-01-01

    Background Having electronic media in the bedroom is cross-sectionally associated with greater screen-time in children, but few longitudinal studies exist. The aim of this study was to describe longitudinal patterns of ownership and examine cross-sectional and longitudinal associations of bedroom media with children’s sedentary behaviour. Methods Data are from the Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people (SPEEDY) study, collected at 3 time-points: baseline (2007, T0; age 10.3 ± 0.3 years), 1-year (T1y) and 4-year (T4y) follow-up. For each assessment, 1512 (44.9% male), 715 (41.0% male), and 319 (48.3% male) participants provided valid accelerometer data. Outcome variables were accelerometer-assessed sedentary time and self-reported screen-time. The presence of a television or computer in the bedroom was self-reported by participants and a combined bedroom media score calculated as the sum of such items. Cross-sectional and longitudinal associations between bedroom media and each outcome were examined using multi-level linear regression. Results Bedroom TV ownership fell from 70.9% at T0 to 42.5% at T4y. Having a TV in the bedroom (beta; 95% CI*100, T0: -1.17; -1.88, -0.46. T1y: -1.68; -2.67, -0.70) and combined bedroom media (T0: -0.76; -1.26, -0.27. T1y: -0.79; -1.51, -0.07) were negatively associated with objectively measured weekly sedentary time at T0 and T1y. Having a computer in the bedroom (beta; 95% CI, T0: 0.15; 0.02, 0.29. T4y: 0.35; 0.10, 0.60) and combined bedroom media (T0: 0.09: 0.01, 0.18. T4y: 0.20; 0.05, 0.34) were positively associated with screen-time at T0 and T4y. Relative to participants without a computer throughout the study, children that had a computer in their bedroom at T0 but not at T4y (beta; 95% CI for change in screen-time: -8.02; -12.75, -3.29) reported smaller increases in screen-time. Conclusions The bedroom media environment changes with age and exhibits a complex

  4. Time-dependent alteration in cromakalim-induced relaxation of corpus cavernosum from streptozocin-induced diabetic rats.

    PubMed

    Ghasemi, Mehdi; Sadeghipour, Hamed; Asadi, Shahrzad; Dehpour, Ahmad Reza

    2007-09-01

    The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.

  5. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  6. Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times?

    NASA Astrophysics Data System (ADS)

    Samanta, Subarna; Richert, Ranko

    2015-01-01

    We study the dielectric dynamics of viscous glycerol in the presence of a large bias field. Apart from dielectric saturation and polarization anisotropy, we observe that the steady state structural relaxation time is longer by 2.7% in the presence of a 225 kV/cm dc-field relative to the linear response counterpart, equivalent to a field induced glass transition (Tg) shift of +84 mK. This result compares favorably with the 3.0% time constant increase predicted on the basis of a recent report [G. P. Johari, J. Chem. Phys. 138, 154503 (2013)], where the field induced reduction of the configurational entropy translates into slower dynamics by virtue of the Adam-Gibbs relation. Other models of field dependent glass transition temperatures are also discussed. Similar to observations related to the electro-optical Kerr effect, the rise time of the field induced effect is much longer than its collapse when the field is removed again. The orientational relaxation time of the plastic crystal cyclo-octanol is more sensitive to a bias field, showing a 13.5% increase at a field of 150 kV/cm, equivalent to an increase of Tg by 0.58 K.

  7. Secondary and primary relaxations in hyperbranched polyglycerol: a comparative study in the frequency and time domains.

    PubMed

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-28

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  8. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally

  9. Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique

    NASA Astrophysics Data System (ADS)

    Udayakumar, K.; Sujatha, N.

    2015-03-01

    Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.

  10. Problematics of Time and Timing in the Longitudinal Study of Human Development: Theoretical and Methodological Issues

    PubMed Central

    Lerner, Richard M.; Schwartz, Seth J; Phelps, Erin

    2009-01-01

    Studying human development involves describing, explaining, and optimizing intraindividual change and interindividual differences in such change and, as such, requires longitudinal research. The selection of the appropriate type of longitudinal design requires selecting the option that best addresses the theoretical questions asked about developmental process and the use of appropriate statistical procedures to best exploit data derived from theory-predicated longitudinal research. This paper focuses on several interrelated problematics involving the treatment of time and the timing of observations that developmental scientists face in creating theory-design fit and in charting in change-sensitive ways developmental processes across life. We discuss ways in which these problematics may be addressed to advance theory-predicated understanding of the role of time in processes of individual development. PMID:19554215

  11. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  12. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    NASA Astrophysics Data System (ADS)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  13. Stroke Onset Time Determination Using MRI Relaxation Times without Non-Ischaemic Reference in A Rat Stroke Model

    PubMed Central

    Knight, Michael J.; McGarry, Bryony M.; Jokivarsi, Kimmo T.; Gröhn, Olli H.J.; Kauppinen, Risto A.

    2017-01-01

    Background Objective timing of stroke in emergency departments is expected to improve patient stratification. Magnetic resonance imaging (MRI) relaxations times, T2 and T1ρ, in abnormal diffusion delineated ischaemic tissue were used as proxies of stroke time in a rat model. Methods Both ‘non-ischaemic reference’-dependent and -independent estimators were generated. Apparent diffusion coefficient (ADC), T2 and T1ρ, were sequentially quantified for up to 6 hours of stroke in rats (n = 8) at 4.7T. The ischaemic lesion was identified as a contiguous collection of voxels with low ADC. T2 and T1ρ in the ischaemic lesion and in the contralateral non-ischaemic brain tissue were determined. Differences in mean MRI relaxation times between ischaemic and non-ischaemic volumes were used to create reference-dependent estimator. For the reference-independent procedure, only the parameters associated with log-logistic fits to the T2 and T1ρ distributions within the ADC-delineated lesions were used for the onset time estimation. Result The reference-independent estimators from T2 and T1ρ data provided stroke onset time with precisions of ±32 and ±27 minutes, respectively. The reference-dependent estimators yielded respective precisions of ±47 and ±54 minutes. Conclusions A ‘non-ischaemic anatomical reference’-independent estimator for stroke onset time from relaxometric MRI data is shown to yield greater timing precision than previously obtained through reference-dependent procedures. PMID:28685128

  14. Anomalous amplitude of the quantum oscillations in the longitudinal magneto-thermoelectric power

    NASA Astrophysics Data System (ADS)

    Satoh, N.

    2018-03-01

    Longitudinal magneto-thermoelectric power Syy (y) of a pure bismuth single crystal was measured in magnetic fields up to 8T at several fixed temperatures between 1.4 and 15 K to investigate the magneto-phonon effect in the longitudinal magneto-thermoelectric power (MTP). The oscillation patterns of the longitudinal MTP was similar to that of the longitudinal Shubnikov-de Haas (SdH) effect, expectedly. However, the observed amplitude of oscillations showed a curious temperature dependence. That is, in the range of temperature T > 4.2 K, the amplitude has a maximum around 9K, which is well described by considering the inter-Landau level scattering of electrons. On the contrary, in the range of T < 4.2K, the observed amplitude is enhanced markedly although that of the longitudinal SdH oscillations becomes less pronounced by lowering temperature. This discrepancy may be attributed to the effect of the surface (wrapping) current and to the energy dependence of the electron relaxation time.

  15. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Matsui, Hiroyuki; Kubo, Takayoshi; Häusermann, Roger; Mitsui, Chikahiko; Okamoto, Toshihiro; Watanabe, Shun; Takeya, Jun

    2017-10-01

    Coherent charge transport can occur in organic semiconductor crystals thanks to the highly periodic electrostatic potential--despite the weak van der Waals bonds. And as spin-orbit coupling is usually weak in organic materials, robust spin transport is expected, which is essential if they are to be exploited for spintronic applications. In such systems, momentum relaxation occurs via scattering events, which enables an intrinsic mobility to be defined for band-like charge transport, which is >10 cm2 V-1 s-1. In contrast, there are relatively few experimental studies of the intrinsic spin relaxation for organic band-transport systems. Here, we demonstrate that the intrinsic spin relaxation in organic semiconductors is also caused by scattering events, with much less frequency than the momentum relaxation. Magnetotransport measurements and electron spin resonance spectroscopy consistently show a linear relationship between the two relaxation times over a wide temperature range, clearly manifesting the Elliott-Yafet type of spin relaxation mechanism. The coexistence of an ultra-long spin lifetime of milliseconds and the coherent band-like transport, resulting in a micrometre-scale spin diffusion length, constitutes a key step towards realizing spintronic devices based on organic single crystals.

  16. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  17. Behavior of cesium and thallium cations inside a calixarene cavity as probed by nuclear spin relaxation. Evidence of cation-pi interactions in water.

    PubMed

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-08-06

    We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded to a proton, thus subjected essentially to the dipolar interaction with that proton, we could obtain the correlation time describing the reorientation of the CH bond. The rest of this study has demonstrated that it is also the correlation time describing the tumbling of the whole calixarene assembly. From three non-proton-bearing carbons of the aromatic cycles (thus subjected to the chemical shift anisotropy and dipolar mechanisms), we have been able to determine the variation of the chemical shift anisotropy when going from the free to the complex form of the calixarene. These variations not only provide the location of the cation inside the calixarene cavity but also constitute a direct experimental proof of the cation-pi interactions. These results are complemented by cesium and thallium relaxation measurements performed again at two values of the magnetic field B(0). An estimation of the mean distance between the cation and the calixarene protons could be obtained. These measurements have also revealed an important chemical shift anisotropy of thallium upon complexation.

  18. Slow secondary relaxation in a free-energy landscape model for relaxation in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Diezemann, Gregor; Mohanty, Udayan; Oppenheim, Irwin

    1999-02-01

    Within the framework of a free-energy landscape model for the relaxation in supercooled liquids the primary (α) relaxation is modeled by transitions among different free-energy minima. The secondary (β) relaxation then corresponds to intraminima relaxation. We consider a simple model for the reorientational motions of the molecules associated with both processes and calculate the dielectric susceptibility as well as the spin-lattice relaxation times. The parameters of the model can be chosen in a way that both quantities show a behavior similar to that observed in experimental studies on supercooled liquids. In particular we find that it is not possible to obtain a crossing of the time scales associated with α and β relaxation. In our model these processes always merge at high temperatures and the α process remains above the merging temperature. The relation to other models is discussed.

  19. Fast Xe-129 relaxation in solid xenon near its melting point: Cross-over from Raman scattering of phonons to vacancy diffusion.

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-03-01

    NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.

  20. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, K-H; Yoo, C-H; Lim, S-I

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats weremore » estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.« less

  1. A Simple, Inexpensive Model to Demonstrate How Contraction of GI Longitudinal Smooth Muscle Promotes Propulsion

    ERIC Educational Resources Information Center

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…

  2. OCT-based approach to local relaxations discrimination from translational relaxation motions

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.

    2016-04-01

    Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.

  3. Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity.

    PubMed

    Liu, Zhi-jun; Song, Xiao-xia; Tang, Qun

    2013-06-07

    Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM(-1) s(-1)) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.

  4. Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Xie, Bai-Song

    2003-12-01

    Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.

  5. Relaxivity of Ferumoxytol at 1.5 T and 3.0 T.

    PubMed

    Knobloch, Gesine; Colgan, Timothy; Wiens, Curtis N; Wang, Xiaoke; Schubert, Tilman; Hernando, Diego; Sharma, Samir D; Reeder, Scott B

    2018-05-01

    The aim of this study was to determine the relaxation properties of ferumoxytol, an off-label alternative to gadolinium-based contrast agents, under physiological conditions at 1.5 T and 3.0 T. Ferumoxytol was diluted in gradually increasing concentrations (0.26-4.2 mM) in saline, human plasma, and human whole blood. Magnetic resonance relaxometry was performed at 37°C at 1.5 T and 3.0 T. Longitudinal and transverse relaxation rate constants (R1, R2, R2*) were measured as a function of ferumoxytol concentration, and relaxivities (r1, r2, r2*) were calculated. A linear dependence of R1, R2, and R2* on ferumoxytol concentration was found in saline and plasma with lower R1 values at 3.0 T and similar R2 and R2* values at 1.5 T and 3.0 T (1.5 T: r1saline = 19.9 ± 2.3 smM; r1plasma = 19.0 ± 1.7 smM; r2saline = 60.8 ± 3.8 smM; r2plasma = 64.9 ± 1.8 smM; r2*saline = 60.4 ± 4.7 smM; r2*plasma = 64.4 ± 2.5 smM; 3.0 T: r1saline = 10.0 ± 0.3 smM; r1plasma = 9.5 ± 0.2 smM; r2saline = 62.3 ± 3.7 smM; r2plasma = 65.2 ± 1.8 smM; r2*saline = 57.0 ± 4.7 smM; r2*plasma = 55.7 ± 4.4 smM). The dependence of relaxation rates on concentration in blood was nonlinear. Formulas from second-order polynomial fittings of the relaxation rates were calculated to characterize the relationship between R1blood and R2 blood with ferumoxytol. Ferumoxytol demonstrates strong longitudinal and transverse relaxivities. Awareness of the nonlinear relaxation behavior of ferumoxytol in blood is important for ferumoxytol-enhanced magnetic resonance imaging applications and for protocol optimization.

  6. Simple point vortex model for the relaxation of 2D superfluid turbulence in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyun; Kwon, Woo Jin; Shin, Yong-Il

    2016-05-01

    In a recent experiment, it was found that the dissipative evolution of a corotating vortex pair in a trapped Bose-Einstein condensate is well described by a point vortex model with longitudinal friction on the vortex motion and the thermal friction coefficient was determined as a function of sample temperature. In this poster, we present a numerical study on the relaxation of 2D superfluid turbulence based on the dissipative point vortex model. We consider a homogeneous system in a cylindrical trap having randomly distributed vortices and implement the vortex-antivortex pair annihilation by removing a pair when its separation becomes smaller than a certain threshold value. We characterize the relaxation of the turbulent vortex states with the decay time required for the vortex number to be reduced to a quarter of initial number. We find the vortex decay time is inversely proportional to the thermal friction coefficient. In particular, we observe the decay times obtained from this work show good quantitative agreement with the experimental results in, indicating that in spite of its simplicity, the point vortex model reasonably captures the physics in the relaxation dynamics of the real system.

  7. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K., E-mail: akshch@list.ru

    2015-09-28

    We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which takemore » into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.« less

  8. Relaxation Dynamics in Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Scholl, Reinhard Wilhelm

    A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the

  9. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    PubMed

    Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E

    2017-01-01

    Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  10. Upper D region chemical kinetic modeling of LORE relaxation times

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.

    2016-04-01

    The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.

  11. Statistical Properties of Longitudinal Time-Activity Data for Use in Human Exposure Modeling

    EPA Science Inventory

    Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal ...

  12. A Proposed Approach for Joint Modeling of the Longitudinal and Time-To-Event Data in Heterogeneous Populations: An Application to HIV/AIDS's Disease.

    PubMed

    Roustaei, Narges; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf

    2018-01-01

    In recent years, the joint models have been widely used for modeling the longitudinal and time-to-event data simultaneously. In this study, we proposed an approach (PA) to study the longitudinal and survival outcomes simultaneously in heterogeneous populations. PA relaxes the assumption of conditional independence (CI). We also compared PA with joint latent class model (JLCM) and separate approach (SA) for various sample sizes (150, 300, and 600) and different association parameters (0, 0.2, and 0.5). The average bias of parameters estimation (AB-PE), average SE of parameters estimation (ASE-PE), and coverage probability of the 95% confidence interval (CP) among the three approaches were compared. In most cases, when the sample sizes increased, AB-PE and ASE-PE decreased for the three approaches, and CP got closer to the nominal level of 0.95. When there was a considerable association, PA in comparison with SA and JLCM performed better in the sense that PA had the smallest AB-PE and ASE-PE for the longitudinal submodel among the three approaches for the small and moderate sample sizes. Moreover, JLCM was desirable for the none-association and the large sample size. Finally, the evaluated approaches were applied on a real HIV/AIDS dataset for validation, and the results were compared.

  13. Doubly Selective Multiple Quantum Chemical Shift Imaging and T1 Relaxation Time Measurement of Glutathione (GSH) in the Human Brain In Vivo

    PubMed Central

    Choi, In-Young; Lee, Phil

    2012-01-01

    Mapping of a major antioxidant, glutathione (GSH), was achieved in the human brain in vivo using a doubly selective multiple quantum filtering based chemical shift imaging (CSI) of GSH at 3 T. Both in vivo and phantom tests in CSI and single voxel measurements were consistent with excellent suppression of overlapping signals from creatine, γ-Amino butyric acid (GABA) and macromolecules. The GSH concentration in the fronto-parietal region was 1.20 ± 0.16 µmol/g (mean ± SD, n = 7). The longitudinal relaxation time (T1) of GSH in the human brain was 397 ± 44 ms (mean ± SD, n = 5), which was substantially shorter than those of other metabolites. This GSH CSI method permits us to address regional differences of GSH in the human brain with conditions where oxidative stress has been implicated, including multiple sclerosis, aging and neurodegenerative diseases. PMID:22730142

  14. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, K-H; Lee, D-W; Choe, B-Y

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley ratsmore » were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)« less

  15. Event time analysis of longitudinal neuroimage data.

    PubMed

    Sabuncu, Mert R; Bernal-Rusiel, Jorge L; Reuter, Martin; Greve, Douglas N; Fischl, Bruce

    2014-08-15

    This paper presents a method for the statistical analysis of the associations between longitudinal neuroimaging measurements, e.g., of cortical thickness, and the timing of a clinical event of interest, e.g., disease onset. The proposed approach consists of two steps, the first of which employs a linear mixed effects (LME) model to capture temporal variation in serial imaging data. The second step utilizes the extended Cox regression model to examine the relationship between time-dependent imaging measurements and the timing of the event of interest. We demonstrate the proposed method both for the univariate analysis of image-derived biomarkers, e.g., the volume of a structure of interest, and the exploratory mass-univariate analysis of measurements contained in maps, such as cortical thickness and gray matter density. The mass-univariate method employs a recently developed spatial extension of the LME model. We applied our method to analyze structural measurements computed using FreeSurfer, a widely used brain Magnetic Resonance Image (MRI) analysis software package. We provide a quantitative and objective empirical evaluation of the statistical performance of the proposed method on longitudinal data from subjects suffering from Mild Cognitive Impairment (MCI) at baseline. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    PubMed

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Longitudinal relaxation optimized amide 1H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins.

    PubMed

    Yuwen, Tairan; Kay, Lewis E

    2017-04-01

    Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15 N- and 13 C-CEST have been the approaches of choice, the development of spin state selective 1 H-CEST pulse sequences that separate the effects of chemical and dipolar exchange [T. Yuwen, A. Sekhar and L. E. Kay, Angew Chem Int Ed Engl 2016 doi: 10.1002/anie.201610759 (Yuwen et al. 2017)] significantly increases the utility of 1 H-based experiments. Pulse schemes have been described previously for studies of highly deuterated proteins. We present here longitudinal-relaxation optimized amide 1 H-CEST experiments for probing chemical exchange in protonated proteins. Applications involving a pair of proteins are presented establishing that accurate 1 H chemical shifts of sparsely populated conformers can be obtained from simple analyses of 1 H-CEST profiles. A discussion of the inherent differences between 15 N-/ 13 C- and 1 H-CEST experiments is presented, leading to an optimal strategy for recording 1 H-CEST experiments.

  18. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  19. Diffusional mechanisms augment the fluorine magnetic resonance relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation

    PubMed Central

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.

    2011-01-01

    Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488

  20. Reconstructing the Initial Relaxation Time of Young Star Clusters in the Large Magellanic Cloud: The Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; Chen, H.-C.

    2008-06-01

    We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.

  1. Molecular motions of [Beta]-carotene and a carotenoporphyrin dyad in solution. A carbon-13 NMR spin-lattice relaxation time study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Swindle, S.L.; Smith, S.K.

    1995-03-09

    Analysis of [sup 13]C NMR spin-lattice relaxation times (T[sub 1]) yields information concerning both overall tumbling of molecules in solution and internal rotations about single bonds. Relaxation time and nuclear Overhauser effect data have been obtained for [Beta]-carotene and two related molecules, squalane and squalene, for zinc meso-tetraphenylporphyrin, and for a dyad consisting of a porphyrin covalently linked to a carotenoid polyene through a trimethylene bridge. Squalane and squalene, which lack conjugated double bonds, behave essentially as limp string, with internal rotations at least as rapid as overall isotropic tumbling motions. In contrast, [Beta]-carotene reorients as a rigid rod, withmore » internal motions which are too slow to affect relaxation times. Modeling it as an anisotropic rotor yields a rotational diffusion coefficient for motion about the major axis which is 14 times larger than that for rotation about axes perpendicular to that axis. The porphyrin reorients more nearly isotropically and features internal librational motions about the single bonds to the phenyl groups. The relaxation time data for the carotenoporphyrin are consistent with internal motions similar to those of a medieval military flail. 31 refs., 3 figs., 5 tabs.« less

  2. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    NASA Astrophysics Data System (ADS)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  3. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  4. Ultra-Slow Dielectric Relaxation Process in Polyols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2004-04-01

    Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.

  5. Calculation of the electron spin relaxation times in InSb and InAs by the projection-reduction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Nam Lyong, E-mail: nlkang@pusan.ac.kr

    2014-12-07

    The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.

  6. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu

    2014-01-21

    The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxationmore » rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.« less

  7. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    PubMed

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Perturbation of longitudinal relaxation rate in rotating frame (PLRF) analysis for quantification of chemical exchange saturation transfer signal in a transient state.

    PubMed

    Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong

    2017-11-01

    To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices (  ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med 78:1711-1723, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    PubMed

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Rindler fluid with weak momentum relaxation

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2018-01-01

    We realize the weak momentum relaxation in Rindler fluid, which lives on the time-like cutoff surface in an accelerating frame of flat spacetime. The translational invariance is broken by massless scalar fields with weak strength. Both of the Ward identity and the momentum relaxation rate of Rindler fluid are obtained, with higher order correction in terms of the strength of momentum relaxation. The Rindler fluid with momentum relaxation could also be approached through the near horizon limit of cutoff AdS fluid with momentum relaxation, which lives on a finite time-like cutoff surface in Anti-de Sitter(AdS) spacetime, and further could be connected with the holographic conformal fluid living on AdS boundary at infinity. Thus, in the holographic Wilson renormalization group flow of the fluid/gravity correspondence with momentum relaxation, the Rindler fluid can be considered as the Infrared Radiation(IR) fixed point, and the holographic conformal fluid plays the role of the ultraviolet(UV) fixed point.

  11. Spin-lattice relaxation of individual solid-state spins

    NASA Astrophysics Data System (ADS)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  12. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    PubMed

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  13. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  14. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    PubMed

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  15. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.

    PubMed

    Ollila, O H Samuli; Heikkinen, Harri A; Iwaï, Hideo

    2018-06-14

    Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.

  16. Transport limited interfacial carrier relaxation in a double-layer device investigated by time-resolved second harmonic generation and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Taguchi, Dai; Li, Jun; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-02-01

    The interfacial carrier relaxation in an indium tin oxide/polyimide/pentacene/Au double-layer device was studied in both time and frequency domains by using time-resolved second harmonic generation (TR-SHG) and impedance spectroscopy (IS), respectively. Although both hole and electron injection into the pentacene layer and their accumulation at the pentacene/polyimide interface were revealed in TR-SHG, it was only observed in IS under the hole injection condition. The "contradiction" between the two methods for the same carrier relaxation process was explained on the basis of a model, transport limited interfacial carrier relaxation, in which the quasistatic state governs the one-directional carrier transport.

  17. Systolic and diastolic time intervals in pulsus alternans - Significance of alternating isovolumic relaxation

    NASA Technical Reports Server (NTRS)

    Spodick, D. H.; Quarry, V. M.; Khan, A. H.

    1974-01-01

    Systolic and diastolic time intervals in 14 cardiac patients with pulsus alternans revealed significant alternation of preinjection period (PEP), isovolumic contraction time (IVCT), left ventricular ejection time (LVET), ejection time index (ETI), PEP/LVET, and carotid dD/dt with better functional values in the strong beats. Cycle length, duration of electromechanical systole (EMS) and total diastole, i.e., isovolumic relaxation period (IRP) and diastolic filling period (DFP) occurred in 7 out of 8 patients. These diastolic intervals alternated reciprocally such that the IRP of the strong beats encroached upon the DFP of the next (weak) beats.

  18. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  19. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  20. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less

  1. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over

  2. Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.

    PubMed

    Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J

    1998-01-01

    Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.

  3. The Effect of Timed Relaxation on Keyboarding Achievement. Research Bulletin No. 46-B.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Research has shown that relaxation exercises produce physical changes in students. After relaxation exercises, students appear calmer, have reduced levels of anxiety, and are more responsive to instruction. In order to determine if relaxation exercises would improve the rate at which students learn keyboarding, a study was conducted in a South…

  4. Sucrose in Aqueous Solution Revisited: 2. Adaptively Biased Molecular Dynamics Simulations and Computational Analysis of NMR Relaxation

    PubMed Central

    Xia, Junchao; Case, David A.

    2012-01-01

    We report 100 ns molecular dynamics simulations, at various temperatures, of sucrose in water (with concentrations of sucrose ranging from 0.02 to 4 M), and in a 7:3 water-DMSO mixture. Convergence of the resulting conformational ensembles was checked using adaptive-biased simulations along the glycosidic φ and ψ torsion angles. NMR relaxation parameters, including longitudinal (R1) and transverse (R2) relaxation rates, nuclear Overhauser enhancements (NOE), and generalized order parameter (S2) were computed from the resulting time-correlation functions. The amplitude and time scales of molecular motions change with temperature and concentration in ways that track closely with experimental results, and are consistent with a model in which sucrose conformational fluctuations are limited (with 80–90% of the conformations having φ – ψ values within 20° of an average conformation), but with some important differences in conformation between pure water and DMSO-water mixtures. PMID:22058066

  5. Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-02-01

    A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role in emergence of a non-FL (NFL) paradigm in higher dimensions D (>1 ) . Motivated hereby, we explore the emergence of this "two relaxation rates" scenario in the Hubbard Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to D =3 , we find, beyond a critical Falicov-Kimball (FK) interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2 -yO3 near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization method applied to the Wolff model and connecting it to the x-ray edge problem.

  6. Circular and longitudinal muscles shortening indicates sliding patterns during peristalsis and transient lower esophageal sphincter relaxation

    PubMed Central

    Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K.; Kim, Tae Ho; Ledgerwood, Melissa

    2015-01-01

    Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR. PMID:26045610

  7. Vibrational Relaxation and Dynamical Transitions in Atactic Polystyrene

    NASA Astrophysics Data System (ADS)

    Zhao, Hanqing; Park, Yung; Painter, Paul

    2009-03-01

    Infrared bands and Raman lines recorded in the frequency domain have a counterpart in the time domain in the form of time-correlation functions, which are sensitive to molecular dynamics on the picosecond time scale. This is explored by calculating time correlation functions and their variation with temperature for the conformationally insensitive modes observed near 1601 cm-1 and 1583 cm-1 in the infrared spectrum of atactic polystyrene. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fundamental mode, near 1583 cm-1, is inhomogeneously broadened, but the relaxation time calculated for this mode is sensitive to temperature as a result of anharmonic coupling to a combination mode. A change in the modulation of the 1583 cm-1 band becomes apparent about 10--20 degrees below the thermally measured Tg. Relaxation times at first increase then decrease and becomes negligible at temperatures near 180 degrees. These results are consistent with theories of the glass transition.

  8. Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand

    2017-10-01

    In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.

  9. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional

  10. Influence of dipolar interactions on the superparamagnetic relaxation time of γ-Fe2O3

    NASA Astrophysics Data System (ADS)

    Labzour, A.; Housni, A.; Limame, K.; Essahlaoui, A.; Sayouri, S.

    2017-03-01

    Influence of dipolar interactions on the Néel superparamagnetic relaxation time, τ , of an assembly of ultrafine ferromagnetic particles (γ-Fe2O3 ) with uniaxial anisotropy and of different sizes has been widely studied using Mössbauer technique. These studies, based on different analytical approaches, have shown that τ decreases with increasing interactions between particles. To interpret these results, we propose a model where interaction effects are considered as being due to a constant and external randomly oriented magnetic field B(Ψ, ϕ). The model is based on the resolution of the Fokker-Planck equation (FPE), generalizes previous calculations and gives satisfactory interpretation of the relaxation phenomenon in such systems.

  11. Ultrafast energy relaxation in single light-harvesting complexes.

    PubMed

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  12. A new insight into the dependence of relaxation time on frequency in viscoelastic surfactant solutions: From experimental to modeling study.

    PubMed

    García, Brayan F; Saraji, Soheil

    2018-05-01

    The relaxation time in viscoelastic surfactant solutions is a function of temperature, salt/surfactant concentrations, resting conditions, as well as shear frequency. The simplistic assumption of a single and constant relaxation time is not representative of all relaxation modes in these solutions especially at high frequencies. Steady-state and oscillatory measurements are carried out to study the effects of high temperature, concentration and resting condition on the rheology of surfactants/salt mixtures including a non-ionic and a zwitterionic/anionic surfactant system. Furthermore, a novel semi-empirical rheological model is deducted based on Cates theory.This model introduces, for the first time, a frequency-dependence for the continuous relaxation time spectrum. At high temperatures, the non-ionic surfactant become more viscoelastic and the zwitterionic/anionic system loses its viscoelasticity. The addition of surfactant/salt improves the viscoelasticity of both systems, and, for the zwitterionic/anionic mixture, increasing the resting temperature improves its viscoelasticity. In addition, the proposed model significantly improves predictions of traditional Maxwell model for different viscoelastic surfactant solutions (using data from this study and the literature) for a considerable range of surfactant and salt combinations at a wide range of temperature. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Time scale bridging in atomistic simulation of slow dynamics: viscous relaxation and defect activation

    NASA Astrophysics Data System (ADS)

    Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.

    2011-08-01

    Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.

  14. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.

    PubMed

    Liang, H; Shi, B C; Guo, Z L; Chai, Z H

    2014-05-01

    In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

  15. Electron-impact vibrational relaxation in high-temperature nitrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1992-01-01

    Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.

  16. Aging alters patterns of regional nonuniformity in LV strain relaxation: a 3-D MR tissue tagging study.

    PubMed

    Fonseca, Carissa G; Oxenham, Helen C; Cowan, Brett R; Occleshaw, Christopher J; Young, Alistair A

    2003-08-01

    Although age-related impairment of diastolic function is well documented, patterns of regional tissue relaxation impairment with age have not been characterized. MRI tissue tagging with a regional three-dimensional (3-D) analysis was performed in 15 younger (age 19-26 yr) and 16 older (age 60-74 yr) normal, healthy volunteers. The peak rate of relaxation of circumferential strain (RC) was decreased in the older group (on average, 105 +/- 28 vs. 163 +/- 18 %/s for older vs. younger, mean +/- SD, P < 0.001) to a greater extent in the lateral wall than in the septum (P = 0.016) and to a greater extent in the apex than in the base (P < 0.001). Peak rate of relaxation of longitudinal strain (RL) was also reduced with age (94 +/- 27 vs. 155 +/- 18 %/s, P < 0.001) to a greater extent in the apex than in the base (P < 0.001). Both RC and RL were greater in the apex than in the base only in the younger subjects (P < 0.001 for each). Peak rate of torsion reversal (RT) was reduced with age (74 +/- 16 vs. 91 +/- 15 degrees/s, P = 0.006) to a greater extent in the base than in the apex (P = 0.035). An increase in regional asynchrony in time to RC and time to RL (P < 0.001 for each), but not time to RT, occurred with age. Thus patterns of regional nonuniformity of myocardial relaxation are altered in a consistent fashion with aging.

  17. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Hsiao, C. C.; Liu, J. Y.; Liu, C. H.

    2007-12-01

    Longitudinal structure of the equatorial ionosphere during the 24 h local time period is observed by the FORMOSAT-3/COSMIC (F3/C) satellite constellation. By binning the F3/C radio occultation observations during September and October 2006, global ionospheric total electron content (TEC) maps at a constant local time map (local time TEC map, referred as LT map) can be obtained to monitor the development and subsidence of the four-peaked longitudinal structure of the equatorial ionosphere. From LT maps, the four-peaked structure starts to develop at 0800-1000 LT and becomes most prominent at 1200-1600 LT. The longitudinal structure starts to subside after 2200-2400 LT and becomes indiscernible after 0400-0600 LT. In addition to TEC, ionospheric peak altitude also shows a four-peaked longitudinal structure with variation very similar to TEC during daytime. The four-peaked structure of the ionospheric peak altitude is indiscernible at night. With global local time maps of ionospheric TEC and peak altitude, we compare temporal variations of the longitudinal structure with variations of E × B drift from the empirical model. Our results indicate that the observations are consistent with the hypothesis that the four-peaked longitudinal structure is caused by the equatorial plasma fountain modulated by the E3 nonmigrating tide. Additionally, the four maximum regions show a tendency of moving eastward with propagation velocity of several 10 s m/s.

  18. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  19. The study of dielectric relaxation in aqueous carbohydrates solutions using time domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Hudge, Pravin G.; Lokhande, Milind P.; Kumbharkhane, Ashok C.

    2012-09-01

    Complex permittivity spectra of aqueous solutions of monosaccharide ( d-glucose) and disaccharides ( d-sucrose) in the frequency range from 10 MHz to 30 GHz at various concentrations and temperatures have been determined using time domain reflectometry technique. The complex dielectric permittivity spectrum of d-glucose and d-sucrose in water shows Cole-Davidson type behaviour. Dielectric constant (ɛ0) and relaxation time (τ), Kirkwood correlation factor, activation enthalpy and entropy parameters have been determined.

  20. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. Somore » far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low

  1. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening.

    PubMed

    Dinh, Thanh-Chung; Renger, Thomas

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  2. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    PubMed

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such

  3. Ultrafast energy relaxation in single light-harvesting complexes

    DOE PAGES

    Maly, Pavel; Gruber, J. Michael; Cogdell, Richard J.; ...

    2016-02-22

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changesmore » in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Lastly, our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.« less

  4. Ultrafast energy relaxation in single light-harvesting complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maly, Pavel; Gruber, J. Michael; Cogdell, Richard J.

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changesmore » in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Lastly, our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.« less

  5. Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films

    NASA Astrophysics Data System (ADS)

    Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong

    2016-07-01

    Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40-50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.

  6. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  7. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    NASA Astrophysics Data System (ADS)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  8. Time Out from Tension: Teaching Young Children How To Relax. Teaching Strategies.

    ERIC Educational Resources Information Center

    Scully, Patricia

    2003-01-01

    Discusses how using relaxation and stress reduction activities with individual preschool and elementary school-age children during difficult periods can help them regain control, and how integrating relaxation techniques into everyday activities helps to establish positive behavior patterns to support healthy living. Presents breathing activities…

  9. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy.

    PubMed

    Hushcha, T; Kaatze, U; Peytcheva, A

    Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  10. The Timing of Maternal Depressive Symptoms and Child Cognitive Development: A Longitudinal Study

    ERIC Educational Resources Information Center

    Evans, Jonathan; Melotti, Roberto; Heron, Jon; Ramchandani, Paul; Wiles, Nicola; Murray, Lynne; Stein, Alan

    2012-01-01

    Background: Maternal depression is known to be associated with impairments in child cognitive development, although the effect of timing of exposure to maternal depression is unclear. Methods: Data collected for the Avon Longitudinal Study of Parents and Children, a longitudinal study beginning in pregnancy, included self-report measures of…

  11. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  12. Relaxation mode analysis and Markov state relaxation mode analysis for chignolin in aqueous solution near a transition temperature

    NASA Astrophysics Data System (ADS)

    Mitsutake, Ayori; Takano, Hiroshi

    2015-09-01

    It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.

  13. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  14. [Transient lower esophageal sphincter relaxation and the related esophageal motor activities].

    PubMed

    Han, Seung Hyo; Hong, Su Jin

    2012-03-01

    Transient lower esophageal sphincter (LES) relaxation (TLESR) is defined as LES relaxation without a swallow. TLESRs are observed in both of the normal individuals and the patients with gastroesophageal reflux disorder (GERD). However, TLESR is widely considered as the major mechanism of the GERD. The new equipments such as high resolution manometry and impedance pH study is helped to understand of TLESR and the related esophageal motor activities. The strong longitudinal muscle contraction was observed during development of TLESR. Most of TLESRs are terminated by TLESR related motor events such as primary peristalsis and secondary contractions. The majority of TLESRs are associated with gastroesophageal reflux. Upper esophageal sphincter (UES) contraction is mainly associated with liquid reflux during recumbent position and UES relaxation predominantly related with air reflux during upright position. The frequency of TLESR in GERD patients seems to be not different compared to normal individuals, but the refluxate of GERD patients tend to be more acidic during TLESR.

  15. Broadband spectral analysis of non-Debye dielectric relaxation in percolating heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuncer, Enis; Bellatar, J; Achour, M E

    2011-01-01

    In this study, the main features of dielectric relaxation in carbon black epoxy composites are discussed using several types of complementary modelling (i.e., the Cole-Cole phenomenological equation, Jonscher s universal dielectric response, and an approach that relies on a continuous distribution of relaxation times). These methods of characterizing the relaxation were conducted below Tg. Through the numerical model we can obtain the characteristic effective relaxation time and exponents straightforwardly. However, the true relaxation spectrum can be obtained from the distribution of relaxation times calculated from the complex dielectric permittivity. Over the compositional range explored, relaxation occurs by a Vogel-Tammam-Fulcher-like temperaturemore » dependence within the limits of experimental accuracy.« less

  16. Joint Models of Longitudinal and Time-to-Event Data with More Than One Event Time Outcome: A Review.

    PubMed

    Hickey, Graeme L; Philipson, Pete; Jorgensen, Andrea; Kolamunnage-Dona, Ruwanthi

    2018-01-31

    Methodological development and clinical application of joint models of longitudinal and time-to-event outcomes have grown substantially over the past two decades. However, much of this research has concentrated on a single longitudinal outcome and a single event time outcome. In clinical and public health research, patients who are followed up over time may often experience multiple, recurrent, or a succession of clinical events. Models that utilise such multivariate event time outcomes are quite valuable in clinical decision-making. We comprehensively review the literature for implementation of joint models involving more than a single event time per subject. We consider the distributional and modelling assumptions, including the association structure, estimation approaches, software implementations, and clinical applications. Research into this area is proving highly promising, but to-date remains in its infancy.

  17. Interface roughness mediated phonon relaxation rates in Si quantum dots.

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib

    2015-03-01

    Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.

  18. Isovolumic relaxation period as an index of left ventricular relaxation under different afterload conditions--comparison with the time constant of left ventricular pressure decay in the dog.

    PubMed

    Ochi, H; Ikuma, I; Toda, H; Shimada, T; Morioka, S; Moriyama, K

    1989-12-01

    In order to determine whether isovolumic relaxation period (IRP) reflects left ventricular relaxation under different afterload conditions, 17 anesthetized, open chest dogs were studied, and the left ventricular pressure decay time constant (T) was calculated. In 12 dogs, angiotensin II and nitroprusside were administered, with the heart rate constant at 90 beats/min. Multiple linear regression analysis showed that the aortic dicrotic notch pressure (AoDNP) and T were major determinants of IRP, while left ventricular end-diastolic pressure was a minor determinant. Multiple linear regression analysis, correlating T with IRP and AoDNP, did not further improve the correlation coefficient compared with that between T and IRP. We concluded that correction of the IRP by AoDNP is not necessary to predict T from additional multiple linear regression. The effects of ascending aortic constriction or angiotensin II on IRP were examined in five dogs, after pretreatment with propranolol. Aortic constriction caused a significant decrease in IRP and T, while angiotensin II produced a significant increase in IRP and T. IRP was affected by the change of afterload. However, the IRP and T values were always altered in the same direction. These results demonstrate that IRP is substituted for T and it reflects left ventricular relaxation even in different afterload conditions. We conclude that IRP is a simple parameter easily used to evaluate left ventricular relaxation in clinical situations.

  19. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    NASA Astrophysics Data System (ADS)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  20. Implicit versus explicit momentum relaxation time solution for semiconductor nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es

    2015-07-14

    We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicitmore » approach inaccuracies on the total mobility of Si and III-V NWs are studied.« less

  1. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  2. Pressure jump relaxation setup with IR detection and millisecond time resolution

    NASA Astrophysics Data System (ADS)

    Schiewek, Martin; Krumova, Marina; Hempel, Günter; Blume, Alfred

    2007-04-01

    An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.

  3. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  4. Comparison of T1 and T2 metabolite relaxation times in glioma and normal brain at 3 T

    PubMed Central

    Li, Yan; Srinivasan, Radhika; Ratiney, Helene; Lu, Ying; Chang, Susan M.; Nelson, Sarah J.

    2011-01-01

    Purpose To measure T1 and T2 relaxation times of metabolites in glioma patients at 3T and to investigate how these values influence the observed metabolite levels. Materials and Methods Twenty-three patients with gliomas and ten volunteers were studied with single voxel 2D J-resolved PRESS using a 3T MR scanner. Voxels were chosen in normal appearing white matter and in regions of tumor. The T1 and T2 of choline containing compounds (Cho), creatine (Cr) and N-acetyl aspartate (NAA) were estimated. Results Metabolite T1 relaxation values in gliomas were not significantly different from values in normal white matter. The T2 of Cho and Cr were statistically significantly longer for Grade 4 gliomas than for normal white matter but the T2 of NAA was similar. These differences were large enough to impact the corrections of metabolite levels for relaxation times with tumor grade in terms of metabolite ratios (P<0.001). Conclusion The differential increase in T2 for Cho and Cr relative to NAA means that the ratios of Cho/NAA and Cr/NAA are higher in tumor at longer echo times relative to values in normal appearing brain. Having this information may be useful in defining the acquisition parameters for optimizing contrast between tumor and normal tissue in MRSI data, where limited time is available and only one echo time can be used. PMID:18666155

  5. Biexciton relaxation associated with dissociation into a surface polariton pair in semiconductor films

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Matsuura, Shimpei; Uchiyama, Shoichi; Saito, Kentarao; Edamatsu, Keiichi; Nakayama, Masaaki; Ajiki, Hiroshi

    2018-04-01

    We study the biexciton relaxation process in CuCl films ranging from 6 to 200 nm. The relaxation time is measured as the dephasing time and the lifetime. We observe a unique thickness dependence of the biexciton relaxation time and also obtain an ultrafast relaxation time with a timescale as short as 100 fs, while the exciton lifetime monotonically decreases with increasing thickness. By analyzing the exciton-photon coupling energy for a surface polariton, we theoretically calculate the biexciton relaxation time as a function of the thickness. The calculated dependence qualitatively reproduces the observed relaxation time, indicating that the biexciton dissociation into a surface polariton pair is one of the major biexciton relaxation processes.

  6. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.

    PubMed

    Chieng, Norman; Mizuno, Masayasu; Pikal, Michael

    2013-10-01

    The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔT(g)). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50 °C and 60 °C) from TAM data at lower temperature (40 °C) and glass transition region width (ΔT(g)) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol, and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔT(g). Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔT(g), but the agreement is only qualitative. The comparison plot showed that TAM data are directly proportional to the 1/3 power of ΔT(g) data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔT(g) derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔT(g) method and TAM data at 40 °C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature, is well below the Tg of the sample. Copyright © 2013 Elsevier B.V. All rights

  7. Characterization of Dynamics in Complex Lyophilized Formulations: I. Comparison of Relaxation Times Measured by Isothermal Calorimetry with Data Estimated from the Width of the Glass Transition Temperature Region

    PubMed Central

    Chieng, Norman; Mizuno, Masayasu; Pikal, Michael

    2013-01-01

    The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔTg). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50°C and 60°C) from TAM data at lower temperature (40°C) and glass transition region width (ΔTg) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔTg. Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔTg, but the agreement is only qualitative. The comparison plot showed that TAM data is directly proportional to the 1/3 power of ΔTg data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔTg derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔTg method and TAM data at 40°C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature is well below the Tg of the sample. PMID:23608636

  8. Accelerated radiation damping for increased spin equilibrium (ARISE): a new method for controlling the recovery of longitudinal magnetization.

    PubMed

    Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L

    2008-11-01

    Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.

  9. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    PubMed

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P < 0.05 at cluster level, false discovery rate). ROI analysis revealed that T 1 values in the nucleus accumbens linearly decreased with aging (P = 0.0016), supporting the VBA result. T 1 values in the thalamus (P < 0.0001), substantia nigra (P = 0.0003), and globus pallidus (P < 0.0001) had a best fit to quadratic curves, with the minimum T 1 values observed between 30 and 50 years of age. Age-related changes in T 1 relaxation time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  11. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    PubMed

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Acoustic Properties of Crystals with Jahn-Teller Impurities: Elastic Moduli and Relaxation Time. Application to SrF2:Cr2+

    NASA Astrophysics Data System (ADS)

    Averkiev, Nikita S.; Bersuker, Isaac B.; Gudkov, Vladimir V.; Zhevstovskikh, Irina V.; Sarychev, Maksim N.; Zherlitsyn, Sergei; Yasin, Shadi; Shakurov, Gilman S.; Ulanov, Vladimir A.; Surikov, Vladimir T.

    2017-11-01

    A new approach to evaluate the relaxation contribution to the total elastic moduli for crystals with Jahn-Teller (JT) impurities is worked out and applied to the analysis of the experimentally measured ultrasound velocity and attenuation in SrF2:Cr2+. Distinguished from previous work, the background adiabatic contribution to the moduli, important for revealing the impurity relaxation contribution, is taken into account. The temperature dependence of the relaxation time for transitions between the equivalent configurations of the JT centers has been obtained, and the activation energy for the latter in SrF2:Cr2+, as well as the linear vibronic coupling constant have been evaluated.

  13. Surface vibrational relaxation of N2 studied by infrared titration with time resolved Quantum Cascade Laser diagnostics

    NASA Astrophysics Data System (ADS)

    Marinov, D.; Guaitella, O.; Rousseau, A.; Lopatik, D.; Hübner, M.; Röpcke, J.; Ionikh, Yu

    2012-10-01

    Relaxation of vibrationally excited nitrogen molecules on reactor walls is the most efficient N2(v) loss mechanism in laboratory plasmas at pressures up to few tens of mbars. In the present study a new method for determination of the de-excitation probability γN2 of vibrationally excited N2 on different surfaces has been developed. A short dc discharge pulse was applied to a mixture containing 0.05-1% of CO2, N2O or CO in N2 at 1.3 mbar. Due to a very efficient vibrational coupling between N2(v) and CO2 (N2O, CO), the vibrational excitation of these titrating molecules is an image of the vibrational excitation of N2. In the afterglow, the vibrational relaxation was monitored in-situ using quantum cascade laser absorption spectroscopy. The measurements were performed in a single discharge pulse without signal accumulation. Experimental results were interpreted in terms of a numerical model of non-equilibrium vibrational kinetics. The value of γN2 was determined from the best agreement between the measured and calculated relaxation times. Using new technique the relaxation probability of N2(v) was measured for SiO2, TiO2, Al2O3, Pyrex and anodized aluminum.

  14. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    NASA Astrophysics Data System (ADS)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  15. Rapid wall relaxation in elongating tissues.

    PubMed

    Matyssek, R; Maruyama, S; Boyer, J S

    1988-04-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.

  16. Centric scan SPRITE for spin density imaging of short relaxation time porous materials.

    PubMed

    Chen, Quan; Halse, Meghan; Balcom, Bruce J

    2005-02-01

    The single-point ramped imaging with T1 enhancement (SPRITE) imaging technique has proven to be a very robust and flexible method for the study of a wide range of systems with short signal lifetimes. As a pure phase encoding technique, SPRITE is largely immune to image distortions generated by susceptibility variations, chemical shift and paramagnetic impurities. In addition, it avoids the line width restrictions on resolution common to time-based sampling, frequency encoding methods. The standard SPRITE technique is however a longitudinal steady-state imaging method; the image intensity is related to the longitudinal steady state, which not only decreases the signal-to-noise ratio, but also introduces many parameters into the image signal equation. A centric scan strategy for SPRITE removes the longitudinal steady state from the image intensity equation and increases the inherent image intensity. Two centric scan SPRITE methods, that is, Spiral-SPRITE and Conical-SPRITE, with fast acquisition and greatly reduced gradient duty cycle, are outlined. Multiple free induction decay (FID) points may be acquired during SPRITE sampling for signal averaging to increase signal-to-noise ratio or for T2* and spin density mapping without an increase in acquisition time. Experimental results show that most porous sedimentary rock and concrete samples have a single exponential T2* decay due to susceptibility difference-induced field distortion. Inhomogeneous broadening thus dominates, which suggests that spin density imaging can be easily obtained by SPRITE.

  17. Isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol

    NASA Astrophysics Data System (ADS)

    Fransson, Å.; Bäckström, G.

    The isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol has been measured at six temperatures. The relaxation time and the distribution parameters extracted from fits of the Williams-Watts relaxation function are compared with parameters obtained by other techniques and on other substances. A detailed comparison of the Williams-Watts and the Davidson-Cole relaxation functions is presented.

  18. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    PubMed

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p < 0.001) were measurable for all three contrast agents. T(2) values were 58 +/- 2 and 62 +/- 3 ms for gadopentetate dimeglumine, 46 +/- 2 and 57 +/- 2 ms for gadobenate dimeglumine, and 38 +/- 2 and 42 +/- 2 ms for gadoteridol at 1 and 3 mm depths, respectively. The r(2)/r(1) relaxivity ratios across cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John

  19. Nonlogarithmic magnetization relaxation at the initial time intervals and magnetic field dependence of the flux creep rate in Bi2Sr2Ca(sub I)Cu2Ox single crystals

    NASA Technical Reports Server (NTRS)

    Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.

    1990-01-01

    At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.

  20. Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: Comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations

    PubMed Central

    Sagnella, Diane E.; Straub, John E.; Jackson, Timothy A.; Lim, Manho; Anfinrud, Philip A.

    1999-01-01

    The vibrational energy relaxation of carbon monoxide in the heme pocket of sperm whale myoglobin was studied by using molecular dynamics simulation and normal mode analysis methods. Molecular dynamics trajectories of solvated myoglobin were run at 300 K for both the δ- and ɛ-tautomers of the distal His-64. Vibrational population relaxation times of 335 ± 115 ps for the δ-tautomer and 640 ± 185 ps for the ɛ-tautomer were estimated by using the Landau–Teller model. Normal mode analysis was used to identify those protein residues that act as the primary “doorway” modes in the vibrational relaxation of the oscillator. Although the CO relaxation rates in both the ɛ- and δ-tautomers are similar in magnitude, the simulations predict that the vibrational relaxation of the CO is faster in the δ-tautomer with the distal His playing an important role in the energy relaxation mechanism. Time-resolved mid-IR absorbance measurements were performed on photolyzed carbonmonoxy hemoglobin (Hb13CO). From these measurements, a T1 time of 600 ± 150 ps was determined. The simulation and experimental estimates are compared and discussed. PMID:10588704

  1. Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer.

    PubMed

    Liu, Xiang-Yang; Zhang, Ya-Hui; Fang, Wei-Hai; Cui, Ganglong

    2018-06-28

    Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.

  2. Quasiparticle relaxation in superconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Savich, Yahor; Glazman, Leonid; Kamenev, Alex

    2017-09-01

    We examine energy relaxation of nonequilibrium quasiparticles in "dirty" superconductors with the electron mean free path much shorter than the superconducting coherence length. Relaxation of low-energy nonequilibrium quasiparticles is dominated by phonon emission. We derive the corresponding collision integral and find the quasiparticle relaxation rate. The latter is sensitive to the breaking of time reversal symmetry (TRS) by a magnetic field (or magnetic impurities). As a concrete application of the developed theory, we address quasiparticle trapping by a vortex and a current-biased constriction. We show that trapping of hot quasiparticles may predominantly occur at distances from the vortex core, or the constriction, significantly exceeding the superconducting coherence length.

  3. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.

    PubMed

    Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R

    2017-05-01

    To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  5. Unraveling the electronic relaxation dynamics in photoexcited 2,4-difluoroaniline via femtosecond time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Ling, Fengzi; Li, Shuai; Wei, Jie; Liu, Kai; Wang, Yanmei; Zhang, Bing

    2018-04-01

    Time-resolved photoelectron imaging is employed to investigate the relaxation dynamics of the lowest two excited electronic states S1(ππ*) and S2(π3s/πσ*) in 2,4-difluoroaniline (24DFA). As the S1(ππ*) state is populated directly following 289 nm excitation, the population undergoes ultrafast intramolecular vibrational redistribution on a 540 fs time scale, followed by efficient intersystem crossing from S1(ππ*) to the triplet state within 379 ps, and the subsequent slower deactivation process of the triplet state. For excitation to the S2(π3s/πσ*) state at 238 nm, the population probably bifurcates into two decay channels. The dominant channel with 84 fs involves ultrafast internal conversion to the S1(ππ*) state, from which it relaxes to the electronic ground state on a 116 ps time scale. The other appears to involve motion along the S2(π3s/πσ*) potential energy surface. Our data also determine experimentally the electronic energies of S2(π3s/πσ*), S3(ππ*), and several Rydberg states in 24DFA.

  6. Relaxation-Induced Anxiety: Paradoxical Anxiety Enhancement Due to Relaxation Training.

    ERIC Educational Resources Information Center

    Heide, Frederick J.; Borkovec, T. D.

    1983-01-01

    Documented relaxation-induced anxiety in 14 subjects suffering from tension who were given training in progressive relaxation and mantra meditation. Four of the subjects displayed clinical evidence of an anxiety reaction during a preliminary practice period. Progressive relaxation produced less evidence of relaxation-induced anxiety. (Author/JAC)

  7. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.

    PubMed

    Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young

    2015-10-01

    The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. A model problem for estimation of moving-film time relaxation at sudden change of boundary conditions

    NASA Astrophysics Data System (ADS)

    Smirnovsky, Alexander A.; Eliseeva, Viktoria O.

    2018-05-01

    The study of the film flow occurred under the influence of a gas slug flow is of definite interest in heat and mass transfer during the motion of a coolant in the second circuit of a nuclear water-water reactor. Thermohydraulic codes are usually used for analysis of the such problems in which the motion of the liquid film and the vapor is modeled on the basis of a one-dimensional balance equations. Due to a greater inertia of the liquid film motion, film flow parameters changes with a relaxation compared with gas flow. We consider a model problem of film flow under the influence of friction from gas slug flow neglecting such effects as wave formation, droplet breakage and deposition on the film surface, evaporation and condensation. Such a problem is analogous to the well-known problems of Couette and Stokes flows. An analytical solution has been obtained for laminar flow. Numerical RANS-based simulation of turbulent flow was performed using OpenFOAM. It is established that the relaxation process is almost self-similar. This fact opens a possibility of obtaining valuable correlations for the relaxation time.

  9. Thermally induced magnetic relaxation in square artificial spin ice.

    PubMed

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  10. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  11. Associated relaxation time and the correlation function for a tumor cell growth system subjected to color noises

    NASA Astrophysics Data System (ADS)

    Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng

    2008-03-01

    The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.

  12. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun

    Here, an entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace’s law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results.more » Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.« less

  13. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    DOE PAGES

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; ...

    2018-03-22

    Here, an entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace’s law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results.more » Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.« less

  14. Aging of Johari-Goldstein Relaxation in Structural Glasses

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-03-01

    Using frequency-dependent dielectric susceptibility measurements we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids, features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. However, one can not assign a single fictive temperature to both the alpha and Johari-Goldstein relaxations. For example, the peak frequency of the Johari-Goldstein relaxation remains constant during aging for sorbitol while it increases with age for xylitol, inconsistent with a decreasing fictive temperature. This behavior contrasts with that of the high frequency tail of the alpha peak whose shape and position track the aging of the main part of the peak.

  15. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  16. Longitudinal levels and bouts of sedentary time among adolescent girls.

    PubMed

    Carson, Valerie; Cliff, Dylan P; Janssen, Xanne; Okely, Anthony D

    2013-10-21

    Adolescent girls are one of the most sedentary demographic groups. A better understanding of their accumulation of sedentary time is needed to inform future interventions. The purpose of this study was to examine the longitudinal levels and bouts of objectively measured sedentary time accumulated during different days of the week and periods of the weekday among a large sample of adolescent girls. The results are based on 655 adolescent girls from the Girls in Sport Intervention and Research Project. Levels and bouts of sedentary time were derived from accelerometer data collected at baseline and 18-month follow-up. Total, weekday, weekend, school (i.e., morning bell to afternoon bell), after school (i.e., afternoon bell to 19:00), and evening (i.e. 19:01 to 23:59) sedentary time levels and bouts were calculated. Repeated-measures ANCOVAs were conducted to examine differences in sedentary time levels and bouts between days and time periods after adjusting for wear time, accelerometer model, and intervention group. Cross-sectional analyses revealed that levels and bouts of sedentary time were higher on weekdays compared to weekend days at baseline. Similar trends were observed at follow-up. In addition, percentage of wear time spent sedentary and bouts/hr of sedentary time were highest in the evening compared to the school and after school periods at both baseline and follow-up. Longitudinal analyses revealed that levels and bouts of sedentary time were higher at follow-up compared to baseline across the different days of the week and periods of the weekday examined, with the biggest increase (15%) occurring in the school period. Future interventions targeting sedentary time among adolescent girls should consider developing strategies to reduce and break up prolonged sedentary time during the school day and in the evening.

  17. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  18. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  19. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations.

    PubMed

    Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua

    2016-04-01

    In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.

  20. F-centers mechanism of long-term relaxation in lead zirconate-titanate based piezoelectric ceramics. 2. After-field relaxation

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Kuzenko, D. V.

    2016-08-01

    The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3 based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into F+- and F0-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. F-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of F-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.

  1. Relaxation-induced anxiety: Effects of peak and trajectories of change on treatment outcome for generalized anxiety disorder.

    PubMed

    Newman, Michelle G; Lafreniere, Lucas S; Jacobson, Nicholas C

    2018-07-01

    Evidence is mixed regarding whether relaxation-induced anxiety (RIA) impedes relaxation training (RT) efficacy. Unlike past studies that averaged RIA across sessions, we examined peak RIA, change in RIA level across sessions, and timing of peak RIA with outcome. This was a secondary analysis of Borkovec, Newman, Pincus, and Lytle [2002. A component analysis of cognitive-behavioral therapy for generalized anxiety disorder and the role of interpersonal problems. Journal of Consulting and Clinical Psychology, 70, 288-298. doi: 10.1037/0022-006X.70.2.288 ]. Forty-one GAD participants were assigned randomly to CBT (n = 22) or BT (n = 19). Both treatments contained RT and RIA ratings within 13/14 sessions. Analyses used generalized additive mixed models (GAMMs), which accounted for longitudinal nonindependence and examined nonlinear trajectories of change. All participants improved significantly regardless of RIA. "Change trajectory of RIA level did not predict outcome". Instead, lower peak RIA predicted fewer GAD symptoms at post-treatment and greater likelihood to continue to improve during follow-up. Also, timing of peak was important. Whereas lower peak early in therapy did not predict outcome, lower peak during the last third of treatment did. Peak RIA's effect was neither accounted for by baseline symptom severity, treatment condition, comorbidity, nor by preceding or concurrent anxiety symptom change. People with consistently low peak RIA and/or who fully habituate to RIA by the end of therapy respond optimally to relaxation-based treatments.

  2. Studying relaxation phenomena via effective master equations

    NASA Astrophysics Data System (ADS)

    Chan, David; Wan, Jones T. K.; Chu, L. L.; Yu, K. W.

    2000-04-01

    The real-time dynamics of various relaxation phenomena can be conveniently formulated by a master equation with the enumeration of transition rates between given classes of conformations. To study the relaxation time towards equilibrium, it suffices to solve for the second largest eigenvalue of the resulting eigenvalue equation. Generally speaking, there is no analytic solution for the dynamic equation. Mean-field approaches generally yield misleading results while the presumably exact Monte-Carlo methods require prohibitive time steps in most real systems. In this work, we propose an exact decimation procedure for reducing the number of conformations significantly, while there is no loss of information, i.e., the reduced (or effective) equation is an exact transformed version of the original one. However, we have to pay the price: the initial Markovianity of the evolution equation is lost and the reduced equation contains memory terms in the transition rates. Since the transformed equation has significantly reduced number of degrees of freedom, the systems can readily be diagonalized by iterative means, to obtain the exact second largest eigenvalue and hence the relaxation time. The decimation method has been applied to various relaxation equations with generally desirable results. The advantages and limitations of the method will be discussed.

  3. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    PubMed Central

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials. PMID:21079726

  4. Comparison of different cardiac relaxation indices.

    PubMed

    Alipov, N N; Izrail'tyan, I M; Sokolov, A V; Trubetskaya, L V; Kuznetsova, T E

    2001-05-01

    Sensitivity (response to epinephrine infusion) and specificity (response to changes in pre- and afterload) of some cardiac relaxation indices were compared in acute experiments on cats treated with ganglionic blocker arfonad. Some new indices proposed by us provide better characteristics than widely used relaxation time constant (t) and maximum first derivative of the left ventricular pressure (-dP/dt)max.

  5. The influence of dielectric relaxation on intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.

    1987-07-01

    An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.

  6. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    PubMed

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  7. A model for longitudinal and shear wave propagation in viscoelastic media

    PubMed

    Szabo; Wu

    2000-05-01

    Relaxation models fail to predict and explain loss characteristics of many viscoelastic materials which follow a frequency power law. A model based on a time-domain statement of causality is presented that describes observed power-law behavior of many viscoelastic materials. A Hooke's law is derived from power-law loss characteristics; it reduces to the Hooke's law for the Voigt model for the specific case of quadratic frequency loss. Broadband loss and velocity data for both longitudinal and shear elastic types of waves agree well with predictions. These acoustic loss models are compared to theories for loss mechanisms in dielectrics based on isolated polar molecules and cooperative interactions.

  8. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.

    PubMed

    Mittal, Ravinder K

    2016-09-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.

  9. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease

    PubMed Central

    2016-01-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states. PMID:27445346

  10. Receding and disparity cues aid relaxation of accommodation

    PubMed Central

    Horwood, Anna M; Riddell, Patricia M

    2015-01-01

    Purpose Accommodation can mask hyperopia and reduce the accuracy of non-cycloplegic refraction. It is therefore important to minimize accommodation to obtain as accurate a measure of hyperopia as possible. In order to characterize the parameters required to measure the maximally hyperopic error using photorefraction, we used different target types and distances to determine which target was most likely to maximally relax accommodation and thus more accurately detect hyperopia in an individual. Methods A PlusoptiX SO4 infra-red photorefractor was mounted in a remote haploscope which presented the targets. All participants were tested with targets at four fixation distances between 0.3m and 2m containing all combinations of blur, disparity and proximity/looming cues. 38 infants (6-44 wks) were studied longitudinally, and 104 children (4 -15 yrs (mean 6.4)) and 85 adults, with a range of refractive errors and binocular vision status, were tested once. Cycloplegic refraction data was available for a sub-set of 59 participants spread across the age range. Results The maximally hyperopic refraction (MHR) found at any time in the session was most frequently found when fixating the most distant targets and those containing disparity and dynamic proximity/looming cues. Presence or absence of blur was less significant, and targets in which only single cues to depth were present were also less likely to produce MHR. MHR correlated closely with cycloplegic refraction (r = 0.93,mean difference 0.07D,p=n.s.,95%CI ±<0.25D) after correction by a calibration factor. Conclusion Maximum relaxation of accommodation occurred for binocular targets receding into the distance. Proximal and disparity cues aid relaxation of accommodation to a greater extent than blur, and thus non-cycloplegic refraction targets should incorporate these cues. This is especially important in screening contexts with a brief opportunity to test for significant hyperopia. MHR in our laboratory was found to be a

  11. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  12. Transverse relaxation of scalar-coupled protons.

    PubMed

    Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey

    2010-10-25

    In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.

  13. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  14. Thermally induced magnetic relaxation in square artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  15. Rapid Wall Relaxation in Elongating Tissues 1

    PubMed Central

    Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048

  16. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage.

    PubMed

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  18. Investigation of 2-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application.

    PubMed

    Sudell, Maria; Tudur Smith, Catrin; Gueyffier, François; Kolamunnage-Dona, Ruwanthi

    2018-04-15

    Joint modelling of longitudinal and time-to-event data is often preferred over separate longitudinal or time-to-event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time-to-event outcomes. The joint modelling literature focuses mainly on the analysis of single studies with no methods currently available for the meta-analysis of joint model estimates from multiple studies. We propose a 2-stage method for meta-analysis of joint model estimates. These methods are applied to the INDANA dataset to combine joint model estimates of systolic blood pressure with time to death, time to myocardial infarction, and time to stroke. Results are compared to meta-analyses of separate longitudinal or time-to-event models. A simulation study is conducted to contrast separate versus joint analyses over a range of scenarios. Using the real dataset, similar results were obtained by using the separate and joint analyses. However, the simulation study indicated a benefit of use of joint rather than separate methods in a meta-analytic setting where association exists between the longitudinal and time-to-event outcomes. Where evidence of association between longitudinal and time-to-event outcomes exists, results from joint models over standalone analyses should be pooled in 2-stage meta-analyses. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  19. Relationship between Screen-Time and Motor Proficiency in Children: A Longitudinal Study

    ERIC Educational Resources Information Center

    Cadoret, Geneviève; Bigras, Nathalie; Lemay, Lise; Lehrer, Joanne; Lemire, Julie

    2018-01-01

    The objective of this longitudinal study was to examine the relationship between screen time (ST) and children's motor proficiency. The amount of time 113 children spent watching television, using a computer, and playing video games as reported by parents at ages 4, 5, and 7 was measured and children's motor skills were evaluated at age 7 with the…

  20. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    DOE PAGES

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less

  1. Relaxation kinetics of lipid membranes and its relation to the heat capacity.

    PubMed Central

    Grabitz, Peter; Ivanova, Vesselka P; Heimburg, Thomas

    2002-01-01

    We investigated the relaxation behavior of lipid membranes close to the chain-melting transition using pressure jump calorimetry with a temperature accuracy of approximately 10(-3) K. We found relaxation times in the range from seconds up to about a minute, depending on vesicular state. The relaxation times are within error proportional to the heat capacity. We provide a statistical thermodynamics theory that rationalizes the close relation between heat capacity and relaxation times. It is based on our recent finding that enthalpy and volume changes close to the melting transition are proportional functions. PMID:11751317

  2. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    PubMed

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Density matrix solutions for the susceptibilities of a three-level system with arbitrary relaxation rates and field strengths

    NASA Technical Reports Server (NTRS)

    Ryan, J. C.; Lawandy, N. M.

    1986-01-01

    The susceptibilities for a three-level system with arbitrary pump and signal field strengths are derived for arbitrary longitudinal and transverse relaxation rates. The results are of interest in connection with the calculation of the Raman gain in systems where resonance enhancement plays a dominant role.

  4. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  5. Temperature dependent relaxation of interface-states in graphene on SiO2

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan Kumar

    2018-04-01

    We have studied the evolution of resistance relaxation with temperature in graphene field effect transistor on SiO2. At room temperature, piranha-cleaned-SiO2 devices show slow resistance relaxation while IPA-cleaned-SiO2 devices do not. With cooling the former devices show a decrease in magnitude and time constant of the slow relaxation and it becomes negligible at 250K. Relaxation study at elevated temperature of the IPA-cleaned devices show a gate voltage polarity dependent time constant with respect to the charge neutrality point but it remains almost independent of temperature. The magnitude of relaxation increases with temperature. Further, after annealing at elevated temperature, we found that the relaxation times become independent of gate voltage polarity and its magnitude becomes very small. These observations are discussed using increase in diffusion of interface-species with temperature.

  6. Relaxation dynamics of internal segments of DNA chains in nanochannels

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team

    We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.

  7. Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.

    PubMed

    Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A

    2001-09-01

    To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.

  8. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  9. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy.

    PubMed

    Peixoto-Santos, Jose Eduardo; Kandratavicius, Ludmyla; Velasco, Tonicarlo Rodrigues; Assirati, Joao Alberto; Carlotti, Carlos Gilberto; Scandiuzzi, Renata Caldo; Salmon, Carlos Ernesto Garrido; Santos, Antonio Carlos Dos; Leite, Joao Pereira

    2017-01-01

    Increased T2 relaxation time is often seen in temporal lobe epilepsy (TLE) with hippocampal sclerosis. Water content directly affects the effective T2 in a voxel. Our aim was to evaluate the relation between T2 values and two molecules associated with brain water homeostasis aquaporin 4 (AQP4) and chondroitin sulfate proteoglycan (CSPG), as well as cellular populations in the hippocampal region of patients with TLE. Hippocampal T2 imaging and diffusion tensor imaging (DTI) were obtained from 42 drug-resistant patients with TLE and 20 healthy volunteers (radiologic controls, RCs). A similar protocol (ex vivo) was applied to hippocampal sections from the same TLE cases and 14 autopsy control hippocampi (histologic and radiologic controls, HRCs), and each hippocampal subfield was evaluated. Hippocampal sections from TLE cases and HRC controls were submitted to immunohistochemistry for neurons (neuron nuclei [NeuN]), reactive astrocytes (glial fibrillary acidic protein [GFAP]), activated microglia (human leukocyte antigen-D-related [HLA-DR]), polarized AQP4, and CSPG. Patients with TLE had higher in vivo and ex vivo hippocampal T2 relaxation time. Hippocampi from epilepsy cases had lower neuron density, higher gliosis, decreased AQP4 polarization, and increased CSPG immunoreactive area. In vivo relaxation correlated with astrogliosis in the subiculum and extracellular CSPG in the hilus. Ex vivo T2 relaxation time correlated with astrogliosis in the hilus, CA4, and subiculum, and with microgliosis in CA1. The difference between in vivo and ex vivo relaxation ratio correlated with mean diffusivity and with the immunopositive area for CSPG in the hilus. Our data indicate that astrogliosis, microgliosis, and CSPG expression correlate with the increased T2 relaxation time seen in the hippocampi of patients with TLE. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  10. Longitudinal T1 relaxation rate (R1) captures changes in short-term Mn exposure in welders

    PubMed Central

    Lewis, Mechelle M.; Flynn, Michael R.; Lee, Eun-Young; Van Buren, Scott; Van Buren, Eric; Du, Guangwei; Fry, Rebecca C.; Herring, Amy H.; Kong, Lan; Mailman, Richard B.; Huang, Xuemei

    2016-01-01

    Objectives We demonstrated recently that the T1 relaxation rate (R1) captured short-term Mn exposure in welders with chronic, relatively low exposure levels in a cross-sectional study. In the current study, we used a longitudinal design to examine whether R1 values reflect the short-term dynamics of Mn exposure. Methods Twenty-nine welders were evaluated at baseline and 12 months. Occupational questionnaires estimated short-term welding exposure using welding hours in the 90 days prior to each study visit (HrsW90). In addition, blood Mn levels, the pallidal index (PI; globus pallidus T1-weighted intensity (T1WI)/frontal white matter T1WI), and R1 values in brain regions of interest (ROIs) were determined as Mn biomarkers at each visit. Associations between changes in estimated welding exposure and changes in purported Mn biomarkers were assessed by Spearman’s correlations with adjustment for age and baseline R1, HrsW90, and blood Mn values. Results Changes in welding hours (HrsW90: the short-term welding exposure estimate), was associated significantly with changes in R1 values in the putamen (r=0.541, p=0.005), caudate (R=0.453, p=0.023), globus pallidus (R=0.430, p=0.032), amygdala (R=0.461, p=0.020), and hippocampus (R=0.447, p=0.025), but not with changes in blood Mn levels or the PI. Discussion Changes in R1 values correlated with changes in the short-term welding exposure estimate, but not with more traditional measures of Mn exposure (blood Mn levels or PI). These results suggest that R1 may serve as a useful marker to capture the short-term dynamics in Mn brain accumulation related to welding exposure. PMID:27567731

  11. Longitudinal experiences of children remaining at home after a first-time investigation for suspected maltreatment

    PubMed Central

    Campbell, Kristine A.; Thomas, Andrea M.; Cook, Lawrence J.; Keenan, Heather T.

    2012-01-01

    Objective To describe longitudinal change in risk for children remaining at home following a first-time investigation for suspected maltreatment. Study design A retrospective cohort study of children remaining at home following first-time investigation for maltreatment using a nationally representative sample of households involved with Child Protective Services (CPS). Outcomes include poverty, social support, caregiver depression, intimate partner violence (IPV), drug/alcohol dependence, corporal punishment, and child behavior problems at baseline, 18, and 36 months following first-time CPS investigation. We present longitudinal models to 1) estimate prevalence of risk factors at each timepoint and 2) examine associations between risk-specific service referrals and longitudinal change in risk factor prevalence. Results Our sample represented 1,057,056 U.S. children remaining at home following first-time investigation for maltreatment. Almost 100,000 (9.2%) children experienced out-of-home placement within 36 months. The prevalence of poverty (44.3%), poor social support (36.3%), caregiver depression (24.4%), IPV (22.1%), and internalizing (30.0%) and externalizing (35.8%) child behavior problems was above general population prevalence at baseline and remained high over the next 36 months. Referral to risk-specific services occurred in a minority of cases, but was associated with significant longitudinal reductions in IPV, drug/alcohol dependence, and externalizing child behavior problems. Conclusions Children remaining at home following a first-time investigation for maltreatment live with persistent risk factors for repeat maltreatment. Appropriate service referrals are uncommon, but may be associated with meaningful reduction in risk over time. Pediatricians and policy makers may be able to improve outcomes in these families with appropriate service provision and referrals. PMID:22480699

  12. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    USGS Publications Warehouse

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-01-01

    Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event

  13. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-11-01

    Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite's history. For craters with diameter ≥ 10 km, heat fluxes of 40-50 mW m-2 can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived "heat pulses" with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and

  14. Development of a low risk augmentation system for an energy efficient transport having relaxed static stability

    NASA Technical Reports Server (NTRS)

    Sizlo, T. R.; Berg, R. A.; Gilles, D. L.

    1979-01-01

    An augmentation system for a 230 passenger, twin engine aircraft designed with a relaxation of conventional longitudinal static stability was developed. The design criteria are established and candidate augmentation system control laws and hardware architectures are formulated and evaluated with respect to reliability, flying qualities, and flight path tracking performance. The selected systems are shown to satisfy the interpreted regulatory safety and reliability requirements while maintaining the present DC 10 (study baseline) level of maintainability and reliability for the total flight control system. The impact of certification of the relaxed static stability augmentation concept is also estimated with regard to affected federal regulations, system validation plan, and typical development/installation costs.

  15. Relaxation of the resistive superconducting state in boron-doped diamond films

    NASA Astrophysics Data System (ADS)

    Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, Th.; Bustarret, E.

    2016-02-01

    We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5 ×1021cm-3 and a critical temperature of about 2 K . By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T-2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.

  16. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  17. Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique

    NASA Astrophysics Data System (ADS)

    Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng

    2018-05-01

    The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.

  18. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation.

    PubMed

    Meeks, M K; Han, S; Tucker, A L; Rembold, C M

    2008-01-01

    Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.

  19. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  20. Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Gang Ho; Chang, Yongmin

    2015-07-01

    In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.

  1. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  2. Slow relaxation in weakly open rational polygons.

    PubMed

    Kokshenev, Valery B; Vicentini, Eduardo

    2003-07-01

    The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

  3. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Muller D.; Dao, Phuong; Jeong, Keunhong

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of amore » biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T 2 is reduced by a factor of 4.« less

  4. Internal friction and mode relaxation in a simple chain model.

    PubMed

    Fugmann, S; Sokolov, I M

    2009-12-21

    We consider the equilibrium relaxation properties of the end-to-end distance and of the principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling.

  5. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D.

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systemsmore » with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.« less

  6. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients.

    PubMed

    Bonnier, Guillaume; Maréchal, Benedicte; Fartaria, Mário João; Falkowskiy, Pavel; Marques, José P; Simioni, Samanta; Schluep, Myriam; Du Pasquier, Renaud; Thiran, Jean-Philippe; Krueger, Gunnar; Granziera, Cristina

    2017-01-01

    Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients. Thirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue. In patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter ( p  = 0.005) and a decrease of T1 relaxation times in the pallidum ( p  < 0.05), which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time ( p -value < 2.2e-16) and a significant increase in MTR ( p -value < 1e-6), suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics-and not changes in lesions or brain volume-were correlated to motor and cognitive tests scores evolution (Adj- R 2  > 0.4, p  < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested

  7. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    PubMed

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  8. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.

    2018-05-01

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  9. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.

    PubMed

    Chavanis, P-H; Sire, C

    2004-08-01

    We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.

  10. 'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

    PubMed

    Baksi, Krishanu D; Kuntal, Bhusan K; Mande, Sharmila S

    2018-01-01

    Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called 'TIME' (Temporal Insights into Microbial Ecology'), developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the 'causality graph analysis' module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome data and demonstrate the

  11. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  12. Suppression of Dyakonov-Perel Spin Relaxation in High-Mobility n-GaAs

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Poletaev, N. K.; Zakharchenya, B. P.; Stinaff, E. A.; Gammon, D.; Bracker, A. S.; Ware, M. E.

    2004-11-01

    We report a large and unexpected suppression of the free electron spin-relaxation in lightly doped n-GaAs bulk crystals. The spin-relaxation rate shows a weak mobility dependence and saturates at a level 30 times less than that predicted by the Dyakonov-Perel theory. The dynamics of the spin-orbit field differs substantially from the usual scheme: although all the experimental data can be self-consistently interpreted as a precessional spin-relaxation induced by a random spin-orbit field, the correlation time of this random field, surprisingly, is much shorter than, and is independent of, the momentum relaxation time determined from transport measurements.

  13. Suppression of Dyakonov-Perel spin relaxation in high-mobility n-GaAs.

    PubMed

    Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Poletaev, N K; Zakharchenya, B P; Stinaff, E A; Gammon, D; Bracker, A S; Ware, M E

    2004-11-19

    We report a large and unexpected suppression of the free electron spin-relaxation in lightly doped n-GaAs bulk crystals. The spin-relaxation rate shows a weak mobility dependence and saturates at a level 30 times less than that predicted by the Dyakonov-Perel theory. The dynamics of the spin-orbit field differs substantially from the usual scheme: although all the experimental data can be self-consistently interpreted as a precessional spin-relaxation induced by a random spin-orbit field, the correlation time of this random field, surprisingly, is much shorter than, and is independent of, the momentum relaxation time determined from transport measurements.

  14. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    NASA Astrophysics Data System (ADS)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  15. Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.

    2015-06-01

    The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.

  16. Characterization of structural relaxation in inorganic glasses using length dilatometry

    NASA Astrophysics Data System (ADS)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  17. Differences in time to peak carbachol-induced contractions between circular and longitudinal smooth muscles of mouse ileum.

    PubMed

    Azuma, Yasu-Taka; Samezawa, Nanako; Nishiyama, Kazuhiro; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2016-01-01

    The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.

  18. Suppression of electron spin relaxation in Mn-doped GaAs.

    PubMed

    Astakhov, G V; Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Tkachuk, M N; Kusrayev, Yu G; Kiessling, T; Ossau, W; Molenkamp, L W

    2008-08-15

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  19. Suppression of Electron Spin Relaxation in Mn-Doped GaAs

    NASA Astrophysics Data System (ADS)

    Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2008-08-01

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  20. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    PubMed

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  2. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov-Poisson Equation during Violent Relaxation

    NASA Astrophysics Data System (ADS)

    Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  3. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  4. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  5. Transition to exponential relaxation in weakly disordered electron glasses

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2018-06-01

    The out-of-equilibrium excess conductance of electron-glasses Δ G (t ) typically relaxes with a logarithmic time dependence. Here it is shown that the log(t ) relaxation of a weakly disordered InxO film crosses over asymptotically to an exponential dependence Δ G (t )∝exp {-[t /τ (∞ )]} . This allows for assigning a well-defined relaxation-time τ (∞ ) for a given system disorder (characterized by the Ioffe-Regel parameter kFℓ ). Near the metal-insulator transition, τ (∞ ) obeys the scaling relation τ (∞ ) ∝[(kFℓ)C-kFℓ ] with the same critical disorder (kFℓ)C where the zero-temperature conductivity of this system vanishes. The latter defines the position of the disorder-driven metal-to-insulator transition which is a quantum-phase transition. In this regard the electron glass differs from classical glasses, such as the structural glass and spin glass. The ability to experimentally assign an unambiguous relaxation time allows us to demonstrate the steep dependence of the electron-glass dynamics on carrier concentration.

  6. Evaluation of the kinetic and relaxation time of gentamicin sulfate released from hybrid biomaterial Bioglass-chitosan scaffolds

    NASA Astrophysics Data System (ADS)

    Wers, E.; Oudadesse, H.; Lefeuvre, B.; Merdrignac-Conanec, O.; Barroug, A.

    2015-10-01

    Chitosan scaffolds, combined with bioactive glass 46S6, were prepared to serve as gentamicin sulfate delivery in situ systems for bone biomaterials. This work presents a study about the effect of the ratio chitosan/bioactive glass (CH/BG) on the release of gentamicin sulfate and on the bioactivity during in vitro experiments. SEM observations allowed understanding the bond between the glass grains and the chitosan matrix. In vitro results showed that scaffolds form a hydroxyapatite (HA) Ca10(PO4)6(OH)2 after 15 days of immersion in a simulated body fluid (SBF).The interest of this study is to see that the increase of the content of bioactive glass in the chitosan matrix slows the release of gentamicin sulfate in the liquid medium. Starting concentration of gentamicin sulfate has an influence on the relaxation time of the scaffolds. Indeed, an increasing concentration delays the return to a new equilibrium. Contents of chitosan and bioactive glass do not affect the relaxation time. Synthesized scaffolds could be adapted to a clinical situation: severity and type of infection, weight and age of the patient.

  7. Effects of progressive relaxation and classical music on measurements of attention, relaxation, and stress responses.

    PubMed

    Scheufele, P M

    2000-04-01

    The present experiment examined relaxation using different experimental conditions to test whether the effects of individual elements of relaxation could be measured, whether specific effects were revealed, or whether relaxation resulted from a generalized "relaxation response." Sixty-seven normal, male volunteers were exposed to a stress manipulation and then to one of two relaxation (Progressive Relaxation, Music) or control (Attention Control, Silence) conditions. Measurements of attention, relaxation, and stress responses were obtained during each phase of the experiment. All four groups exhibited similar performance on behavioral measures of attention that suggested a reduction in physiological arousal following their relaxation or control condition, as well as a decreased heart rate. Progressive Relaxation, however, resulted in the greatest effects on behavioral and self-report measures of relaxation, suggesting that cognitive cues provided by stress management techniques contribute to relaxation.

  8. Long-lasting quantum memories: Extending the coherence time of superconducting artificial atoms in the ultrastrong-coupling regime

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Nori, Franco

    2018-03-01

    Quantum systems are affected by interactions with their environments, causing decoherence through two processes: pure dephasing and energy relaxation. For quantum information processing it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms. We show theoretically that if the coupling between these qubits and a cavity field is longitudinal and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We also use an auxiliary atomic level to store and retrieve quantum information.

  9. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    NASA Astrophysics Data System (ADS)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  10. Nitrergic Pathway Is the Major Mechanism for the Effect of DA-9701 on the Rat Gastric Fundus Relaxation.

    PubMed

    Min, Yang Won; Ko, Eun-Ju; Lee, Ji Yeon; Min, Byung-Hoon; Lee, Jun Haeng; Kim, Jae J; Rhee, Poong-Lyul

    2014-07-31

    DA-9701 significantly improved gastric accommodation by increasing the postprandial gastric volume. In this study, we investigated how DA-9701 affects the rat gastric fundus relaxation. Gastric fundus muscle strips (9 longitudinal and 7 circular muscles) were obtained from rats. Electrical field stimulation (EFS) was performed at various frequencies (1, 5, 10 and 20 Hz) and train durations (1, 5, 10 and 20 seconds) to select optimal condition for experiments. Isometric force measurements were performed in response to EFS. Peak and nadir were observed during the first 1 minute after initiation of EFS in control state and after sequential addition of atropine (1 μM), DA-9701 (0.5, 5, 25 and 50 μg), N-nitro-L-arginine (L-NNA, 100 μM), MRS2500 (1 μM) and tetrodotoxin (TTX, 1 μM) to the organ bath. The optimal frequency and duration of EFS to evoke nerve-mediated relaxation was determined as 5 Hz for 10 seconds. Addition of L-NNA in the presence of atropine and DA-9701 (50 μg) decreased nadir by inhibiting relaxation from -0.054 ± 0.021 g to -0.022 ± 0.015 g (P = 0.026) in longitudinal muscles. However, subsequent application of MRS2500 in the presence of atropine, DA-9701 (50 μg) and L-NNA did not affect nadir. In circular muscles, subsequent addition of L-NNA and MRS2500 in the presence of atropine and DA-9701 (50 μg) did not show significant change of nadir. Our data suggest that the effect of DA-9701 on the rat gastric fundus relaxation is mainly mediated by nitrergic rather than purinergic pathway.

  11. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  12. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  13. Relaxation of ferromagnetic nanoparticles in macrophages: In vitro and in vivo studies

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Takenaka, Shinji; Buske, Norbert; Felten, Kathrin; Heyder, Joachim

    2005-05-01

    The relaxation characteristics of magnetic nanoparticles (CoFe 2O 4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.

  14. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  15. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  16. Model and prediction of stress relaxation of polyurethane fiber

    NASA Astrophysics Data System (ADS)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  17. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  18. A Survey of the Use of Antiepileptic and Muscle Relaxant Medication in a Sample of Children with Neuromotor Disorders.

    ERIC Educational Resources Information Center

    Greer, Bobby G.; And Others

    1990-01-01

    A longitudinal survey of 424 preschoolers and infants with neuromotor disorders served by a children's rehabilitation center was conducted to determine the number who were receiving muscle relaxant or anticonvulsant medication, as well as average daily dosages. An increase in the number of antiepileptic prescriptions was found from 1962 to 1986.…

  19. Excited-state relaxation in PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex

    2008-04-01

    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to

  20. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.

    PubMed

    Hannila, I; Nieminen, M T; Rauvala, E; Tervonen, O; Ojala, R

    2007-05-01

    To evaluate the detection and the size of focal patellar cartilage lesions in T2 mapping as compared to standard clinical magnetic resonance imaging (MRI) at 1.5T. Fifty-five consecutive clinical patients referred to knee MRI were imaged both with a standard knee MRI protocol (proton-density-weighted sagittal and axial series, T2-weighted sagittal and coronal series, and T1-weighted coronal series) and with an axial multislice multi-echo spin-echo measurement to determine the T2 relaxation time of the patellar cartilage. MR images and T2 maps of patellar cartilage were evaluated for focal lesions. The lesions were evaluated for lesion width (mm), lesion depth (1/3, 2/3, or 3/3 of cartilage thickness), and T2 value (20-40 ms, 40-60 ms, or 60-80 ms) based on visual evaluation. Altogether, 36 focal patellar cartilage lesions were detected from 20 human subjects (11 male, nine female, mean age 40+/-15 years). Twenty-eight lesions were detected both on MRI and T2 maps, while eight lesions were only visible on T2 maps. Cartilage lesions were significantly wider (P = 0.001) and thicker (P<0.001) on T2 maps as compared to standard knee MRI. Most lesions 27 had moderately (T2 40-60 ms) increased T2 values, while two lesions had slightly (T2 20-40 ms) and seven lesions remarkably (T2 60-80 ms) increased T2 relaxation times. T2 mapping of articular cartilage is feasible in the clinical setting and may reveal early cartilage lesions not visible with standard clinical MRI.

  1. Learning-based subject-specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies.

    PubMed

    Meng, Yu; Li, Gang; Gao, Yaozong; Lin, Weili; Shen, Dinggang

    2016-11-01

    Longitudinal neuroimaging analysis of the dynamic brain development in infants has received increasing attention recently. Many studies expect a complete longitudinal dataset in order to accurately chart the brain developmental trajectories. However, in practice, a large portion of subjects in longitudinal studies often have missing data at certain time points, due to various reasons such as the absence of scan or poor image quality. To make better use of these incomplete longitudinal data, in this paper, we propose a novel machine learning-based method to estimate the subject-specific, vertex-wise cortical morphological attributes at the missing time points in longitudinal infant studies. Specifically, we develop a customized regression forest, named dynamically assembled regression forest (DARF), as the core regression tool. DARF ensures the spatial smoothness of the estimated maps for vertex-wise cortical morphological attributes and also greatly reduces the computational cost. By employing a pairwise estimation followed by a joint refinement, our method is able to fully exploit the available information from both subjects with complete scans and subjects with missing scans for estimation of the missing cortical attribute maps. The proposed method has been applied to estimating the dynamic cortical thickness maps at missing time points in an incomplete longitudinal infant dataset, which includes 31 healthy infant subjects, each having up to five time points in the first postnatal year. The experimental results indicate that our proposed framework can accurately estimate the subject-specific vertex-wise cortical thickness maps at missing time points, with the average error less than 0.23 mm. Hum Brain Mapp 37:4129-4147, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    NASA Astrophysics Data System (ADS)

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-02-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  3. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de

    2016-02-15

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methodsmore » are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.« less

  4. Transient Postseismic Relaxation With Burger's Body Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Hager, B. H.; O'Connell, R. J.

    2002-12-01

    Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the

  5. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  6. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-06-01

    Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.

  7. Sub-millisecond 125Te NMR spin-lattice relaxation times and large Knight shifts in complex tellurides: Validation of a quadratic relation across the spectrum

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Cui, J. -F.; ...

    2016-07-16

    125Te NMR spectra and spin-lattice relaxation times, T 1, have been measured for several GeTe-based materials with Te excess. In this paper, the spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T 1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T 1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T 1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excessmore » of Te, about 15% of the material exhibits a Knight shift of ≥4500 ppm and a T 1 of only 0.3 ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Lastly, our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.« less

  8. Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana.

    PubMed

    Samis, Karen E; Murren, Courtney J; Bossdorf, Oliver; Donohue, Kathleen; Fenster, Charles B; Malmberg, Russell L; Purugganan, Michael D; Stinchcombe, John R

    2012-06-01

    Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150-200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.

  9. Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.

    PubMed

    Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu

    2009-03-26

    The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.

  10. Does the Arrhenius Temperature Dependence of the Johari-Goldstein Relaxation Persist above Tg?

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Roland, C. M.; Pawlus, S.; Zioło, J.; Ngai, K. L.

    2003-09-01

    Dielectric spectra of the polyalcohols sorbitol and xylitol were measured under isobaric pressures up to 1.8GPa. At elevated pressure, the separation between the α and β relaxation peaks is larger than at ambient pressure, enabling the β relaxation times to be unambiguously determined. Taking advantage of this, we show that the Arrhenius temperature dependence of the β relaxation time does not persist for temperatures above Tg. This result, consistent with inferences drawn from dielectric relaxation measurements at ambient pressure, is obtained directly, without the usual problematic deconvolution the β and α processes.

  11. Cole-Cole broadening in dielectric relaxation and strange kinetics.

    PubMed

    Puzenko, Alexander; Ishai, Paul Ben; Feldman, Yuri

    2010-07-16

    We present a fresh appraisal of the Cole-Cole (CC) description of dielectric relaxation. While the approach is phenomenological, it demonstrates a fundamental connection between the parameters of the CC dispersion. Based on the fractal nature of the time set representing the interaction of the relaxing dipole with its encompassing matrix, and the Kirkwood-Froehlich correlation factor, a new 3D phase space linking together the kinetic and structural properties is proposed. The evolution of the relaxation process is represented in this phase space by a trajectory, which is determined by the variation of external macroscopic parameters. As an example, the validity of the approach is demonstrated on two porous silica glasses exhibiting a CC relaxation process.

  12. Force Control Characteristics for Generation and Relaxation in the Lower Limb.

    PubMed

    Ohtaka, Chiaki; Fujiwara, Motoko

    2018-05-29

    We investigated the characteristics for force generation and relaxation using graded isometric contractions of the knee extensors. Participants performed the following tasks as quickly and accurately as possible. For the force generation task, force was increased from 0% to 20%, 40% and 60% of the maximal voluntary force (MVF). For the force relaxation task, force was decreased from 60% to 40%, 20% and 0%. The following parameters of the recorded force were calculated: error, time, and rate of force development. The error was consistently greater for force relaxation than generation. Reaction and adjustment times were independent of the tasks. The control strategy was markedly different for force relaxation and generation, this tendency was particularly evident for the lower limb compared to the upper limb.

  13. Multi-relaxation-time lattice Boltzmann modeling of the acoustic field generated by focused transducer

    NASA Astrophysics Data System (ADS)

    Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong

    The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.

  14. Transverse relaxation in the rotating frame induced by chemical exchange.

    PubMed

    Michaeli, Shalom; Sorce, Dennis J; Idiyatullin, Djaudat; Ugurbil, Kamil; Garwood, Michael

    2004-08-01

    In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1rho. On the other hand, the time constant T2rho characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2rho can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2rho characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2rho relaxation in the fast-exchange regime, with time constant defined as T2rho,ex. The derived theory predicts the rate constant R2rho,ex (= 1/T2rho,ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2rho,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems. Copyright 2004 Elsevier Inc.

  15. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra

    PubMed Central

    Babaei, Behzad; Davarian, Ali; Pryse, Kenneth M.; Elson, Elliot L.; Genin, Guy M.

    2017-01-01

    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. PMID:26523785

  16. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra.

    PubMed

    Babaei, Behzad; Davarian, Ali; Pryse, Kenneth M; Elson, Elliot L; Genin, Guy M

    2015-03-01

    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Dielectric relaxation measurement and analysis of restricted water structure in rice kernels

    NASA Astrophysics Data System (ADS)

    Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki

    2007-04-01

    Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.

  18. Relaxation dynamics in a binary hard-ellipse liquid.

    PubMed

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2015-01-21

    Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.

  19. MRI image plane nonuniformity in evaluation of ferrous sulphate dosimeter gel (FeGel) by means of T1-relaxation time.

    PubMed

    Magnusson, P; Bäck, S A; Olsson, L E

    1999-11-01

    MR image nonuniformity can vary significantly with the spin-echo pulse sequence repetition time. When MR images with different nonuniformity shapes are used in a T1-calculation the resulting T1-image becomes nonuniform. As shown in this work the uniformity TR-dependence of the spin-echo pulse sequence is a critical property for T1 measurements in general and for ferrous sulfate dosimeter gel (FeGel) applications in particular. The purpose was to study the characteristics of the MR image plane nonuniformity in FeGel evaluation. This included studies of the possibility of decreasing nonuniformities by selecting uniformity optimized repetition times, studies of the transmitted and received RF-fields and studies of the effectiveness of the correction methods background subtraction and quotient correction. A pronounced MR image nonuniformity variation with repetition and T1 relaxation time was observed, and was found to originate from nonuniform RF-transmission in combination with the inherent differences in T1 relaxation for different repetition times. The T1 calculation itself, the uniformity optimized repetition times, nor none of the correction methods studied could sufficiently correct the nonuniformities observed in the T1 images. The nonuniformities were found to vary considerably less with inversion time for the inversion-recovery pulse sequence, than with repetition time for the spin-echo pulse sequence, resulting in considerably lower T1 image nonuniformity levels.

  20. Molecular motions in sucrose-PVP and sucrose-sorbitol dispersions-II. Implications of annealing on secondary relaxations.

    PubMed

    Bhattacharya, Sisir; Bhardwaj, Sunny P; Suryanarayanan, Raj

    2014-10-01

    To determine the effect of annealing on the two secondary relaxations in amorphous sucrose and in sucrose solid dispersions. Sucrose was co-lyophilized with either PVP or sorbitol, annealed for different time periods and analyzed by dielectric spectroscopy. In an earlier investigation, we had documented the effect of PVP and sorbitol on the primary and the two secondary relaxations in amorphous sucrose solid dispersions (1). Here we investigated the effect of annealing on local motions, both in amorphous sucrose and in the dispersions. The average relaxation time of the local motion (irrespective of origin) in sucrose, decreased upon annealing. However, the heterogeneity in relaxation time distribution as well as the dielectric strength decreased only for β1- (the slower relaxation) but not for β2-relaxations. The effect of annealing on β2-relaxation times was neutralized by sorbitol while PVP negated the effect of annealing on both β1- and β2-relaxations. An increase in local mobility of sucrose brought about by annealing could be negated with an additive.

  1. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  2. The effect of the polymer relaxation time on the nonlinear energy cas- cade and dissipation of statistically steady and decaying homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.

    2013-11-01

    We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.

  3. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci.

    PubMed

    Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng

    2015-03-01

    Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way

  4. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  5. Intuitive approach to the unified theory of spin relaxation

    NASA Astrophysics Data System (ADS)

    Szolnoki, Lénárd; Dóra, Balázs; Kiss, Annamária; Fabian, Jaroslav; Simon, Ferenc

    2017-12-01

    Spin relaxation is conventionally discussed using two different approaches for materials with and without inversion symmetry. The former is known as the Elliott-Yafet (EY) theory and for the latter the D'yakonov-Perel' (DP) theory applies. We discuss herein a simple and intuitive approach to demonstrate that the two seemingly disparate mechanisms are closely related. A compelling analogy between the respective Hamiltonians is presented, and that the usual derivation of spin-relaxation times, in the respective frameworks of the two theories, can be performed. The result also allows us to obtain less canonical spin-relaxation regimes, i.e. the generalization of the EY when the material has a large quasiparticle broadening, and the DP mechanism in ultrapure semiconductors. The method also allows a practical and intuitive numerical implementation of the spin-relaxation calculation, which is demonstrated for MgB2, which has anomalous spin-relaxation properties.

  6. Finding time over time: Longitudinal links between employed mothers' work-family conflict and time profiles.

    PubMed

    Lee, Soomi; McHale, Susan M; Crouter, Ann C; Hammer, Leslie B; Almeida, David M

    2017-08-01

    Drawing upon the Work-Home Resources model (ten Brummelhuis & Bakker, 2012), this study examined the links between work-family conflict and employed mothers' profiles of time resources for work and parenting roles. Using a person-centered latent profile approach, we identified 3 profiles of time use and perceived time adequacy in a sample of mothers employed in the extended-care industry (N = 440): a Work-Oriented profile, characterized by spending relatively more time at work, perceiving lower time adequacy for work, spending less time with children, and perceiving lower time adequacy for children; a Parenting-Oriented profile, characterized by the opposite pattern; and a Role-Balanced profile, characterized by average levels across the 4 dimensions. Mothers in the Work-Oriented profile reported greater work-to-family conflict and family to-work conflict than those in the Role-Balanced and Parenting-Oriented profiles. Greater work-to-family conflict was linked to membership in the Work-Oriented profile, net of personal, family, and work characteristics. Longitudinal latent profile transition analysis showed that increases in work-to-family conflict across 12 months were linked to greater odds of moving toward the Work-Oriented profile (relative to staying in the same profile), whereas decreases in work-to-family conflict were linked to greater odds of moving toward the Parenting-Oriented profile. Results illuminate the heterogeneity in how employed mothers perceive and allocate time in work and parenting roles and suggest that decreasing work-to-family conflict may preserve time resources for parenting. Intervention efforts should address ways of increasing employees' family time resources and decreasing work-family conflict. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Equivalent Relaxations of Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, S; Low, SH; Teeraratkul, T

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less

  8. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation

  9. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay.

    PubMed

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mårtensson, Lena; Swenson, Jan

    2014-07-21

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation

  10. Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids.

    PubMed

    Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu

    2015-07-15

    The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.

  11. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachleben, Joseph Robert

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10 -8 s -1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O 2 and ultraviolet. A method formore » measuring 14N- 1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T 1 and T 2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.« less

  12. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  13. Relaxation of nonequilibrium populations after a pump: the breaking of Mathiessen's rule

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Abdurazakov, O.; Kemper, A. F.

    2017-05-01

    From the early days of many-body physics, it was realized that the self-energy governs the relaxation or lifetime of the retarded Green's function. So it seems reasonable to directly extend those results into the nonequilibrium domain. But experiments and calculations of the response of quantum materials to a pump show that the relationship between the relaxation and the self-energy only holds in special cases. Experimentally, the decay time for a population to relax back to equilibrium and the linewidth measured in a linear-response angle-resolved photoemission spectroscopy differ by large amounts. Theoretically, aside from the weak-coupling regime where the relationship holds, one also finds deviations and additionally one sees violations of Mathiessen's rule. In this work, we examine whether looking at an effective transport relaxation time helps to analyze the decay times of excited populations as they relax back to equilibrium. We conclude that it may do a little better, but it has a fitting parameter for the overall scale which must be determined.

  14. A single-sweep, nanosecond time resolution laser temperature-jump apparatus

    NASA Astrophysics Data System (ADS)

    Ballew, R. M.; Sabelko, J.; Reiner, C.; Gruebele, M.

    1996-10-01

    We describe a fast temperature-jump (T-jump) apparatus capable of acquiring kinetic relaxation transients via real-time fluorescence detection over a time interval from nanoseconds to milliseconds in a single sweep. The method is suitable for aqueous solutions, relying upon the direct absorption of laser light by the bulk water. This obviates the need for additives (serving as optical or conductive heaters) that may interact with the sample under investigation. The longitudinal temperature profile is made uniform by counterpropagating heating pulses. Dead time is limited to one period of the probe laser (16 ns). The apparatus response is tested with aqueous tryptophan and the diffusion-controlled dimerization of proflavine.

  15. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea).

    PubMed

    Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J

    2012-02-01

    Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.

  16. Impacts of Base-Case and Post-Contingency Constraint Relaxations on Static and Dynamic Operational Security

    NASA Astrophysics Data System (ADS)

    Salloum, Ahmed

    Constraint relaxation by definition means that certain security, operational, or financial constraints are allowed to be violated in the energy market model for a predetermined penalty price. System operators utilize this mechanism in an effort to impose a price-cap on shadow prices throughout the market. In addition, constraint relaxations can serve as corrective approximations that help in reducing the occurrence of infeasible or extreme solutions in the day-ahead markets. This work aims to capture the impact constraint relaxations have on system operational security. Moreover, this analysis also provides a better understanding of the correlation between DC market models and AC real-time systems and analyzes how relaxations in market models propagate to real-time systems. This information can be used not only to assess the criticality of constraint relaxations, but also as a basis for determining penalty prices more accurately. Constraint relaxations practice was replicated in this work using a test case and a real-life large-scale system, while capturing both energy market aspects and AC real-time system performance. System performance investigation included static and dynamic security analysis for base-case and post-contingency operating conditions. PJM peak hour loads were dynamically modeled in order to capture delayed voltage recovery and sustained depressed voltage profiles as a result of reactive power deficiency caused by constraint relaxations. Moreover, impacts of constraint relaxations on operational system security were investigated when risk based penalty prices are used. Transmission lines in the PJM system were categorized according to their risk index and each category was as-signed a different penalty price accordingly in order to avoid real-time overloads on high risk lines. This work also extends the investigation of constraint relaxations to post-contingency relaxations, where emergency limits are allowed to be relaxed in energy market models

  17. Longitudinal relaxation properties of 1HN and 1Hα determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs)

    NASA Astrophysics Data System (ADS)

    Hošek, Tomáš; Gil-Caballero, Sergi; Pierattelli, Roberta; Brutscher, Bernhard; Felli, Isabella C.

    2015-05-01

    Intrinsically disordered proteins (IDPs) are functional proteins containing large fragments characterized by high local mobility. Bioinformatic studies have suggested that a significant fraction (more than 30%) of eukaryotic proteins has disordered regions of more than 50 amino acids in length. Hence, NMR methods for the characterization of local compactness and solvent accessibility in such highly disordered proteins are of high importance. Among the available approaches, the HET-SOFAST/BEST experiments (Schanda et al., 2006, Rennella et al., 2014) provide semi-quantitative information by monitoring longitudinal 1H relaxation of amide protons under different initial conditions. However, when approaching physiological sample conditions, the potential of these amide 1H detected experiments is reduced due to rapid amide proton solvent exchange. 13C direct detection methods therefore provide a valuable alternative thanks to a higher chemical shift dispersion and their intrinsic insensitivity toward solvent exchange. Here we present two sets of 13C-detected experiments, which indirectly measure 1HN and 1Hα inversion recovery profiles. The experiments consist of an initial spin inversion-recovery block optimized for selective manipulation of different types of proton spins followed by a CON read-out scheme. The proposed experiments were tested on human α-synuclein and ubiquitin, two representative examples of unfolded and folded proteins.

  18. High resolution NMR study of T{sub 1} magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru

    2014-10-21

    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation timesmore » at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.« less

  19. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  20. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Cancer.gov

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  1. Longitudinal Relationship Between Sitting Time on a Working Day and Vitality, Work Performance, Presenteeism, and Sickness Absence.

    PubMed

    Hendriksen, Ingrid J M; Bernaards, Claire M; Steijn, Wouter M P; Hildebrandt, Vincent H

    2016-08-01

    The aim of this study was to explore the longitudinal relationship between sitting time on a working day and vitality, work performance, presenteeism, and sickness absence. At the start and end of a five-month intervention program at the workplace, as well as 10 months after the intervention, sitting time and work-related outcomes were measured using a standardized self-administered questionnaire and company records. Generalized linear mixed models were used to estimate the longitudinal relationship between sitting time and work-related outcomes, and possible interaction effects over time. A significant and sustainable decrease in sitting time on a working day was observed. Sitting less was significantly related to higher vitality scores, but this effect was marginal (b = -0.0006, P = 0.000). Our finding of significant though marginal associations between sitting time and important work-related outcomes justifies further research.

  2. Study into the correlation of dominant pore throat size and SIP relaxation frequency

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett

    2016-12-01

    There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.

  3. Changes in MR Relaxation Times of the Meniscus With Acute Loading: An In Vivo Pilot Study in Knee Osteoarthritis

    PubMed Central

    Subburaj, Karupppasamy; Souza, Richard B.; Wyman, Bradley T.; Le Graverand-Gastineau, Marie-Pierre Hellio; Li, Xiaojuan; Link, Thomas M.; Majumdar, Sharmila

    2014-01-01

    Purpose To prospectively evaluate changes in T1ρ and T2 relaxation times in the meniscal body with acute loading using MRI in osteoarthritic knees and to compare these findings with those of age-matched healthy controls. Materials and Methods Female subjects above 40 years of age with (N1 = 20) and without osteoarthritis (OA) (N2 = 10) were imaged on a 3 Tesla MR scanner using a custom made loading device. MR images were acquired, with the knee flexed at 20°, with and without a compressive load of 50% of the subject's bodyweight. The subjects were categorized based on the radiographic evidence of OA. Three different zones (outer, middle, and inner) of meniscus body were defined (each occupying 1/3rd the width). After adjusting for age and body mass index in the general linear regression model, repeated measures analysis of variance was used to detect significant differences in T1ρ and T2 with and without loading. Results In the unloaded condition, the average T1ρ and T2 times were elevated in the outer and middle zones of the medial meniscus in OA subjects compared with the controls. In the loaded condition, T1ρ and T2 times of the outer zone of the medial meniscus was significantly elevated in OA subjects compared with controls. Finally the change (from unloaded to loaded) was significantly higher in controls than OA subjects (15.1% versus 8.3%; P = 0.039 for ΔT1ρ, and 11.5% versus 6.9%, P = 0.049 for ΔT2). Conclusion These findings suggest that while the OA process appears to affect the relaxation times of all regions within the meniscus, it may affect some regions sooner or to a greater degree. Furthermore, the differences in the change in relaxation times between unloaded and loaded conditions may reveal evidence about load transmission failure of the outer zone of the medial meniscus in subjects with knee OA. It is possible that these metrics (ΔT1ρ and ΔT2) may be valuable as an early biomechanical biomarker, which could be used to predict load

  4. Time constant of defect relaxation in ion-irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Department of Nuclear Engineering, Texas A and M University, College Station, Texas 77843; Bayu Aji, L. B.

    Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage–depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ∼3 ms (for second order kinetics) and a dynamicmore » annealing efficiency of ∼40% for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.« less

  5. Time constant of defect relaxation in ion-irradiated 3 C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Bayu Aji, L. B.; Shao, L.

    Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here in this work, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage–depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ~3 ms (for secondmore » order kinetics) and a dynamic annealing efficiency of ~40% for defects in both Si and C sublattices. Finally, this demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.« less

  6. Fluid Transport in Porous Media probed by Relaxation-Exchange NMR

    NASA Astrophysics Data System (ADS)

    Olaru, A. M.; Kowalski, J.; Sethi, V.; Blümich, B.

    2011-12-01

    The characterization of fluid transport in porous media represents a matter of high interest in fields like the construction industry, oil exploitation, and soil science. Moisture migration or flow at low rates, such as those occurring in soil during rain are difficult to characterize by classical high-field NMR velocimetry due to the dedicated hardware and elaborate techniques required for adequate signal encoding. The necessity of field studies raises additional technical problems, which can be solved only by the use of portable low-field NMR instruments. In this work we extend the use of low-field relaxation exchange experiments from the study of diffusive transport to that of advection. Relaxation exchange experiments were performed using a home-built Halbach magnet on model porous systems with controlled pore-size distributions and on natural porous systems (quartz sand with a broad pore-size distribution) exposed to unidirectional flow. Different flow rates leave distinctive marks on the exchange maps obtained by inverse Laplace transformation of the time domain results, due to the superposition of exchange, diffusion and inflow/outflow in multiple relaxation sites of the liquids in the porous media. In the case of slow velocities there is no loss of signal due to outflow, and the relaxation-exchange effects prevail, leading to a tilt of the diagonal distribution around a pivot point with increasing mixing time. The tilt suggests an asymmetry in the exchange between relaxation sites of large and small decay rates. Another observed phenomenon is the presence of a bigger number of exchange cross-peaks compared to the exchange maps obtained for the same systems in zero-flow conditions. We assume that this is due to enhanced exchange caused by the superposition of flow. For high velocities the outflow effects dominate and the relaxation-time distribution collapses towards lower values of the average relaxation times. In both cases the pore-size distribution has a

  7. Applying the relaxation model of interfacial heat transfer to calculate the liquid outflow with supercritical initial parameters

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.

    2017-09-01

    A comparative numerical simulation of the supercritical fluid outflow on the thermodynamic equilibrium and non-equilibrium relaxation models of phase transition for different times of relaxation has been performed. The model for the fixed relaxation time based on the experimentally determined radius of liquid droplets was compared with the model of dynamically changing relaxation time, calculated by the formula (7) and depending on local parameters. It is shown that the relaxation time varies significantly depending on the thermodynamic conditions of the two-phase medium in the course of outflowing. The application of the proposed model with dynamic relaxation time leads to qualitatively correct results. The model can be used for both vaporization and condensation processes. It is shown that the model can be improved on the basis of processing experimental data on the distribution of the droplet sizes formed during the breaking up of the liquid jet.

  8. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    PubMed

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  9. A computational atomistic study of the relaxation of ion-bombarded c-Si on experimental time-scales: an application of the kinetic Activation Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Mousseau, Normand

    2012-02-01

    The kinetic activation relaxation technique (kinetic ART) method, an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search,ootnotetextL. K. B'eland, P. Brommer, F. El-Mellouhi, J.-F. Joly and N. Mousseau, Phys. Rev. E 84, 046704 (2011). is used to study the relaxation of c-Si after Si^- bombardment at 3 keV. We describe the evolution of the damaged areas at room-temperature and above for periods of the order of seconds, treating long-range elastic deformations exactly. We assess the stability of the nanoscale structures formed by the damage cascade and the mechanisms that govern post-implantation annealing.

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of relaxation times of polymethine dyes used for passive mode locking of solid-state lasers emitting between 750 and 850 nm

    NASA Astrophysics Data System (ADS)

    Grigonis, R.; Derevyanko, Nadezhda A.; Ishchenko, Aleksandr A.; Sirutkaitis, V. A.

    2001-11-01

    The relaxation times τ of the bleached states of polymethine dyes absorbing light in the 750 — 850-nm are determined by the direct pump — probe method. The effect of the dye structure and the solvent type on the relaxation time is discussed. The role of different intra- and intermolecular interactions in the relaxation of excited electronic states of the dyes is analysed. Polymethine dyes are found (with τ=11 — 75 ps) that are promising for passive mode locking in Cr3+:LiCaAlF6, Cr3+:KZnF3, and Cr3+:LiSrAlF6 crystal lasers.

  11. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, J., E-mail: JMitchell16@slb.com; Chandrasekera, T. C.

    2014-12-14

    The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{supmore » k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.« less

  12. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    NASA Astrophysics Data System (ADS)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  13. Analysis of longitudinal "time series" data in toxicology.

    PubMed

    Cox, C; Cory-Slechta, D A

    1987-02-01

    Studies focusing on chronic toxicity or on the time course of toxicant effect often involve repeated measurements or longitudinal observations of endpoints of interest. Experimental design considerations frequently necessitate between-group comparisons of the resulting trends. Typically, procedures such as the repeated-measures analysis of variance have been used for statistical analysis, even though the required assumptions may not be satisfied in some circumstances. This paper describes an alternative analytical approach which summarizes curvilinear trends by fitting cubic orthogonal polynomials to individual profiles of effect. The resulting regression coefficients serve as quantitative descriptors which can be subjected to group significance testing. Randomization tests based on medians are proposed to provide a comparison of treatment and control groups. Examples from the behavioral toxicology literature are considered, and the results are compared to more traditional approaches, such as repeated-measures analysis of variance.

  14. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    PubMed

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  15. Electron-ion relaxation in a dense plasma. [supernovae core physics

    NASA Technical Reports Server (NTRS)

    Littleton, J. E.; Buchler, J.-R.

    1974-01-01

    The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.

  16. In vivo measurements of proton relaxation times in human brain, liver, and skeletal muscle: a multicenter MRI study.

    PubMed

    de Certaines, J D; Henriksen, O; Spisni, A; Cortsen, M; Ring, P B

    1993-01-01

    Quantitative magnetic resonance imaging may offer unique potential for tissue characterization in vivo. In this connection texture analysis of quantitative MR images may be of special importance. Because evaluation of texture analysis needs large data material, multicenter approaches become mandatory. Within the frame of BME Concerted Action on Tissue Characterization by MRI and MRS, a pilot multicenter study was launched in order to evaluate the technical problems including comparability of relaxation time measurements carried out in the individual sites. Human brain, skeletal muscle, and liver were used as models. A total of 218 healthy volunteers were studied. Fifteen MRI scanners with field strength ranging from 0.08 T to 1.5 T were induced. Measurement accuracy was tested on the Eurospin relaxation time test object (TO5) and the obtained calibration curve was used for correction of the in vivo data. The results established that, by following a standardized procedure, comparable quantitative measurements can be obtained in vivo from a number of MR sites. The overall variation coefficient in vivo was in the same order of magnitude as ex vivo relaxometry. Thus, it is possible to carry out international multicenter studies on quantitative imaging, provided that quality control with respect to measurement accuracy and calibration of the MR equipments are performed.

  17. On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols

    NASA Astrophysics Data System (ADS)

    Arrese-Igor, S.; Alegría, A.; Colmenero, J.

    2017-03-01

    We have investigated the Debye-like relaxation in a series of monoalcohols (MAs) by broadband dielectric spectroscopy and thermally stimulated depolarization current techniques in order to get further insight on the time dispersion of this intriguing relaxation. Results indicate that the Debye-like relaxation of MAs is not always of exponential type and conforms well to a dispersion of Cole-Davidson type. Apart from the already reported non-exponentiality of the Debye-like relaxation in 2-hexyl-1-decanol and 2-butyl-1-octanol, a detailed analysis of the dielectric permittivity of 5-methyl-3-heptanol shows that this MA also presents some extent of dispersion on its Debye-like relaxation which strongly depends on the temperature. Results suggest that the non-exponential character of the Debye-like relaxation might be a general characteristic in the case of not so intense Debye-like relaxations relative to the α relaxation. Finally, we briefly discuss on the T-dependence and possible origin for the observed dispersion.

  18. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    PubMed Central

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  19. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.

    PubMed

    Fakhari, Abbas; Lee, Taehun

    2013-02-01

    The lattice Boltzmann method for immiscible multiphase flows with large density ratio is extended to high Reynolds number flows using a multiple-relaxation-time (MRT) collision operator, and its stability and accuracy are assessed by simulating the Kelvin-Helmholtz instability. The MRT model is successful at damping high-frequency oscillations in the kinetic energy emerging from traveling waves generated by the inclusion of curvature. Numerical results are shown to be in good agreement with prior studies using adaptive mesh refinement techniques applied to the Navier-Stokes equations. Effects of viscosity and surface tension, as well as density ratio, are investigated in terms of the Reynolds and Weber numbers. It is shown that increasing the Reynolds number results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is shown to have a stabilizing effect.

  20. Effective temperature in relaxation of Coulomb glasses.

    PubMed

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  1. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    PubMed

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  2. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  3. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  4. Mode-coupling theoretical analysis of transport and relaxation properties of liquid dimethylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Koda, S.

    2010-03-01

    The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.

  5. Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires

    PubMed Central

    2011-01-01

    Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale. PMID:22151927

  6. A dynamical study of Galactic globular clusters under different relaxation conditions

    NASA Astrophysics Data System (ADS)

    Zocchi, A.; Bertin, G.; Varri, A. L.

    2012-03-01

    Aims: We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of spherical stellar dynamical models. Systems characterized by shorter relaxation time scales are expected to be better described by isotropic King models, while less relaxed systems might be interpreted by means of non-truncated, radially-biased anisotropic f(ν) models, originally designed to represent stellar systems produced by a violent relaxation formation process and applied here for the first time to the study of globular clusters. Methods: The comparison between dynamical models and observations is performed by fitting simultaneously surface brightness and velocity dispersion profiles. For each globular cluster, the best-fit model in each family is identified, along with a full error analysis on the relevant parameters. Detailed structural properties and mass-to-light ratios are also explicitly derived. Results: We find that King models usually offer a good representation of the observed photometric profiles, but often lead to less satisfactory fits to the kinematic profiles, independently of the relaxation condition of the systems. For some less relaxed clusters, f(ν) models provide a good description of both observed profiles. Some derived structural characteristics, such as the total mass or the half-mass radius, turn out to be significantly model-dependent. The analysis confirms that, to answer some important dynamical questions that bear on the formation and evolution of globular clusters, it would be highly desirable to acquire larger numbers of accurate kinematic data-points, well distributed over the cluster field. Appendices are available in electronic form at http://www.aanda.org

  7. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    PubMed

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  8. Short-term stability of T1 and T2 relaxation measures in multiple sclerosis normal appearing white matter.

    PubMed

    Liang, Alice L W; Vavasour, Irene M; Mädler, Burkhard; Traboulsee, Anthony L; Lang, Donna J; Li, David K B; MacKay, Alex L; Laule, Cornelia

    2012-06-01

    The presence of diffuse and widespread abnormalities within the 'normal appearing' white matter (NAWM) of multiple sclerosis (MS) brain has been established. T(1) histogram analysis has revealed increased T(1) (related to water content) in segmented NAWM, while quantitative assessment of T(2) relaxation measures has demonstrated decreased myelin water fraction (MWF, related to myelin content) and increased geometric mean T(2) (GMT(2)) of the intra/extracellular water pool. Previous studies with follow-up periods of 1-5 years have demonstrated longitudinal changes in T(1) histogram metrics over time; however, longitudinal changes in MWF and GMT(2) of segmented NAWM have not been examined. We examined the short-term evolution of MWF, GMT(2) and T(1) in MS NAWM based on monthly scanning over 6 months in 18 relapsing remitting (RR) MS subjects. Histogram metrics demonstrated short-term stability of T(1), MWF and remitting (RR) MS subjects. We observed no change in MWF, GMT(2) or T(1) histogram metrics in NAWM in RRMS over the course of 6 months. Longer follow-up periods may be required to establish demonstrable changes in NAWM based on of MWF, GMT(2) and T(1) metrics.

  9. Relationship between longitudinal stress wave transit time and moisture content of lumber during kiln-drying

    Treesearch

    William T. Simpson; Xiping. Wang

    2001-01-01

    The relationship between longitudinal stress wave transit time and wood moisture content (MC) was examined as a potential means of estimating MC control points in dry kiln schedules for lumber. A linear relationship was found between the relative transit time and the average MC of sugar maple and ponderosa pine boards dried according to typical kiln schedules.

  10. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  11. Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI

    NASA Astrophysics Data System (ADS)

    Chang, Yulin V.; Conradi, Mark S.

    2006-08-01

    We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.

  12. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.

    PubMed

    Ngai, K L; Capaccioli, Simone; Paluch, Marian; Prevosto, Daniele

    2014-05-22

    When the thickness is reduced to nanometer scale, freestanding high molecular weight polymer thin films undergo large reduction of degree of cooperativity and coupling parameter n in the Coupling Model (CM). The finite-size effect together with the surfaces with high mobility make the α-relaxation time of the polymer in nanoconfinement, τ(α)(nano)(T), much shorter than τ(α)(bulk)(T) in the bulk. The consequence is avoidance of vitrification at and below the bulk glass transition temperature, T(g)(bulk), on cooling, and the freestanding polymer thin film remains at thermodynamic equilibrium at temperatures below T(g)(bulk). Molecular dynamics simulations have shown that the specific volume of the freestanding film is the same as the bulk glass-former at equilibrium at the same temperatures. Extreme nanoconfinement renders total or almost total removal of cooperativity of the α-relaxation, and τ(α)(nano)(T) becomes the same or almost the same as the JG β-relaxation time τ(β)(bulk)(T) of the bulk glass-former at equilibrium and at temperatures below T(g)(bulk). Taking advantage of being able to obtain τ(β)(bulk)(T) at equilibrium density below T(g)(bulk) by extreme nanoconfinement of the freestanding films, and using the CM relation between τ(α)(bulk)(T) and τ(β)(bulk)(T), we conclude that the Vogel-Fulcher-Tammann-Hesse (VFTH) dependence of τ(α)(bulk)(T) cannot hold for glass-formers in equilibrium at temperatures significantly below T(g)(bulk). In addition, τ(α)(bulk)(T) does not diverge at the Vogel temperature, T₀, as suggested by the VFTH-dependence and predicted by some theories of glass transition. Instead, τ(α)(bulk)(T) of the glass-former at equilibrium has a much weaker temperature dependence than the VFTH-dependence at temperature below T(g)(bulk) and even below T₀. This conclusion from our analysis is consistent with the temperature dependence of τ(α)(bulk)(T) found experimentally in polymers aged long enough time to attain the

  13. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    PubMed

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  14. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components.

    PubMed

    Mossahebi, Sina; Kovács, Sándor J

    2014-01-01

    Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (p<0.005), chamber stiffness, (k) in AF was higher than in NSR (p<0.001). For NSR, 75% of DT was due to stiffness and 25% was due to relaxation whereas for AF 81% of DT was due to stiffness and 19% was due to relaxation (p<0.005). We conclude that compared to NSR, increased chamber stiffness is one measurable consequence of chamber remodeling in chronic, rate controlled AF. A larger fraction of E-wave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.

  15. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-08-01

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  16. Phylogeography Takes a Relaxed Random Walk in Continuous Space and Time

    PubMed Central

    Lemey, Philippe; Rambaut, Andrew; Welch, John J.; Suchard, Marc A.

    2010-01-01

    Research aimed at understanding the geographic context of evolutionary histories is burgeoning across biological disciplines. Recent endeavors attempt to interpret contemporaneous genetic variation in the light of increasingly detailed geographical and environmental observations. Such interest has promoted the development of phylogeographic inference techniques that explicitly aim to integrate such heterogeneous data. One promising development involves reconstructing phylogeographic history on a continuous landscape. Here, we present a Bayesian statistical approach to infer continuous phylogeographic diffusion using random walk models while simultaneously reconstructing the evolutionary history in time from molecular sequence data. Moreover, by accommodating branch-specific variation in dispersal rates, we relax the most restrictive assumption of the standard Brownian diffusion process and demonstrate increased statistical efficiency in spatial reconstructions of overdispersed random walks by analyzing both simulated and real viral genetic data. We further illustrate how drawing inference about summary statistics from a fully specified stochastic process over both sequence evolution and spatial movement reveals important characteristics of a rabies epidemic. Together with recent advances in discrete phylogeographic inference, the continuous model developments furnish a flexible statistical framework for biogeographical reconstructions that is easily expanded upon to accommodate various landscape genetic features. PMID:20203288

  17. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  18. Relaxation dynamics of C60

    NASA Astrophysics Data System (ADS)

    Walsh, Tiffany R.; Wales, David J.

    1998-10-01

    The relaxation dynamics of C60 from high-energy isomers to Buckminsterfullerene is examined using a master equation approach. An exhaustive catalog of the C60 fullerene isomers containing only five- and six-membered rings is combined with knowledge of the Stone-Wales rearrangements that connect all such isomers. Full geometry optimizations have been performed for all the minima and the transition states which connect them up to six Stone-Wales steps away from the global minimum. A density-functional tight-binding potential was employed to provide a quantum mechanical description of the bonding. The resulting picture of the potential energy landscape reveals a "weeping willow" structure which offers a clear explanation for the relatively long relaxation times observed experimentally. We also predict the most important transient local minima on the annealing pathway.

  19. Relaxation from Steady States Far from Equilibrium and the Persistence of Anomalous Shock Behavior in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Auslender, Aaron H.

    1999-01-01

    The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.

  20. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion

    NASA Astrophysics Data System (ADS)

    Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun

    2015-04-01

    To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.

  1. EEG-based time and spatial interpretation of activation areas for relaxation and words writing between poor and capable dyslexic children.

    PubMed

    Mohamad, N B; Lee, Khuan Y; Mansor, W; Mahmoodin, Z; Fadzal, C W N F C W; Amirin, S

    2015-01-01

    Symptoms of dyslexia such as difficulties with accurate and/or fluent word recognition, and/or poor spelling as well as decoding abilities, are easily misinterpreted as laziness and defiance amongst school children. Indeed, 37.9% of 699 school dropouts and failures are diagnosed as dyslexic. Currently, Screening for dyslexia relies heavily on therapists, whom are few and subjective, yet objective methods are still unavailable. EEG has long been a popular method to study the cognitive processes in human such as language processing and motor activity. However, its interpretation is limited to time and frequency domain, without visual information, which is still useful. Here, our research intends to illustrate an EEG-based time and spatial interpretation of activated brain areas for the poor and capable dyslexic during the state of relaxation and words writing, being the first attempt ever reported. From the 2D distribution of EEG spectral at the activation areas and its progress with time, it is observed that capable dyslexics are able to relax compared to poor dyslexics. During the state of words writing, neural activities are found higher on the right hemisphere than the left hemisphere of the capable dyslexics, which suggests a neurobiological compensation pathway in the right hemisphere, during reading and writing, which is not observed in the poor dyslexics.

  2. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    PubMed

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J

    2013-07-09

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR.

  3. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    NASA Astrophysics Data System (ADS)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  4. Electrode Reactions in Slowly Relaxing Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyushov, Dmitry V.; Newton, Marshall D.

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  5. Electrode Reactions in Slowly Relaxing Media

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-11-17

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  6. Determinants of relaxation rate in rabbit skinned skeletal muscle fibres

    PubMed Central

    Luo, Ye; Davis, Jonathan P; Smillie, Lawrence B; Rall, Jack A

    2002-01-01

    The influence of Ca2+-activated force, the rate of dissociation of Ca2+ from troponin C (TnC) and decreased crossbridge detachment rate on the time course of relaxation induced by flash photolysis of diazo-2 in rabbit skinned psoas fibres was investigated at 15 °C. The rate of relaxation increased as the diazo-2 chelating capacity (i.e. free [diazo-2]/free [Ca2+]) increased. At a constant diazo-2 chelating capacity, the rate of relaxation was independent of the pre-photolysis Ca2+-activated force in the range 0.3-0.8 of maximum isometric force. A TnC mutant that exhibited increased Ca2+ sensitivity caused by a decreased Ca2+ dissociation rate in solution (M82Q TnC) also increased the Ca2+ sensitivity of steady-state force and decreased the rate of relaxation in fibres by approximately twofold. In contrast, a TnC mutant with decreased Ca2+ sensitivity caused by an increased Ca2+ dissociation rate in solution (NHdel TnC) decreased the Ca2+ sensitivity of steady-state force but did not accelerate relaxation. Decreasing the rate of crossbridge kinetics by reducing intracellular inorganic phosphate concentration ([Pi]) slowed relaxation by approximately twofold and led to two phases of relaxation, a slow linear phase followed by a fast exponential phase. In fibres, M82Q TnC further slowed relaxation in low [Pi] conditions by approximately twofold, whereas NHdel TnC had no significant effect on relaxation. These results are consistent with the interpretation that the Ca2+-dissociation rate and crossbridge detachment rate are similar in fast-twitch skeletal muscle, such that decreasing either rate slows relaxation, but accelerating Ca2+ dissociation has little effect on relaxation. PMID:12482894

  7. Nonlinear relaxation algorithms for circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, R.A.

    Circuit simulation is an important Computer-Aided Design (CAD) tool in the design of Integrated Circuits (IC). However, the standard techniques used in programs such as SPICE result in very long computer-run times when applied to large problems. In order to reduce the overall run time, a number of new approaches to circuit simulation were developed and are described. These methods are based on nonlinear relaxation techniques and exploit the relative inactivity of large circuits. Simple waveform-processing techniques are described to determine the maximum possible speed improvement that can be obtained by exploiting this property of large circuits. Three simulation algorithmsmore » are described, two of which are based on the Iterated Timing Analysis (ITA) method and a third based on the Waveform-Relaxation Newton (WRN) method. New programs that incorporate these techniques were developed and used to simulate a variety of industrial circuits. The results from these simulations are provided. The techniques are shown to be much faster than the standard approach. In addition, a number of parallel aspects of these algorithms are described, and a general space-time model of parallel-task scheduling is developed.« less

  8. Holographic grating relaxation technique for soft matter science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de; ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101; Kiessling, Andy

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making itmore » possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.« less

  9. Viscoelastic Relaxation of Topographic Highs on Venus to Produce Coronae

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1995-01-01

    Coronae on Venus are believed to result from the gravitationally driven relaxation of topography that was originally raised by mantle diapirs. We examine this relaxation using a viscoelastic finite element code, and show that an initially plateau shaped load will evolve to the characteristic corona topography of central raised bowl, annular rim, and surrounding moat. Stresses induced by the relaxation are consistent with the development of concentric extensional fracturing common on the outer margins of corona moats. However, relaxation is not expected to produce the concentric faulting often observed on the annular rim. The relaxation timescale is shorter than the diapir cooling timescale, so loss of thermal support controls the rate at which topography is reduced. The final corona shape is supported by buoyancy and flexural stresses and will persist through geologic time. Development of lower, flatter central bowls and narrower and more pronounced annular rims and moats enhanced by thicker crusts, higher thermal gradients, and crustal thinning over the diapir.

  10. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  11. Anomalous relaxation in fractal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, S.; Yonezawa, F.

    1995-03-01

    For the purpose of studying some interesting properties of anomalous relaxation in fractal structures, we carry out Monte Carlo simulations of random walks on two-dimensional fractal structures (Sierpinski carpets with different cutouts and site-percolation clusters in a square lattice at the critical concentration). We find that the relaxation is of the Cole-Cole type [J. Chem. Phys. 9, 341 (1941)], which is one of the empirical laws of anomalous relaxation. Scaling properties are found in the relaxation function as well as in the particle density. We also find that, in strucures with almost the same fractal dimension, relaxation in structures withmore » dead ends is slower than that in structures without them. This paper ascertains that the essential aspects of the anomalous relaxation due to many-body effects can be explained in the framework of the one-body model.« less

  12. Concentration Regimes of Biopolymers Xanthan, Tara, and Clairana, Comparing Dynamic Light Scattering and Distribution of Relaxation Time

    PubMed Central

    Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.

    2013-01-01

    The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627

  13. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  14. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  15. Time-to-Event Analysis of Individual Variables Associated with Nursing Students' Academic Failure: A Longitudinal Study

    ERIC Educational Resources Information Center

    Dante, Angelo; Fabris, Stefano; Palese, Alvisa

    2013-01-01

    Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The…

  16. Relaxation processes in a low-order three-dimensional magnetohydrodynamics model

    NASA Technical Reports Server (NTRS)

    Stribling, Troy; Matthaeus, William H.

    1991-01-01

    The time asymptotic behavior of a Galerkin model of 3D magnetohydrodynamics (MHD) has been interpreted using the selective decay and dynamic alignment relaxation theories. A large number of simulations has been performed that scan a parameter space defined by the rugged ideal invariants, including energy, cross helicity, and magnetic helicity. It is concluded that time asymptotic state can be interpreted as a relaxation to minimum energy. A simple decay model, based on absolute equilibrium theory, is found to predict a mapping of initial onto time asymptotic states, and to accurately describe the long time behavior of the runs when magnetic helicity is present. Attention is also given to two processes, operating on time scales shorter than selective decay and dynamic alignment, in which the ratio of kinetic to magnetic energy relaxes to values 0(1). The faster of the two processes takes states initially dominant in magnetic energy to a state of near-equipartition between kinetic and magnetic energy through power law growth of kinetic energy. The other process takes states initially dominant in kinetic energy to the near-equipartitioned state through exponential growth of magnetic energy.

  17. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  18. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Distinct longitudinal patterns of absenteeism and their antecedents in full-time Australian employees.

    PubMed

    Magee, Christopher A; Caputi, Peter; Lee, Jeong Kyu

    2016-01-01

    This paper investigated distinct longitudinal trajectories of absenteeism over time, and underlying demographic, work, and health antecedents. Data from the Household, Income, and Labor Dynamics in Australia Survey were used; this is a panel study of a representative sample of Australian households. This paper focused on 2,481 full-time employees across a 5-year period. Information on annual sick leave and relevant sociodemographic, work, and health-related factors was collected through interviews and self-completed surveys. Growth mixture modeling indicated 4 distinct longitudinal patterns of absenteeism over time. The moderate absenteeism trajectory (34.8%) of the sample had 4-5 days of sick leave per year and was used as the reference group. The low absenteeism trajectory (33.5%) had 1-2 days of absenteeism per year, while the no absenteeism trajectory (23.6%) had very low rates of absenteeism (<1 day per year). Finally, a smaller trajectory accounting for 8.1% of the sample had high levels of absenteeism (>11 days per year). Compared with the moderate absenteeism trajectory, the high absenteeism trajectory was characterized by poor health; the no absenteeism and low absenteeism trajectories had better health but may also reflect processes relating to presenteeism. These results provide important insights into the nature of absenteeism in Australian employees, and suggest that different patterns of absenteeism over time could reflect a range of demographic, work, and health related factors. (c) 2016 APA, all rights reserved).

  20. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    considerably stronger water (w) relaxation at about the same frequency. However, the similarities in time scale and activation energy between the w-relaxation and the β-relaxation of xylitol at water contents below 13 wt. % suggest that the w-relaxation is governed, in some way, by the β-relaxation of xylitol, since clusters of water molecules are rare at these water concentrations. At higher water concentrations the intensity and relaxation rate of the w-relaxation increase rapidly with increasing water content (up to the concentration where ice starts to form), most likely due to a rapid increase of small water clusters where an increasing number of water molecules interacting with other water molecules.

  1. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry

    2017-01-19

    Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.

  2. Spatial Distribution and Relationship of T1ρ and T2 Relaxation Times in Knee Cartilage With Osteoarthritis

    PubMed Central

    Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila

    2009-01-01

    T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904

  3. Regression analysis of longitudinal data with correlated censoring and observation times.

    PubMed

    Li, Yang; He, Xin; Wang, Haiying; Sun, Jianguo

    2016-07-01

    Longitudinal data occur in many fields such as the medical follow-up studies that involve repeated measurements. For their analysis, most existing approaches assume that the observation or follow-up times are independent of the response process either completely or given some covariates. In practice, it is apparent that this may not be true. In this paper, we present a joint analysis approach that allows the possible mutual correlations that can be characterized by time-dependent random effects. Estimating equations are developed for the parameter estimation and the resulted estimators are shown to be consistent and asymptotically normal. The finite sample performance of the proposed estimators is assessed through a simulation study and an illustrative example from a skin cancer study is provided.

  4. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  5. Relaxation drag history of shock accelerated microparticles

    DOE PAGES

    Bordoloi, Ankur D.; Martinez, Adam A.; Prestridge, Katherine

    2017-06-21

    Experimental measurements of the displacements of shock accelerated microparticles from shortly after shock interaction to the particle relaxation time show time-dependent drag coefficients (more » $$C_{D}$$) that are much higher than those predicted by quasi-steady and unsteady drag models. Nylon particles with mean diameter of $$4~\\unicode[STIX]{x03BC}\\text{m}$$, accelerated by one-dimensional normal shocks (Mach number$$M_{s}=1.2$$, 1.3 and 1.4), have measured$$C_{D}$$values that follow a power-law behaviour. The drag is a function of the time-dependent Knudsen number,$$Kn^{\\ast }=M_{s}/Re_{p}$$, where the particle Reynolds number ($$Re_{p}$$) is calculated using the time-dependent slip velocity. Also, some portion of the drag can be attributed to quasi-steady forces, but the total drag cannot be predicted by current unsteady force models that are based on the Basset–Boussinesq–Oseen equation and pressure drag. The largest contribution to the total drag is the unsteady component ($$C_{D,us}$$) until the particle attains$$Kn^{\\ast }\\approx 0.5{-}1.0$$, then the unsteady contribution decays. The quasi-steady component ($$C_{D,qs}$$) increases almost linearly with$$Kn^{\\ast }$$, intersects the$$C_{D,us}$$at$$Kn^{\\ast }\\approx 2$$and becomes the primary contributor to the drag towards the end of the relaxation zone as$$Re_{p}\\rightarrow 0$$. Finally, there are currently no analytical models that are able to predict the nonlinear behaviour of the shock accelerated particles during the relaxation phase of the flow.« less

  6. Relaxation drag history of shock accelerated microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Ankur D.; Martinez, Adam A.; Prestridge, Katherine

    Experimental measurements of the displacements of shock accelerated microparticles from shortly after shock interaction to the particle relaxation time show time-dependent drag coefficients (more » $$C_{D}$$) that are much higher than those predicted by quasi-steady and unsteady drag models. Nylon particles with mean diameter of $$4~\\unicode[STIX]{x03BC}\\text{m}$$, accelerated by one-dimensional normal shocks (Mach number$$M_{s}=1.2$$, 1.3 and 1.4), have measured$$C_{D}$$values that follow a power-law behaviour. The drag is a function of the time-dependent Knudsen number,$$Kn^{\\ast }=M_{s}/Re_{p}$$, where the particle Reynolds number ($$Re_{p}$$) is calculated using the time-dependent slip velocity. Also, some portion of the drag can be attributed to quasi-steady forces, but the total drag cannot be predicted by current unsteady force models that are based on the Basset–Boussinesq–Oseen equation and pressure drag. The largest contribution to the total drag is the unsteady component ($$C_{D,us}$$) until the particle attains$$Kn^{\\ast }\\approx 0.5{-}1.0$$, then the unsteady contribution decays. The quasi-steady component ($$C_{D,qs}$$) increases almost linearly with$$Kn^{\\ast }$$, intersects the$$C_{D,us}$$at$$Kn^{\\ast }\\approx 2$$and becomes the primary contributor to the drag towards the end of the relaxation zone as$$Re_{p}\\rightarrow 0$$. Finally, there are currently no analytical models that are able to predict the nonlinear behaviour of the shock accelerated particles during the relaxation phase of the flow.« less

  7. Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf

    2012-03-01

    Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.

  8. Left Ventricular Isovolumetric Relaxation Time Is Prolonged in Fetal Long-QT Syndrome.

    PubMed

    Clur, Sally-Ann B; Vink, Arja S; Etheridge, Susan P; Robles de Medina, Pascale G; Rydberg, Annika; Ackerman, Michael J; Wilde, Arthur A; Blom, Nico A; Benson, D Woodrow; Herberg, Ulrike; Donofrio, Mary T; Cuneo, Bettina F

    2018-04-01

    Long-QT syndrome (LQTS), an inherited cardiac repolarization disorder, is an important cause of fetal and neonatal mortality. Detecting LQTS prenatally is challenging. A fetal heart rate (FHR) less than third percentile for gestational age is specific for LQTS, but the sensitivity is only ≈50%. Left ventricular isovolumetric relaxation time (LVIRT) was evaluated as a potential diagnostic marker for fetal LQTS. LV isovolumetric contraction time, LV ejection time, LVIRT, cycle length, and FHR were measured using pulsed Doppler waveforms in fetuses. Time intervals were expressed as percentages of cycle length, and the LV myocardial performance index was calculated. Single measurements were stratified by gestational age and compared between LQTS fetuses and controls. Receiver-operator curves were performed for FHR and normalized LVIRT (N-LVIRT). A linear mixed-effect model including multiple measurements was used to analyze trends in FHR, N-LVIRT, and LV myocardial performance index. There were 33 LQTS fetuses and 469 controls included. In LQTS fetuses, the LVIRT was prolonged in all gestational age groups ( P <0.001), as was the N-LVIRT. The best cutoff to diagnose LQTS was N-LVIRT ≥11.3 at ≤20 weeks (92% sensitivity, 70% specificity). Simultaneous analysis of N-LVIRT and FHR improved the sensitivity and specificity for LQTS (area under the curve=0.96; 95% confidence interval, 0.82-1.00 at 21-30 weeks). N-LVIRT, LV myocardial performance index, and FHR trends differed significantly between LQTS fetuses and controls through gestation. The LVIRT is prolonged in LQTS fetuses. Findings of a prolonged N-LVIRT and sinus bradycardia can improve the prenatal detection of fetal LQTS. © 2018 American Heart Association, Inc.

  9. The Havriliak-Negami relaxation and its relatives: the response, relaxation and probability density functions

    NASA Astrophysics Data System (ADS)

    Górska, K.; Horzela, A.; Bratek, Ł.; Dattoli, G.; Penson, K. A.

    2018-04-01

    We study functions related to the experimentally observed Havriliak-Negami dielectric relaxation pattern proportional in the frequency domain to [1+(iωτ0){\\hspace{0pt}}α]-β with τ0 > 0 being some characteristic time. For α = l/k< 1 (l and k being positive and relatively prime integers) and β > 0 we furnish exact and explicit expressions for response and relaxation functions in the time domain and suitable probability densities in their domain dual in the sense of the inverse Laplace transform. All these functions are expressed as finite sums of generalized hypergeometric functions, convenient to handle analytically and numerically. Introducing a reparameterization β = (2-q)/(q-1) and τ0 = (q-1){\\hspace{0pt}}1/α (1 < q < 2) we show that for 0 < α < 1 the response functions fα, β(t/τ0) go to the one-sided Lévy stable distributions when q tends to one. Moreover, applying the self-similarity property of the probability densities gα, β(u) , we introduce two-variable densities and show that they satisfy the integral form of the evolution equation.

  10. Electron and hole relaxation pathways in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, V.I.; McBranch, D.W.; Leatherdale, C.A.

    1999-11-01

    Femtosecond (fs) broad-band transient absorption (TA) is used to study the intraband relaxation and depopulation dynamics of electron and hole quantized states in CdSe nanocrystals (NC{close_quote}s) with a range of surface properties. Instead of the drastic reduction in the energy relaxation rate expected due to a {open_quotes}phonon bottleneck,{close_quotes} we observe a fast subpicosecond 1P-to-1S electron relaxation, with the rate exceeding that due to phonon emission in bulk semiconductors. The energy relaxation is enhanced with reducing the NC{close_quote}s radius, and does not show any dependence on the NC surface properties (quality of the surface passivation). These data indicate that electron energymore » relaxation occurs by neither multiphonon emission nor by coupling to surface defects, but is likely meditated by Auger-type electron-hole energy transfer. We use fs infrared TA to probe electron and hole intraband transitions, which allows us to distinguish between electron and hole relaxation pathways leading to the depopulation of NC quantized states. In contrast to the electron relaxation, which is controlled by NC surface passivation, the depopulation of hole quantized states is extremely fast (sub-ps-to-ps time scales) in all types of samples, independent of NC surface treatment (including NC{close_quote}s overcoated with a ZnS layer). Our results indicate that ultrafast hole dynamics are not due to trapping at localized surface defects such as a vacancy, but rather arise from relaxation into intrinsic NC states or intrinsically unpassivated interface states. {copyright} {ital 1999} {ital The American Physical Society}« less

  11. Investigation of excited-state relaxation processes of organic dyes by time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Przhonska, O.; Slominsky, Yu.; Kachkovsky, A.; Stahl, U.; Senoner, M.; Dähne, S.

    1996-04-01

    The results of the measurements of the fluorescence decay kinetics of the new series of polymethine dyes in liquid and solid polymeric media are reported. The effects of polymeric media on absorption-relaxation-emission processes are studied at wide excitation, emission and temperature regions.

  12. Effect of guided relaxation and imagery on falls self-efficacy: a randomized controlled trial.

    PubMed

    Kim, Bang Hyun; Newton, Roberta A; Sachs, Michael L; Glutting, Joseph J; Glanz, Karen

    2012-06-01

    To examine the effects of guided relaxation and imagery (GRI) on improvement in falls self-efficacy in older adults who report having a fear of falling. Randomized, controlled trial with allocation to GRI or guided relaxation with music of choice. General community. Ninety-one men and women aged 60 to 92. Participants were randomized to listen to a GRI audio compact disk (intervention group) or a guided relaxation audio compact disk and music of choice (control group) twice a week for 6 weeks for 10 minutes per session. Primary outcome measure was the Short Falls Efficacy Scale-International (FES-I). Secondary outcome measures were the Leisure Time Exercise Questionnaire (LTEQ) and the Timed Up and Go (TUG) mobility test. GRI participants reported greater improvements on the Short FES-I (P = .002) and LTEQ (P = .001) scores and shorter time on the TUG (P = .002) than the guided relaxation and music-of-choice group. GRI was more effective at increasing falls self-efficacy and self-reported leisure time exercise and reducing times on a simple mobility test than was guided relaxation with music of choice. GRI is an effective, simple, low-cost tool for older adults to improve falls self-efficacy and leisure time exercise behaviors. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.

  13. Screening effects due to carrier doping on valley relaxation in transition metal dichalcogenide monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konabe, Satoru

    2016-08-15

    This work theoretically investigated the mechanism of valley polarization relaxation in monolayers of transition metal dichalcogenides, focusing on the exchange interactions between electrons and holes. In particular, we elucidated the effects of screening resulting from carrier doping on valley depolarization dynamics. The results show that the valley relaxation time is highly dependent on the extent of carrier doping. In addition, a finite degree of doping is predicted to induce additional valley relaxation temperature dependence at low temperatures, an effect that is absent at zero doping. Our calculation results suggest the possibility of increasing the valley relaxation time by tuning carriermore » doping, which could present a means of manipulating the valley degrees of freedom.« less

  14. Spectral EEG Features of a Short Psycho-physiological Relaxation

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Krakovská, Anna; Špajdel, Marián

    2014-08-01

    Short-lasting psycho-physiological relaxation was investigated through an analysis of its bipolar electroencephalographic (EEG) characteristics. In 8 subjects, 6-channel EEG data of 3-minute duration were recorded during 88 relaxation sessions. Time course of spectral EEG features was examined. Alpha powers were decreasing during resting conditions of 3-minute sessions in lying position with eyes closed. This was followed by a decrease of total power in centro-parietal cortex regions and an increase of beta power in fronto-central areas. Represented by EEG coherences the interhemispheric communication between the parieto-occipital regions was enhanced within a frequency range of 2-10 Hz. In order to discern between higher and lower levels of relaxation distinguished according to self-rated satisfaction, EEG features were assessed and discriminating parameters were identified. Successful relaxation was determined mainly by the presence of decreased delta-1 power across the cortex. Potential applications for these findings include the clinical, pharmacological, and stress management fields.

  15. Difference and similarity of dielectric relaxation processes among polyols

    NASA Astrophysics Data System (ADS)

    Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke

    2003-09-01

    Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.

  16. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  17. NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.

  18. Dynamics of merging: post-merger mixing and relaxation of an Illustris galaxy

    NASA Astrophysics Data System (ADS)

    Young, Anthony M.; Williams, Liliya L. R.; Hjorth, Jens

    2018-02-01

    During the merger of two galaxies, the resulting system undergoes violent relaxation and seeks stable equilibrium. However, the details of this evolution are not fully understood. Using Illustris simulation, we probe two physically related processes, mixing and relaxation. Though the two are driven by the same dynamics—global time-varying potential for the energy, and torques caused by asymmetries for angular momentum—we measure them differently. We define mixing as the redistribution of energy and angular momentum between particles of the two merging galaxies. We assess the degree of mixing as the difference between the shapes of their energy distributions, N(E)s, and their angular momentum distributions, N(L2)s. We find that the difference is decreasing with time, indicating mixing. To measure relaxation, we compare N(E) of the newly merged system to N(E) of a theoretical prediction for relaxed collisionless systems, DARKexp, and witness the system becoming more relaxed, in the sense that N(E) approaches DARKexp N(E). Because the dynamics driving mixing and relaxation are the same, the timescale is similar for both. We measure two sequential timescales: a rapid, 1 Gyr phase after the initial merger, during which the difference in N(E) of the two merging halos decreases by ~ 80%, followed by a slow phase, when the difference decreases by ~ 50% over ~ 8.5 Gyrs. This is a direct measurement of the relaxation timescale. Our work also draws attention to the fact that when a galaxy has reached Jeans equilibrium it may not yet have reached a fully relaxed state given by DARKexp, in that it retains information about its past history. This manifests itself most strongly in stars being centrally concentrated. We argue that it is particularly difficult for stars, and other tightly bound particles, to mix because they have less time to be influenced by the fluctuating potential, even across multiple merger events.

  19. Dating violence, bullying, and sexual harassment: longitudinal profiles and transitions over time.

    PubMed

    Miller, Shari; Williams, Jason; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah

    2013-04-01

    Although there is growing recognition of the problem of dating violence, little is known about how it unfolds among young adolescents who are just beginning to date. This study examined classes (subgroups) and transitions between classes over three time points based on dating violence, bullying, and sexual harassment perpetration and victimization experienced by youth. The sample was ethnically diverse, consisting of 795 seventh-grade students from schools that were part of a multi-site, longitudinal evaluation of a dating violence initiative (50 % female; 27 % White, 32 % African American, 25 % Latino, 16 % other or multiple races). Results from latent transition analyses revealed five classes of students with distinct behavioral profiles: multi-problem (victimization and perpetration), bullying and sexual harassment (victimization and perpetration), bullying (victimization and perpetration) and sexual harassment (victimization only), bullying (victimization and perpetration), and a least problem group. The majority of classes were characterized by reports of both perpetration and victimization for at least one behavior. Girls were more likely to be in the less problematic classes. Class membership was fairly stable across the three time points. When students transitioned to a different class, the shift was most often from a more problematic to a less problematic class, particularly for girls. The findings support understanding dating violence within a dynamic, developmental process that recognizes related behaviors within and across individuals. Overall, the findings highlight the utility of person-oriented approaches to enhance our understanding of longitudinal profiles and transitions over time for dating violence and related behaviors.

  20. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

    PubMed

    Law, Justin J; Guven, Adem; Wilson, Lon J

    2014-01-01

    Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione). The longitudinal relaxivities of the prepared materials determined at 25°C in a 1.5 T field were 103 mm(-1) s(-1) for Gd(acac)3  · 2H2 O@US-tubes, 105 mm(-1) s(-1) for Gd(hfac)3  · 2H2 O@US-tubes and 26 mm(-1) s(-1) for Gd(thd)3 @US-tubes. Compared with the relaxivities obtained for the unloaded chelates (<10 mm(-1) s(-1) ) as well as accounting for the T1 reduction observed for the empty US-tubes, the boost in relaxivity for chelate-loaded US-tubes is attributed to confinement within the nanotube and depends on the number of coordinated water molecules. Copyright © 2014 John Wiley & Sons, Ltd.