Science.gov

Sample records for loop system driven

  1. Model-Driven Safety Analysis of Closed-Loop Medical Systems

    PubMed Central

    Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup

    2013-01-01

    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176

  2. Fluctuation loops in a noise-driven linear circuit model

    NASA Astrophysics Data System (ADS)

    Teitsworth, Stephen; Ghanta, Akhil; Neu, John

    Understanding the spatio-temporal structure of most probable fluctuation pathways to rarely occurring states is a central problem in the study of noise-driven, non-equilibrium dynamical systems. When the underlying system does not possess detailed balance, the optimal fluctuation pathway to a particular state and relaxation pathway from that state may combine to form a loop-like structure in the system phase space which we call a fluctuation loop. Here, we study fluctuation loops in a linear circuit model consisting of coupled RC elements, where each element is driven by its own noise source and, generally, the effective noise strengths of different elements are not equal. Using a stochastic Hamiltonian approach, we determine the optimal fluctuation pathways, and construct corresponding fluctuation loops. Analytical results agree closely with suitably averaged simulation results based on the associated Langevin equation. To better characterize fluctuation loops, we study the time-dependent area tensor that is swept out by individual stochastic trajectories in the system phase space. At long times, the area tensor scales linearly with time, with a coefficient that precisely vanishes when the system satisfies detailed balance.

  3. Molecular motor driven transportation on microtubule loops

    NASA Astrophysics Data System (ADS)

    Sikora, Aurelien; Federici, Filippo; Kim, Kyongwan; Nakazawa, Hikaru; Umetsu, Mitsuo; Hwang, Wonmuk; Teizer, Winfried

    2015-03-01

    Molecular motors such as kinesin are naturally fitted for the transport of cargo. By offering an unlimited path, microtubule loops allow the study of kinesin motility on distances exceeding that offered by a single microtubule. Moreover, the periodicity of the path allows the comparisons of trajectories between laps. Here we study the motility of quantum dot labeled kinesin on microtubule loops. Motility of kinesins over multiple laps is observed and their trajectories are extracted from kymograph using a custom algorithm. Distribution of velocities at given locations do not vary randomly but show a correlation with the presence of obstacles. Possible mechanisms responsible for the long range transport are discussed in the context of available theories.

  4. System Driven Workarounds

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline. Safety reports highlighting system driven workarounds for the aviation community highlight the human workaround for the complex aviation system.

  5. The phage-driven microbial loop in petroleum bioremediation.

    PubMed

    Rosenberg, Eugene; Bittan-Banin, Gili; Sharon, Gil; Shon, Avital; Hershko, Galit; Levy, Itzik; Ron, Eliora Z

    2010-07-01

    During the drilling process and transport of crude oil, water mixes with the petroleum. At oil terminals, the water settles to the bottom of storage tanks. This drainage water is contaminated with emulsified oil and water-soluble hydrocarbons and must be treated before it can be released into the environment. In this study, we tested the efficiency of a continuous flow, two-stage bioreactor for treating drainage water from an Israeli oil terminal. The bioreactor removed all of the ammonia, 93% of the sulfide and converted 90% of the total organic carbon (TOC) into carbon dioxide. SYBR Gold staining indicated that reactor 1 contained 1.7 × 10(8) bacteria and 3.7 × 10(8) phages per millilitre, and reactor 2 contained 1.3 × 10(8) bacteria and 1.7 × 10(9) phages per millilitre. The unexpectedly high mineralization of TOC and high concentration of phage in reactor 2 support the concept of a phage-driven microbial loop in the bioremediation of the drainage water. In general, application of this concept in bioremediation of contaminated water has the potential to increase the efficiency of processes. PMID:21255344

  6. Self-driven cooling loop for a large superconducting magnet in space

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Snyder, H. A.

    1992-01-01

    Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.

  7. Multilane driven diffusive systems

    NASA Astrophysics Data System (ADS)

    Curatolo, A. I.; Evans, M. R.; Kafri, Y.; Tailleur, J.

    2016-03-01

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network.

  8. Smart friction driven systems

    NASA Astrophysics Data System (ADS)

    Nitsche, Rainer; Gaul, Lothar

    2005-02-01

    Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure (Gaul and Nitsche 2001 Appl. Mech. Rev. 54 93-105). For improving the performance of systems, many studies have been carried out to predict, measure and/or enhance the energy dissipation of friction. To enhance the friction damping in joint connections a semi-active joint is investigated. A rotational joint connection is designed and manufactured such that the normal force in the friction interface can be influenced with a piezoelectric stack disc. With the piezoelectric device the normal force and thus the friction damping in the joint connection can be controlled. A control design method, namely semi-active control, is investigated. The recently developed LuGre friction model is used to describe the nonlinear transfer behavior of joints. This model is based on a bristle model and turns out to be highly suitable for systems assembled by such smart joints. Those systems can also be regarded as friction driven systems, since the energy flow is controlled by smart joints. The semi-active method is well suited for large space structures since the friction damping in joints turned out to be a major source of damping. To show the applicability of the proposed concept to large space structures a two-beam system representing a part of a large space structure is considered. Two flexible beams are connected with a semi-active joint connection. It can be shown that the damping of the system can be improved significantly by controlling the normal force in the semi-active joint connection. Experimental results validate the damping improvement due to the semi-active friction damping.

  9. A double-loop tracking system.

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.

    1972-01-01

    A nonlinear analysis which can be used to assess certain statistical characteristics of double-loop tracking systems is presented. It takes into account the mutual coupling effects of the loops in the system. Two approaches are taken to obtain steady-state probability density functions (pdf's) of the system phase errors. From these pdf's, important system performance statistics, e.g., the phase-error variances, can be calculated, thus illustrating the application and usefulness of the analysis. The analysis is applied to a satellite transponder as an example.

  10. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and

  11. Acceleration of SEPs in Flaring Loops and CME Driven shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe; Chen, Qingrong

    2014-06-01

    We consider two stage acceleration of the Solar Energetic Particles (SEPs). The first occurring via the stochastic acceleration mechanism at the flare site in the corona, which produces the so-called impulsive SEPs, with anomalous abundances, as well as nonthermal particles responsible for the observed radiation. The second is re-acceleration the flare accelerated particles at the CME driven shock associated with larger, longer duration events with relatively normal abundances. Turbulence plays a major role in both stages. We will show how stochastic acceleration can explain some of the salient features of the impulsive SEP observations; such as extreme enrichment of 3He (and heavy ions), and the observed broad distributions and ranges of the 3He and 4He fluences. We will then show that the above hybrid mechanism of first stochastic acceleration of ions in the reconnecting coronal magnetic structures and then their re-acceleration in the CME shock can produce the varied shapes of the 3He and 4He spectra observed in all events ranging from weak impulsive to strong gradual events.

  12. Non-inductive current driven by Alfvén waves in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1996-08-01

    It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.

  13. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  14. Pattern Formation in Driven Systems

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine

    Model colloidal particles of two types, driven in opposite directions, will in two dimensions segregate into lanes, a phenomenon studied extensively by Lowen and co-workers [Dzubiella et al. Phys. Rev. E 65, 021402 (2002)]. We have simulated mixtures of oppositely-driven particles using three numerical protocols. We find that laning results from enhanced diffusion, in the direction perpendicular to the drive, of particles surrounded by particles of the opposite type, consistent with the observation of Vissers et al. [Soft Matter 7, 6, 2352 (2011)]. By comparing protocols we find that enhanced diffusion follows from a simple geometrical constraint: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This constraint implies that the effective lateral diffusion constant grows linearly with drive speed and as the square root of the packing fraction, a prediction supported by our numerics. By invoking an analogy between hard particles with environment-dependent mobilities and mutually attractive particles we argue that there exists an equilibrium system whose pattern-forming properties are similar to those of the driven system. Katherine Klymko acknowledges support from the NSF Graduate Research Fellowship.

  15. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples

    NASA Astrophysics Data System (ADS)

    Picchiotti, Alessandra; Prokhorenko, Valentyn I.; Miller, R. J. Dwayne

    2015-09-01

    We describe the design and provide the results of the full characterization of a closed-loop pump-driven wire-guided flow jet system. The jet has excellent optical quality with a wide range of liquids spanning from alcohol to water based solutions, including phosphate buffers used for biological samples. The thickness of the jet film varies depending on the flow rate between 90 μm and 370 μm. The liquid film is very stable, and its thickness varies only by 0.76% under optimal conditions. Measured transmitted signal reveals a long term optical stability (hours) with a RMS of 0.8%, less than the overall noise of the spectroscopy setup used in our experiments. The closed loop nature of the overall jet design has been optimized for the study of precious biological samples, in limited volumes, to remove window contributions from spectroscopic observables. This feature is particularly important for femtosecond studies in the UV range.

  16. Photocell System Driven by Mechanoluminescence

    NASA Astrophysics Data System (ADS)

    Terasaki, Nao; Xu, Chao-Nan; Imai, Yusuke; Yamada, Hiroshi

    2007-04-01

    A mechanoluminescence driven photocell system consisting of a mechanoluminescent (ML) material and a photocell was prepared. The ML material developed in our laboratory is the world’s first material developed for a practical use in the elastic deformation region. In this system, the ML composite (an epoxy pellet including europium-doped strontium aluminate (SAO:E), one of the most efficient ML materials) was used as a light source, and a silicon solar cell was used as the photoelectric converter. With the application of compressive stress to the ML composite pellet in the system, the photocurrent corresponding to the mechanoluminescence was successfully observed.

  17. Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet

    SciTech Connect

    Ugai, M.

    2009-11-15

    It is well known that magnetic pulsations of long periods impulsively occur in accordance with the sudden onset of geomagnetic substorms and drastic enhancement of electrojets in the ionosphere. On the basis of the spontaneous fast reconnection model, the present paper examines the physical mechanism by which both magnetic pulsations and strong electrojets are impulsively driven by the fast (Alfvenic) reconnection jet. When a large-scale plasmoid [or traveling compression region (TCR)], directly caused by the fast reconnection jet, collides with the magnetic loop footpoint, strong electrojets are impulsively driven in a finite extent in the loop footpoint in accordance with the evolution of the current wedge and the generator current circuit. Simultaneously, magnetohydrodynamic (Alfven) waves, accompanied by the TCR, are reflected from the electrojet layer, leading to impulsive magnetic pulsations ahead of the loop footpoint because of the interaction (or resonance) between the reflected waves and the waves traveling toward the footpoint. The pulsations propagate outward in all directions from the source region of the wave reflection, and the pulsation periods are typically estimated to be of several tens of seconds.

  18. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  19. On Rank Driven Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  20. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a

  1. Monitoring Digital Closed-Loop Feedback Systems

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal

  2. Research on phase locked loop in optical memory servo system

    NASA Astrophysics Data System (ADS)

    Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming

    2005-09-01

    Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.

  3. Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers

    PubMed Central

    Cheong, Jit Kong; Zhang, Fuquan; Chua, Pei Jou; Bay, Boon Huat; Thorburn, Andrew; Virshup, David M.

    2015-01-01

    Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers. PMID:25798617

  4. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion

    PubMed Central

    Hetmanski, Joseph H. R.; Zindy, Egor; Schwartz, Jean-Marc; Caswell, Patrick T.

    2016-01-01

    Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis. PMID:27138333

  5. TRANSVERSE OSCILLATIONS OF A LONGITUDINALLY STRATIFIED CORONAL LOOP SYSTEM

    SciTech Connect

    Fathalian, N.; Safari, H. E-mail: safari@znu.ac.i

    2010-11-20

    Collective transverse coronal loop oscillations seem to be detected in observational studies. In this regard, Luna et al. modeled the collective kink-like normal modes of several cylindrical loop systems using the T-matrix theory. This paper investigates the effects of longitudinal density stratification along the loop axis on the collective kink-like modes of the system of coronal loops. The coronal loop system is modeled as cylinders of parallel flux tubes, with two ends of each loop at the dense photosphere. The flux tubes are considered as uniform magnetic fields, with stratified density along the loop axis which changes discontinuously at the lateral surface of each cylinder. The MHD equations are reduced to solve a set of two coupled dispersion relations for frequencies and wavenumbers, in the presence of a stratification parameter. The fundamental and first overtone frequencies and longitudinal wavenumbers are computed. The previous results are verified for an unstratified coronal loop system. Finally, we conclude that an increased longitudinal density stratification parameter will result in an increase of the frequencies. The frequency ratios, first overtones to fundamentals, are very sensitive functions of the density scale height parameter. Therefore, stratification should be included in dynamics of coronal loop systems. For unstratified coronal loop systems, these ratios are the same as monoloop ones.

  6. Cycle-averaged dynamics of a periodically driven, closed-loop circulation model

    NASA Technical Reports Server (NTRS)

    Heldt, T.; Chang, J. L.; Chen, J. J. S.; Verghese, G. C.; Mark, R. G.

    2005-01-01

    Time-varying elastance models have been used extensively in the past to simulate the pulsatile nature of cardiovascular waveforms. Frequently, however, one is interested in dynamics that occur over longer time scales, in which case a detailed simulation of each cardiac contraction becomes computationally burdensome. In this paper, we apply circuit-averaging techniques to a periodically driven, closed-loop, three-compartment recirculation model. The resultant cycle-averaged model is linear and time invariant, and greatly reduces the computational burden. It is also amenable to systematic order reduction methods that lead to further efficiencies. Despite its simplicity, the averaged model captures the dynamics relevant to the representation of a range of cardiovascular reflex mechanisms. c2004 Elsevier Ltd. All rights reserved.

  7. Semantic-driven Parallelization of Loops Operating on User-defined Containers

    SciTech Connect

    Quinlan, D; Schordan, M; Yi, Q; de Supinski, B R

    2003-07-09

    The authors describe ROSE, a C++ infrastructure for source-to-source translation, that provides an interface for programmers to easily write their own translators for optimizing user-defined high-level abstractions. Utilizing the semantics of these high-level abstractions, they demonstrate the automatic parallelization of loops that iterate over user-defined containers that have interfaces similar to the lists, vectors and sets in the Standard Template Library (STL). The parallelization is realized in two phases. First, they insert OpenMP directives into a serial program, driven by the recognition of the high-level abstractions, containers, that are thread-safe. Then, they translate the OpenMP directives into library routines that explicitly create and manage parallelism. By providing an interface for the programmer to classify the semantics of their abstractions, they are able to automatically parallelize operations on containers, such as linked-lists, without resorting to complex loop dependence analysis techniques. The approach is consistent with general goals within telescoping languages.

  8. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples.

    PubMed

    Picchiotti, Alessandra; Prokhorenko, Valentyn I; Miller, R J Dwayne

    2015-09-01

    We describe the design and provide the results of the full characterization of a closed-loop pump-driven wire-guided flow jet system. The jet has excellent optical quality with a wide range of liquids spanning from alcohol to water based solutions, including phosphate buffers used for biological samples. The thickness of the jet film varies depending on the flow rate between 90 μm and 370 μm. The liquid film is very stable, and its thickness varies only by 0.76% under optimal conditions. Measured transmitted signal reveals a long term optical stability (hours) with a RMS of 0.8%, less than the overall noise of the spectroscopy setup used in our experiments. The closed loop nature of the overall jet design has been optimized for the study of precious biological samples, in limited volumes, to remove window contributions from spectroscopic observables. This feature is particularly important for femtosecond studies in the UV range. PMID:26429427

  9. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  10. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing. PMID:26465432

  11. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  12. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  13. Robust tuning of two-loop automatic control systems

    NASA Astrophysics Data System (ADS)

    Smirnov, N. I.; Sabanin, V. R.; Repin, A. I.

    2007-07-01

    We propose a solution to the problem of finding trade-off robust tuning parameters for two-loop automatic control systems by means of a numerical simulation method using the authors’ version of the Optim-MGA evolutionary optimization algorithm. Results from calculating and analyzing a two-loop superheated steam temperature control system employing a PI controller and a differentiator are presented.

  14. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  15. Topological characterization of periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya; Berg, Erez; Rudner, Mark; Demler, Eugene

    2010-12-01

    Topological properties of physical systems can lead to robust behaviors that are insensitive to microscopic details. Such topologically robust phenomena are not limited to static systems but can also appear in driven quantum systems. In this paper, we show that the Floquet operators of periodically driven systems can be divided into topologically distinct (homotopy) classes and give a simple physical interpretation of this classification in terms of the spectra of Floquet operators. Using this picture, we provide an intuitive understanding of the well-known phenomenon of quantized adiabatic pumping. Systems whose Floquet operators belong to the trivial class simulate the dynamics generated by time-independent Hamiltonians, which can be topologically classified according to the schemes developed for static systems. We demonstrate these principles through an example of a periodically driven two-dimensional hexagonal lattice tight-binding model which exhibits several topological phases. Remarkably, one of these phases supports chiral edge modes even though the bulk is topologically trivial.

  16. Triple loop heat exchanger for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  17. Detection of a static eccentricity fault in a closed loop driven induction motor by using the angular domain order tracking analysis method

    NASA Astrophysics Data System (ADS)

    Akar, Mehmet

    2013-01-01

    In this study, a new method was presented for the detection of a static eccentricity fault in a closed loop operating induction motor driven by inverter. Contrary to the motors supplied by the line, if the speed and load, and therefore the amplitude and frequency, of the current constantly change then this also causes a continuous change in the location of fault harmonics in the frequency spectrum. Angular Domain Order Tracking analysis (AD-OT) is one of the most frequently used fault diagnosis methods in the monitoring of rotating machines and the analysis of dynamic vibration signals. In the presented experimental study, motor phase current and rotor speed were monitored at various speeds and load levels with a healthy and static eccentricity fault in the closed loop driven induction motor with vector control. The AD-OT method was applied to the motor current and the results were compared with the traditional FFT and Fourier Transform based Order Tracking (FT-OT) methods. The experimental results demonstrate that AD-OT method is more efficient than the FFT and FT-OT methods for fault diagnosis, especially while the motor is operating run-up and run-down. Also the AD-OT does not incur any additional cost for the user because in inverter driven systems, current and speed sensor coexist in the system. The main innovative parts of this study are that AD-OT method was implemented on the motor current signal for the first time.

  18. Klystron 'efficiency loop' for the ALS storage ring RF system

    SciTech Connect

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  19. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  20. Chaos in driven Alfven systems

    NASA Technical Reports Server (NTRS)

    Hada, T.; Kennel, C. F.; Buti, B.; Mjolhus, E.

    1990-01-01

    The chaos in a one-dimensional system, which would be nonlinear stationary Alfven waves in the absence of an external driver, is characterized. The evolution equations are numerically integrated for the transverse wave magnetic field amplitude and phase using the derivative nonlinear Schroedinger equation (DNLS), including resistive wave damping and a long-wavelength monochromatic, circularly polarized driver. A Poincare map analysis shows that, for the nondissipative (Hamiltonian) case, the solutions near the phase space (soliton) separatrices of this system become chaotic as the driver amplitude increases, and 'strong' chaos appears when the driver amplitude is large. The dissipative system exhibits a wealth of dynamical behavior, including quasiperiodic orbits, period-doubling bifurcations leading to chaos, sudden transitions to chaos, and several types of strange attractors.

  1. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  2. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  3. Antiproton Driven Fusion Propulsion System

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Kammash, Terry; Gallimore, Alec

    A fusion propulsion system in which the plasma is heated to thermonuclear temperature by antiproton annihilation reactions is proposed. It makes use of an open-ended magnetic confinement device known as the gasdynamic mirror (GDM) in which the plasma - such as deuteriumtritium (DT) - is confined long enough to be heated before being ejected through one mirror (serving as a magnetic nozzle) to produce thrust. The heating process is based on recent theoretical and experimental physics research which revealed that "at rest" annihilation of antiprotons in uranium-238 targets causes fission at nearly 100% efficiency. Thus, heating in the proposed system can be achieved by inserting U238 targets (in the form of foils or atomic beams) in the proper position and then striking them with antiprotons released from a trap attached to one end of the asymmetric GDM device. The resulting fission fragments and annihilation products, namely pions and muons, are highly ionizing and energetic and could readily heat the background plasma to very high temperatures leading to its ignition. We have examined in detail the various phenomena that underlie the operation of such a propulsion system, ranging from the propagation of antiprotons in plasma, to the confinement of the various species by the mirror-type magnetic field, to the role of ambipolar potential in accelerating the plasma, as well as other relevant processes, and have concluded that the proposed system is capable of producing very impressive propulsive capabilities such as specific impulse and thrust. When applied to a round trip mission to Mars, as an example, we find that it can be accomplished in about 59 days and requires less than 4 micrograms of antiprotons. Although roughly nanograms of antiprotons are currently produced annually, it is expected that hundreds of milligrams or possibly several grams will be produced annually in the next decade or so when Mars missions might be contemplated.

  4. Study of Fluid Cooling Loop System in Chinese Manned Spacecraft

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong

    2002-01-01

    change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The

  5. The instability and non-existence of multi-stranded loops, when driven by transverse waves

    NASA Astrophysics Data System (ADS)

    Van Doorsselaere, Tom; Magyar, Norbert

    2016-05-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands, in order to explain their thermal behaviour and appearance. We perform 3D ideal MHD simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted to synthetic images, corresponding to the AIA 171Å and 193Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin-Helmholtz instability acting as the main mechanism. The final product of our simulation is mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises a strong doubt on the usability and applicability of coronal loop models consisting of independent strands.

  6. The Instability and Non-existence of Multi-stranded Loops When Driven by Transverse Waves

    NASA Astrophysics Data System (ADS)

    Magyar, N.; Van Doorsselaere, T.

    2016-06-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.

  7. Open loop liquid crystal adaptive optics systems: progresses and results

    NASA Astrophysics Data System (ADS)

    Cao, Zhao-liang; Mu, Quan-quan; Xu, Huan-yu; Zhang, Pei-guang; Yao, Li-shuang; Xuan, Li

    2015-10-01

    Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. In this paper, a polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration was suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

  8. Observational Signatures of Coronal Loop Heating and Cooling Driven by Footpoint Shuffling

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Taylor, B. D.; Ugarte-Urra, I.; Warren, H. P.; Rappazzo, A. F.; Velli, M.

    2016-01-01

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  9. ATOPS B-737 inner-loop control system linear model construction and verification

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    Nonlinear models and block diagrams of an inner-loop control system for the ATOPS B-737 Research Aircraft are presented. Continuous time linear model representations of the nonlinear inner-loop control systems are derived. Closed-loop aircraft simulations comparing nonlinear and linear dynamic responses to step inputs are used to verify the inner-loop control system models.

  10. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  11. Odd-frequency Superconductivity in Driven Systems

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes in terms of parity under transformations that invert spin, space, time, and orbital degrees of freedom holds for driven systems even in the absence of translation invariance. We then discuss the conditions under which pair amplitudes which are odd in frequency can emerge in driven systems. Considering a model Hamiltonian for a superconductor coupled to an external driving potential, we investigate the influence of the drive on the anomalous Green's function, density of states, and spectral function. We find that the anomalous Green's function develops odd in frequency component in the presence of an external drive. Furthermore we investigate how these odd-frequency terms are related to satellite features in the density of states and spectral function. Supported by US DOE BES E 304.

  12. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2003-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  13. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2002-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  14. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  15. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Power-driven steering systems. 169.623 Section 169.623... Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering... system must automatically resume operation after an electric power outage. (b) Control of...

  16. Closed-Loop Life Support Systems

    NASA Technical Reports Server (NTRS)

    Fisher, John W.

    2003-01-01

    Contents include the following: 1. Advanced life support requirements document-high level: (a) high level requirements and standards, (b) advanced life support requirements documents-air, food, water. 2. Example technologies that satisfy requrements: air system-carbon dioxide removal. 3. Air-sabatter. 4. International Space Station water treatment subsystem.5. Direct osmotic concentrator. 6. Mass, volume and power estimates.

  17. Closed-loop autonomous docking system

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W. (Inventor); Howard, Richard T. (Inventor)

    1992-01-01

    An autonomous docking system is provided which produces commands for the steering and propulsion system of a chase vehicle used in the docking of that chase vehicle with a target vehicle. The docking system comprises a passive optical target affixed to the target vehicle and comprising three reflective areas including a central area mounted on a short post, and tracking sensor and process controller apparatus carried by the chase vehicle. The latter apparatus comprises a laser diode array for illuminating the target so as to cause light to be reflected from the reflective areas of the target; a sensor for detecting the light reflected from the target and for producing an electrical output signal in accordance with an image of the reflected light; a signal processor for processing the electrical output signal in accordance with an image of the reflected light; a signal processor for processing the electrical output signal and for producing, based thereon, output signals relating to the relative range, roll, pitch, yaw, azimuth, and elevation of the chase and target vehicles; and a docking process controller, responsive to the output signals produced by the signal processor, for producing command signals for controlling the steering and propulsion system of the chase vehicle.

  18. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  19. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  20. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven...

  1. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven...

  2. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven...

  3. T-111 Rankine system corrosion test loop, volume 1

    NASA Technical Reports Server (NTRS)

    Harrison, R. W.; Hoffman, E. E.; Smith, J. P.

    1975-01-01

    Results are given of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230 C maximum transferring heat to a boiling potassium circuit with a 1170 C superheated vapor temperature. The results demonstrate the suitability of the selected refractory alloys to perform from a chemical compatibility standpoint.

  4. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  5. Thermalization of field driven quantum systems

    PubMed Central

    Fotso, H.; Mikelsons, K.; Freericks, J. K.

    2014-01-01

    There is much interest in how quantum systems thermalize after a sudden change, because unitary evolution should preclude thermalization. The eigenstate thermalization hypothesis resolves this because all observables for quantum states in a small energy window have essentially the same value; it is violated for integrable systems due to the infinite number of conserved quantities. Here, we show that when a system is driven by a DC electric field there are five generic behaviors: (i) monotonic or (ii) oscillatory approach to an infinite-temperature steady state; (iii) monotonic or (iv) oscillatory approach to a nonthermal steady state; or (v) evolution to an oscillatory state. Examining the Hubbard model (which thermalizes under a quench) and the Falicov-Kimball model (which does not), we find both exhibit scenarios (i–iv), while only Hubbard shows scenario (v). This shows richer behavior than in interaction quenches and integrability in the absence of a field plays no role. PMID:24736404

  6. Loop gain of a spacecraft switched shunt power system

    NASA Astrophysics Data System (ADS)

    Wu, Keng

    1994-10-01

    A novel approach of deriving the loop gain of a spacecraft switched shunt power system is presented. The system hardware elements contain both the analog and the digital components. Transfer functions of the analog circuits are easily identified employing the conventional approach. Gain function of the digital block is however conceived following a quite unconventional route. The digital gain is shown to include the effects of comparator thresholds, digital clock, shift register, sinusoidal amplitude, and ac frequency. The dependence of the digital gain on voltage thresholds, clocking period, and the integrational property of threshold comparator is expected. The dependence on sinusoidal amplitude contradicts the traditional concept of small signal analysis. The overall loop gain in the analytic form yields a computational result that matches the actual measurement very well. This fact proves, to some extent, the validity of the digital gain function and the basis of its derivation.

  7. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  8. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  9. Probing temperature-driven spin reorientation transition of GdFeCo film by Kerr loops and ferromagnetic resonance

    SciTech Connect

    He, Wei Liu, Hao-Liang; Cai, Jian-Wang; Cheng, Zhao-Hua; Wu, Hong-Ye

    2015-01-26

    The magnetic anisotropy is of both scientific and technological interest for magneto-optical material GdFeCo film. We characterize the magnetic anisotropy of a 20 nm GdFeCo film from 265 K to 320 K via Kerr loops and ferromagnetic resonance. With increasing temperature, both of the first-order uniaxial magnetic anisotropy and shape anisotropy increase. However, the competition between them causes a temperature-driven spin reorientation transition (SRT) and the effective perpendicular magnetic anisotropy decrease from 2.22 × 10{sup 4 }ergs/cm{sup 3} (288 K) to −1.56 × 10{sup 4 }ergs/cm{sup 3} (317 K). The positive second-order uniaxial magnetic anisotropy determines an easy-cone state as the mediated state during SRT.

  10. Mission Success Driven Space System Sparing Analysis

    NASA Technical Reports Server (NTRS)

    Knezevic, J.

    1995-01-01

    Among the maintenance resources, the spare parts are the most difficult to predict. Items in the space systems are very different from the point of view of reliability, cost, weight, volume, etc. The different combinations of spares make different contribution to the: mission success, spare investment, volume occupied and weight. Hence, the selection of spares for a mission planned must take into account all of these features. This paper presents the generic mission success driven sparing model developed, for the complex space systems. The mathematical analysis used in the model enables the user to select the most suitable selection of the spare package for the mission planned. The illustrative examples presented clearly demonstrate the applicability and usefulness of the model introduced.

  11. A large coronal loop in the Algol system.

    PubMed

    Peterson, W M; Mutel, R L; Güdel, M; Goss, W M

    2010-01-14

    The close binary Algol system contains a radio-bright KIV subgiant star in a very close (0.062 astronomical units) and rapid (2.86 day) orbit with a main sequence B8 star. Because the rotation periods of the two stars are tidally locked to the orbital period, the rapid rotation drives a magnetic dynamo. A large body of evidence points to the existence of an extended, complex coronal magnetosphere originating at the cooler K subgiant. The detailed morphology of the subgiant's corona and its possible interaction with its companion are unknown, though theory predicts that the coronal plasma should be confined in a magnetic loop structure, as seen on the Sun. Here we report multi-epoch radio imaging of the Algol system, in which we see a large, persistent coronal loop approximately one subgiant diameter in height, whose base is straddling the subgiant and whose apex is oriented towards the B8 star. This suggests that a persistent asymmetric magnetic field structure is aligned between the two stars. The loop is larger than anticipated theoretically, but the size may be the result of a magnetic interaction between the two stars. PMID:20075916

  12. The Temperature Structure of Some Typical Flare Loop Systems

    NASA Astrophysics Data System (ADS)

    Gou, T.; Liu, R.; Wang, Y.

    2014-12-01

    Solar flares and coronal mass ejections (CMEs) are the main drivers of disastrous space weather. To understand the physical processes behind solar eruptions is the important base and prerequisite for reliable space weather prediction. Studying thermodynamic properties of flaring structures will help understand the flare energy-release process. Here we show some flares which occur at the solar limb or near the limb and have typical cusp-like flare loops. With high-resolution data provided by six EUV channels of the AIA instrument on board SDO, we utilize the differential emission measure (DEM) method to study the flare loop system, focusing on the temperature of the cusp structure, and the results are compared with previous studies.

  13. Environmental impacts of open loop geothermal system on groundwater

    NASA Astrophysics Data System (ADS)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  14. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  15. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  16. On the periodic coordination of linear stochastic systems. [open-loop and closed-loop feedback optimal control

    NASA Technical Reports Server (NTRS)

    Chong, C.-Y.; Athans, M.

    1975-01-01

    The decentralized stochastic control of a linear dynamic system consisting of several subsystems is considered. A two-level approach is used by the introduction of a coordinator who collects measurements from the local controllers periodically and in return transmits coordinating parameters. Two types of coordination are considered: open-loop feedback and closed loop. The resulting control laws are found to be intuitively attractive.

  17. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  18. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  19. Computational dynamics of acoustically driven microsphere systems

    NASA Astrophysics Data System (ADS)

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B.

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.

  20. Computational dynamics of acoustically driven microsphere systems.

    PubMed

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry. PMID:26871188

  1. Creation of particles in a cyclic universe driven by loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Tavakoli, Yaser; Fabris, Júlio C.

    2015-05-01

    We consider an isotropic and homogeneous universe in loop quantum cosmology (LQC). We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big bounce and recollapse in the herein model contribute to a cyclic scenario for the universe. We then study the quantum theory of a massive, nonminimally coupled scalar field undergoing cosmological evolution from primordial bounce towards the late time bounce. In particular, we solve the Klein-Gordon equation for the scalar field in the primordial and late time regions, in order to investigate particle production phenomena at late time. By computing the energy density of created particles at late time, we show that this density is negligible in comparison to the quantum background density at Planck era. This indicates that the effects of quantum particle production do not influence the future bounce.

  2. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation.

    PubMed

    Hsieh, Chen-Lin; Fei, Teng; Chen, Yiwen; Li, Tiantian; Gao, Yanfei; Wang, Xiaodong; Sun, Tong; Sweeney, Christopher J; Lee, Gwo-Shu Mary; Chen, Shaoyong; Balk, Steven P; Liu, Xiaole Shirley; Brown, Myles; Kantoff, Philip W

    2014-05-20

    The androgen receptor (AR) is a key factor that regulates the behavior and fate of prostate cancer cells. The AR-regulated network is activated when AR binds enhancer elements and modulates specific enhancer-promoter looping. Kallikrein-related peptidase 3 (KLK3), which codes for prostate-specific antigen (PSA), is a well-known AR-regulated gene and its upstream enhancers produce bidirectional enhancer RNAs (eRNAs), termed KLK3e. Here, we demonstrate that KLK3e facilitates the spatial interaction of the KLK3 enhancer and the KLK2 promoter and enhances long-distance KLK2 transcriptional activation. KLK3e carries the core enhancer element derived from the androgen response element III (ARE III), which is required for the interaction of AR and Mediator 1 (Med1). Furthermore, we show that KLK3e processes RNA-dependent enhancer activity depending on the integrity of core enhancer elements. The transcription of KLK3e was detectable and its expression is significantly correlated with KLK3 (R(2) = 0.6213, P < 5 × 10(-11)) and KLK2 (R(2) = 0.5893, P < 5 × 10(-10)) in human prostate tissues. Interestingly, RNAi silencing of KLK3e resulted in a modest negative effect on prostate cancer cell proliferation. Accordingly, we report that an androgen-induced eRNA scaffolds the AR-associated protein complex that modulates chromosomal architecture and selectively enhances AR-dependent gene expression. PMID:24778216

  3. Comparing the performance of open loop centroiding techniques in the Raven MOAO system

    NASA Astrophysics Data System (ADS)

    Andersen, David R.; Bradley, Colin; Gamroth, Darryl; Kerley, Dan; Lardière, Olivier; Véran, Jean-Pierre

    2014-08-01

    Raven is a multi-object adaptive optics (MOAO) demonstrator that will be mounted on the NIR Nasmyth platform of the Subaru telescope in May, 2014. Raven can use three open-loop NGS WFSs and an on-axis LGS WFS to control DMs in two separate science pick-off arms. Centroiding in open loop AO systems like Raven is more difficult than in closed loop AO systems because the Shack-Hartmann spots will not be driven to the same spot on a detector. Rather the spots can fall on any combination of pixels because the WFSs need to have sufficient dynamic range to measure the full turbulence. In this paper, we compare correlation and thresholded center of gravity (tCOG) centroiding methods in simulation, with Raven using its calibration unit, and on-sky. Each method has its own advantages. Correlation centroiding is superior to tCOG centroiding for faint NGSs and for extended sources (Raven open loop WFSs do not contain ADCs so spots will become elongated). We expect that correlation centroiding will push the limiting magnitude of Raven NGSs fainter by roughly one magnitude. Correlation centroiding is computationally more intensive, however, and actually will limit Raven's sampling rate for shorter integrations. Therefore, for bright stars with sufficiently high signal-to-noise, Raven can be run significantly faster and with superior performance using the tCOG method. Here we quantify both the performance and timing differences of these two centroiding methods in simulation, in the lab and on sky using Raven.

  4. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  5. Transcription-Driven Twin Supercoiling of a DNA Loop: A Brownian Dynamics Study

    SciTech Connect

    Mielke, S P; Fink, W H; Krishnan, K; Gronbech-Jensen, N; Benham, C J

    2004-06-30

    The torque generated by RNA polymerase as it tracks along double-stranded DNA can potentially induce long-range structural deformations integral to mechanisms of biological significance in both prokaryotes and eukaryotes. In this report, we introduce a dynamic computer model for investigating this phenomenon. Duplex DNA is represented as a chain of hydrodynamic bends interacting through elastic potentials. The chain, linear when relaxed, is looped to form two open but topologically constrained subdomains. This permits the dynamic introduction of torsional stress via a centrally applied torque. We simulate by Brownian dynamics the 100 {micro}s response of a 477-basepair B-DNA template to the localized torque generated by the prokaryotic transcription ensemble. Following a sharp rise at early times, the distributed twist assumes a nearly constant value in both subdomains, and a succession of supercoiling deformations occurs as superhelical stress is increasingly partitioned to writhe. The magnitude of writhe surpasses that of twist before also leveling off when the structure reaches mechanical equilibrium with the torsional load. Superhelicity is simultaneously right-handed in one subdomain and left-handed in the other. The properties of the chain at the onset of writhing agree well with predictions from theory, and the generated stress is ample for driving secondary structural transitions in physiological DNA. These results suggest that the torsional stress generated by transcription can significantly deform the DNA template over short times. This highlights the potential of transcription and other tracking processes to play a central role in gene regulation, and prompts further investigation of dynamically-generated supercoiling.

  6. Observing the reconnection region in a transequatorial loop system

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Wang, Tong-Jiang; Lee, Jeongwoo; Stenborg, Guillermo; Liu, Chang; Park, Sung-Hong; Wang, Hai-Min

    2011-10-01

    A vertical current sheet is a crucial element in many flare/coronal mass ejection (CME) models. For the first time, Liu et al. reported a vertical current sheet directly imaged during the flare rising phase with the EUV Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). As a follow-up study, here we present the comprehensive analysis and detailed physical interpretation of the observation. The current sheet formed due to the gradual rise of a transequatorial loop system. As the loop legs approached each other, plasma flew at ~ 6 km s-1 into a local area where a cusp-shaped flare loop subsequently formed and the current sheet was seen as a bright, collimated structure of global length (>= 0.25 Rodot) and macroscopic width ((5-10)×103km), extending from 50 Mm above the flaring loop to the border of the EIT field of view (FOV). The reconnection rate in terms of the Alfvén Mach number is estimated to be only 0.005-0.009, albeit a halo CME was accelerated from ~ 400 km s-1 to ~ 1300 km s-1 within the coronagraph FOV. Drifting pulsating structures at metric frequencies were recorded during the impulsive phase, implying tearing of the current sheet in the high corona. A radio Type III burst occurred when the current sheet was clearly seen in EUV, indicative of accelerated electrons beaming upward from the upper tip of the current sheet. A cusp-shaped dimming region was observed to be located above the post-flare arcade during the decay phase in EIT; both the arcade and the dimming expanded with time. With the Coronal Diagnostic Spectrometer (CDS) aboard SOHO, a clear signature of chromospheric evaporation was seen during the decay phase, i.e., the cusp-shaped dimming region was associated with plasma upflows detected with EUV hot emission lines, while the post-flare loop was associated with downflows detected with cold lines. This event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  7. Closed-Loop Control for Sonic Fatigue Testing Systems

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Bossaert, Guido

    2001-01-01

    This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.

  8. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  9. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  10. Uncertainty assessment for accelerator-driven systems.

    SciTech Connect

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-06-10

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems.

  11. MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION

    SciTech Connect

    Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

    2009-01-01

    Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

  12. A state-space dynamical representation for multibody mechanical systems. II - Systems with closed loops

    NASA Astrophysics Data System (ADS)

    Schwertassek, R.; Roberson, R. E.

    1984-05-01

    The dynamical equations of motion of a multibody system are reduced to state-space equations in the computer-oriented multibody formalism of Roberson and Wittenberg (1966), extending the analysis of Schwertassek and Roberson (1983) to systems with closed loops. The multibody spacecraft model of Kane and Levinson (1980) and Schiehlen and Kreuzer (1977) is analyzed as an example. The closed-loop equations permit the use of the MULTIBODY computer code (Schwertassek, 1978) to treat such more general systems.

  13. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the

  14. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  15. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  16. Phase-locked loops. [in analog and digital circuits communication system

    NASA Technical Reports Server (NTRS)

    Gupta, S. C.

    1975-01-01

    An attempt to systematically outline the work done in the area of phase-locked loops which are now used in modern communication system design is presented. The analog phase-locked loops are well documented in several books but discrete, analog-digital, and digital phase-locked loop work is scattered. Apart from discussing the various analysis, design, and application aspects of phase-locked loops, a number of references are given in the bibliography.

  17. Closed Loop Software Control of the MIDEX Power System

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Hernandez-Pellerano, Amri; Wismer, Margaret

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  18. System driven technology selection for future European launch systems

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  19. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    SciTech Connect

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-06-15

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory.

  20. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    NASA Astrophysics Data System (ADS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-06-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory.

  1. Feedback loops from the Hubble Space Telescope data processing system

    NASA Astrophysics Data System (ADS)

    Fraquelli, Dorothy A.; Arquilla, Richard; Ellis, Tracy; Hamilton, Forrest C.; Holm, Albert; Kochte, Mark

    2002-12-01

    This paper presents an overview of the history and technology by which tools placed in the Hubble Space Telescope (HST) data processing pipeline were used to feedback information on observation execution to the scheduling system and observers. Because the HST is in a relatively low orbit, which imposes a number of constraints upon its observations, it operates in a carefully planned, fully automated mode. To substitute for direct observer involvement available at most ground-based observatories and to provide rapid feedback on failures that might affect future visits, the Space Telescope Science Institute (STScI) gradually evolved a system for screening science and engineering products during pipeline processing. The highly flexible HST data processing system (OPUS) allows tools to be introduced to use the content of FITS keywords to alert production staff to potential telescope and instrument performance failures. Staff members review the flagged data and, if appropriate, notify the observer and the scheduling staff so that they can resolve the problems and possibly repeat the failed observations. This kind of feedback loop represents a case study for other automated data collection systems where rapid response to certain quantifiable events in the data is required. Observatory operations staff can install processes to look for these events either in the production pipeline or in an associated pipeline into which the appropriate data are piped. That process can then be used to notify scientists to evaluate the data and decide upon a response or to automatically initiate a response.

  2. Importance of Hydrogeological Conditions on Open-loop Geothermal System

    NASA Astrophysics Data System (ADS)

    Park, D.; Bae, G.; Kim, S.; Lee, K.

    2013-12-01

    The open-loop geothermal system has been known as an eco-friendly, energy-saving, and cost-efficient alternative for the cooling and heating of buildings with directly using the relatively stable temperature of groundwater. Thus, hydrogeological properties of aquifer, such as hydraulic conductivity and storage, must be important in the system application. The study site is located near Han-river, Korea, and because of the well-developed alluvium it might be a typical site appropriate to this system requiring an amount of groundwater. In this study, the first objective of numerical experiments was to find the best distributions of pumping and injection wells suitable to the hydrogeological conditions of the site for the efficient and sustainable system operation. The aquifer has a gravel layer at 15m depth below the ground surface and the river and the agricultural field, which may be a potential contaminant source, are located at the west and east sides, respectively. Under the general conditions that the regional groundwater flows from the east to the river, the locally reversed well distribution, locating the pumping well at upgradient and the injection well at downgradient of the regional flow, was most sustainable. The gravel layer with high hydraulic conductivity caused a little drawdown despite of an amount of pumping and allowed to stably reinject the used groundwater in all the cases, but it provided a passage transferring the injected heat to the pumping well quickly, particularly in the cases locating the injection well at the upgradient. This thermal interference was more severe in the cases of the short distance between the wells. The high conductive layer is also a reason that the seasonal role conversion of wells for the aquifer thermal energy storage was ineffective in this site. Furthermore, the well distribution vertical to the regional groundwater flow was stable, but not best, and, thus, it may be a good choice in the conditions that the regional

  3. Towards the use of Structural Loop Analysis to Study System Behaviour of Socio-Ecological Systems.

    NASA Astrophysics Data System (ADS)

    Abram, Joseph; Dyke, James

    2016-04-01

    Maintaining socio-ecological systems in desirable states is key to developing a growing economy, alleviating poverty and achieving a sustainable future. While the driving forces of an environmental system are often well known, the dynamics impacting these drivers can be hidden within a tangled structure of causal chains and feedback loops. A lack of understanding of a system's dynamic structure and its influence on a system's behaviour can cause unforeseen side-effects during model scenario testing and policy implementation. Structural Loop analysis of socio-ecological system models identifies dominant feedback structures during times of behavioural shift, allowing the user to monitor key influential drivers during model simulation. This work carries out Loop Eigenvalue Elasticity Analysis (LEEA) on three system dynamic models, exploring tipping points in lake systems undergoing eutrophication. The purpose is to explore the potential benefits and limitations of the technique in the field of socio-ecology. The LEEA technique shows promise for socio-ecological systems which undergo regime shifts or express oscillatory trends, but shows limited usefulness with large models. The results of this work highlight changes in feedback loop dominance, years prior to eutrophic tipping events in lake systems. LEEA could be used as an early warning signal to impending system changes, complementary to other known early warning signals. This approach could improve our understanding during critical times of a system's behaviour, changing how we approach model analysis and the way scenario testing and policy implementation are addressed in socio-ecological system models.

  4. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  5. Clinical requirements for closed-loop control systems.

    PubMed

    Clarke, William L; Renard, Eric

    2012-03-01

    Closed-loop (CL) therapy systems should be safe, efficacious, and easily manageable for type 1 diabetes mellitus patient use. For the first two clinical requirements, noninferiority and superiority criteria must be determined based on current conventional and intensive therapy outcomes. Current frequencies of hypoglycemia and diabetic ketoacidosis are reviewed and safety expectations for CL therapy systems are proposed. Glycosylated hemoglobin levels lower than current American Diabetes Association recommendations for different age groups are proposed as superiority criteria. Measures of glycemic variability are described and the recording of blood glucose levels as percentages within, above, and below a target range are suggested as reasonable alternatives to sophisticated statistical analyses. It is also suggested that Diabetes Quality of Life and Fear of Hypoglycemia surveys should be used to track psychobehavioral outcomes. Manageability requirements for safe and effective clinical management of CL systems are worth being underscored. The weakest part of the infusion system remains the catheter, which is exposed to variable and under-delivery incidents. Detection methods are needed to warn both the system and the patient about altered insulin delivery, including internal pressure and flow alarms. Glucose monitor sensor accuracy is another requirement; it includes the definition of conditions that lead to capillary glucose measurement, eventually followed by sensor recalibration or replacement. The crucial clinical requirement will be a thorough definition of the situations when the patient needs to move from CL to manual management of insulin delivery, or inversely can switch back to CL after a requested interruption. Instructions about these actions will constitute a major part of the education process of the patients before using CL systems and contribute to the manageability of these systems. PMID:22538159

  6. Closed loop high precision position control system with optical scale

    NASA Astrophysics Data System (ADS)

    Ge, Cheng-liang; Liao, Yuan; He, Zhong-wu; Luo, Zhong-xiang; Huang, Zhi-wei; Wan, Min; Hu, Xiao-yang; Fan, Guo-bin; Liang, Zheng

    2008-03-01

    With the developments of science of art, there are more and more demands on the high resolution control of position of object to be controlled, such as lathe, product line, elements in the optical resonant cavity, telescope, and so on. As one device with high resolution, the optical scale has more and more utility within the industrial and civil applications. With one optical scale and small DC servo motor, one closed loop high resolution position control system is constructed. This apparatus is used to control the position of the elements of optical system. The optical scale is attached on the object or reference guide way. The object position is sampled by a readhead of non-contact optical encoder. Control system processes the position information and control the position of object through the motion control of servo DC motor. The DC motor is controlled by one controller which is connected to an industrial computer. And the micro frictionless slide table does support the smooth motion of object to be controlled. The control algorithm of system is PID (Proportional-Integral-Differential) methods. The PID control methods have well ROBUST. The needed data to control are position, velocity and acceleration of the object. These three parameters correspond to the PID characters respectively. After the accomplishments of hardware, GUI (Graphical user interface), that is, the software of control system is also programmed. The whole system is assembled by specialized worker. Through calibration experiments, the coefficients of PID are obtained respectively. And then the precision of position control of the system is about 0.1μm.

  7. A miniature closed-loop gas chromatography system.

    PubMed

    Hsieh, Hao-Chieh; Kim, Hanseup

    2016-03-21

    This paper reports the characterization of a miniaturized circulatory column system that is capable of magnifying the effective column length by forming a circulatory loop with chip-scale columns, thus ultimately achieving high-efficiency target separation. The circulatory column system is composed of a tandem of 25 cm microcolumns and six valves for fluidic flow control in order to enable chromatographic separation in circulatory motions while requiring only 5.5 kPa of pressure, which current micropumps are currently capable of supplying. The developed column system (1) successfully demonstrated 16 times elongation of a virtual column length up to 800 cm by only utilizing two 25 cm microcolumns, which is the longest column length reported by any MEMS-scale functioning GC column, (2) achieved a high theoretical plate number of 68 696 with pentane circulating after 15.5 circulatory cycles, which corresponds to the plate number per length-pressure of 1611 plate m(-1) kPa(-1), the highest record reported yet, and (3) demonstrated successful separation of target molecules during circulation by utilizing a pentane/hexane mixture, resulting in magnification of the two corresponding peaks via circulation. PMID:26911622

  8. Open-loop correction of horizontal turbulence: system design and result.

    PubMed

    Mu, Quanquan; Cao, Zhaoliang; Li, Dayu; Hu, Lifa; Xuan, Li

    2008-08-10

    Adaptive optics systems often work in a closed-loop configuration due to the hysteretic and nonlinearity properties of conventional deformable mirrors. Because of the high-precision wavefront generation and nonhysteretic properties of liquid-crystal devices, the open-loop control becomes possible. Open-loop control is a requirement for advanced adaptive optics concepts. We designed an open-loop adaptive optics system with a liquid-crystal-on-silicon wavefront corrector. This system is simple, fast, and can save much more light compared to conventional liquid-crystal-based closed-loop systems. The detailed principle, construction, and operation are discussed. The 500 m horizontal turbulence correction experiment was done using a 250 mm telescope in the laboratory. The whole system can reach a 60 Hz correction frequency. Evaluation of the correction precision was done at closed-loop configuration, which is 0.2 lambda (lambda=0.633 microm) in peak to valley. The dynamic image under open-loop correction got the same resolution compared to closed-loop correction. The whole system reached 0.68 arc sec resolution capability at open-loop correction, which is slightly larger than the system's diffraction-limited resolution of 0.65 arc sec. PMID:18690274

  9. Self-Driven Decay Heat Removal in a GCR Closed Brayton Cycle Power System

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.

    2006-07-01

    Closed Brayton Cycle (CBC) systems that are driven by Gas Cooled Reactors (GCR) are being evaluated for high-efficiency electricity generation. These systems were also selected by the Naval Reactor Prime Contractor team for use as space power systems. This paper describes the decay heat removal performance of these systems. A key question for such space or terrestrial based CBC systems is how to shut down the reactor while still removing the decay heat without using substantial amounts of auxiliary power. Tests in the Sandia Brayton Loop (SBL) show that the Brayton cycle is capable of operating on sensible heat for very long times ({approx} hour) after the reactor is shut down. This paper describes the measured and predicted results of generated electrical power produced as a function of time after the heat source had been turned off in the Sandia Brayton Loop. The measured results were obtained from an electrically heated closed Brayton cycle test loop (SBL) that Sandia fabricated and has operating within the laboratories. The predicted behavior is based on integrated dynamic system models that are capable of predicting both the transient and steady state behavior of nuclear heated or electrically heated Brayton cycle systems. The measured data was obtained by running the SBL and shutting off the electrical heater while adjusting the flow through the loop to keep the system operating at (or just above) its self-sustaining operating power level. During the test we were able to produce {approx}500 W of power for over 73 minutes after the heater power was turned off. Thus the Brayton loop was able to operate at self-sustaining conditions (or better) for over one hour. During this time the turbo-compressor was transporting the sensible heat in the heater, ducting, and recuperator to the waste heat rejection system for over an hour. For a reactor-driven system in space, this would give the shutdown decay power sufficient time to decay to levels where it could be

  10. Identification of system, observer, and controller from closed-loop experimental data

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1992-01-01

    This paper considers the identification problem of a system operating in closed-loop with an existing feedback controller. The closed-loop system is excited by a known excitation signal, and the resulting time histories of the closed-loop system response and the feedback signal are measured. From the time history data, the algorithm computes the Markov parameters of a closed-loop observer, from which the Markov parameters of the individual open-loop plant, observer, and controller are recovered. A state space model of the open-loop plant and the gain matrices for the controller and the observer are then realized. The results of the paper are demonstrated by an example using actual aircraft flutter test data.

  11. Differentiating between marketing-driven and technology-driven vendors of medical information systems.

    PubMed

    Friedman, B A; Mitchell, W; Singh, K

    1994-08-01

    Buyers of medical information systems such as laboratory information systems need to recognize that the vendors of such systems may pursue corporate strategies emphasizing expenditures on marketing and client services, expenditures on technology and research and development (R&D), or a more balanced approach. The strategic goals and objectives of a vendor of an information system should align closely with those of a potential hospital client. A restless hospital client seeking cutting-edge technology will probably be dissatisfied with a system vendor who emphasizes slow ongoing incremental system development. Objective criteria for distinguishing between a marketing-driven vendor and a technology-driven vendor of medical information systems, and their variants, are presented based on the ratio of marketing expenditures to sales revenue compared with the ratio of research and development expenditures to sales revenue of the company. More subjective narrative criteria are also offered for making such distinctions. PMID:8060224

  12. A closed-loop neurobotic system for fine touch sensing

    NASA Astrophysics Data System (ADS)

    Bologna, L. L.; Pinoteau, J.; Passot, J.-B.; Garrido, J. A.; Vogel, J.; Ros Vidal, E.; Arleo, A.

    2013-08-01

    Objective. Fine touch sensing relies on peripheral-to-central neurotransmission of somesthetic percepts, as well as on active motion policies shaping tactile exploration. This paper presents a novel neuroengineering framework for robotic applications based on the multistage processing of fine tactile information in the closed action-perception loop. Approach. The integrated system modules focus on (i) neural coding principles of spatiotemporal spiking patterns at the periphery of the somatosensory pathway, (ii) probabilistic decoding mechanisms mediating cortical-like tactile recognition and (iii) decision-making and low-level motor adaptation underlying active touch sensing. We probed the resulting neural architecture through a Braille reading task. Main results. Our results on the peripheral encoding of primary contact features are consistent with experimental data on human slow-adapting type I mechanoreceptors. They also suggest second-order processing by cuneate neurons may resolve perceptual ambiguities, contributing to a fast and highly performing online discrimination of Braille inputs by a downstream probabilistic decoder. The implemented multilevel adaptive control provides robustness to motion inaccuracy, while making the number of finger accelerations covariate with Braille character complexity. The resulting modulation of fingertip kinematics is coherent with that observed in human Braille readers. Significance. This work provides a basis for the design and implementation of modular neuromimetic systems for fine touch discrimination in robotics.

  13. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  14. Teleparallel loop quantum cosmology in a system of intersecting branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Pradhan, Anirudh; Beesham, Aroonkumar; de Haro, Jaume

    2016-09-01

    Recently, some authors have removed the big bang singularity in teleparallel Loop Quantum Cosmology (LQC) and have shown that the universe may undergo a number of oscillations. We investigate the origin of this type of teleparallel theory in a system of intersecting branes in M-theory in which the angle between them changes with time. This system is constructed by two intersecting anti-D8-branes, one compacted D4-brane and a D3-brane. These branes are built by joining M0-branes which develop in decaying fundamental strings. The compacted D4-brane is located between two intersecting anti-D8 branes and glues to one of them. Our universe is located on the D3 brane which wraps around the D4 brane from one end and sticks to one of the anti-D8 branes from the other one. In this system, there are three types of fields, corresponding to compacted D4 branes, intersecting branes and D3-branes. These fields interact with each other and make the angle between branes oscillate. By decreasing this angle, the intersecting anti-D8 branes approach each other, the D4 brane rolls, the D3 brane wraps around the D4 brane, and the universe contracts. By separating the intersecting branes and increasing the angle, the D4 brane rolls in the opposite direction, the D3 brane separates from it and the expansion branch begins. Also, the interaction between branes in this system gives us the exact form of the relevant Lagrangian for teleparallel LQC.

  15. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  16. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  17. Exponentially Slow Heating in Periodically Driven Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2015-12-01

    We derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes. We discuss applications to other problems, including the decay of highly energetic excitations in cold atomic and solid-state systems.

  18. Kinematics and dynamics of robotic systems with multiple closed loops

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-De

    The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for

  19. Code regenerative clean-up loop transponder for a mu-type ranging system

    NASA Technical Reports Server (NTRS)

    Hurd, W. J. (Inventor)

    1973-01-01

    A loop transponder for regenerating the code of a mu type ranging system is disclosed. It includes a phase locked loop, a code generator, and a loop detector. The function of the phase locked loop is to provide phase lock between a received component wk of the range signal and a replica rafter wk of the received component, provided by the code generator. The code generator also provides a replica of the next component rafter w(w+1). The loop detector responds to wk rafler wk and rafter w(k+1) to determine when the next component w(k+1) is received and controls the code generator to supply w(k+1) to the phase locked loop and to generate a replica rafter w(k+2) of the next component.

  20. Data driven propulsion system weight prediction model

    NASA Technical Reports Server (NTRS)

    Gerth, Richard J.

    1994-01-01

    The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.

  1. Data-driven optimization of dynamic reconfigurable systems of systems.

    SciTech Connect

    Tucker, Conrad S.; Eddy, John P.

    2010-11-01

    This report documents the results of a Strategic Partnership (aka University Collaboration) LDRD program between Sandia National Laboratories and the University of Illinois at Urbana-Champagne. The project is titled 'Data-Driven Optimization of Dynamic Reconfigurable Systems of Systems' and was conducted during FY 2009 and FY 2010. The purpose of this study was to determine and implement ways to incorporate real-time data mining and information discovery into existing Systems of Systems (SoS) modeling capabilities. Current SoS modeling is typically conducted in an iterative manner in which replications are carried out in order to quantify variation in the simulation results. The expense of many replications for large simulations, especially when considering the need for optimization, sensitivity analysis, and uncertainty quantification, can be prohibitive. In addition, extracting useful information from the resulting large datasets is a challenging task. This work demonstrates methods of identifying trends and other forms of information in datasets that can be used on a wide range of applications such as quantifying the strength of various inputs on outputs, identifying the sources of variation in the simulation, and potentially steering an optimization process for improved efficiency.

  2. A Novel Controller for Model with Combined LFC and AVR Loops of Single Area Power System

    NASA Astrophysics Data System (ADS)

    Gupta, Monika; Srivastava, Smriti; Gupta, J. R. P.

    2016-03-01

    In this study, a novel controller is designed to study low frequency oscillations for load frequency control (LFC) and voltage control of a single area power system. For more accuracy in dynamic and steady state responses, mutual effects between LFC and automatic voltage regulation (AVR) loops are investigated in a combined simulink model of LFC and AVR loops. The effectiveness of the proposed controller is first simulated on model with LFC loop alone. The proposed controller is a hybrid of neural network and fast traversal filters. The proposed hybrid controller requires less number of samples for training of weights, thus making the system fast. To study the coupling effects of AVR and LFC loops, dynamic performance of a complete system model for low frequency oscillation studies comprising of mechanical and electrical loops is done with the proposed controller.

  3. A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life

    ERIC Educational Resources Information Center

    Sherblom, Stephen A.

    2015-01-01

    This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…

  4. Coalescence cascade of dissipative solitons in parametrically driven systems.

    PubMed

    Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473

  5. Heating and dynamics of two flare loop systems observed by AIA and EIS

    SciTech Connect

    Li, Y.; Ding, M. D.; Qiu, J.

    2014-02-01

    We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet of the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.

  6. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  7. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  8. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  9. Multilevel interference resonances in strongly driven three-level systems.

    PubMed

    Danon, Jeroen; Rudner, Mark S

    2014-12-12

    We study multiphoton resonances in a strongly driven three-level quantum system, where one level is periodically swept through a pair of levels with constant energy separation E. Near the multiphoton resonance condition nℏω=E, where n is an integer, we find qualitatively different behavior for n even or odd. We explain this phenomenon in terms of families of interfering trajectories of the multilevel system. Remarkably, the behavior is insensitive to fluctuations of the energy of the driven level, and survives deep into the strong dephasing regime. The setup can be relevant for a variety of solid state and atomic or molecular systems. In particular, it provides a clear mechanism to explain recent puzzling experimental observations in strongly driven double quantum dots. PMID:25541796

  10. Closed-Loop Control Better than Open-Loop Control of Profofol TCI Guided by BIS: A Randomized, Controlled, Multicenter Clinical Trial to Evaluate the CONCERT-CL Closed-Loop System

    PubMed Central

    Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun

    2015-01-01

    Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041

  11. The Database Driven ATLAS Trigger Configuration System

    NASA Astrophysics Data System (ADS)

    Chavez, Carlos; Gianelli, Michele; Martyniuk, Alex; Stelzer, Joerg; Stockton, Mark; Vazquez, Will

    2015-12-01

    The ATLAS trigger configuration system uses a centrally provided relational database to store the configurations for all levels of the ATLAS trigger system. The configuration used at any point during data taking is maintained in this database. A interface to this database is provided by the TriggerTool, a Java-based graphical user interface. The TriggerTool has been designed to work as both a convenient browser and editor of configurations in the database for both general users and experts. The updates to the trigger system necessitated by the upgrades and changes in both hardware and software during the first long shut down of the LHC will be explored.

  12. Implementing Audio Digital Feedback Loop Using the National Instruments RIO System

    SciTech Connect

    Huang, G.; Byrd, J. M.

    2006-11-20

    Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.

  13. Phase locked loop synchronization for direct detection optical PPM communication systems

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1985-01-01

    Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.

  14. Improvement of process closed-loop control systems for power units

    NASA Astrophysics Data System (ADS)

    Bilenko, V. A.; Mikushevich, E. E.; Nikol'Skii, D. Yu.; Rogachev, R. L.; Romanov, N. A.

    2008-10-01

    We describe the results of activities carried out at ZAO Interavtomatika (Interautomatika AG) on the development and putting into use of improved systems for closed-loop control of the main process values of Russian power units equipped with once-through boilers. We also consider a general approach for improving control systems and describe specific technical solutions taken for furnishing the main technological items of coal-and gas-and-oil-fired power units with closed-loop control systems.

  15. Spin-orbit interaction driven collective electron-hole excitations in a noncentrosymmetric nodal loop Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.

    2015-09-01

    NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.

  16. SATIN-Satellite driven nowcasting system

    NASA Astrophysics Data System (ADS)

    Meirold-Mautner, Ingo; Kann, Alexander; Meier, Florian

    2016-03-01

    A precipitation nowcasting system (SATIN) is presented which relies entirely on satellite based precipitation products and rain gauge measurements. Thus, the proposed system is most suitable for areas where ground based radar observations are not available, or potentially suffer from low quality. SATIN delivers analyses on a 1 km grid every 15 min and nowcasts (obtained through motion vectors) in 15 min time steps. Nowcasts are gradually merged with NWP precipitation forecasts. An extensive validation including comparisons to different NWP models yields superior performance for SATIN analyses as well as nowcasts for lead times up to 1 h. Reducing the station density still yields better performance than operationally available NWP's.

  17. Database Driven Web Systems for Education.

    ERIC Educational Resources Information Center

    Garrison, Steve; Fenton, Ray

    1999-01-01

    Provides technical information on publishing to the Web. Demonstrates some new applications in database publishing. Discusses the difference between static and database-drive Web pages. Reviews failures and successes of a Web database system. Addresses the question of how to build a database-drive Web site, discussing connectivity software, Web…

  18. Portable database driven control system for SPEAR

    SciTech Connect

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig.

  19. HERCULES: A Pattern Driven Code Transformation System

    SciTech Connect

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing; Ilsche, Thomas; Joubert, Wayne; Graham, Richard L

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss the design, implementation and an initial evaluation of HERCULES.

  20. Spontaneous rotation in a driven mechanical system

    NASA Astrophysics Data System (ADS)

    Alexander, T. J.

    2016-06-01

    We show that a mass free to circulate around a shaken pivot point exhibits resonance-like effects and large amplitude dynamics even though there is no natural frequency in the system, simply through driving under geometrical constraint. We find that synchronization between force and mass occurs over a wide range of forcing amplitudes and frequencies, even when the forcing axis is dynamically, and randomly, changed. Above a critical driving amplitude the mass will spontaneously rotate, with a fractal boundary dividing clockwise and anti-clockwise rotations. We show that this has significant implications for energy harvesting, with large output power over a wide frequency range. We examine also the effect of driving symmetry on the resultant dynamics, and show that if the shaking is circular the motion becomes constrained, whereas for anharmonic rectilinear shaking the dynamics may become chaotic, with the system mimicking that of the kicked rotor.

  1. Onsager Coefficients in Periodically Driven Systems.

    PubMed

    Proesmans, Karel; Van den Broeck, Christian

    2015-08-28

    We evaluate the Onsager matrix for a system under time-periodic driving by considering all its Fourier components. By application of the second law, we prove that all the fluxes converge to zero in the limit of zero dissipation. Reversible efficiency can never be reached at finite power. The implication for an Onsager matrix, describing reduced fluxes, is that its determinant has to vanish. In the particular case of only two fluxes, the corresponding Onsager matrix becomes symmetric. PMID:26371634

  2. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    PubMed

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx. PMID:25667358

  3. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  4. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The goal of the EGM 4000/1 Design class was to investigate a Biomass Management System (BMS) and design, fabricate, and test components for biomass management in a closed-loop life support system (CLLSS). The designs explored were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center. Designs included a sectored plant growth unit, a container and transfer mechanism, and an air curtain system for fugitive particle control. The work performed by the class members is summarized.

  5. Anomalous Broadening in Driven Dissipative Rydberg Systems.

    PubMed

    Goldschmidt, E A; Boulier, T; Brown, R C; Koller, S B; Young, J T; Gorshkov, A V; Rolston, S L; Porto, J V

    2016-03-18

    We observe interaction-induced broadening of the two-photon 5s-18s transition in ^{87}Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with blackbody induced population in nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms. PMID:27035299

  6. Anomalous Broadening in Driven Dissipative Rydberg Systems

    NASA Astrophysics Data System (ADS)

    Goldschmidt, E. A.; Boulier, T.; Brown, R. C.; Koller, S. B.; Young, J. T.; Gorshkov, A. V.; Rolston, S. L.; Porto, J. V.

    2016-03-01

    We observe interaction-induced broadening of the two-photon 5 s -18 s transition in 87Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18 s atoms with blackbody induced population in nearby n p states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms.

  7. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  8. Butterfly Floquet Spectrum in Driven SU(2) Systems

    SciTech Connect

    Wang Jiao; Gong Jiangbin

    2009-06-19

    The Floquet spectrum of a class of driven SU(2) systems is shown to display a butterfly pattern with multifractal properties. The level crossing between Floquet states of the same parity or different parities is studied. The results are relevant to studies of fractal statistics, quantum chaos, coherent destruction of tunneling, and the validity of mean-field descriptions of Bose-Einstein condensates.

  9. Probabilities for large events in driven threshold systems

    NASA Astrophysics Data System (ADS)

    Rundle, John B.; Holliday, James R.; Graves, William R.; Turcotte, Donald L.; Tiampo, Kristy F.; Klein, William

    2012-08-01

    Many driven threshold systems display a spectrum of avalanche event sizes, often characterized by power-law scaling. An important problem is to compute probabilities of the largest events (“Black Swans”). We develop a data-driven approach to the problem by transforming to the event index frame, and relating this to Shannon information. For earthquakes, we find the 12-month probability for magnitude m>6 earthquakes in California increases from about 30% after the last event, to 40%-50% prior to the next one.

  10. Many-body energy localization transition in periodically driven system

    NASA Astrophysics Data System (ADS)

    D'Alessio, Luca; Polkovnikov, Anatoli

    2013-03-01

    According to the second law of thermodynamics the total entropy and energy of a system is increased during almost any dynamical process. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. We report numerical evidence based on exact diagonalization of small spin chains and theoretical arguments based on the Magnus expansion. Our findings are valid for both classical and quantum systems.

  11. Developing an EEG-based on-line closed-loop lapse detection and mitigation system

    PubMed Central

    Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping

    2014-01-01

    In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15–20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments. PMID:25352773

  12. Developing an EEG-based on-line closed-loop lapse detection and mitigation system.

    PubMed

    Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping

    2014-01-01

    In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments. PMID:25352773

  13. Deep sounding TEM investigation method based on a modified fixed central-loop system

    NASA Astrophysics Data System (ADS)

    Xue, Guo-qiang; Bai, Chao-ying; Yan, Shu; Greenhalgh, Stewart; Li, Mei-fang; Zhou, Nan-nan

    2012-01-01

    The central-loop TEM technology has been widely used in mineral exploration, engineering and environmental investigations and assorted geologic studies. For easy and efficient working conditions, a square (or rectangular) loop is generally employed instead of a circular one. Any position within the inner one ninth of the central part of the loop is often designated as the central survey location (within which the field is assumed to be uniform), and referred to as a modified central-loop configuration. However, the deduced field parameters at such non-central positions when calculated by a central-loop formula result in decreased accuracy and possibly erroneous interpretation. A large-fixed loop offers the advantage of being able to determine the induced potential at any point inside or outside the loop. In this study we provide the formula for the large-fixed loop and receiver positions within the modified central-loop system and solve the problem. Specifically, we compute the electromagnetic response of any field point by using an electric dipole integration method. The full time-domain apparent resistivity values are then extracted by using an iterative method. Both theoretical modeling and real data examples indicate that such a configuration not only improves the accuracy for the TEM survey, but also enlarges the exploration depth, due to a large loop used in the deployment. The method is used for locating the water enriched areas in coal mines in Yangquan region of Shanxi province and in Bin County of Shaanxi province, China. The interpreted results are tested by later drilling, which confirmed our combined method to be a reliable and efficient method for deep sounding.

  14. Many-body energy localization transition in periodically driven systems

    SciTech Connect

    D’Alessio, Luca; Polkovnikov, Anatoli

    2013-06-15

    According to the second law of thermodynamics the total entropy of a system is increased during almost any dynamical process. The positivity of the specific heat implies that the entropy increase is associated with heating. This is generally true both at the single particle level, like in the Fermi acceleration mechanism of charged particles reflected by magnetic mirrors, and for complex systems in everyday devices. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. The dynamical localization is known to occur both at classical (Fermi–Ulam model) and at quantum levels (kicked rotor). However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in both classical and quantum periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. -- Highlights: •A dynamical localization transition in periodically driven ergodic systems is found. •This phenomenon is reminiscent of many-body localization in energy space. •Our results are valid for classical and quantum systems in the thermodynamic limit. •At critical frequency, the short time expansion for the evolution operator breaks down. •The transition is associated to a divergent time scale.

  15. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, David; Perez-Suarez, David; Valori, Gherardo

    2016-05-01

    First observed by SOHO/EIT, "EIT waves" are strongly associated with the initial evolution of coronal mass ejections (CMEs) and after almost 20 years of investigation a consensus is being reached which interprets them as freely-propagating waves produced by the rapid expansion of a CME in the low corona. An "EIT wave" was observed on 6 July 2012 to erupt from active region AR11514 into a particularly structured corona that included multiple adjacent active regions as well as an adjacent trans-equatorial loop system anchored at the boundary of a nearby coronal hole. The eruption was well observed by SDO/AIA and CoMP, allowing the effects of the "EIT wave" on the trans-equatorial loop system to be studied in detail. In particular, it was possible to characterise the oscillation of the loop system using Doppler velocity measurements from CoMP. These Doppler measurements were used to estimate the magnetic field strength of the trans-equatorial loop system via coronal seismology. It was then possible to compare these inferred magnetic field values with extrapolated magnetic field values derived using a Potential Field Source Surface extrapolation as well as the direct measurements of magnetic field provided by CoMP. These results show that the magnetic field strength of loop systems in the solar corona may be estimated using loop seismology.

  16. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    SciTech Connect

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-08-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

  17. Group decision support system for customer-driven product design

    NASA Astrophysics Data System (ADS)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  18. Competition between shock and turbulent heating in coronal loop system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2016-08-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in the present study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  19. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    PubMed Central

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  20. Self-driven HeII cooling system for the interaction region focusing magnets at SSC

    SciTech Connect

    Mord, A.J.; Snyder, H.A. |

    1994-12-31

    The focusing magnets nearest the interaction points of the Superconducting Super Collider (SSC) face concentrated and somewhat unpredictable heat loads from the radiation produced by the proton beam collision. A three-stage cooling system design is shown that interfaces with the SSC external refrigeration system and minimizes hot spots in the magnet. The magnet cold mass can be held below 2 K even with a heat load of 1 kW. Internal convection with zero mass flow between the magnet laminations carries the heat radially outward from the center of the magnets to large coolant passages near the periphery. Cross flow is not required. A circulation system driven by the heat being removed then carries the heat axially through the 60 m long set of magnets. A heat exchanger/thermomechanical pump module transfers the heat to the external refrigeration loop, permitting the external loop to be optimized without matching the flow rate required through the magnets. These results are useful beyond the SSC community as examples of using He II to transfer large amounts of heat in industrial-scale superconducting magnets.

  1. Automated control of hierarchical systems using value-driven methods

    NASA Technical Reports Server (NTRS)

    Pugh, George E.; Burke, Thomas E.

    1990-01-01

    An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.

  2. A Model-Driven Development Method for Management Information Systems

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  3. A Motor Speed Servo System Based on the Dual Loop PLL

    NASA Astrophysics Data System (ADS)

    Machida, Hidekazu; Kambara, Michinobu; Tanaka, Kouta; Kobayashi, Fuminori

    PLL-MSC (Phase Locked Loop Motor Speed Control) systems can completely reject speed error and steady-state phase error for constant-speed input signals. However, it is not usually applied to systems with inputs including acceleration, because they have poor tracking speed and strange pull-in behavior. In the field of radio communication, “dual-loop PLL” is very effective for such signals. It can not only enable high-speed tracking, but also cancel phase error. In the digital implementation of the PLL-MSC, it can achive easily by inserting loop filters into both feed back paths, and employed a special adder in PWM to implement loop addition for the two phase detector outputs. The scheme was implemented by programming an FPGA, and satisfiable results were obtained.

  4. Hysteretic behavior of spin-crossover noise driven system

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Maksymov, Artur; Dimian, Mihai

    2016-04-01

    The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker-Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.

  5. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems

    PubMed Central

    Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  6. A digital wireless system for closed-loop inhibition of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  7. Outcome-driven Evaluation Metrics for Treatment Recommendation Systems.

    PubMed

    Mei, Jing; Liu, Haifeng; Li, Xiang; Yu, Yiqin; Xie, Guotong

    2015-01-01

    Treatment recommendation systems aim to providing clinical decision supports, e.g. with integration of Computerized Physician Order Entry (CPOE). One of the most significant issue is the quality of recommendations which needs to be quantified, before getting the acceptance from physicians. In computer science, such evaluations are typically performed by applying appropriate metrics that provides a comparison of different systems. However, a big challenge for evaluating treatment recommendation systems is that ground truth is only partially observed. In this paper, we propose an outcome-driven evaluation methodology, and present five metrics (i.e. precision, recall, accuracy, relative risk and odds ratio) with highlight of their statistic meanings in clinical context. The experimental results are based on the comparison of two well-developed treatment recommendation systems (one is knowledge-driven and based on clinical practice guidelines, while the other is data-driven and based on patient similarity analysis), using our proposed evaluation metrics. As a conclusion, physicians are less prone to comply with clinical guidelines, but once following guideline recommendations, it is much more likely to get good outcomes than not following. PMID:25991128

  8. Dynamic steady state of periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.

    2016-01-01

    Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary periodically driven system described by linear dynamic equations. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution (t →+∞ ) due to relaxation processes. The presented derivation simultaneously contains a simple and effective computational algorithm (without using either the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components. As a particular example, for three-level Λ system we calculate the line shape and field-induced shift of the dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy, atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically driven systems are considered.

  9. Securing robust control in systems for closed-loop control of inertial thermal power facilities

    NASA Astrophysics Data System (ADS)

    Kovrigo, Yu. M.; Bagan, T. G.; Bunke, A. S.

    2014-03-01

    We consider two approaches to achieving the necessary stability margin in systems for closed-loop control of inertial thermal power facilities under the conditions of a variable operating mode of process equipment. Structural solutions for these systems are proposed, and tuning procedures are given. Transients in the synthesized systems are simulated, and the control quality indicators are calculated and compared. Application of the proposed procedures makes it possible to obtain a sufficient stability margin with preserving highquality performance of the closed-loop control systems.

  10. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    PubMed

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. PMID:25311160

  11. Energy Exchange in Driven Open Quantum Systems at Strong Coupling.

    PubMed

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-17

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367

  12. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  13. Theory of many-body localization in periodically driven systems

    NASA Astrophysics Data System (ADS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-09-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau-Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  14. Ontology Driven Development and Science Information System Interoperability

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Crichton, D. J.; Joyner, R. S.; Rye, E. D.; Pds4 Data Standards Team Leads

    2010-12-01

    A domain ontology can be used to drive the development of a science information system and enable system interoperability and science data correlation. A domain ontology defines the data structures, the metadata for the science interpretation of the data, and the metadata that describes the context within which the data was captured, processed, and archived. In addition the ontology defines the organization of the data and their relationships. These definitions can be used to configure a registry-base information system from generic system components, generate schemas for data labeling and validation, and write standards documents for a variety of audiences. The resulting information system catalogs and tracks ingested data and allows the periodic harvesting of the registered metadata for sophisticated web-based search applications. An independent ontology and the data driven paradigm also allow the evolution of the domain’s information model independent from the system’s infrastructure. The Planetary Data System (PDS) is executing a plan to move the PDS to a fully online, federated system. This plan addresses new demands on the system including increasing data volume and complexity and number of missions. This poster provides an overview of the planetary science ontology and the data driven paradigm being used to development the PDS 2010 information system.

  15. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks. PMID:25166146

  16. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    NASA Technical Reports Server (NTRS)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  17. Flight Test Results for the HST Orbital Systems Test (HOST) Capillary Pump Loop Cooling System

    NASA Technical Reports Server (NTRS)

    Buchko, M.; Kaylor, M.; Kroliczek, E.; Ottenstein, L.

    1999-01-01

    The Near Infrared Camera and Multi Object Spectrometer (NICMOS) was installed in the Hubble Space Telescope (MST) in February 1997. Shortly thereafter, the instrument experienced a thermal short in its solid nitrogen dewar system which will significantly shorten the instrument's useful life. A reverse Brayton cycle mechanical refrigerator will be installed during the Third Servicing Mission (SM3) to provide cooling for the instrument, and thereby extend its operations. A Capillary Pump Loop (CPL) and radiator system was designed, built and tested to remove up to 500 watts of heat from the mechanical cryocooler and its associated electronics. The HST Orbital Systems Test (HOST) platform was flown on the Space Shuttle Discovery (STS-95) as a flight demonstration of the cryocooler system, CPL control electronics, and the CPL/Radiator. This paper will present the flight test results and thermal performance of the CPL system in detail.

  18. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1991-01-01

    The design of a biomass management system (BMS) for use in a closed loop support system is presented by University of Florida students as the culmination of two design courses. The report is divided into two appendixes, each presenting the results of one of the design courses. The first appendix discusses the preliminary design of the biomass management system and is subdivided into five subsystems: (1) planting and harvesting, (2) food management, (3) resource recovery, (4) refurbishing, and (5) transport. Each subsystem is investigated for possible solutions to problems, and recommendations and conclusions for an integrated BMS are discussed. The second appendix discusses the specific design of components for the BMS and is divided into three sections: (1) a sectored plant growth unit with support systems, (2) a container and receiving mechanism, and (3) an air curtain system for fugitive particle control. In this section components are designed, fabricated, and tested.

  19. Dynamics of a resonantly driven two-spin system

    SciTech Connect

    Volkov, Yu. S. Sinitsyn, D. O.

    2007-12-15

    Dynamics of a coupled two-spin system in a static magnetic field are investigated. An analysis is presented of resonance transitions driven by a circularly polarized radio-frequency (RF) field orthogonal to the static field. When the RF field amplitude is modulated at a certain frequency depending on the field strength, the system exhibits parametric resonance behavior. The periodicity of transitions breaks down, and the Shannon entropy of the recurrence probability density for the system's states increases by more than an order of magnitude.

  20. Traffic jams and hysteresis in driven one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Hu, B.; Filippov, A.; Zeltser, A.

    1998-08-01

    The driven underdamped chain of anharmonically interacting atoms in the sinusoidal external potential is studied. It is shown that due to the interatomic interaction the system exhibits hysteresis for any nonzero rate of changing of the dc driving force. Before the transition to the running state the system passes through the traffic-jam inhomogeneous state. The system behavior is explained with the help of two simple models, the discrete lattice-gas model with two states of atoms, and the continuum mean-field model based on the Fokker-Planck equation.

  1. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736

  2. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness. PMID:26277007

  3. Toward Closing the Loop: An Update on Insulin Pumps and Continuous Glucose Monitoring Systems

    PubMed Central

    Aye, Tandy; Block, Jen; Buckingham, Bruce

    2010-01-01

    Synoposis In this paper we review current pump and continuous glucose monitoring therapy and what will be required to integrate these systems into closed-loop control. Issues with sensor accuracy, lag time and calibration are discussed as well as issues with insulin pharmacodynamics which result in a delayed onset of insulin action in a closed-loop system. A stepwise approach to closed-loop therapy is anticipated where the first systems will suspend insulin delivery based on actual or predicted hypoglycemia. Subsequent systems may “control-to-range” limiting the time spent in hyperglycemia by mitigating the effects of a missed food bolus or underestimate of consumed carbohydrates while minimizing the risk of hypoglycemia. PMID:20723823

  4. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  5. Integrated systems for pulsed-power driven inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.; Slutz, S. A.; Stygar, W. A.; Herrmann, M. C.; Sinars, D. B.; McBride, R. D.; Vesey, R. A.; Sefkow, A. B.; Mazarakis, M. G.; Vandevender, J. P.; Waisman, E. M.; Hansen, D. L.; Owen, A. C.; Jones, J. F.; Romero, J. A.; McKenney, J.

    2011-10-01

    Pulsed power fusion concepts integrate: (i) directly-magnetically-driven fusion targets that absorb large energies (10 MJ), (ii) efficient, rep-rated driver modules, (iii) compact, scalable, integrated driver architectures, (iv) driver-to-target coupling techniques with standoff and driver protection, and (v) long lifetime fusion chambers shielded by vaporizing blankets and thick liquid walls. Large fusion yields (3-30 GJ) and low rep-rates (0.1-1 Hz) may be an attractive path for IFE. Experiments on the ZR facility are validating physics issues for magnetically driven targets. Scientific breakeven (fusion energy = fuel energy) may be possible in the next few years. Plans for system development and integration will be discussed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. A design method for closed loop solar energy systems with concentrating collectors

    NASA Astrophysics Data System (ADS)

    Ryan, W. A.

    1982-01-01

    A method of performance prediction and design for closed loop concentrating solar collector systems is presented, along with a comparison of prediction with results using a compound parabolic concentrating collector. The numerical model is an extension of Collares-Pereira and Rabl (1978) model for concentrating collectors to a closed-loop scenario, using a monthly average utilizability factor and the f-chart technique. The predictions were compared with simulations using the TRNSYS program, considering 1.5, 3.0, and 5.0 concentration factors, and a sensible heat storage system. Performance predictions were found to depart from the simulations by an average of 14.04% for all cases, with the predictions giving consistently lower results. The method is concluded to be useful for optimizing collector areas and concentration ratios in closed-loop systems.

  7. On computation of stabilizing loop gain and delay ranges for bi-proper delay systems.

    PubMed

    Le, Binh Nguyen; Wang, Qing-Guo; Lee, Tong Heng; Nie, Zhuoyun

    2014-11-01

    A graphical method for exactly computing the stabilizing loop gain and delay ranges was proposed [Le BN, Wang Q-G, Lee T-H. Development of D-decomposition method for computing stabilizing gain ranges for general delay systems. J Process Control 2012] for a strictly proper process by determining the boundary functions which may change system׳s stability. A bi-proper process is rare but causes great complications for the method, due to the new phenomena that do not exist for a strictly proper process, such as a non-zero gain at infinity frequency, which may cause infinite intersections of boundary functions within a finite delay range. This paper addresses such a kind of processes and develops a general method that can produce the exact and complete set of the loop gain and delay for closed-loop stabilization, which is hard to find with analytical methods. PMID:25440948

  8. Floquet approach to bichromatically driven cavity-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Malz, Daniel; Nunnenkamp, Andreas

    2016-08-01

    We develop a Floquet approach to solve time-periodic quantum Langevin equations in the steady state. We show that two-time correlation functions of system operators can be expanded in a Fourier series and that a generalized Wiener-Khinchin theorem relates the Fourier transform of their zeroth Fourier component to the measured spectrum. We apply our framework to bichromatically driven cavity optomechanical systems, a setting in which mechanical oscillators have recently been prepared in quantum-squeezed states. Our method provides an intuitive way to calculate the power spectral densities for time-periodic quantum Langevin equations in arbitrary rotating frames.

  9. Operation of a phase locked loop system under distorted utility conditions

    SciTech Connect

    Kaura, V.; Blasko, V.

    1997-01-01

    Operation of a phase locked loop (PLL) system under distorted utility conditions is presented. A control model of the PLL system is developed and recommendations are made on tuning of this model specially for operation under common utility distortions as line notching, voltage unbalance/loss, frequency variations. The PLL is completely implemented in software without any filters. All analytical results are experimentally verified.

  10. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  11. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  12. On the evaluation of expected performance cost for partially observed closed-loop stochastic systems

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Eslami, M.

    1985-01-01

    New methods are presented for evaluating the expected performance cost of partially observed closed-loop stochastic systems. When the variances of the process statistics are small, a linearized model of the closed-loop stochastic system is defined for which the expected cost can be evaluated by recursion on a set of purely deterministic difference equations. When the variances of the process statistics are large, the linearized model can be used in the control variate method of variance reduction for reducing the number of sample paths required for effective Monte Carlo estimation.

  13. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  14. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  15. Space Station environmental control and life support system distribution and loop closure studies

    NASA Technical Reports Server (NTRS)

    Humphries, William R.; Reuter, James L.; Schunk, Richard G.

    1986-01-01

    The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.

  16. Traffic and related self-driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  17. Study on introduction of SN transition type FCL into looped distribution system

    NASA Astrophysics Data System (ADS)

    Kameda, Hideyuki; Uemura, Satoshi; Ichinose, Ataru

    2012-11-01

    A large amount of distributed generations such as PV will be introduced into the future Japanese distribution systems. Although distribution systems are presently operated under radial configuration and are terminated with loads, the connection of the distributed generations may cause some problems such as the occurrence of reverse power, the sensitivity decrease of the protection relays, and the voltage rise at the ends. It is assumed that a distribution system is looped in a large city to aim at the improvement of the service reliability under the situation mentioned above. However, a countermeasure against the increase of short-circuit current may be necessary in a looped system. We think that the installation of the SN transition type superconducting fault current limiter (FCL) is effective as a measure against the increase of short-circuit capacity, so we have proposed an effective arrangement of the FCLs into a radial distribution system and the method of setting the parameters. In this paper, a new introduction of FCLs is proposed, that is the way to clear a short-circuit fault within a looped system by the protection relay and the loop switch (LS). To achieve this purpose, the FCL needs to reduce the current through the LS below the rated current of the LS. And we propose the best arrangement to achieve the purpose, and the method of setting the parameters of a SN transition type FCL. Our proposal may bring the flexibility of composing any system configuration.

  18. Stroboscopic prethermalization in weakly interacting periodically driven systems

    NASA Astrophysics Data System (ADS)

    Canovi, Elena; Kollar, Marcus; Eckstein, Martin

    2016-01-01

    Time-periodic driving provides a promising route toward engineering nontrivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable, noninteracting systems can synchronize with the driving into a nontrivial periodic motion, generic nonintegrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasiperiodic time evolution over many periods can also emerge in weakly interacting systems, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state. This behavior is the analog of prethermalization in quenched systems. The synchronized state can be described using a macroscopic number of approximate constants of motion. We corroborate these findings with numerical simulations for the driven Hubbard model.

  19. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems

    PubMed Central

    Demchak, Barry; Krüger, Ingolf

    2014-01-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime, thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime. PMID:25383258

  20. Data-Driven Assistance Functions for Industrial Automation Systems

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Niggemann, Oliver

    2015-11-01

    The increasing amount of data in industrial automation systems overburdens the user in process control and diagnosis tasks. One possibility to cope with these challenges consists of using smart assistance systems that automatically monitor and optimize processes. This article deals with aspects of data-driven assistance systems such as assistance functions, process models and data acquisition. The paper describes novel approaches for self-diagnosis and self-optimization, and shows how these assistance functions can be integrated in different industrial environments. The considered assistance functions are based on process models that are automatically learned from process data. Fault detection and isolation is based on the comparison of observations of the real system with predictions obtained by application of the process models. The process models are further employed for energy efficiency optimization of industrial processes. Experimental results are presented for fault detection and energy efficiency optimization of a drive system.

  1. Advances in Optimizing Weather Driven Electric Power Systems.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  2. Feedback Loop Regulation of SCAP/SREBP-1 by miR-29 Modulates EGFR Signaling-Driven Glioblastoma Growth.

    PubMed

    Ru, Peng; Hu, Peng; Geng, Feng; Mo, Xiaokui; Cheng, Chunming; Yoo, Ji Young; Cheng, Xiang; Wu, Xiaoning; Guo, Jeffrey Yunhua; Nakano, Ichiro; Lefai, Etienne; Kaur, Balveen; Chakravarti, Arnab; Guo, Deliang

    2016-08-01

    Dysregulated lipid metabolism is a characteristic of malignancies. Sterol regulatory element binding protein 1 (SREBP-1), a transcription factor playing a central role in lipid metabolism, is highly activated in malignancies. Here, we unraveled a link between miR-29 and the SCAP (SREBP cleavage-activating protein)/SREBP-1 pathway in glioblastoma (GBM) growth. Epidermal growth factor receptor (EGFR) signaling enhances miR-29 expression in GBM cells via upregulation of SCAP/SREBP-1, and SREBP-1 activates miR-29 expression via binding to specific sites in its promoter. In turn, miR-29 inhibits SCAP and SREBP-1 expression by interacting with their 3' UTRs. miR-29 transfection suppressed lipid synthesis and GBM cell growth, which were rescued by the addition of fatty acids or N-terminal SREBP-1 expression. Xenograft studies showed that miR-29 mimics significantly inhibit GBM growth and prolong the survival of GBM-bearing mice. Our study reveals a previously unrecognized negative feedback loop in SCAP/SREBP-1 signaling mediated by miR-29 and suggests that miR-29 treatment may represent an effective means to target GBM. PMID:27477273

  3. Closed-Loop Artificial Pancreas Systems: Physiological Input to Enhance Next-Generation Devices

    PubMed Central

    Kudva, Yogish C.; Carter, Rickey E.; Cobelli, Claudio

    2014-01-01

    To provide an understanding of both the preclinical and clinical aspects of closed-loop artificial pancreas systems, we provide a discussion of this topic as part of this two-part Bench to Clinic narrative. Here, the Bench narrative provides an in-depth understanding of insulin-glucose-glucagon physiology in conditions that mimic the free-living situation to the extent possible in type 1 diabetes that will help refine and improve future closed-loop system algorithms. In the Clinic narrative, Doyle and colleagues compare and evaluate technology used in current closed-loop studies to gain further momentum toward outpatient trials and eventual approval for widespread use. PMID:24757225

  4. Observations of Linear Polarization in a Solar Coronal Loop Prominence System Observed near 6173 Å

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Schou, Jesper; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel; Couvidat, Sébastien

    2014-05-01

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ~20% at an altitude of ~33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 1014 g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 1012 cm-3.

  5. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  6. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-08-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing. PMID:26737158

  7. Geometry-induced superdiffusion in driven crowded systems.

    PubMed

    Bénichou, Olivier; Bodrova, Anna; Chakraborty, Dipanjan; Illien, Pierre; Law, Adam; Mejía-Monasterio, Carlos; Oshanin, Gleb; Voituriez, Raphaël

    2013-12-27

    Recent molecular dynamics simulations of glass-forming liquids revealed superdiffusive fluctuations associated with the position of a tracer particle (TP) driven by an external force. Such an anomalous response, whose mechanism remains elusive, has been observed up to now only in systems close to their glass transition, suggesting that this could be one of its hallmarks. Here, we show that the presence of superdiffusion is in actual fact much more general, provided that the system is crowded and geometrically confined. We present and solve analytically a minimal model consisting of a driven TP in a dense, crowded medium in which the motion of particles is mediated by the diffusion of packing defects, called vacancies. For such nonglass-forming systems, our analysis predicts a long-lived superdiffusion which ultimately crosses over to giant diffusive behavior. We find that this trait is present in confined geometries, for example long capillaries and stripes, and emerges as a universal response of crowded environments to an external force. These findings are confirmed by numerical simulations of systems as varied as lattice gases, dense liquids, and granular fluids. PMID:24483787

  8. Universality Classes in Two-Component Driven Diffusive Systems

    NASA Astrophysics Data System (ADS)

    Popkov, V.; Schmidt, J.; Schütz, G. M.

    2015-08-01

    We study time-dependent density fluctuations in the stationary state of driven diffusive systems with two conserved densities . Using Monte-Carlo simulations of two coupled single-lane asymmetric simple exclusion processes we present numerical evidence for universality classes with dynamical exponents and (but different from the Kardar-Parisi-Zhang (KPZ) universality class), which have not been reported yet for driven diffusive systems. The numerical asymmetry of the dynamical structure functions converges slowly for some of the non-KPZ superdiffusive modes for which mode coupling theory predicts maximally asymmetric -stable Lévy scaling functions. We show that all universality classes predicted by mode coupling theory for two conservation laws are generic: they occur in two-component systems with nonlinearities in the associated currents already of the minimal order . The macroscopic stationary current-density relation and the compressibility matrix determine completely all permissible universality classes through the mode coupling coefficients which we compute explicitly for general two-component systems.

  9. Accelerator-Driven Systems for Nuclear Waste Transmutation

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    The renewed interest since 1990 in accelerator-driven subcritical systems for transmutation of commercial nuclear waste has evolved to focus on the issue of whether fast- or thermal-spectrum systems offer greater promise. This review addresses the issue by comparing the performance of the more completely developed thermal- and fast-spectrum designs. Substantial design information is included to allow an assessment of the viability of the systems compared. The performance criteria considered most important are (a) the rapidity of reduction of the current inventory of plutonium and minor actinide from commercial spent fuel, (b) the cost, and (c) the complexity. The liquid-fueled thermal spectrum appears to offer major advantages over the solid-fueled fast-spectrum system, making waste reduction possible with about half the capital requirement on a substantially shorter time scale and with smaller separations requirements.

  10. Driven harmonic oscillator as a quantum simulator for open systems

    SciTech Connect

    Piilo, Jyrki; Maniscalco, Sabrina

    2006-09-15

    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.

  11. Integrative Systems Biology for Data Driven Knowledge Discovery

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2015-01-01

    Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756

  12. The physics design of accelerator-driven transmutation systems

    SciTech Connect

    Venneri, F.

    1995-02-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power.

  13. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477

  14. Cushing Syndrome Due to ACTH-Secreting Pheochromocytoma, Aggravated by Glucocorticoid-Driven Positive-Feedback Loop

    PubMed Central

    Sakuma, Ikki; Higuchi, Seiichiro; Fujimoto, Masanori; Takiguchi, Tomoko; Nakayama, Akitoshi; Tamura, Ai; Kohno, Takashi; Komai, Eri; Shiga, Akina; Nagano, Hidekazu; Hashimoto, Naoko; Suzuki, Sawako; Mayama, Takafumi; Koide, Hisashi; Ono, Katsuhiko; Sasano, Hironobu; Tatsuno, Ichiro; Yokote, Koutaro

    2016-01-01

    Context: Pheochromocytoma is a catecholamine-producing tumor that originates from adrenal chromaffin cells and is capable of secreting various hormones, including ACTH. Case Description: A 56-year-old female presented with Cushingoid appearance and diabetic ketoacidosis. Endocrinological examinations demonstrated ectopic ACTH production with hypercortisolemia and excess urinary cortisol accompanied by elevated plasma and urine catecholamines. Computed tomography revealed a large left adrenal tumor with bilateral adrenal enlargement. Metaiodobenzylguanidine scintigraphy revealed abnormal accumulation in the tumor, which was eventually diagnosed as pheochromocytoma with ectopic ACTH secretion with subsequent manifestation of Cushing's syndrome. Ectopic ACTH secretion and catecholamine production were blocked by metyrapone treatment, whereas dexamethasone paradoxically increased ACTH secretion. Left adrenalectomy resulted in complete remission of Cushing's syndrome and pheochromocytoma. In Vitro Studies: Immunohistological analysis revealed that the tumor contained two functionally distinct chromaffin-like cell types. The majority of tumor cells stained positive for tyrosine hydroxylase (TH), whereas a minor population of ACTH-positive tumor cells was negative for TH. Furthermore, gene expression and in vitro functional analyses using primary tumor tissue cultures demonstrated that dexamethasone facilitated ACTH as well as catecholamine secretion with parallel induction of proopiomelanocortin (POMC), TH, and phenylethanolamine N-methyltransferase mRNA, supporting a glucocorticoid-dependent positive-feedback loop of ACTH secretion in vivo. DNA methylation analysis revealed that the POMC promoter of this tumor, particularly the E2F binding site, was hypomethylated. Conclusion: We present a case of ectopic ACTH syndrome associated with pheochromocytoma. ACTH up-regulation with paradoxical response to glucocorticoid, possibly through the hypomethylation of the POMC

  15. Critical quasienergy states in driven many-body systems

    NASA Astrophysics Data System (ADS)

    Bastidas, V. M.; Engelhardt, G.; Pérez-Fernández, P.; Vogl, M.; Brandes, T.

    2014-12-01

    We discuss singularities in the spectrum of driven many-body spin systems. In contrast to undriven models, the driving allows us to control the geometry of the quasienergy landscape. As a consequence, one can engineer singularities in the density of quasienergy states by tuning an external control. We show that the density of levels exhibits logarithmic divergences at the saddle points, while jumps are due to local minima of the quasienergy landscape. We discuss the characteristic signatures of these divergences in observables such as the magnetization, which should be measurable with current technology.

  16. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  17. Simple PID parameter tuning method based on outputs of the closed loop system

    NASA Astrophysics Data System (ADS)

    Han, Jianda; Zhu, Zhiqiang; Jiang, Ziya; He, Yuqing

    2016-04-01

    Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID parameter tuning method based on outputs of the closed loop system.

  18. Simple PID parameter tuning method based on outputs of the closed loop system

    NASA Astrophysics Data System (ADS)

    Han, Jianda; Zhu, Zhiqiang; Jiang, Ziya; He, Yuqing

    2016-05-01

    Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID parameter tuning method based on outputs of the closed loop system.

  19. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  20. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  1. In situ conversion process utilizing a closed loop heating system

    DOEpatents

    Sandberg, Chester Ledlie; Fowler, Thomas David; Vinegar, Harold J.; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  2. Data driven uncertainty evaluation for complex engineered system design

    NASA Astrophysics Data System (ADS)

    Liu, Boyuan; Huang, Shuangxi; Fan, Wenhui; Xiao, Tianyuan; Humann, James; Lai, Yuyang; Jin, Yan

    2016-05-01

    Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail. The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carried out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.

  3. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  4. Decoherence and Relaxation in Driven Circuit QED Systems

    SciTech Connect

    Andre, Stephan; Brosco, Valentina; Schoen, Gerd; Fedorov, Arkady; Shnirman, Alexander

    2008-11-07

    Recent experiments on quantum state engineering with superconducting circuits realized concepts originally introduced in the field of quantum optics. Motivated by one such experiment we investigate a Josephson qubit coupled to a slow LC oscillator with frequency much lower than the qubit's energy splitting. The qubit is ac-driven to perform Rabi oscillations, and the Rabi frequency is tuned to resonance with the oscillator. The properties of this driven circuit QED system depend strongly on relaxation and decoherence effects in the qubit. We investigate both one-photon and two-photon qubit-oscillator coupling, the latter being dominant at the symmetry point of the qubit. When the qubit driving frequency is blue detuned, we find that the system exhibits lasing behavior; for red detuning the qubit cools the oscillator. Similar behavior is expected in an accessible range of parameters for a Josephson qubit coupled to a nano-mechanical oscillator. In a different parameter regime, furthering the analogies between superconducting and quantum optical systems, we investigate Sisyphus damping, which is the key element of the Sisyphus cooling protocol, as well as its exact opposite, Sisyphus amplification.

  5. Evolutionary games of condensates in driven and dissipative bosonic systems

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-03-01

    Condensation is a collective behavior of particles observed in both classical and quantum physics. For example, when an equilibrated, dilute gas of bosonic particles is cooled to a temperature near absolute zero, the ground state becomes macroscopically occupied (Bose-Einstein condensation). Whether novel condensation phenomena occur far from equilibrium is a topic of vivid research. Only recently has it been proposed that a driven and dissipative gas of bosons can condense not only into a single, but also into multiple non-degenerate states. This phenomenon may occur when a system of non-interacting bosons is weakly coupled to a reservoir and is driven by an external time-periodic force (Floquet system). Coherence becomes negligible and the condensation is described by a Pauli master equation, which also arises in the evolutionary dynamics of classical agents. In our work, we apply concepts from evolutionary dynamics to determine the states that become condensates. This condensate selection is guided by the vanishing of relative entropy production. We find that the system of condensates never comes to rest: The occupation numbers of condensates oscillate, which we demonstrate for a rock-paper-scissors game of condensates. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich, Studienstiftung des Deutschen Volkes.

  6. Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster

    PubMed Central

    Yang, Yingying; Su, Zhongjing; Song, Xuhong; Liang, Bin; Zeng, Fanxing; Chang, Xiaolan; Huang, Dongyang

    2016-01-01

    The human DHRS4 gene cluster consists of DHRS4 and two immediately downstream homologous genes, DHRS4L2 and DHRS4L1, generated by evolutionarily gene-duplication events. We previously demonstrated that a head-to-head natural antisense transcript (NAT) of DHRS4, denoted DHRS4-AS1, regulates all three genes of the DHRS4 gene cluster. However, it is puzzling that DHRS4L2 and DHRS4L1 did not evolve their own specific NATs to regulate themselves, as it seems both have retained sequences highly homologous to DHRS4-AS1. In a search of the DHRS4-AS1 region for nearby enhancers, we identified an enhancer located 13.8 kb downstream of the DHRS4-AS1 transcriptional start site. We further showed, by using a chromosome conformation capture (3C) assay, that this enhancer is capable of physically interacting with the DHRS4-AS1 promoter through chromosomal looping. The enhancer produced an eRNA, termed AS1eRNA, that enhanced DHRS4-AS1 transcription by mediating the spatial interactions of the enhancer and DHRS4-AS1 promoter in cooperation with RNA polymerase II and p300/CBP. Moreover, the distributions of activating acetyl-H3 and H3K4me3 modifications were found to be greater at the DHRS4-AS1 promoter than at the homologous duplicated regions. We propose that AS1eRNA-driven DNA looping and activating histone modifications promote the expression of DHRS4-AS1 to economically control the DHRS4 gene cluster. PMID:26864944

  7. Testing of a controller for a hybrid capillary pumped loop thermal control system

    NASA Technical Reports Server (NTRS)

    Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave

    1989-01-01

    A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.

  8. Closed-loop structural stability for linear-quadratic optimal systems

    NASA Technical Reports Server (NTRS)

    Wong, P. K.; Athans, M.

    1975-01-01

    This paper contains an explicit parameterization of a subclass of linear constant gain feedback maps that never destabilize an originally open-loop stable system. These results can then be used to obtain several new structural stability results for multi-input linear-quadratic feedback optimal designs.

  9. Use of an open-loop system to increase physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effectiveness of an open-loop system that reinforces physical activity with TV watching to increase children’s physical activity. Non-overweight, sedentary boys and girls (8-12 y) were randomized to a group that received feedback of activity counts + reinforcement for physic...

  10. Hardware-in-the-loop testing of wireless systems in realistic environments.

    SciTech Connect

    Burkholder, R. J. (Ohio State University ElectroScience Laboratory); Mariano, Robert J.; Gupta, I. J. (Ohio State University ElectroScience Laboratory); Schniter, P. (Ohio State University ElectroScience Laboratory)

    2006-06-01

    This document describes an approach for testing of wireless systems in realistic environments that include intentional as well as unintentional radio frequency interference. In the approach, signal generators along with radio channel simulators are used to carry out hardware-in-the-loop testing. The channel parameters are obtained independently via channel sounding measurements and/or EM simulations.

  11. Plug nozzles: The ultimate customer driven propulsion system

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  12. Design of Stirling-driven vapor-compression system

    SciTech Connect

    Kagawa, N.

    1998-07-01

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling and industrial usage because of their potential to save energy. Especially, there are many environmental merits of Stirling-driven vapor-compression (SDVC) systems. This paper introduces a design method for the SDVC based on reliable mathematical methods for Stirling and Rankine cycles with reliable thermophysical information for refrigerants. The model treats a kinematic Stirling engine and a scroll compressor coupled by a belt. Some experimental coefficients are used to formulate the SDVC items. The obtained results show the performance behavior of the SDVC in detail. The measured performance of the actual system agrees with the calculated results. Furthermore, the calculated results indicate attractive SDVC performance using alternative refrigerants.

  13. Fluctuation theorem in driven nonthermal systems with quenched disorder

    SciTech Connect

    Reichhardt, Charles; Reichhardt, C J; Drocco, J A

    2009-01-01

    We demonstrate that the fluctuation theorem of Evans and Searles can be used to characterize the class of dynamics that arises in nonthermal systems of collectively interacting particles driven over random quenched disorder. By observing the frequency of entropy-destroying trajectories, we show that there are specific dynamical regimes near depinning in which this theorem holds. Hence the fluctuation theorem can be used to characterize a significantly wider class of non-equilibrium systems than previously considered. We discuss how the fluctuation theorem could be tested in specific systems where noisy dynamics appear at the transition from a pinned to a moving phase such as in vortices in type-II superconductors, magnetic domain walls, and dislocation dynamics.

  14. Electrical engineering and nontechnical design variables of multiple inductive loop systems for auditoriums.

    PubMed

    Alterovitz, Gil

    2004-01-01

    This research analyzed both engineering and nontechnical issues involved in the use of Induction Loop Amplification (ILA) devices in auditoriums or large gathering places for hard-of-hearing individuals. A variety of parameters need to be taken into account to determine an optimal shape/configuration for the ILA device. In many cases, an optimal configuration is different from those proposed for classroom use (Ross, 1969; Hodgson, 1986; Clevenger, 1992). Experimental results were obtained for a double-loop configuration in such a setting (a university gymnasium/auditorium in this case). The results demonstrate that a double-loop configuration is a viable possibility for auditorium use. Several variables using this configuration were examined, and experimentation was done. Various implications, including consequent nontechnical issues specific to this application, are discussed as well. Technical and nontechnical aspects of the ILA configuration need to be examined together when designing an optimal system. PMID:15304441

  15. Employing optical code division multiple access technology in the all fiber loop vibration sensor system

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin; Yen, Chih-Ta; Syu, Rong-Shun; Cheng, Hsu-Chih

    2013-12-01

    This study proposes a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) framework to access the vibration frequency of a test object on the all fiber loop vibration sensor (AFLVS). Each user possesses an individual SAC, and fiber Bragg grating (FBG) encoders/decoders using multiple FBG arrays were adopted, providing excellent orthogonal properties in the frequency domain. The system also mitigates multiple access interference (MAI) among users. When an optical fiber is bent to a point exceeding the critical radius, the fiber loop sensor becomes sensitive to external physical parameters (e.g., temperature, strain, and vibration). The AFLVS involves placing a fiber loop with a specific radius on a designed vibration platform.

  16. Human in the Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Seaman, Calvin H.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chambers) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere capable of 14.7 to 8 psi total pressure and 21 to 32% oxygen concentration, life support systems (food, air, and water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon, Mars). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international, industrial and academic partners.

  17. Implementation of a Vector-based Tracking Loop Receiver in a Pseudolite Navigation System

    PubMed Central

    So, Hyoungmin; Lee, Taikjin; Jeon, Sanghoon; Kim, Chongwon; Kee, Changdon; Kim, Taehee; Lee, Sanguk

    2010-01-01

    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near–far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage. PMID:22163552

  18. A Novel Open-Loop Tracking Strategy for Photovoltaic Systems

    PubMed Central

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system. PMID:24327803

  19. A novel open-loop tracking strategy for photovoltaic systems.

    PubMed

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system. PMID:24327803

  20. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  1. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder

    PubMed Central

    Wittenborn, A. K.; Rahmandad, H.; Rick, J.; Hosseinichimeh, N.

    2016-01-01

    Background Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. Method We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. Results The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Conclusions Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention. PMID:26621339

  2. Hardware-in-the-loop tow missile system simulator

    SciTech Connect

    Waldman, G.S.; Wootton, J.R.; Hobson, G.L.; Holder, D.L.

    1993-07-06

    A missile system simulator is described for use in training people for target acquisition, missile launch, and missile guidance under simulated battlefield conditions comprising: simulating means for producing a digital signal representing a simulated battlefield environment including at least one target movable therewithin, the simulating means generating an infrared map representing the field-of-view and the target; interface means for converting said digital signals to an infrared image; missile system hardware including the missile acquisition, tracking, and guidance portions thereof, said hardware sensing the infrared image to determine the location of the target in a field-of-view; and, image means for generating an infrared image of a missile launched at the target and guided thereto, the image means imposing the missile image onto the field-of-view for the missile hardware to acquire the image of the missile in addition to that of the target, and to generate guidance signals to guide the missile image to the target image, wherein the interfacing means is responsive to a guidance signal from the hardware to simulate, in real-time, the response of the missile to the guidance signal, the image means including a blackbody, laser means for irradiating the blackbody to heat it to a temperature at which it emits infrared radiation, and optic means for integrating the radiant image produced by heating the blackbody into the infrared map.

  3. An AC drive system for a battery driven moped

    SciTech Connect

    Nandi, S.; Saha, S.; Sharon, M.; Sundersingh, V.P.

    1995-12-31

    A petrol driven moped is converted to an electric one by replacing the petrol engine by a three phase 1.5 HR, AC squirrel cage induction motor drive system. The motor voltage rating selected is 200 V to keep the DC boost voltage level to a reasonable value.f the power source used is a high energy density, 24 V, 110 Ah, Ni-Zn battery. A modified indirect current controlled step-up chopper as well as a standard push-pull DC-DC boost converter is studied for the boost scheme. A simple three phase quasi-square wave inverter is designed along with suitable protection for driving the motor. Successful trial test of the system has been conducted at the laboratory.

  4. Classification of topological phases in periodically driven interacting systems

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2016-05-01

    We consider topological phases in periodically driven (Floquet) systems exhibiting many-body localization, protected by a symmetry G . We argue for a general correspondence between such phases and topological phases of undriven systems protected by symmetry Z ⋊G where the additional Z accounts for the discrete time-translation symmetry. Thus, for example, the bosonic phases in d spatial dimensions without intrinsic topological order [symmetry-protected topological (SPT) phases] are classified by the cohomology group Hd +1[Z ⋊G ,U (1 ) ] . For unitary symmetries, we interpret the additional resulting Floquet phases in terms of the lower-dimensional SPT phases that are pumped to the boundary during one time step. These results also imply the existence of novel symmetry-enriched topological (SET) orders protected solely by the periodicity of the drive.

  5. Paucity of attractors in nonlinear systems driven with complex signals.

    PubMed

    Pethel, Shawn D; Blakely, Jonathan N

    2011-04-01

    We study the probability of multistability in a quadratic map driven repeatedly by a random signal of length N, where N is taken as a measure of the signal complexity. We first establish analytically that the number of coexisting attractors is bounded above by N. We then numerically estimate the probability p of a randomly chosen signal resulting in a multistable response as a function of N. Interestingly, with increasing drive signal complexity the system exhibits a paucity of attractors. That is, almost any drive signal beyond a certain complexity level will result in a single attractor response (p=0). This mechanism may play a role in allowing sensitive multistable systems to respond consistently to external influences. PMID:21599268

  6. Dynamical response theory for driven-dissipative quantum systems

    NASA Astrophysics Data System (ADS)

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2016-03-01

    We discuss dynamical response theory of driven-dissipative quantum systems described by Markovian master equations generating semigroups of maps. In this setting thermal equilibrium states are replaced by nonequilibrium steady states, and dissipative perturbations are considered in addition to the Hamiltonian ones. We derive explicit expressions for the linear dynamical response functions for generalized dephasing channels and for Davies thermalizing generators. We introduce the notion of maximal harmonic response and compute it exactly for a single-qubit channel. Finally, we analyze linear response near dynamical phase transitions in quasifree open quantum systems. It is found that the effect of the dynamical phase transition shows up in a peak at the edge of the spectrum in the imaginary part of the dynamical response function.

  7. Data-driven modeling, control and tools for cyber-physical energy systems

    NASA Astrophysics Data System (ADS)

    Behl, Madhur

    Energy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity. This requires the use of control-oriented predictive models of an energy system's dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems. We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about

  8. A solar pond driven distillation and power production system

    NASA Astrophysics Data System (ADS)

    Johnson, D. H.; Leboeuf, C. M.; Waddington, D.

    In this paper a solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodynamic analysis of the energy and mass balances of the system has been performed and a performance model of the system has been developed. This has been used to size the system for the application of desalting saline tributaries of the Colorado River.

  9. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  10. Three tritium systems test assembly (TSTA) off-loop experiments

    SciTech Connect

    Talcott, C.L.; Anderson, J.L.; Carlson, R.V.; Coffin, D.O.; Walthers, C.R.; Hamerdinger, D.; Binning, K.; Trujillo, R.D.; Moya, J.S.; Hayashi, T.; Okuno, K.; Yamanishi, T.

    1993-11-01

    This report contains the results from three different experiments. Experiment one was initiated to establish the possibility of using a soft elastomer in ITER (International Thermonuclear Experimental Reactor) applications. Used in this application, the sealing material is anticipated to be in tritium at pressures in the range of 1 {times} 10{sup {minus}3} torr for many years. Here two O-ring valve seals each of Viton-A, Buna-N, and EDPM were exposed to 1, 40, or 400 torr of tritium while being cycled open and closed approximately 11,500 times in 192 days. EDPM is the least susceptible to damage from the tritium. Both Buna-N and Viton-A showed deterioration following the first cycling at 400 torr. Using commercially available materials, the Tritium Systems Test Assembly (TSTA) designed and built a Portable Water Removal (PWR) Unit to reduce tritium oxide emissions during glovebox breaches. The PWR removes 99.9% of all tritium and saves between 0.7 and 3.5 curies of tritium oxide from being stacked during each of the five tests. Finally, a series of tests are done to determine whether the presence of SF{sub 6} changes the ability of palladium and platinum to catalyze the T{sub 2}-O{sub 2} reaction to form T{sub 2}O. No deterioration of the catalytic activity is observed. This is important because the Tokamak Fusion Test Reactor (TFTR) requires information about the effect of SF{sub 6}, an electrical insulator, on the catalytic behavior of Pt and Pd in a T{sub 2} environment. This information is necessary for the accident analysis in the Safety Analysis Report for TFTR. This study is done using an apparatus supplied to TSTA by TFTR.

  11. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2009-01-01

    This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current. PMID:19963595

  12. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-04-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current. PMID:21179391

  13. A Closed Loop Wireless Power Transmission System Using a Commercial RFID Transceiver for Biomedical Applications

    PubMed Central

    Kiani, Mehdi

    2010-01-01

    This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current. PMID:19963595

  14. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-01-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current. PMID:21179391

  15. Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Douglas, Donya; Ku, Jentung; Kaya, Tarik

    1998-01-01

    This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.

  16. Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi

    A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.

  17. Low-temperature plasma technology as part of a closed-loop resource management system

    NASA Technical Reports Server (NTRS)

    Hetland, Melanie D.; Rindt, John R.; Jones, Frank A.; Sauer, Randal S.

    1990-01-01

    The results of this testing indicate that the agitated low-temperature plasma reactor system successfully converted carbon, hydrogen, and nitrogen into gaseous products at residence times that were about ten times shorter than those achieved by stationary processing. The inorganic matrix present was virtually unchanged by the processing technique. It was concluded that this processing technique is feasible for use as part of a close-looped processing resource management system.

  18. The model of the variable speed constant frequency closed-loop system operating in generating state

    NASA Astrophysics Data System (ADS)

    Ding, Daohong

    1986-10-01

    The variable speed constant frequency (USCF) electrical power system is a new type of aircraft power supply, which contains an alternating generator and a cycloconverter. This sums up the work of the cycloconverter and obtains four fundamental classes of circuit construction of the closed-loop system, which have twelve operating models. A mathematical model for each fundamental class of the circuit construction is introduced. These mathematical models can be used in digital simulation.

  19. Low-temperature plasma technology as part of a closed-loop resource management system

    NASA Astrophysics Data System (ADS)

    Hetland, Melanie D.; Rindt, John R.; Jones, Frank A.; Sauer, Randal S.

    1990-04-01

    The results of this testing indicate that the agitated low-temperature plasma reactor system successfully converted carbon, hydrogen, and nitrogen into gaseous products at residence times that were about ten times shorter than those achieved by stationary processing. The inorganic matrix present was virtually unchanged by the processing technique. It was concluded that this processing technique is feasible for use as part of a close-looped processing resource management system.

  20. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  1. NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Naumann, Charles B.; Sutton, William; Bryan, Thomas C.

    1991-01-01

    Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations.

  2. Solar pond-driven distillation and power production system

    SciTech Connect

    Johnson, D.H.; Leboeuf, C.M.; Waddington, D.

    1981-12-01

    A solar pond-driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodyanamic analysis of the energy and mass balances of the system has been performed and a performance model of the system has been developed. This model was used to compute the requirements for desalting several saline tributaries of the Colorado River.

  3. Solar pond-driven distillation and power production system

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Leboeuf, C. M.; Waddington, D.

    1981-12-01

    A solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodynamic analysis of the energy and mass balances of the system was performed and a performance model of the system is developed. This model is used to compute the requirements for desalting several saline tributaries of the Colorado River.

  4. Structural relaxation and rheological response of a driven amorphous system.

    PubMed

    Varnik, F

    2006-10-28

    The interplay between the structural relaxation and the rheological response of a simple amorphous system {a 80:20 binary Lennard-Jones mixture [W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994)]} is studied via molecular dynamics simulations. In the quiescent state, the model is well known for its sluggish dynamics and a two step relaxation of correlation functions at low temperatures. An ideal glass transition temperature of Tc=0.435 has been identified in the previous studies via the analysis of the system's dynamics in the framework of the mode coupling theory of the glass transition [W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995)]. In the present work, we focus on the question whether a signature of this ideal glass transition can also be found in the case where the system's dynamics is driven by a shear motion. Indeed, the following distinction in the structural relaxation is found: In the supercooled state, the structural relaxation is dominated by the shear at relatively high shear rates gamma, whereas at sufficiently low gamma the (shear-independent) equilibrium relaxation is recovered. In contrast to this, the structural relaxation of a glass is always driven by shear. This distinct behavior of the correlation functions is also reflected in the rheological response. In the supercooled state, the shear viscosity eta decreases with increasing shear rate (shear thinning) at high shear rates, but then converges toward a constant as the gamma is decreased below a (temperature-dependent) threshold value. Below Tc, on the other hand, the shear viscosity grows as eta proportional, etax 1/gamma, suggesting a divergence at gamma=0. Thus, within the accessible observation time window, a transition toward a nonergodic state seems to occur in the driven glass as the driving force approaches zero. As to the flow curves (stress versus shear rate), a plateau forms at low shear rates in the glassy phase. A consequence of this stress plateau for

  5. System Accommodation of Propylene Loop Heat Pipes For The Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Loop Heat Pipes (LHP) are used for precise temperature control for NASA Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) Instrument in a widely varying LEO thermal environment. Two propylene LHPs are utilized to provide separate thermal control for the Nd:YAG Lasers and the remaining avionics/detector components suite. Despite a rigorous engineering development and test plan to demonstrate the performance in the restrictive GLAS design, the flight units failed initial thermal vacuum acceptance testing at GSFC. Subsequent investigation revealed that compromises in the mechanical packaging of these systems resulted in inadequate charge levels for a concentric wick LHP. The redesign effort included larger compensation chambers that provide more fluid to the wick for start-up scenarios and highlighted the need to fully understand the limitations and accommodation requirements of new technologies in a system design application. Once again, seemingly minor departures from heritage configurations and limited resources led to performance and operational issues. This paper provides details into the GLAS LHP engineering development program and acceptance testing of the flight units, including the redesign effort.

  6. Statistics of the dissipated energy in driven diffusive systems.

    PubMed

    Lasanta, A; Hurtado, Pablo I; Prados, A

    2016-03-01

    Understanding the physics of non-equilibrium systems remains one of the major open questions in statistical physics. This problem can be partially handled by investigating macroscopic fluctuations of key magnitudes that characterise the non-equilibrium behaviour of the system of interest; their statistics, associated structures and microscopic origin. During the last years, some new general and powerful methods have appeared to delve into fluctuating behaviour that have drastically changed the way to address this problem in the realm of diffusive systems: macroscopic fluctuation theory (MFT) and a set of advanced computational techniques that make it possible to measure the probability of rare events. Notwithstanding, a satisfactory theory is still lacking in a particular case of intrinsically non-equilibrium systems, namely those in which energy is not conserved but dissipated continuously in the bulk of the system (e.g. granular media). In this work, we put forward the dissipated energy as a relevant quantity in this case and analyse in a pedagogical way its fluctuations, by making use of a suitable generalisation of macroscopic fluctuation theory to driven dissipative media. PMID:27007607

  7. Pilot-in-the-loop analysis of propulsive-only flight control systems

    NASA Technical Reports Server (NTRS)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1992-01-01

    Longitudinal control system architectures which directly couple flight stick motions to throttle commands for a multi-engine aircraft are presented. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles-only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of quantitative feedback theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control.

  8. A closed loop system for the conversion of uranium turnings to uranyl oxy-hydroxide

    SciTech Connect

    Forman, T.M.; Sauer, N.N.; Smith, W.H.; Ogden, G.

    1997-12-31

    The machine shops at Los Alamos National Laboratory generate up to 5 Kgs of uranium turnings daily. Presently, the turnings are packed in diesel fuel in 55 gallon drums and shipped off site for treatment and disposal. In response to a request for an in-situ generator treatment plan, a three-part closed loop system has been designed to dissolve the turnings and leave them in a non-reactive form for either storage or disposal. The system uses electrochemically generated sodium hypochlorite to dissolve the turnings, converting them to uranyl oxy-hydroxide precipitate. The precipitate is continually centrifuged to separate the liquids from solids. The supernant, spent hypochlorite, feeds into the electrochemical cell, the hypochlorite is regenerated and pumped back into the dissolution reactor. This closed loop system accomplishes both conversion of the uranium turnings to an acceptable form and minimizes the treatment wastestream.

  9. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  10. Flyer Velocity Characteristics of the Laser-Driven Miniflyer System

    SciTech Connect

    Gehr, R.J.; Harper, R.W.; Robbins, D.L.; Rupp, T.D.; Sheffield, S.A.; Stahl, D.B.

    1999-07-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity, are discussed.

  11. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  12. Example of a quadratic system with two cycles appearing in a homoclinic loop bifurcation

    NASA Astrophysics Data System (ADS)

    Rousseau, Christiane

    We give here a planar quadratic differential system depending on two parameters, λ, δ. There is a curve in the λ-δ space corresponding to a homoclinic loop bifurcation (HLB). The bifurcation is degenerate at one point of the curve and we get a narrow tongue in which we have two limit cycles. This is the first example of such a bifurcation in planar quadratic differential systems. We propose also a model for the bifurcation diagram of a system with two limit cycles appearing at a singular point from a degenerate Hopf bifurcation, and dying in a degenerate HLB. This model shows a deep duality between degenerate Hopf bifurcations and degenerate HLBs. We give a bound for the maximal number of cycles that can appear in certain simultaneous Hopf and homoclinic loop bifurcations. We also give an example of quadratic system depending on three parameters which has at one place a degenerate Hopf bifurcation of order 3, and at another place a Hopf bifurcation of order 2 together with a HLB. We characterize the planar quadratic systems which are integrable in the neighbourhood of a homoclinic loop.

  13. Natural circulation loop using liquid nitrogen for cryo-detection system

    SciTech Connect

    Choi, Yeon Suk

    2014-01-29

    The natural circulation loop is designed for the cryogenic insert in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Sensitivity is the key parameter of a FTICR mass spectrometer and the cryo-cooling of the pre-amplifier can reduce the thermal noise level and thereby improve the signal-to-noise ratio. The pre-amplifier consisted of non-magnetic materials is thermally connected to the cooling loop which is passing through the flange maintaining ultra-high vacuum in the ion cell. The liquid nitrogen passes through inside of the loop to cool the pre-amplifier indirectly. At the end, a cryocooler is located to re-condense nitrogen vapor generated due to the heat from the pre-amplifier. The circulating fluid removes heat from the pre-amplifier and transports it to the cryocooler or heat sink. In this paper the natural circulation loop for cryogenic pre-amplifier is introduced for improving the sensitivity of cryo-detector. In addition, the initial cool-down of the system by a cryocooler is presented and the temperature of the radiation shield is discussed with respect to the thickness of shield and the thermal radiation load.

  14. Recent Progress in Developing a Commercial Fiber-Loop Cavity Ringdown System

    NASA Astrophysics Data System (ADS)

    Siller, Brian; Matz, Ryan; Waechter, Helen

    2014-06-01

    High purity and precisely mixed liquid solutions are important to a variety of industrial processes, but sensors for such solutions often have significant drawbacks such as the need for regular calibration and the inability to continuously make real-time measurements. For some specialty liquids, such as cryogenic liquids or caustic solutions used in the semiconductor industry, direct sensors for composition and contamination don't exist at all, and indirect methods must be used instead. Fiber-loop cavity ring-down spectroscopy (FL-CRDS) can provide an ideal solution for many challenging applications. Since fibers are resistant to chemicals and extreme temperatures, a sensor based on FL-CRDS can be used in environments where other techniques and sensors can't work. In a FL-CRDS instrument, a laser is coupled into a loop of fiber, and a small amount of light is extracted from the loop to a detector with each pass. Spliced into the loop is a sensing element that allows the evanescent field of the light otherwise confined within the fiber core to interact with the surrounding environment. Results will be presented for detection of contaminants in liquids with several types of sensing elements: fiber tapers, side-polished fibers, and core-only fibers; each with a variety of geometries. Sampling systems for both continuous flow of small samples and for monitoring of static sample baths will also be presented.

  15. A combined NLP-differential evolution algorithm approach for the optimization of looped water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2011-08-01

    This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.

  16. Critical quasienergy states in driven many-body systems

    NASA Astrophysics Data System (ADS)

    Bastidas Valencia, Victor Manuel; Engelhardt, Georg; Perez-Fernandez, Pedro; Vogl, Malte; Brandes, Tobias

    2015-03-01

    A quantum phase transition (QPT) is characterized by non-analyticities of ground-state properties at the critical points. Recently it has been shown that quantum criticality emerges also in excited states of the system, which is referred to as an excited-state quantum phase transition (ESQPT). This kind of quantum criticality is intimately related to a level clustering at critical energies, which results in a logarithmic singularity in the density of states. Most of the previous studies on quantum criticality in excited states have been focused on time independent systems. Here we study spectral singularities that appear in periodically-driven many-body systems and show how the external control allows one to engineer geometrical features of the quasienergy landscape. In particular, we study singularities in the quasienergy spectrum of a fully-connected network consisting of two-level systems with time-dependent interactions. We discuss the characteristic signatures of these singularities in observables like the magnetization, which should be measurable with current technology. The authors gratefully acknowledge financial support by the DFG via grants BRA 1528/7, BRA 1528/8, SFB 910 (V.M.B., T.B.), the Spanish Ministerio de Ciencia e Innovacion (Grants No. FIS2011-28738-C02-01) and Junta de Andalucia (Grants No. FQM160).

  17. Network-driven design principles for neuromorphic systems

    PubMed Central

    Partzsch, Johannes; Schüffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems. PMID:26539079

  18. A Humidity-Driven Prediction System for Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  19. Floquet-Boltzmann equation for periodically driven Fermi systems

    NASA Astrophysics Data System (ADS)

    Genske, Maximilian; Rosch, Achim

    2015-12-01

    Periodically driven quantum systems can be used to realize quantum pumps, ratchets, artificial gauge fields, and novel topological states of matter. Starting from the Keldysh approach, we develop a formalism, the Floquet-Boltzmann equation, to describe the dynamics and the scattering of quasiparticles in such systems. The theory builds on a separation of time scales. Rapid, periodic oscillations occurring on a time scale T0=2 π /Ω are treated using the Floquet formalism and quasiparticles are defined as eigenstates of a noninteracting Floquet Hamiltonian. The dynamics on much longer time scales, however, is modeled by a Boltzmann equation which describes the semiclassical dynamics of the Floquet quasiparticles and their scattering processes. As the energy is conserved only modulo ℏ Ω , the interacting system heats up in the long-time limit. As a first application of this approach, we compute the heating rate for a cold-atom system, where a periodical shaking of the lattice was used to realize the Haldane model [G. Jotzu et al., Nature (London) 515, 237 (2014)], 10.1038/nature13915.

  20. Archetype Model-Driven Development Framework for EHR Web System

    PubMed Central

    Kimura, Eizen; Ishihara, Ken

    2013-01-01

    Objectives This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. Methods The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. Results We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. Conclusions We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems. PMID:24523991

  1. Network-driven design principles for neuromorphic systems.

    PubMed

    Partzsch, Johannes; Schüffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems. PMID:26539079

  2. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  3. Design and implementation of sensor systems for control of a closed-loop life support system

    NASA Technical Reports Server (NTRS)

    Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro

    1989-01-01

    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.

  4. Optical Phase-Locked Loops: Performance Investigation and Psk Synchronous Communication System Experiments

    NASA Astrophysics Data System (ADS)

    Atlas, Dogan A.

    1990-01-01

    This thesis study presents the design/analysis considerations, fundamental performance limitations and the experimental set-up of an optical phase-locked loop which is employed in phase-shift keying homodyne and synchronous heterodyne optical fiber communication system experiments. From an optical communication systems point of view, the characteristics of the lightwave sources to be used are important to investigate. Therefore, frequency modulation, frequency noise and intensity noise characteristics of 1320-nm (227 THz) laser-diode-pumped miniature Nd:YAG ring lasers have been investigated. The modulation and noise properties of these lasers are characterized both qualitatively and quantitatively. For applications such as optical phase-locking, phase-shift keying homodyne and synchronous heterodyne optical fiber and optical free -space communication systems, subcarrier multiplexing systems, and microwave phase array antennas diode-pumped Nd:YAG lasers are excellent lightwave sources. The reasons that make these lasers attractive candidates for such a variety of applications include the narrow laser linewidth, the uniformly flat frequency modulation response and the wide frequency modulation bandwidth. A stable second-order optical phase-locked loop has been constructed using two Nd:YAG lasers and a balanced optical receiver. The loop is designed so that the local oscillator laser locks to the frequency/phase variations of the transmitter laser. The frequency/phase tracking performance of the loop is limited by the quantum phase noise and mainly by the frequency drift induced by the temperature variations of both the transmitter and local oscillator laser cavities. Using the loop, optical phase -shift keying homodyne communication system experiments are demonstrated at modulation rates of 140 Mb/s and 2 Gb/s. The receiver sensitivity at 140 Mb/s is 25 photons/bit which is the highest sensitivity reported to date with any optical communication system. An optical

  5. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject.

    PubMed

    Kiani, Mehdi; Kwon, Ki Yong; Zhang, Fei; Oweiss, Karim; Ghovanloo, Maysam

    2011-01-01

    This paper presents in vivo experimental results for a closed loop wireless power transmission system to implantable devices on an awake behaving animal subject. In this system, wireless power transmission takes place across an inductive link, controlled by a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (TRF7960) operating at 13.56 MHz. Induced voltage on the implantable secondary coil is rectified, digitized by a 10-bit analog to digital converter, and transmitted back to the primary via back telemetry. Transmitter (Tx) and receiver (Rx) circuitry were mounted on the back of an adult rat with a nominal distance of ~7 mm between their coils. Our experiments showed that the closed loop system was able to maintain the Rx supply voltage at the designated 3.8 V despite changes in the coils' relative distance and alignment due to animal movements. The Tx power consumption changed between 410 ~ 560 mW in order to deliver 27 mW to the receiver. The open loop system, on the other hand, showed undesired changes in the Rx supply voltage while the Tx power consumption was constant at 660 mW. PMID:22256112

  6. Potential and benefits of closed loop ECLS systems on the ISS.

    PubMed

    Raatschen, W; Preiss, H

    2001-01-01

    To close open loops for long manned missions in space is a big challenge for aeronautic engineers throughout the world. The paper's focus is on the oxygen reclamation from carbon dioxide within a space habitat. A brief description of the function principle of a fixed alkaline electrolyzer, a solid amine carbon dioxide concentrator and a Sabatier reactor is given. By combining these devices to an air revitalization system the technical and economical benefits are explained. Astrium's Air Revitalization System (ARES) as a potential future part of the International Space Station's Environmental Control and Life Support System would close the oxygen loop. The amount of oxygen, needed for an ISS crew of seven astronauts could be provided by ARES. The upload of almost 1500 kg of water annually for oxygen generation through the onboard electrolyzer would be reduced by more than 1000 kg, resulting in savings of more than 30M$ per year. Additionally, the payload capacity of supply flights would be increased by this amount of mass. Further possibilities are addressed to combine ECLS mass flows with those of the power, propulsion and attitude control systems. Such closed loop approaches will contribute to ease long time missions (e. g. Mars, Moon) from a cost and logistic point of view. The hardware realization of Astrium's space-sized operating ARES is shown and test results of continuous and intermittent closed chamber tests are presented. PMID:11858271

  7. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  8. Sensor Driven Intelligent Control System For Plasma Processing

    SciTech Connect

    Bell, G.; Campbell, V.B.

    1998-02-23

    This Cooperative Research and Development Agreement (CRADA) between Innovative Computing Technologies, Inc. (IC Tech) and Martin Marietta Energy Systems (MMES) was undertaken to contribute to improved process control for microelectronic device fabrication. Process data from an amorphous silicon thin film deposition experiment was acquired to validate the performance of an intelligent, adaptive, neurally-inspired control software module designed to provide closed loop control of plasma processing machines used in the microelectronics industry. Data acquisition software was written using LabView The data was collected from an inductively coupled plasma (ICP) source, which was available for this project through LMES's RF/Microwave Technology Center. Experimental parameters measured were RF power, RF current and voltage on the antenna delivering power to the plasma, hydrogen and silane flow rate, chamber pressure, substrate temperature and H-alpha optical emission. Experimental results obtained were poly-crystallin silicon deposition rate, crystallinity, crystallographic orientation and electrical conductivity. Owing to experimental delays resulting from hardware failures, it was not possible to assemble a complete data for IC Tech use within the time and resource constraints of the CRADA. IC Tech was therefore not able to verify the performance of their existing models and control structures and validate model performance under this CRADA.

  9. Driven Langevin systems: fluctuation theorems and faithful dynamics

    NASA Astrophysics Data System (ADS)

    Sivak, David; Chodera, John; Crooks, Gavin

    2014-03-01

    Stochastic differential equations of motion (e.g., Langevin dynamics) provide a popular framework for simulating molecular systems. Any computational algorithm must discretize these equations, yet the resulting finite time step integration schemes suffer from several practical shortcomings. We show how any finite time step Langevin integrator can be thought of as a driven, nonequilibrium physical process. Amended by an appropriate work-like quantity (the shadow work), nonequilibrium fluctuation theorems can characterize or correct for the errors introduced by the use of finite time steps. We also quantify, for the first time, the magnitude of deviations between the sampled stationary distribution and the desired equilibrium distribution for equilibrium Langevin simulations of solvated systems of varying size. We further show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  10. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications.

    PubMed

    Blanco, P J; Feijóo, R A

    2013-05-01

    In the present work a computational model of the entire cardiovascular system is developed using heterogeneous mathematical representations. This model integrates different levels of detail for the blood circulation. The arterial tree is described by a one dimensional model in order to simulate the wave propagation phenomena that take place at the larger arterial vessels. The inflow and outflow locations of this 1D model are coupled with lumped parameter descriptions of the remainder part of the circulatory system, closing the loop. The four cardiac valves are considered using a valve model which allows for stenoses and regurgitation phenomena. In addition, full 3D geometrical models of arterial districts are embedded in this closed-loop circuit to model the local blood flow in specific vessels. This kind of detailed closed-loop network for the cardiovascular system allows hemodynamics analyses of patient-specific arterial district, delivering naturally the appropriate boundary conditions for different cardiovascular scenarios. An example of application involving the effect of aortic insufficiency on the local hemodynamics of a cerebral aneurism is provided as a motivation to reproduce, through numerical simulation, the hemodynamic environment in patients suffering from infective endocarditis and mycotic aneurisms. The need for incorporating homeostatic control mechanisms is also discussed in view of the large sensitivity observed in the results, noting that this kind of integrative modeling allows such incorporation. PMID:22902782

  11. Double Dissociation Between Action-driven and Perception-driven Conflict Resolution Invoking Anterior versus Posterior Brain Systems

    PubMed Central

    Schulte, Tilman; Müller-Oehring, Eva M.; Vinco, Shara; Hoeft, Fumiko; Pfefferbaum, Adolf; Sullivan, Edith V.

    2009-01-01

    The ability to select and integrate relevant information in the presence of competing irrelevant information can be enhanced by advance information to direct attention and guide response selection. Attentional preparation can reduce perceptual and response conflict, yet little is known about the neural source of conflict resolution, whether it is resolved by modulating neural responses for perceptual selection to emphasize task-relevant information or for action selection to inhibit pre-potent responses to interfering information. We manipulated perceptual information that either matched or did not match the relevant color feature of an upcoming Stroop stimulus and recorded hemodynamic brain responses to these events. Longer reaction times to incongruent than congruent color-word Stroop stimuli indicated conflict; however, conflict was even greater when a color cue correctly predicted the Stroop target’s color (match) than when it did not (nonmatch). A predominantly anterior network was activated for Stroop-match and a predominantly posterior network was activated for Stroop-nonmatch. Thus, when a stimulus feature did not match the expected feature, a perceptually-driven posterior attention system was engaged, whereas when interfering, automatically-processed semantic information required inhibition of pre-potent responses, an action-driven anterior control system was engaged. These findings show a double dissociation of anterior and posterior cortical systems engaging in different types of control for perceptually-driven and action-driven conflict resolution. PMID:19573610

  12. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  13. Control Loop Tuning and Surge Response for Hanford WTP Melter Offgas Systems

    SciTech Connect

    SMITH, FG III

    2004-06-14

    This report describes control loop tuning in models of the high level waste (HLW) melter offgas system, the low activity waste (LAW) melter offgas system and the HLW Pulse Jet Ventilation system and an assessment of the response to steam surges in both melter offgas systems. The three offgas systems were modeled using the Aspen Custom Modeler (ACM) software. The ACM models have been recently updated. Flowsheets of the system models used in this study are provided in Appendix D. To facilitate testing, these flowsheets represent somewhat simplified versions of the full models. For example, the HLW and LAW vessel ventilation systems have been represented as fixed air sources that provide a constant gas flow and specified air surges. Similarly, the six tanks and individual pulse-jet air sources in the HLW Pulse Jet Ventilation system are represented as a constant air source for control loop tuning purposes. The second LAW melter system has also been represented as a constant flow air source and several other simplifications such as removing HLW and LAW control interlocks, submerged bed scrubber bypass lines, and pressure relief valves have been made.

  14. New trends in diabetes management: mobile telemedicine closed-loop system.

    PubMed

    Hernando, M Elena; Gómez, Enrique J; Gili, Antonio; Gómez, Mónica; García, Gema; del Pozo, Francisco

    2004-01-01

    The rapid growth and development of information technologies over recent years, in the areas of mobile and wireless technologies is shaping a new technological scenario of telemedicine in diabetes. This telemedicine scenario can play an important role for further acceptance by diabetic patients of the existing continuous glucose monitoring systems and insulin pumps with the final goal of improving current therapeutic procedures. This paper describes a Personal Smart Assistant integrated in a multi-access telemedicine architecture for the implementation of a mobile telemedicine closed-loop system for diabetes management. The system is being evaluated within the European Union project named INCA ("Intelligent Control Assistant for Diabetes"). PMID:15718596

  15. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  16. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-12-31

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  17. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  18. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    PubMed Central

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  19. OBSERVATIONS OF LINEAR POLARIZATION IN A SOLAR CORONAL LOOP PROMINENCE SYSTEM OBSERVED NEAR 6173 Å

    SciTech Connect

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel; Schou, Jesper; Couvidat, Sébastien

    2014-05-10

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  20. Helioseismic and Magnetic Imager Observations of Linear Polarization from a Loop Prominence System

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Schou, Jesper; Martinez Oliveros, Juan Carlos; Hudson, Hugh S.; Krucker, Sam; Bain, Hazel; Couvidat, Sebastien

    2014-06-01

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to 20% at an altitude of 33 Mm, about the maximal amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2x10^14 g. At 15 Mm altitude, the brightest part of the loop was 3(+/-0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm), probably thermal emission. We estimated the free electron density of the white-light loop system to possibly be as high as 1.8x10^12 cm^-3.

  1. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  2. Closing the Loop with Sensors in Commercial Building Systems: Applying Lessons from Automotive Vehicles

    NASA Astrophysics Data System (ADS)

    Mantese, Joseph

    2011-08-01

    Automotive systems have evolved extensively over the past 50 years, providing a fully integrated system of sub-systems that work in concert for optimal vehicle level closed loop control. In this talk we look at several automotive sub-systems: stability and control, safety and security, emissions and comfort, diagnostics and maintenance, infotainment and communications; with an eye toward understanding their technology drivers and associated value propositions. Conversely, we examine how commercial building systems currently are represented as a collection of sub-systems that often work independently of each other for local optimization, often relying upon open loop control systems developed and installed decades ago. Reasoning primarily by analogy we explore opportunities for energy and efficiency, comfort and environment, and safety/security; asking whether there is sufficient value associated with a new class of building sensors and how those technologies might be brought to bear in improving performance. Finally, we examine the fundamental architecture of detection systems built upon sensing elements, with the aim of understanding trade-offs between: detection, false alarm rate, power, and cost.

  3. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    NASA Astrophysics Data System (ADS)

    Naidu, M. C. A.; Nolakha, Dinesh; Saharkar, B. S.; Kavani, K. M.; Patel, D. R.

    2012-11-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of "Open loop, auto reversing liquid nitrogen based thermal system". System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  4. OPIC: Ontology-driven Patient Information Capturing system for epilepsy.

    PubMed

    Sahoo, Satya S; Zhao, Meng; Luo, Lingyun; Bozorgi, Alireza; Gupta, Deepak; Lhatoo, Samden D; Zhang, Guo-Qiang

    2012-01-01

    The widespread use of paper or document-based forms for capturing patient information in various clinical settings, for example in epilepsy centers, is a critical barrier for large-scale, multi-center research studies that require interoperable, consistent, and error-free data collection. This challenge can be addressed by a web-accessible and flexible patient data capture system that is supported by a common terminological system to facilitate data re-usability, sharing, and integration. We present OPIC, an Ontology-driven Patient Information Capture (OPIC) system that uses a domain-specific epilepsy and seizure ontology (EpSO) to (1) support structured entry of multi-modal epilepsy data, (2) proactively ensure quality of data through use of ontology terms in drop-down menus, and (3) identify and index clinically relevant ontology terms in free-text fields to improve accuracy of subsequent analytical queries (e.g. cohort identification). EpSO, modeled using the Web Ontology Language (OWL), conforms to the recommendations of the International League Against Epilepsy (ILAE) classification and terminological commission. OPIC has been developed using agile software engineering methodology for rapid development cycles in close collaboration with domain expert and end users. We report the result from the initial deployment of OPIC at the University Hospitals Case Medical Center (UH CMC) epilepsy monitoring unit (EMU) as part of the NIH-funded project on Sudden Unexpected Death in Epilepsy (SUDEP). Preliminary user evaluation shows that OPIC has achieved its design objectives to be an intuitive patient information capturing system that also reduces the potential for data entry errors and variability in use of epilepsy terms. PMID:23304354

  5. Fiber-coupled laser-driven flyer plates system

    SciTech Connect

    Zhao Xinghai; Zhao Xiang; Gao Yang; Shan Guangcun

    2011-04-15

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 {mu}m and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  6. Drive system for engine-driven light vehicles

    SciTech Connect

    Matsutoh, T.; Wakatsuki, G.; Kitamura, Y.; Ishihara, T.

    1986-08-05

    A drive system is described for use in a light vehicle including an engine having a crankshaft and a wheel, the drive system including a friction roller disposed for frictional engagement with the wheel for transmitting the rotation of the engine to the wheel to the drive system being adapted to transmit the rotation of the wheel,the engine through the friction roller at the start of the engine. The drive system consists of: a drive shaft extending parallel with the crankshaft, the friction roller being supported on the drive shaft to be rotatively driven thereby; a power transmission means interposed between the drive shaft and the crankshaft, for transmitting the rotation of the drive shaft to the crankshaft with a given ratio of speed change appropriate for starting the engine; a one-way clutch engaging with the power transmission means and adapted to transmit only the rotation of the drive shaft to the crankshaft, whereby the rotation of the drive shaft is transmitted to the crankshaft through the power transmission means and the one-way clutch at the start of the engine; and a platetary gear assembly coupled to the power transmission means and adapted to transmit the rotation of the crankshaft to the drive shaft through the power transmission means with a given reduction ratio. The planetary gear assembly includes a centrifugal clutch disposed on the crankshaft for rotation therewith, the centrifugal clutch being adapted to transmit the rotation of the crankshaft to the drive shaft when the rotational speed of the crankshaft exceeds a predetermined value.

  7. MAGNETOHYDRODYNAMIC SEISMOLOGY OF A CORONAL LOOP SYSTEM BY THE FIRST TWO MODES OF STANDING KINK WAVES

    SciTech Connect

    Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D.; Erdélyi, R.; Srivastava, A. K.; Dwivedi, B. N.

    2015-02-01

    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.

  8. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model

    PubMed Central

    Bayraktar, Meriç; Männer, Jörg

    2014-01-01

    The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling) to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops) in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process toward the generation of only D- or L-loops, respectively. Our data are discussed with respect to observations made in biological “models.” We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces toward a biased generation of D- or L-loops. PMID

  9. Evaluating the Performance of a Novel Embedded Closed-loop System.

    PubMed

    Leelarathna, Lalantha; Thabit, Hood; Allen, Janet M; Nodale, Marianna; Wilinska, Malgorzata E; Powell, Kevin; Lane, Stephen; Evans, Mark L; Hovorka, Roman

    2014-03-24

    The objective was to assess the reliability of a novel automated closed-loop glucose control system developed within the AP@home consortium in adults with type 1 diabetes. Eight adults with type 1 diabetes on insulin pump therapy (3 men; ages 40.5 ± 14.3 years; HbA1c 8.2 ± 0.8%) participated in an open-label, single-center, single-arm, 12-hour overnight study performed at the clinical research facility. A standardized evening meal (80 g CHO) accompanied by prandial insulin boluses were given at 19:00 followed by an optional snack of 15 g at 22:00 without insulin bolus. Automated closed-loop glucose control was started at 19:00 and continued until 07:00 the next day. Basal insulin delivery (Accu-Chek Spirit, Roche) was automatically adjusted by Cambridge model predictive control algorithm, running on a purpose-built embedded device, based on real-time continuous glucose monitor readings (Dexcom G4 Platinum). Closed-loop system was operational as intended over 99% of the time. Overnight plasma glucose levels (22:00 to 07:00) were within the target range (3.9 to 8.0 mmol/l) for 75.4% (37.5, 92.9) of the time without any time spent in hypoglycemia (<3.9 mmol/l). Mean overnight glucose was 7.8 ± 1.3 mmol/l. For the entire 12-hour closed-loop period (19:00 until 07:00) plasma glucose levels were within the target range (3.9 to 10.0 mmol/l) for 84.4% (63.3, 100) of time. There were no adverse events noted during the trial. We observed a high degree of reliability of the automated closed-loop system. The time spent in target glucose level overnight was comparable to results of previously published studies. Further developments to miniaturize the system for home studies are warranted. PMID:24876577

  10. Efficient Computation of Closed-loop Frequency Response for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1997-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, full-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open and closed loop loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, a speed-up of almost two orders of magnitude was observed while accuracy improved by up to 5 decimal places.

  11. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  12. Ultraintense Laser-Driven Relativistic Hydrodynamics for Plane Symmetric Systems

    NASA Astrophysics Data System (ADS)

    Talamo, James

    We consider the relativistic hydrodynamics of a plane symmetric, charged fluid system driven by an ultra-violent, ultra-intense laser. The resulting particle motion will be relativistic due to the strength of the laser. The fluid will accelerate violently with respect to an observer in the laboratory, so although the arena for the evolution is a smooth Minkowski spacetime, methods of general relativity will be invoked. Many systems in relativity can be cast into field theories, and we first extend the variational formulation of special relativity to laser-matter interactions. From this, a full set of four Euler equations arise that govern the hydrodynamics of a general 4-dimensional laser-matter system. The plane symmetry, however, naturally gives rise to two Killing vectors. This allows for a 2+2 reduction process to be used to analyze the system. This will allow for a reformulation of the 4-dimensional system of interacting particles as a 2-dimensional system of interacting plasma sheets. The transverse particle motion is shown to produce a change in the "effective mass" of the plasma sheets, which allows one to consider the sheets as a single entity. To achieve this, we first give the details of this 2+2 formalism and show how it can be used to write the underlying space time as a product of a base manifold and transverse Euclidean planes. We then establish a natural isomorphism between the geometrical objects (vectors, covectors, and tensors) on these manifolds. By examining the effects of this procedure in the LAB and comoving coordinate systems, we establish a coordinate transformation between them. Finally, we apply the results of the 2+2 split to the 4-dimensional Euler equations, which admit two constants of motion. This allows for us to define a plasma sheet as an equivalence class of particles whose spacetime positions differ only longitudinally and define a sheet proper time. Furthermore, the notion of particle thermodynamics can be, and is, generalized

  13. Solar flares and avalanches in driven dissipative systems

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.; Mctiernan, J. M.; Bromund, Kenneth R.

    1993-01-01

    The contention of Lu and Hamilton (1991) that the energy release process in solar flares can be understood as avalanches of many small reconnection events is further developed. The dynamics of the complex magnetized plasma of solar active regions is modeled with a simple driven dissipative system, consisting of a vector field with local instabilities that cause rapid diffusion of the field. It is argued that the avalanches in this model are analogous to solar flares. The distributions of avalanches in this model are compared with the solar flare frequency distributions obtained from ISEE 3/ICE satellite observations. Quantitative agreement is found with the energy, peak luminosity, and duration distributions over four orders of magnitude in flare energy, from the largest flares down to the completeness limit of the observations. It is predicted that the power-law solar flare frequency distributions will be found to continue downward with the same logarithmic slopes to an energy of about 3 x 10 exp 25 ergs and duration of about 0.3 s, with deviations from power-law behavior below these values.

  14. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems

    SciTech Connect

    Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

    1998-06-27

    ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

  15. Application of system identification techniques to an rf cavity tuning loop

    SciTech Connect

    Mestha, L.K. ); Planner, C.W. )

    1990-11-01

    Modern system identification is applied to rf cavity tuning on the ISIS synchrotron. Four types of test signals are investigated to assess their suitability for real time measurement in an accelerator environment. The Pseudo Random Binary Signal (PRBS) appears to be the most advantageous. Measurements under normal operating conditions allow automatic identification for a self-adapting loop. The interactive software MATLAB is used to process the data and the identified model is represented in pole-zero form. The model shows good correlation with system performance. 6 refs., 7 figs.

  16. Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoheng; Hu, Kun; Chung, Kwok-wai

    2016-08-01

    In this paper, a nonlinear analysis is performed on a closed-loop system of articulated heavy vehicles with driver steering control. The nonlinearity arises from the nonlinear cubic tire force model. An integration method is employed to derive an analytical periodic solution of the system in the neighbourhood of the critical speed. The results show that excellent accuracy can be achieved for the calculation of periodic solutions arising from Hopf bifurcation of the vehicle motion. A criterion is obtained for detecting the Bautin bifurcation which separates branches of supercritical and subcritical Hopf bifurcations. The integration method is compared to the incremental harmonic balance method in both supercritical and subcritical scenarios.

  17. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  18. Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror.

    PubMed

    Starikov, F A; Kochemasov, G G; Koltygin, M O; Kulikov, S M; Manachinsky, A N; Maslov, N V; Sukharev, S A; Aksenov, V P; Izmailov, I V; Kanev, F Yu; Atuchin, V V; Soldatenkov, I S

    2009-08-01

    The phase correction of a vortex laser beam is undertaken in the closed-loop adaptive system including a Hartmann-Shack wavefront sensor with singular reconstruction technique and a bimorph piezoceramic mirror. After correction the vortex doughnutlike beam is focused into a beam with bright axial spot that considerably increases the Strehl ratio and optical system resolution. Since the phase break cannot be exactly reproduced on the flexible mirror surface, off-axis vortices appear in the far field at the beam periphery. PMID:19649065

  19. FREQ: A computational package for multivariable system loop-shaping procedures

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  20. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable

  1. Latest developments on the loop control system of AdOpt@TNG

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gaessler, Wolfgang; Cecconi, Massimo; Ragazzoni, Roberto; Puglisi, Alfio T.; De Bonis, Fulvio

    2004-10-01

    The Adaptive Optics System of the Galileo Telescope (AdOpt@TNG) is the only adaptive optics system mounted on a telescope which uses a pyramid wavefront snesor and it has already shown on sky its potentiality. Recently AdOpt@TNG has undergone deep changes at the level of its higher orders control system. The CCD and the Real Time Computer (RTC) have been substituted as a whole. Instead of the VME based RTC, due to its frequent breakdowns, a dual pentium processor PC with Real-Time-Linux has been chosen. The WFS CCD, that feeds the images to the RTC, was changed to an off-the-shelf camera system from SciMeasure with an EEV39 80x80 pixels as detector. While the APD based Tip/Tilt loop has shown the quality on the sky at the TNG site and the ability of TNG to take advantage of this quality, up to the diffraction limit, the High-Order system has been fully re-developed and the performance of the closed loop is under evaluation to offer the system with the best performance to the astronomical community.

  2. Multi-loop Control System Design for Biodiesel Process using Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Patle, Dipesh S.; Z, Ahmad; Rangaiah, G. P.

    2015-06-01

    Biodiesel is one of the promising liquid fuels for future due to its advantages such as renewability and eco-friendliness. This manuscript describes the development of a multi-loop control system design for a comprehensive biodiesel process using waste cooking oil. Method for controlled variable-manipulated variable (CV-MV) pairings are vital for the stable, effective and economical operation of the process. Liquid recycles, product quality requirements and effective inventory control pose tough challenges to the safe operation of the biodiesel process. A simple and easy to apply effective RGA method [Xiong Q, Cai W J and He M J 2005 A practical loop pairing criterion for multivariable processes Journal of Process Control vol. 15 pp 741-747.] is applied to determine CV-MV pairings i.e. control configuration design for the bioprocess. This method uses steady state gain as well as bandwidth information of the process open loop transfer function to determine input-output pairings.

  3. Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    PubMed Central

    Kriete, Andres; Bosl, William J.; Booker, Glenn

    2010-01-01

    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype. PMID:20585546

  4. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    SciTech Connect

    Lin, Y. J.

    1999-01-13

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system

  5. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations. PMID:23767588

  6. Dynamics and universality in noise-driven dissipative systems

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; Demler, Eugene; Giamarchi, Thierry; Altman, Ehud

    2012-05-01

    We investigate the dynamical properties of low-dimensional systems, driven by external noise sources. Specifically we consider a resistively shunted Josephson junction and a one-dimensional quantum liquid in a commensurate lattice potential, subject to 1/f noise. In absence of nonlinear coupling, we have shown previously that these systems establish a nonequilibrium critical steady state [Dalla Torre, Demler, Giamarchi, and Altman, Nat. Phys.1745-247310.1038/nphys1754 6, 806 (2010)]. Here, we use this state as the basis for a controlled renormalization group analysis using the Keldysh path integral formulation to treat the nonlinearities: the Josephson coupling and the commensurate lattice. The analysis to first order in the coupling constant indicates transitions between superconducting and localized regimes that are smoothly connected to the respective equilibrium transitions. However, at second order, the back action of the mode coupling on the critical state leads to renormalization of dissipation and emergence of an effective temperature. In the Josephson junction, the temperature is parametrically small allowing to observe a universal crossover between the superconducting and insulating regimes. The I-V characteristics of the junction displays algebraic behavior controlled by the underlying critical state over a wide range. In the noisy one-dimensional liquid, the generated dissipation and effective temperature are not small as in the junction. We find a crossover between a quasilocalized regime dominated by dissipation and another dominated by temperature. However, since in the thermal regime the thermalization rate is parametrically small, signatures of the nonequilibrium critical state may be seen in transient dynamics.

  7. Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1991-01-01

    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).

  8. A system for neural recording and closed-loop intracortical microstimulation in awake rodents.

    PubMed

    Venkatraman, Subramaniam; Elkabany, Ken; Long, John D; Yao, Yimin; Carmena, Jose M

    2009-01-01

    There is growing interest in intracortical microstimulation as a means of providing sensory input in neuroprosthetic systems. We believe that precisely controlling the timing and parameters of stimulation in closed loop can significantly improve the efficacy of this technique. Here, we present a system for closed-loop microstimulation in awake rodents chronically implanted with multielectrode arrays. The system interfaces with existing commercial recording and stimulating hardware. Using custom-made hardware, we can stimulate and record from electrodes on the same implanted array and significantly reduce the stimulation artifact. Stimulation sequences can either be preprogrammed or triggered by neural or behavioral events. Specifically, this system can provide feedback stimulation in response to action potentials or features in the local field potential recorded on any of the electrodes within 15 ms. It can also trigger stimulation based on behavioral events, such as real-time tracking of rat whiskers captured with high-speed video. We believe that this system, which can be recreated easily, will help to significantly refine the technique of intracortical microstimulation and advance the field of neuroprostheses. PMID:19224714

  9. In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose I.; Na-Nakornpanom, Arthur

    2012-01-01

    The Tropospheric Emission Spectrometer (TES) instrument heat rejection system has been operating in space for nearly 8 years since launched on NASA's EOS Aura Spacecraft. The instrument is an infrared imaging fourier transform spectrometer with spectral coverage of 3.2 to 15.4 microns. The loop heat pipe (LHP) based heat rejection system manages all of the instrument components waste heat including the two mechanical cryocoolers and their drive electronics. Five propylene LHPs collect and transport the instrument waste heat to the near room temperature nadir viewing radiators. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. Focal plane decontamination cycles require power cycling both cryocoolers which also requires the two cryocooler LHPs to turn off and on during each cycle. To date, the cryocooler LHPs have undergone 24 start-ups in orbit successfully. This paper reports on the TES cryocooler loop heat pipe based heat rejection system performance. After a brief overview of the instrument thermal design, the paper presents detailed data on the highly successful space operation of the loop heat pipes since instrument turn-on in 2004. The data shows that the steady-state and transient operation of the LHPs has not changed since 2004 and shows consistent and predictable performance. The LHP based heat rejection system has provided a nearly constant heat rejection heat sink for all of its equipment which has led to exceptional overall instrument performance with world class science.

  10. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  11. Insulin patch pumps: their development and future in closed-loop systems.

    PubMed

    Anhalt, Henry; Bohannon, Nancy J V

    2010-06-01

    Steady progress is being made toward the development of a so-called "artificial pancreas," which may ultimately be a fully automated, closed-loop, glucose control system comprising a continuous glucose monitor, an insulin pump, and a controller. The controller will use individualized algorithms to direct delivery of insulin without user input. A major factor propelling artificial pancreas development is the substantial incidence of-and attendant patient, parental, and physician concerns about-hypoglycemia and extreme hyperglycemia associated with current means of insulin delivery for type 1 diabetes mellitus (T1DM). A successful fully automated artificial pancreas would likely reduce the frequency of and anxiety about hypoglycemia and marked hyperglycemia. Patch-pump systems ("patch pumps") are likely to be used increasingly in the control of T1DM and may be incorporated into the artificial pancreas systems of tomorrow. Patch pumps are free of tubing, small, lightweight, and unobtrusive. This article describes features of patch pumps that have been approved for U.S. marketing or are under development. Included in the review is an introduction to control algorithms driving insulin delivery, particularly the two major types: proportional integrative derivative and model predictive control. The use of advanced algorithms in the clinical development of closed-loop systems is reviewed along with projected next steps in artificial pancreas development. PMID:20515308

  12. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. PMID:22075387

  13. Digital Lock-In Amplifier Based Ground Loop Monitoring System for Magnetically Confined Plasma Devices

    NASA Astrophysics Data System (ADS)

    Connelly, Timothy; Schneider, Hans

    2004-11-01

    The National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab (PPPL) currently uses an analog lock-in amplifier in its Ground Fault Monitor (GFM) system for ground loop detection. For the forthcoming National Compact Stellerator Experiment, a new GFM is currently under development. The current GFM for NSTX is a heritage system originally designed for the Tokamak Fusion Test Reactor and has since had significant enhancements of increased Loop Fault Sensitivity, improved operator interface, and data archiving. A digital GFM may further increase operational performance while adding new features. The digital system would run on a Personal Computer with National Instruments data acquisition hardware along with the tightly integrated LabVIEW software. LabVIEW's Lock-In Amplifier and Digital Signal Processing building blocks saved a significant amount of development time. The primary goal of the research was to determine the feasibility of a LabVIEW based GFM on a bench test setup and, time permitting, in-situ testing on NSTX. Secondary goals include: evaluation of performance of digital versus existing analog system, assessing the use of software implementations of filters, spectral analysis of received signals and data archiving.

  14. Experimental Demonstration of a Novel Heat Exchange Loop Used for Oscillating Flow Systems

    NASA Astrophysics Data System (ADS)

    Gao, B.; Wu, Z. H.; Luo, E. C.; Dai, W.

    2008-03-01

    This paper describes a non-resonant self-circulating heat exchanger which uses a pair of check valves to transform oscillating flow into steady flow that allows the oscillating flow system's own working gas to go through a physically remote high-temperature or cold-temperature heat source. Unlike traditional heat exchangers used in thermoacoustic systems, the length of the non-resonant self-circulating heat exchanger is not limited by the peak-to-peak displacement. In addition, it is also different from the resonant self-circulating heat exchanger that needs a specific resonant length. This invention may lead to easy design and fabrication of heat exchangers for oscillating-flow refrigeration system with large capacity. To verify this idea, we have built an experimental system by incorporating such a heat exchanger loop with a mechanical pressure wave generator. Measurements of heat transfer of the heat exchanger loop under different operating conditions including mean pressure, and operating frequency, etc. have been made. Our experiments have demonstrated its feasibility and flexibility for practical applications.

  15. A closed-loop compressive-sensing-based neural recording system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S.; Hsiao, Steven; Tran, Trac D.; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    Objective. This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. Approach. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Main results. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm2/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Significance. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  16. Application of Burnable Absorbers in an Accelerator-Driven System

    SciTech Connect

    Wallenius, Jan; Tucek, Kamil; Carlsson, Johan; Gudowski, Waclaw

    2001-01-15

    The application of burnable absorbers (BAs) to minimize power peaking, reactivity loss, and capture-to-fission probabilities in an accelerator-driven waste transmutation system has been investigated. Boron-10-enriched B{sub 4}C absorber rods were introduced into a lead-bismuth-cooled core fueled with transuranic (TRU) discharges from light water reactors to achieve the smallest possible power peakings at beginning-of-life (BOL) subcriticality level of 0.97. Detailed Monte Carlo simulations show that a radial power peaking equal to 1.2 at BOL is attainable using a four-zone differentiation in BA content. Using a newly written Monte Carlo burnup code, reactivity losses were calculated to be 640 pcm per percent TRU burnup for unrecycled TRU discharges. Comparing to corresponding values in BA-free cores, BA introduction diminishes reactivity losses in TRU-fueled subcritical cores by {approx}20%. Radial power peaking after 300 days of operation at 1200-MW thermal power was <1.75 at a subcriticality level of {approx}0.92, which appears to be acceptable, with respect to limitations in cladding and fuel temperatures. In addition, the use of BAs yields significantly higher fission-to-capture probabilities in even-neutron-number nuclides. Fission-to-absorption probability ratio for {sup 241}Am equal to 0.33 was achieved in the configuration studied. Hence, production of the strong alpha-emitter {sup 242}Cm is reduced, leading to smaller fuel-swelling rates and pin pressurization. Disadvantages following BA introduction, such as increase of void worth and decrease of Doppler feedback in conjunction with small values of {beta}{sub eff}, need to be addressed by detailed studies of subcritical core dynamics.

  17. Gas powered, closed loop power system and process for using same

    SciTech Connect

    Cardone, J.T.; Dill, J.M.; Shatz, K.J.

    1982-06-08

    This invention relates to a gas powered, closed loop power generating system which generates power substantially as a result of the flow of gas through its power generating means. Gas flows through the power generating means because of a pressure drop caused by dissolving the gas in a solvent medium on the exit side of the power generating means. The solution is then separated into the solvent medium, and the gas. The gas pressure is raised and it is then fed back into the power generating means while the separated solvent medium is recycled to redissolve more exiting gas. A process for generating power is also disclosed.

  18. A closed-loop inductive power control system for an instrumented strain sensing tibial implant.

    PubMed

    Shiying Hao; Taylor, Stephen

    2014-01-01

    Inductively-powered implantable biomedical devices are widely used nowadays, however the power variations due to the coil misalignment can significantly affect the device performance. A closed-loop power control system is proposed in this paper, which is implemented in a Subject-Carried Implant Monitoring Inductive Telemetric Ambulatory Reader (SCIMITAR) for remote strain data acquisition from an instrumented ovine tibia implant. The output power of the energizer is adaptively adjusted via a feedback circuitry connected the demodulator with the power energizer. Lab results showed that feedback suppressed variations in induced power caused by coil misalignment and extended the functional range of the device in axial and planar directions. PMID:25571497

  19. A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

    NASA Astrophysics Data System (ADS)

    Seer, Qiu Han; Nandong, Jobrun

    2016-03-01

    This paper presents a new control strategy which unifies the direct and indirect multi-scale control schemes via a double-loop control structure. This unified control strategy is proposed for controlling a class of highly nonminimum-phase processes having both integrating and unstable modes. This type of systems is often encountered in fed-batch fermentation processes which are very difficult to stabilize via most of the existing well-established control strategies. A systematic design procedure is provided where its applicability is demonstrated via a numerical example.

  20. Open-loop characteristics of magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1992-01-01

    The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.

  1. Local exposure system for rats head using a figure-8 loop antenna in 1500-MHz band.

    PubMed

    Arima, Takuji; Watanabe, Hiroshi; Wake, Kanako; Masuda, Hiroshi; Watanabe, Soichi; Taki, Masao; Uno, Toru

    2011-10-01

    Cellular phones are used in the vicinity of the human head, resulting in localized exposure to this part of the body. To simulate exposure during cellular phone use, microwave energy absorption should be focused within the head region of laboratory animals. In this paper, we developed an exposure system using a figure-8 loop antenna to permit localized exposure of a rat head to 1500-MHz microwave fields, simulating human head exposure to cellular phones. We have numerically estimated the specific absorption rate (SAR) in a rat exposed to microwave fields via our new exposure system. The high ratio of SAR averaged over the target tissue (i.e., the brain) to that averaged over the whole body suggests that the figure-8 antenna can realize greater localized exposure than the previously used exposure system. We have also confirmed the effectiveness of our proposed system experimentally. PMID:21216701

  2. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure.

    PubMed

    Karavaev, Anatoly S; Ishbulatov, Yurii M; Ponomarenko, Vladimir I; Prokhorov, Mikhail D; Gridnev, Vladimir I; Bezruchko, Boris P; Kiselev, Anton R

    2016-03-01

    A model of human cardiovascular system is proposed which describes the main heart rhythm, the regulation of heart function and blood vessels by the autonomic nervous system, baroreflex, and the formation of arterial blood pressure. The model takes into account the impact of respiration on these processes. It is shown that taking into account nonlinearity and introducing the autonomous loop of mean arterial blood pressure in the form of self-oscillating time-delay system allow to obtain the model signals whose statistical and spectral characteristics are qualitatively and quantitatively similar to those for experimental signals. The proposed model demonstrates the phenomenon of synchronization of mean arterial pressure regulatory system by the signal of respiration with the basic period close to 10 seconds, which is observed in the physiological experiments. PMID:26847603

  3. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  4. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Natarajan, Suresh; Gardner, C. S.

    1987-01-01

    Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.

  5. Computer program for single input-output, single-loop feedback systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

  6. Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller.

    PubMed

    Abdo, Maher Mahmoud; Vali, Ahmad Reza; Toloei, Ali Reza; Arvan, Mohammad Reza

    2014-03-01

    The application of inertial stabilization system is to stabilize the sensor's line of sight toward a target by isolating the sensor from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The gimbals torque relationships are derived using Lagrange equation considering the base angular motion and dynamic mass unbalance. The stabilization loops are constructed with cross coupling unit utilizing proposed fuzzy PID type controller. The overall control system is simulated and validated using MATLAB. Then, the performance of proposed controller is evaluated comparing with conventional PI controller in terms of transient response analysis and quantitative study of error analysis. The simulation results obtained in different conditions prove the efficiency of the proposed fuzzy controller which offers a better response than the classical one, and improves further the transient and steady-state performance. PMID:24461337

  7. Accuracy evaluation of blood glucose monitoring systems in children on overnight closed-loop control.

    PubMed

    DeSalvo, Daniel J; Shanmugham, Satya; Ly, Trang T; Wilson, Darrell M; Buckingham, Bruce A

    2014-09-01

    This pilot study evaluated the difference in accuracy between the Bayer Contour® Next (CN) and HemoCue® (HC) glucose monitoring systems in children with type 1 diabetes participating in overnight closed-loop studies. Subjects aged 10-18 years old were admitted to a clinical research center and glucose values were obtained every 30 minutes overnight. Glucose values were measured using whole blood samples for CN and HC readings and results were compared to Yellow Springs Instrument (YSI) reference values obtained with plasma from the same sample. System accuracy was compared using mean absolute relative difference (MARD) and International Organization for Standardization (ISO) accuracy standards. A total of 28 subjects were enrolled in the study. Glucose measurements were evaluated at 457 time points. CN performed better than HC with an average MARD of 3.13% compared to 10.73% for HC (P < .001). With a limited sample size, CN met ISO criteria (2003 and 2013) at all glucose ranges while HC did not. CN performed very well, and would make an excellent meter for future closed-loop studies outside of a research center. PMID:24876427

  8. Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback

    NASA Technical Reports Server (NTRS)

    Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

    1995-01-01

    In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

  9. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  10. Phase-sensitive atom localization for closed-loop quantum systems

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Juzeliūnas, Gediminas

    2016-07-01

    A scheme of high-precision two- and three-dimensional (3D) atom localization is proposed and analyzed by using a density matrix method for a five-level atom-light coupling scheme. In this system four strong laser components (which could be standing waves) couple a pair of atomic internal states to another pair of states in all possible ways to form a closed-loop diamond-shape configuration of the atom-light interaction. By systematically solving the density matrix equations of the motion, we show that the imaginary part of the susceptibility for the weak probe field is position dependent. As a result, one can obtain information about the position of the atom by measuring the resulting absorption spectra. Focusing on the signatures of the relative phase of the applied fields stemming from the closed- loop structure of the diamond- shape subsystem, we find out that there exists a significant phase dependence of the eigenvalues required to have a maximum in the probe absorption spectra. It is found that by properly selecting the controlling parameters of the system, a nearly perfect 2D atom localization can be obtained. Finally, we numerically explore the phase control of 3D atom localization for the present scheme and show the possibility to obtain 1/2 detecting probability of finding the atom at a particular volume in 3D space within one period of standing waves.

  11. Distributed Raman temperature measurement system for monitoring of nuclear power plant coolant loops

    NASA Astrophysics Data System (ADS)

    Jensen, Fredrik B. H.; Takada, Eiji; Nakazawa, Masaharu; Kakuta, Tsunemi; Yamamoto, Satoshi

    1996-09-01

    A distributed temperature sensor based on Raman scattering in optical fibers has been tested for use as coolant loop monitor in nuclear power plants. Different types of pure- silica-core, polyimide-coated fibers have been subjected to 60Co-gamma-ray and fission-reactor irradiation at varying temperatures. 60Co-gamma-ray irradiations at dose rates from 4.8 kR/h up to 1 MR/h were done. Simultaneous gamma-ray and high temperature experiments up to 300 degrees Celsius have also been performed. The induced loss of the tested fibers was found to saturate with increasing dose at the anti-Stokes and Stokes wavelengths. This feature was then made use of to develop a model for radiation induced loss which was used to make system lifetime predictions. It has also been demonstrated that the induced loss of the optical fibers is favorably affected by high-temperature use. A 10-fold decrease in the radiation- induced loss levels when the system was operated at 300 degrees Celsius was observed, as compared with room- temperature operation. The experiments have shown that with a pure-silica-core, polyimide-coated fiber the temperature sensing capabilities of the RDTS will not be degraded excessively if used at primary coolant loops with an expected upper radiation level of 200 R/hr.

  12. Timing performance of phased-locked loops in optical pulse position modulation communication systems

    NASA Technical Reports Server (NTRS)

    Lafaw, D. A.; Gardner, C. S.

    1984-01-01

    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.

  13. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  14. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  15. Exponential decay of spatial correlation in driven diffusive system: A universal feature of macroscopic homogeneous state

    PubMed Central

    Hao, Qing-Yi; Jiang, Rui; Hu, Mao-Bin; Jia, Bin; Wang, Wen-Xu

    2016-01-01

    Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological transport processes. In the systems, spatial correlation plays an important role in the emergence of a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. However, the lack of analytical results of spatial correlation precludes us from fully understanding the effect of spatial correlation on the dynamics of the system. Here we offer precise analytical predictions of the spatial correlation in a typical driven diffusive system, namely facilitated asymmetric exclusion process. We find theoretically that the correlation between two sites decays exponentially as their distance increases, which is in good agreement with numerical simulations. Furthermore, we find the exponential decay is a universal property of macroscopic homogeneous state in a broad class of 1D driven diffusive systems. Our findings deepen the understanding of many nonequilibrium phenomena resulting from spatial correlation in driven diffusive systems. PMID:26804770

  16. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1982-01-01

    Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.

  17. Buckle driven delamination in thin hard film compliant substrate systems.

    SciTech Connect

    Cordill, Megan J.; Adams, David Price; Moody, Neville Reid; Corona, Edmundo; Kennedy, Marian S.; Bahr, David F.; Reedy, Earl David, Jr.

    2010-06-01

    Deformation and fracture of thin films on compliant substrates are key factors constraining the performance of emerging flexible substrate devices. These systems often contain layers of thin polymer, ceramic and metallic films and stretchable interconnects where differing properties induce high normal and shear stresses. As long as the films remain bonded to the substrates, they may deform far beyond their freestanding form. Once debonded, substrate constraint disappears leading to film failure. Experimentally it is very difficult to measure properties in these systems at sub-micron and nanoscales. Theoretically it is very difficult to determine the contributions from the films, interfaces, and substrates. As a result our understanding of deformation and fracture behavior in compliant substrate systems is limited. This motivated a study of buckle driven delamination of thin hard tungsten films on pure PMMA substrates. The films were sputter deposited to thicknesses of 100 nm, 200 nm, and 400 nm with a residual compressive stress of 1.7 GPa. An aluminum oxide interlayer was added on several samples to alter interfacial composition. Buckles formed spontaneously on the PMMA substrates following film deposition. On films without the aluminum oxide interlayer, an extensive network of small telephone cord buckles formed following deposition, interspersed with regions of larger telephone cord buckles. On films with an aluminum oxide interlayer, telephone cord buckles formed creating a uniform widely spaced pattern. Through-substrate optical observations revealed matching buckle patterns along the film-substrate interface indicating that delamination occurred for large and small buckles with and without an interlayer. The coexistence of large and small buckles on the same substrate led to two distinct behaviors as shown in Figure 2 where normalized buckle heights are plotted against normalized film stress. The behaviors deviate significantly from behavior predicted by

  18. Voice loops as coordination aids in space shuttle mission control.

    PubMed

    Patterson, E S; Watts-Perotti, J; Woods, D D

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains. PMID:12269347

  19. Voice loops as coordination aids in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  20. Research and implementation of a special signal source of open-loop testing system of resonant microsensor

    NASA Astrophysics Data System (ADS)

    Fan, Shangchun; Wang, Yijun

    2006-11-01

    As a core component for open-loop characteristics testing system of micro-sensor, quality of signal source influences the integer performances of testing system directly. The method to generate special signal of open-loop testing system of resonant micro-sensor are discussed in this paper, and a method of direct digital frequency synthesize (DDS) to develop the special signal source of the testing system is proposed. A designation approach based on DSP and FPGA in the realization of DDS is advocated. Finally a simulation is made using the MATLAB. The principle of DDS is also introduced.

  1. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  2. Development of spin coater with close loop control system using ATMega8535 microcontroller

    NASA Astrophysics Data System (ADS)

    Pratama, Iqbal; Mindara, Jajat Yuda; Maulana, Dwindra W.; Panatarani, C.; Joni, I. Made

    2016-02-01

    Spin coater usually applied in preparation of a thin layer in industrial coatings and advanced material functionalization in various applications. This paper reports the development of spin coater with a closed loop control system using ATMega8535 microcontroller. The thickness of the thin film layer depend on the rotation of spin coater in which usually controlled by open-loop type. In long-term utilization of the spin coater, the performance of the motor usually degraded and caused the speed of the rotation is no longer accurate. Therefore to resolve the drawback, a close-loop system is applied in currently developed spin coater. The speed range of the spin coater was designed in between 450-6000 rpm, equipped with user interface through push button and LCD display. The rotary encoder transducer was applied to sense the speed of the dc motor. The pulse width modulation (PWM) method is applied to control the speed of the dc motor. The performance of the control system were evaluated based on the applied voltage to the PWM driver (L298) versus speed of the motor and also the rise time, overshoot, and settling time of the control system. The result shows that in the setting of low speed (450 rpm), the settling time is very fast about 12 seconds and very high overshoot about 225 rpm, contrary for the high speed (5550 rpm) the setting time is 71 seconds and very low overshot about 30 rpm. In addition, to evaluate the stability of the mechanical system, the spin coater was tested to prepare a ZnO thin film in various speed of rotations and at various concentrations of the solution, i.e. 10 wt.% and 15 wt.%. It is concluded that the spin coater can be utilized for thin film coating after pass the maximum of the settling time (71 seconds). The currently developed spin coater produce a film with common characteristics of the spin coater where thicker film was obtained when higher concentration was used and thinner the film was obtained when higher speed of the rotation

  3. Dynameomics: Data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction

    PubMed Central

    Rysavy, Steven J; Beck, David AC; Daggett, Valerie

    2014-01-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412

  4. Advances in pulsed-power-driven radiography system design.

    SciTech Connect

    Portillo, Salvador; Hinshelwood, David D.; Rovang, Dean Curtis; Cordova, Steve Ray; Oliver, Bryan Velten; Weber, Bruce V.; Welch, Dale Robert; Shelton, Bradley Allen; Sceiford, Matthew E.; Cooperstein, Gerald; Gignac, Raymond Edward; Puetz, Elizabeth A.; Rose, David Vincent; Barker, Dennis L.; Van De Valde, David M.; Droemer, Darryl W.; Wilkins, Frank Lee; Molina, Isidro; Jaramillo, Deanna M.; Swanekamp, Stephen Brian; Commisso, Robert J.; Bailey, Vernon Leslie; Maenchen, John Eric; Johnson, David Lee; Griffin, Fawn A.; Hahn, Kelly Denise; Smith, Ian

    2004-07-01

    Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

  5. A Novel Real-Time DNA Detection System for Loop-Mediated Isothermal Amplification Method

    NASA Astrophysics Data System (ADS)

    Kakugawa, Koji; Yamada, Kenji; Maeda, Hiroshi; Takashiba, Shougo

    We developed a novel real-time DNA detection system for loop-mediated isothermal amplification (LAMP) method. Our prototype was composed of a thermostatic chamber, a hole slide glass, LED and a web camera. The reaction mixture was injected into the slide glass hole and the LAMP reaction was carried out at 63°C for 2 hours. To observe the DNA amplification, we monitored the fluorescence intensity of SYBR Green I that was excited by the blue LED. The captured BMP images were analyzed by NIH Image J software. The DNA amplification and amplification monitoring experiment was successful. Furthermore, quantitative accuracy was evaluated based on real-time PCR. The reaction time correlates well with the DNA concentration. These results indicate the successful development of a novel real-time DNA detection system for LAMP method.

  6. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  7. An Efficient Solution Method for Multibody Systems with Loops Using Multiple Processors

    NASA Technical Reports Server (NTRS)

    Ghosh, Tushar K.; Nguyen, Luong A.; Quiocho, Leslie J.

    2015-01-01

    This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm divides the multibody system into a number of smaller sets of bodies in chain or tree structures, called "branches" at convenient joints called "connection points", and uses an Order-N (O (N)) approach to formulate the dynamics of each branch in terms of the unknown spatial connection forces. The equations of motion for the branches, leaving the connection forces as unknowns, are implemented in separate processors in parallel for computational efficiency, and the equations for all the unknown connection forces are synthesized and solved in one or several processors. The performances of two implementations of this divide-and-conquer algorithm in multiple processors are compared with an existing method implemented on a single processor.

  8. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.

    PubMed

    Ramgopal, Sriram; Thome-Souza, Sigride; Jackson, Michele; Kadish, Navah Ester; Sánchez Fernández, Iván; Klehm, Jacquelyn; Bosl, William; Reinsberger, Claus; Schachter, Steven; Loddenkemper, Tobias

    2014-08-01

    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy. PMID:25174001

  9. Advances in Transient Modeling of Loop Heat Pipe Systems with Multiple Components

    NASA Astrophysics Data System (ADS)

    Khrustalev, Dmitry

    2010-01-01

    Modeling of transient thermal-fluid phenomena, temperature control, and gravity effects for conventional and upgraded loop heat pipe (LHP) systems with complex radiators, multiple components, and varying environmental conditions, can be effectively accomplished using Thermal Desktop™. This paper outlines some recent advances in transient modeling of LHP systems with multiple components, such as a) one LHP with two parallel condensers on two orthogonal radiators with varying environmental heating loads, b) two LHPs sharing one radiator under heat loading and sink conditions changing in time, and c) a hybrid LHP with two main and one secondary evaporators undergoing transients due to the heat loads variation. Cleared for open publication, Oct. 29, 2009, OSR, DOD, 10-S-0170.

  10. Closed loop, DM diversity-based, wavefront correction algorithm for high contrast imaging systems.

    PubMed

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-09-17

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(-10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling. PMID:19547602

  11. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-20

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  12. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-01

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  13. The MEMS Loop Heat Pipe Based on Coherent Porous Silicon - The Modified System Test Structure

    NASA Astrophysics Data System (ADS)

    Cytrynowicz, Debra; Medis, Praveen; Parimi, Srinivas; Shuja, Ahmed; Thurman Henderson, H.; Gerner, Frank M.

    2004-02-01

    The previous papers presented at STAIF 2002 and STAIF 2003 discussed the design, fabrication and characterization of the evaporator section and the initial test cell of a planar MEMS loop heat pipe based upon coherent porous silicon or ``CPS'' technology. The potentially revolutionary advantage of CPS technology is that it is planar and allows for pores or capillaries of absolutely uniform diameter. Coherent porous silicon can be mass-produced by various MEMS fabrication techniques. The preliminary experiments made with the original test structure exhibited the desired temperature and pressure differences, but these differences were extremely small and oscillatory. This paper describes modifications made to the initial test cell design, which were intended to improve its evacuated, closed loop performance. Included among these changes were the redesign of the compensation chamber and condenser, an increase in the porosity of the coherent porous silicon wick, the fabrication of silicon top ``hot'' plates with an increased depth of the vapor reservoir and the integration of metal resistive heater elements onto the backside of the top plates to simulate the input heat. Some changes were made in the test sequence to produce more discernable differences in temperatures and pressures. The most recent results of the tests made with the modified system will be presented.

  14. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    SciTech Connect

    Banerjee, Tanmoy Paul, Bishwajit; Sarkar, B. C.

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  15. Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na+ driven flagellar motor

    PubMed Central

    Abe-Yoshizumi, Rei; Kobayashi, Shiori; Gohara, Mizuki; Hayashi, Kokoro; Kojima, Chojiro; Kojima, Seiji; Sudo, Yuki; Asami, Yasuo; Homma, Michio

    2013-01-01

    Flagellar motors embedded in bacterial membranes are molecular machines powered by specific ion flows. Each motor is composed of a stator and a rotor and the interactions of those components are believed to generate the torque. Na+ influx through the PomA/PomB stator complex of Vibrio alginolyticus is coupled to torque generation and is speculated to trigger structural changes in the cytoplasmic domain of PomA that interacts with a rotor protein in the C-ring, FliG, to drive the rotation. In this study, we tried to overproduce the cytoplasmic loop of PomA (PomA-Loop), but it was insoluble. Thus, we made a fusion protein with a small soluble tag (GB1) which allowed us to express and characterize the recombinant protein. The structure of the PomA-Loop seems to be very elongated or has a loose tertiary structure. When the PomA-Loop protein was produced in E. coli, a slight dominant effect was observed on motility. We conclude that the cytoplasmic loop alone retains a certain function. PMID:27493537

  16. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  17. Closed-Loop Neuromorphic Benchmarks.

    PubMed

    Stewart, Terrence C; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of "minimal" simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  18. Irdis: A Digital Scene Storage And Processing System For Hardware-In-The-Loop Missile Testing

    NASA Astrophysics Data System (ADS)

    Sedlar, Michael F.; Griffith, Jerry A.

    1988-07-01

    This paper describes the implementation of a Seeker Evaluation and Test Simulation (SETS) Facility at Eglin Air Force Base. This facility will be used to evaluate imaging infrared (IIR) guided weapon systems by performing various types of laboratory tests. One such test is termed Hardware-in-the-Loop (HIL) simulation (Figure 1) in which the actual flight of a weapon system is simulated as closely as possible in the laboratory. As shown in the figure, there are four major elements in the HIL test environment; the weapon/sensor combination, an aerodynamic simulator, an imagery controller, and an infrared imagery system. The paper concentrates on the approaches and methodologies used in the imagery controller and infrared imaging system elements for generating scene information. For procurement purposes, these two elements have been combined into an Infrared Digital Injection System (IRDIS) which provides scene storage, processing, and output interface to drive a radiometric display device or to directly inject digital video into the weapon system (bypassing the sensor). The paper describes in detail how standard and custom image processing functions have been combined with off-the-shelf mass storage and computing devices to produce a system which provides high sample rates (greater than 90 Hz), a large terrain database, high weapon rates of change, and multiple independent targets. A photo based approach has been used to maximize terrain and target fidelity, thus providing a rich and complex scene for weapon/tracker evaluation.

  19. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    NASA Astrophysics Data System (ADS)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  20. A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning

    NASA Astrophysics Data System (ADS)

    Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

    Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from

  1. Closed loop anaesthesia at high altitude (3505 m above sea level): Performance characteristics of an indigenously developed closed loop anaesthesia delivery system

    PubMed Central

    Puri, Goverdhan D; Jayant, Aveek; Tsering, Morup; Dorje, Motup; Tashi, Motup

    2012-01-01

    Background: Closed loop anaesthesia delivery systems (CLADSs) are a recent advancement in accurate titration of anaesthetic drugs. They have been shown to be superior in maintaining adequate depth of anaesthesia with few fluctuations as compared with target-controlled infusion or manual titration of drug delivery. Methods: Twenty patients scheduled to undergo general abdominal or orthopaedic procedures under general anaesthesia at Leh (3505 m above sea level) were recruited as subjects. Anaesthesia was delivered by a patented closed loop system that uses the Bispectral Index (BIS™) as a feedback parameter to titrate the rate of propofol infusion. All vital parameters, drug infusion rate and the BIS™ values were continuously recorded and stored online by the system. The data generated was analysed for the adequacy of anaesthetic depth, haemodynamic stability and post-operative recovery parameters. Results: The CLADS was able to maintain a BIS™ within ±10 of the target of 50 for 85.0±7.8% of the time. Haemodynamics were appropriately maintained (heart rate and mean arterial blood pressure were within 25% of baseline values for 91.2±2.2% and 94.1±3% of the total anaesthesia time, respectively). Subjects were awake within a median of 3 min from cessation of drug infusion and achieved fitness to recovery room discharge within a median of 15 min. There were no adverse events or report of awareness under anaesthesia. Conclusions: The study demonstrates the safety of our CLADS at high altitude. It seeks to extend the use of our system in challenging anaesthesia environments. The system performance was also adequate and no adverse events were recorded. PMID:22923821

  2. An Improved Design for Air Removal from Aerospace Fluid Loop Coolant Systems

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.; Holladay, Jon B.; Holt, J. Mike; Clark, Dallas W.

    2003-01-01

    Aerospace applications with requirements for large capacity heat removal (launch vehicles, platforms, payloads, etc.) typically utilize a liquid coolant fluid as a transport media to increase efficiency and flexibility in the vehicle design. An issue with these systems however, is susceptibility to the presence of noncondensable gas (NCG) or air. The presence of air in a coolant loop can have numerous negative consequences, including loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and coolant blockage to remote systems. Hardware ground processing to remove this air is also cumbersome and time consuming which continuously drives recurring costs. Current systems for maintaining the system free of air are tailored and have demonstrated only moderate success. An obvious solution to these problems is the development and advancement of a passive gas removal device, or gas trap, that would be installed in the flight cooling system simplifying the initial coolant fill procedure and also maintaining the system during operations. The proposed device would utilize commercially available membranes thus increasing reliability and reducing cost while also addressing both current and anticipated applications. In addition, it maintains current pressure drop, water loss, and size restrictions while increasing tolerance for pressure increases due to gas build-up in the trap.

  3. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  4. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  5. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Wang, Jianxin; Bai, Fuzhong; Ning, Yu; Li, Fei; Jiang, Wenhan

    2012-06-01

    Pyramid wavefront sensor (PWFS) is a kind of wavefront sensor with high spatial resolution and high energy utilization. In this paper an adaptive optics system with PWFS as wavefront sensor and liquid-crystal spatial light modulator (LC-SLM) as wavefront corrector is built in the laboratory. The wavefront response matrix is a key element in the close-loop operation. It can be obtained by measuring the real response to given aberrations, which is easily contaminated by noise and influenced by the inherent aberration in the optical system. A kind of analytic solution of response matrix is proposed, with which numerical simulation and experiment are also implemented to verify the performance of closed-loop correction of static aberration based on linear reconstruction theory. Results show that this AO system with the proposed matrix can work steadily in closed-loop operation.

  6. Hardware-in-the-loop projector system for light detection and ranging sensor testing

    NASA Astrophysics Data System (ADS)

    Kim, Hajin J.; Naumann, Charles B.; Cornell, Michael C.

    2012-08-01

    Efforts in developing a synthetic environment for testing light detection and ranging (LADAR) sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on evaluating the optical projection techniques for the LADAR synthetic environment. Schemes for generating the optical signals representing the individual pixels of the projection are of particular interest. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's System Simulation and Development Directorate's Electro Optical Technology Development Laboratory.

  7. Investigation of creep by use of closed loop servo-hydraulic test system

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Yao, J. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.

  8. Environmental assessment for the new looped power system on Rainier Mesa

    SciTech Connect

    Not Available

    1992-08-26

    The Nevada Test Site (NTS) is the single location within the continental United States where tests involving nuclear explosive devices are conducted. The NTS is a land mass of 1,350 square miles. It is located 65 miles northwest of Las Vegas, Nevada, on the eastern edge of the Great Mohave Desert in high desert country where altitude ranges from 3,500 feet to approximately 7,700 feet. It is in a remote, isolated and sparsely populated area. The proposed action supports the underground nuclear weapons test program conducted on the NTS as defined in the Nevada Test Site Final Environmental Impact Statement, dated September 1977. The project involves the construction of a new looped power system, to be performed in three phases, indicated on Rainier Mesa in Area 12 at the NTS. The phases are described in this paper.

  9. On the dynamics and control of flexible multibody systems with closed loops

    SciTech Connect

    Damaren, C.J.

    2000-03-01

    The motion control problem for cooperating flexible robot arms manipulating a large rigid payload is considered. An output that depends on the payload position and contributions form the joint motion of each arm is constructed whose rate yields the passivity property with respect to a special input. The input is a combination of the torques from each arm and contains a free load-sharing parameter. The passivity property is shown to depend on the payload mass properties, and in cases where the payload is large, a passivity-based controller combining feedforward and feedback as elements is devised, which yields tracking. An experimental facility consisting of two planar 3-DoF arms is used to implement the strategies. Good tracking is observed and compared with simulation predictions for closed-loop flexible multibody systems.

  10. Ladar scene projector for a hardware-in-the-loop simulation system.

    PubMed

    Xu, Rui; Wang, Xin; Tian, Yi; Li, Zhuo

    2016-07-20

    In order to test a direct-detection ladar in a hardware-in-the-loop simulation system, a ladar scene projector is proposed. A model based on the ladar range equation is developed to calculate the profile of the ladar return signal. The influences of both the atmosphere and the target's surface properties are considered. The insertion delays of different channels of the ladar scene projector are investigated and compensated for. A target range image with 108 pixels is generated. The simulation range is from 0 to 15 km, the range resolution is 1.04 m, the range error is 1.28 cm, and the peak-valley error for different channels is 15 cm. PMID:27463932

  11. Plasmon induced transparency in loop-stub resonator-coupled waveguide systems

    NASA Astrophysics Data System (ADS)

    Ye, Jiulin; Wang, Faqiang; Liang, Ruisheng; Wei, Zhongchao; Meng, Hongyun; Zhong, Jiewen; Jiang, Lihua

    2016-07-01

    We firstly investigate plasmon induced transparency (PIT) effect in a metal-dielectric-metal (MDM) waveguide coupled to a single loop stub resonator by finite difference time domain method (FDTD). Compared with previous PIT sup based on MDM waveguide, PIT phenomena can be realized in a single plasmonic composite nanocavity without employment of additional optical elements. Plasmon induced transparency windows can be controlled by adjusting the geometrical parameters of the vertical branches or the horizontal branch in the plasmonic structure. The red-shift of PIT peak is almost linearly proportional to the refractive index of the horizontal branch. This plasmonic system takes the advantages of easy fabrication and compactness. The results may pave a way for the dynamic control of light in highly integrated optical circuits, which can realize ultrafast switching, light storage and nanosensor devices.

  12. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  13. Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong

    2009-01-01

    A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.

  14. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  15. Event-driven contrastive divergence for spiking neuromorphic systems

    PubMed Central

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2014-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality. PMID:24574952

  16. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    SciTech Connect

    Carbonell, F. Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-10-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations.

  17. History of flight motion simulators used for hardware-in-the-loop testing of missile systems

    NASA Astrophysics Data System (ADS)

    Carter, John M.; Willis, Kenneth E.

    1998-07-01

    All hardware-in-the-loop (HWIL) missile simulations use motion platforms that position the missile seeker and simulated target to relative positions and motions that reproduce a live engagement. These motion platforms are usually called Flight Motion Simulators (FMS). Real-time control computers manage the engagement by simulating the aerodynamic and kinematic responses the missile anticipates, and commanding the missile and target motions to simulate the engagement. The advantages of this technique over live firings are well known: shorter development time, reduced development cost, greater variety in the test scenarios, and generation of objective, measurable, and repeatable criteria for subsystem and system evaluation. This paper focuses on the history of the FMS used in HWIL missile testing and the current applications of these systems. Systems with up to nine axes of rotary motion have been developed for infrared missile seeker simulation, and large target positioning systems have been deployed for RF and point IR target movement. As digital computers have become more powerful and semiconductor infrared scene generation systems developed, new demands have been placed on the FMS. Several of these applications are described. The use of aeroload simulators to study the response of missile aerodynamic control surfaces is also briefly described.

  18. Analog Study of Interacting and Noninteracting Multiple-loop Control Systems for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Pack, George J; Phillips, W E , Jr

    1955-01-01

    The results of an analog investigation of several turbojet-engine control configurations is presented in this report. Both proportional and proportional-plus-integral controllers were studied, and compensating terms for engine interaction were added to the control system. Data were obtained on the stability limits and the transient responses of these various configurations. Analytical expressions in terms of the component transfer functions were developed for the configurations studied, and the optimum form for the compensation terms was determined. It was found that the addition of the integral term, while making the system slower and more oscillatory, was desirable in that it made the final values of the system parameters independent of source of disturbance and also eliminated droop in these parameters. Definite improvement in system characteristics resulted from the use of proper compensation terms. At comparable gain points the compensated system was faster and more stable. Complete compensation eliminated engine interaction, permitting each loop to be developed to an optimum point independently.

  19. Quantum memory effects in noninteracting cold-atom systems: Hysteresis loop and lattice transformation

    NASA Astrophysics Data System (ADS)

    Chien, Chihchun; Metcalf, Mekena; Lai, Chenyen

    2016-05-01

    Memory effects are observable in magnetization, rechargeable batteries, and many systems exhibiting history-dependent states. Quantum memory effects are observable, for instance, in atomic superfluids. A counter-intuitive question is whether quantum memory effects can exist in noninteracting systems. Here we present two examples of cold-atom systems demonstrating memory effects in noninteracting systems. The first example is a ring-shaped potential loaded with noninteracting fermions. An artificial vector potential drives a current and with a tunable dissipative background, the current lags behind the driving and exhibits hysteresis loops. The dissipative energy can be controlled by the coupling between the fermions and the background. In the second example, cold atoms loaded in a tunable optical lattice transformed from the triangular to the kagome geometry. The kagome lattice supports a flat-band consisting of degenerate localized states. Quantum memory effects are observable after a lattice transformation as the steady-state density depends on the rate of the transformation. The versatility of memory effects in cold-atom systems promises novel applications in atomtronics.

  20. Strategic optimization of large-scale vertical closed-loop shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Hecht-Méndez, J.; de Paly, M.; Beck, M.; Blum, P.; Bayer, P.

    2012-04-01

    Vertical closed-loop geothermal systems or ground source heat pump (GSHP) systems with multiple vertical borehole heat exchangers (BHEs) are attractive technologies that provide heating and cooling to large facilities such as hotels, schools, big office buildings or district heating systems. Currently, the worldwide number of installed systems shows a recurrent increase. By running arrays of multiple BHEs, the energy demand of a given facility is fulfilled by exchanging heat with the ground. Due to practical and technical reasons, square arrays of the BHEs are commonly used and the total energy extraction from the subsurface is accomplished by an equal operation of each BHE. Moreover, standard designing practices disregard the presence of groundwater flow. We present a simulation-optimization approach that is able to regulate the individual operation of multiple BHEs, depending on the given hydro-geothermal conditions. The developed approach optimizes the overall performance of the geothermal system while mitigating the environmental impact. As an example, a synthetic case with a geothermal system using 25 BHEs for supplying a seasonal heating energy demand is defined. The optimization approach is evaluated for finding optimal energy extractions for 15 scenarios with different specific constant groundwater flow velocities. Ground temperature development is simulated using the optimal energy extractions and contrasted against standard application. It is demonstrated that optimized systems always level the ground temperature distribution and generate smaller subsurface temperature changes than non-optimized ones. Mean underground temperature changes within the studied BHE field are between 13% and 24% smaller when the optimized system is used. By applying the optimized energy extraction patterns, the temperature of the heat carrier fluid in the BHE, which controls the overall performance of the system, can also be raised by more than 1 °C.

  1. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.

  2. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) with concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.

  3. Real-time high speed generator system emulation with hardware-in-the-loop application

    NASA Astrophysics Data System (ADS)

    Stroupe, Nicholas

    The emerging emphasis and benefits of distributed generation on smaller scale networks has prompted much attention and focus to research in this field. Much of the research that has grown in distributed generation has also stimulated the development of simulation software and techniques. Testing and verification of these distributed power networks is a complex task and real hardware testing is often desired. This is where simulation methods such as hardware-in-the-loop become important in which an actual hardware unit can be interfaced with a software simulated environment to verify proper functionality. In this thesis, a simulation technique is taken one step further by utilizing a hardware-in-the-loop technique to emulate the output voltage of a generator system interfaced to a scaled hardware distributed power system for testing. The purpose of this thesis is to demonstrate a new method of testing a virtually simulated generation system supplying a scaled distributed power system in hardware. This task is performed by using the Non-Linear Loads Test Bed developed by the Energy Conversion and Integration Thrust at the Center for Advanced Power Systems. This test bed consists of a series of real hardware developed converters consistent with the Navy's All-Electric-Ship proposed power system to perform various tests on controls and stability under the expected non-linear load environment of the Navy weaponry. This test bed can also explore other distributed power system research topics and serves as a flexible hardware unit for a variety of tests. In this thesis, the test bed will be utilized to perform and validate this newly developed method of generator system emulation. In this thesis, the dynamics of a high speed permanent magnet generator directly coupled with a micro turbine are virtually simulated on an FPGA in real-time. The calculated output stator voltage will then serve as a reference for a controllable three phase inverter at the input of the test bed

  4. User-driven product data manager system design

    SciTech Connect

    1995-03-01

    With the infusion of information technologies into product development and production processes, effective management of product data is becoming essential to modern production enterprises. When an enterprise-wide Product Data Manager (PDM) is implemented, PDM designers must satisfy the requirements of individual users with different job functions and requirements, as well as the requirements of the enterprise as a whole. Concern must also be shown for the interrelationships between information, methods for retrieving archival information and integration of the PDM into the product development process. This paper describes a user-driven approach applied to PDM design for an agile manufacturing pilot project at Sandia National Laboratories that has been successful in achieving a much faster design-to-production process for a precision electro mechanical surety device.

  5. Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Cooper, Paul D.; Sittler, Edward C.; Sturner, Steven J.; Rymer, Abigail M.; Hill, Matthew E.

    2007-01-01

    Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing.

  6. Analytic results for the population dynamics of a driven dipolar molecular system

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Jing; Jin, Kang; Jin, Lu-Ling; Xie, Xiao-Tao

    2016-04-01

    We theoretically investigate the dipolar molecular system driven by monochromatic periodic, linear, parabolic, and sech2 forms external fields, respectively. The two-level Hamiltonian model with nonzero diagonal dipole matrix elements is adopted to describe the population dynamics of the driven dipolar molecule, and the corresponding exact solutions are presented in terms of the confluent Heun equations without the generalized rotating-wave approximation. The analytic solutions derived here are valid in the whole parameter space.

  7. Multi-spectral optical simulation system applied in hardware-in-the-loop

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lei, Jie; Gao, Yang; Liu, Yang

    2009-07-01

    The Multi-spectral simulation system has been constructed at Beijing Simulation Center (BSC) for hardware-in-the-loop (HWIL) testing of optical and infrared seekers, in single-band and dual-band, or even multi-band. This multi-spectral simulation facility consists primarily of several projectors and a wide-angular simulation mechanism, the projector technologies utilized at BSC include a broadband point source collimator, a laser echo simulator and a visible scene projection system. These projectors can be used individually with the wide-angular simulation mechanism, or any combination of both or all of three can be used according to different needs. The configuration and performance of each technology are reviewed in the paper. Future plans include two IR imaging projectors which run at high frame frequency. The multi-spectral optical simulation system has been successfully applied for visible and IR imaging seekers testing in HWIL simulation. The laser echo simulator hardware will be applied soon.

  8. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    SciTech Connect

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  9. Performance evaluation of a second-generation elastic loop mobility system

    NASA Technical Reports Server (NTRS)

    Melzer, K. J.; Swanson, G. D.

    1974-01-01

    Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.

  10. Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

    The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

  11. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  12. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  13. Enzyme catalyzed electricity-driven water softening system.

    PubMed

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD⁺ as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO₃. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO₃ the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water. PMID:23040397

  14. A feedback control loop for autonomous time synchronisation for mobile satellite systems, including satellites in any Earth orbit

    NASA Astrophysics Data System (ADS)

    Soprano, C.

    This paper presents the preliminary results of the design, analysis and simulation of a feedback control-loop for application to autonomous epoch synchronization in a satellite mobile synchronous communications system which includes communications satellites in non-geostationary Earth orbits and fast-moving mobile users.

  15. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation

    PubMed Central

    Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine

  16. Optimum bleeding rate of open loop ground source heat pump systems determined by hydrogeological modeling in Korea

    NASA Astrophysics Data System (ADS)

    Jeon, W. H.; Kim, N.; Lee, J. Y.

    2014-12-01

    This study aims to evaluate the influence of open loop ground source heat pump systems operation on hydrological conditions of aquifer. Test bed is located in Chuncheon, Korea. The step drawdown test was conducted in five stages for 300 minutes. The variation of groundwater levels by open loop ground source heat pump systems operation was estimated using Visual MODFLOW. Transmissivity ranged from 2.02×10-4 to 9.36×10-4, and storage coefficient ranged from 0.00067 to 0.021. The amount of optimum bleeding was calculated to be 240 m3/day. When bleeding will be 50, 90, 240 and 450 m3/day for 5 years, groundwater levels may decrease 1.84, 3.31, 8.89 and 17.0 m, respectively. If the amount of bleeding is 50 m3/day, the influence of bleeding will not reach the boundary regions of the Soyang River after 5 years. Regarding the open loop ground source heat pump system installed at the test bed, the amount of optimum bleeding in accordance with the stand are proposed by the government is 90 m3/day, which is 20% of the 450 m3/day circulation quantity of the system. However, if continuous bleeding of more than 90 m3/day occurs, then the radius of influence is expected to reach the boundary regions of the Soyang River after 5 years. These results indicate that amount of optimum bleeding differ in each open loop ground soured heat pump system. Therefore, the debate for the amount of optimum bleeding in open loop ground source heat pump systems is demanded. This work is supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  17. Carbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test results

    NASA Astrophysics Data System (ADS)

    Mattox, E. M.; Knox, J. C.; Bardot, D. M.

    2013-05-01

    Due to the difficulty and expense it costs to resupply manned-spacecraft habitats, a goal is to create a closed loop atmosphere revitalization system, in which precious commodities such as oxygen, carbon dioxide, and water are continuously recycled. Our aim is to test other sorbents for their capacity for future spacecraft missions, such as on the Orion spacecraft, or possibly lunar or Mars mission habitats to see if they would be better than the zeolite sorbents on the 4-bed molecular sieve. Some of the materials being tested are currently used for other industry applications. Studying these sorbents for their specific spacecraft application is different from that for applications on earth because in space, there are certain power, mass, and volume limitations that are not as critical on Earth. In manned-spaceflight missions, the sorbents are exposed to a much lower volume fraction of CO2 (0.6% volume CO2) than on Earth. LiLSX was tested for its CO2 capacity in an atmosphere like that of the ISS. Breakthrough tests were run to establish the capacities of these materials at a partial pressure of CO2 that is seen on the ISS. This paper discusses experimental results from benchmark materials, such as results previously obtained from tests on Grade 522, and the forementioned candidate materials for the Carbon Dioxide Removal Assembly (CDRA) system.

  18. Structure of force networks in tapped particulate systems of disks and pentagons. I. Clusters and loops

    NASA Astrophysics Data System (ADS)

    Pugnaloni, Luis A.; Carlevaro, C. Manuel; Kramár, M.; Mischaikow, K.; Kondic, L.

    2016-06-01

    The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic et al., Phys. Rev. E 93, 062903 (2016), 10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.

  19. Structure of force networks in tapped particulate systems of disks and pentagons. I. Clusters and loops.

    PubMed

    Pugnaloni, Luis A; Carlevaro, C Manuel; Kramár, M; Mischaikow, K; Kondic, L

    2016-06-01

    The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic et al., Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants. PMID:27415342

  20. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    NASA Technical Reports Server (NTRS)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  1. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  2. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  3. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses.

    PubMed

    Fink, Wolfgang; You, Cindy X; Tarbell, Mark A

    2010-01-01

    It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (microAVS(2)) for real-time image processing. Truly standalone, microAVS(2) is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on microAVS(2) operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. MiccroAVS(2) imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, microAVS(2) affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, microAVS(2) can easily be reconfigured for other prosthetic systems. Testing of microAVS(2) with actual retinal implant carriers is envisioned in the near future. PMID:20210459

  4. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; You, Cindy X.; Tarbell, Mark A.

    2010-01-01

    It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (μAVS2) for real-time image processing. Truly standalone, μAVS2 is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on μAVS2 operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. μAVS2 imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, μAVS2 affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, μAVS2 can easily be reconfigured for other prosthetic systems. Testing of μAVS2 with actual retinal implant carriers is envisioned in the near future.

  5. Application of nonlinear time series models to driven systems

    SciTech Connect

    Hunter, N.F. Jr.

    1990-01-01

    In our laboratory we have been engaged in an effort to model nonlinear systems using time series methods. Our objectives have been, first, to understand how the time series response of a nonlinear system unfolds as a function of the underlying state variables, second, to model the evolution of the state variables, and finally, to predict nonlinear system responses. We hope to address the relationship between model parameters and system parameters in the near future. Control of nonlinear systems based on experimentally derived parameters is also a planned topic of future research. 28 refs., 15 figs., 2 tabs.

  6. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    SciTech Connect

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  7. Towards a closed-loop system for stimulation and recording: an in vitro approach with embryonic cardiomyocytes.

    PubMed

    Nguyen, Thoa; Braeken, Dries; Musa, Silke; Krylychkina, Olga; Bartic, Carmen; Gielen, Georges; Eberle, Wolfgang

    2010-01-01

    Closed loop systems, in which stimulation parameters are adjusted according to recorded signals would reduce the occurrence of side effects of stimulation and broaden current therapeutic options. As a step towards a closed-loop clinical system, we developed a single electrode stimulation / recording system for an in vitro microelectrode array. The system was used in vitro to simultaneously stimulate and record cardiac cells. Results indicated that stimulation artifacts depend on the distance between recording electrode and stimulating electrode and on the voltage amplitude. No artifact reduction algorithm was required for detecting cardiac action potentials 2ms after stimulation if the stimulation pulses were less than or equal to ± 1.5 V, and the distance from stimulation site was more than 200 µm. Cardiac signal propagation was also investigated with this system. PMID:21096211

  8. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  9. Model-Driven Test Generation of Distributed Systems

    NASA Technical Reports Server (NTRS)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  10. A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease.

    PubMed

    Camara, Carmen; Warwick, Kevin; Bruña, Ricardo; Aziz, Tipu; del Pozo, Francisco; Maestú, Fernando

    2015-11-01

    Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7% in 70% of the patients. PMID:26385550

  11. Successful hardware-in-the-loop support of the Longbow/HELLFIRE modular missile system

    NASA Astrophysics Data System (ADS)

    Ray, Jerry A.; Larson, Gerald A.; Terry, John E.

    2000-07-01

    The Air-to-Ground Missiles Systems (AGMS) Project Management Office (PMO) chose to invest in hardware-in-the-loop (HWIL) simulation as an integral part of their Longbow/HELLFIRE (Helicopter Launched, Fire-and-Forget) Modular Missile System program throughout the development and production phases. This investment has resulted in two HWIL simulations, developed by the U.S. Army Aviation and Missile Command (AMCOM) Missile Research Development and Engineering Center, that have had unprecedented success in program support from the early development through production phases. The Millimeter Simulation System 1 (MSS-1) facility is capable of edge-of- the-envelope performance analysis and verification using high- fidelity target, background, and countermeasures signature modeling. The System Test/Acceptance Facility (STAF), developed in partnership with Redstone Technical Test Center, tests full-up missiles for production lot acceptance. Between these two facilities, HWIL simulation is responsible for pre- flight confidence testing of missile hardware and software, software independent verification and validation (IV&V) testing, comprehensive performance evaluation, component verification, production lot acceptance, and data gathering for the shelf life extension program. One payoff of the MSS-1 HWIL investment has been an extremely effective flight test program with MSS-1 receiving credit for saving three flight tests and documenting over 40 failure modes. With the advent of the Performance Based Specification, the MSS-1 has become involved in continuous verification of high level specifications since contractor controlled, low-level specifications are subject to change. The STAF has saved 8 million annually through providing a non-destructive lot acceptance-testing paradigm, and further benefited the production phase by discovering three production problems. This paper will highlight the innovative uses of HWIL simulation as utilized in the Longbow/HELLFIRE program and

  12. A closed-loop anesthetic delivery system for real-time control of burst suppression

    NASA Astrophysics Data System (ADS)

    Liberman, Max Y.; Ching, ShiNung; Chemali, Jessica; Brown, Emery N.

    2013-08-01

    Objective. There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma. Approach. We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional-integral controller; and a system identification procedure to estimate the model and controller parameters. Main results. We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably

  13. Creating a System for Data-Driven Decision-Making: Applying the Principal-Agent Framework

    ERIC Educational Resources Information Center

    Wohlstetter, Priscilla; Datnow, Amanda; Park, Vicki

    2008-01-01

    The purpose of this article is to improve our understanding of data-driven decision-making strategies that are initiated at the district or system level. We apply principal-agent theory to the analysis of qualitative data gathered in a case study of 4 urban school systems. Our findings suggest educators at the school level need not only systemic…

  14. Energizing a Large Urban System: Reform through a Standards Driven Model.

    ERIC Educational Resources Information Center

    Robbins, Stephen B.

    This paper describes the District of Columbia Public School System (DCPS); articulates challenges it faced prior to standards based reform; presents strategies for reforming large urban systems' health and physical education (HPE) programs; and notes strategies for incorporating a standards-based performance-driven model. DCPS reading and math…

  15. The New Instructional Leadership: Creating Data-Driven Instructional Systems in School

    ERIC Educational Resources Information Center

    Halverson, Richard; Grigg, Jeffrey; Prichett, Reid; Thomas, Chris

    2007-01-01

    The recent press for high-stakes accountability has challenged school leaders to use data to guide the practices of teaching and learning. This article considers how local school leaders build data-driven instructional systems to systematically improve student learning. Such systems are presented as a framework involving data acquisition, data…

  16. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    ERIC Educational Resources Information Center

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  17. Microcontroller-driven fluid-injection system for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Alonso, L.; Jacquet, P.; Adamcik, J.; Haeberli, C.; Dietler, G.

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  18. Operability driven space system concept with high leverage technologies

    SciTech Connect

    Woo, H.H.

    1997-01-01

    One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts. {copyright} {ital 1997 American Institute of Physics.}

  19. Observation-Driven Configuration of Complex Software Systems

    NASA Astrophysics Data System (ADS)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  20. CORONAL FUZZINESS MODELED WITH PULSE-HEATED MULTI-STRANDED LOOP SYSTEMS

    SciTech Connect

    Guarrasi, Massimiliano; Reale, Fabio; Peres, Giovanni

    2010-08-10

    Coronal active regions are observed to get increasingly fuzzy (i.e., increasingly confused and uniform) in increasingly hard energy bands or lines. We explain this as evidence of fine multi-temperature structure of coronal loops. To this end, we model bundles of loops made of thin strands, each heated by short and intense heat pulses. For simplicity, we assume that the heat pulses are all equal and triggered only once in each strand at a random time. The pulse intensity and cadence are selected so as to have steady active region loops ({approx}3 MK) on average. We compute the evolution of the confined heated plasma with a hydrodynamic loop model. We then compute the emission along each strand in several spectral lines, from cool ({<=}1 MK), to warm (2-3 MK) lines, detectable with Hinode/Extreme-ultraviolet Imaging Spectrometer, to hot X-ray lines. The strands are then put side by side to construct an active region loop bundle. We find that in the warm lines (2-3 MK) the loop emission fills all the available image surface. Therefore, the emission appears quite uniform and it is difficult to resolve the single loops, while in the cool lines the loops are considerably more contrasted and the region is less fuzzy. The main reasons for this effect are that, during their evolution, i.e., pulse heating and slow cooling, each strand spends a relatively long time at temperatures around 2-3 MK and it has a high emission measure during that phase, so the whole region appears more uniform or smudged. We predict that fuzziness should be reduced in the hot UV and X-ray lines.

  1. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  2. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  3. Thermal Vacuum/Balance Test Results of Swift BAT with Loop Heat Pipe Thermal System

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The Swift Burst Alert Telescope (BAT) Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate PAP), and two loop heat pipes (LHPs) transport heat from the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array xA1 ASIC temperatures. The radiator has AZ-Tek's AZW-LA-II low solar absorptance white paint as the thermal coating, and is located on the anti-sun side of the spacecraft. A thermal balance (T/B) test on the BAT was successfully completed. It validated that the thermal design satisfies the temperature requirements of the BAT in the flight thermal environments. Instrument level and observatory level thermal vacuum (TN) cycling tests of the BAT Detector Array by using the LHP thermal system were successfully completed. This paper presents the results of the T/B test and T N cycling tests.

  4. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  5. Loop transfer recovery for general nonminimum phase discrete time systems. II - Design

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov

    1992-01-01

    The authors consider the design of controllers for the recovery of target loop transfer function or sensitivity and complementary sensitivity functions for general nonminimum phase discrete time systems. The necessary design constraints and the available design freedom are reviewed. In view of the available freedom, possible specifications on the eigenstructure of the observer dynamic matrix are formulated. Three different types of controllers which are respectively based on prediction, current, and reduced-order estimators are considered. For each one of those controllers, three different design techniques are developed. The first one is an eigenstructure assignment scheme, while the other two are optimization-based designs. The eigenstructure assignment method yields a controller design which achieves any chosen recovery error matrix among a set of admissible recovery error matrices. On the other hand, one of the optimization-based design methods leads to a controller that achieves a recovery error matrix having the infimum H-infinity norm, while the other does the same except it achieves a recovery error matrix having the infimum H2 norm.

  6. Geoscience Laser Altimeter System (GLAS) Loop Heat Pipes: An Eventual First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Grob, E.; Baker, C.; McCarthy, T.

    2004-01-01

    Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument. This paper presents details of the LHP anomaly, the resulting investigation and recovery, along with on-orbit flight data during these critical events.

  7. Development and hardware-in-the-loop test of a guidance, navigation and control system for on-orbit servicing

    NASA Astrophysics Data System (ADS)

    Benninghoff, Heike; Rems, Florian; Boge, Toralf

    2014-09-01

    The rendezvous phase is one of the most important phases in future orbital servicing missions. To ensure a safe approach to a non-cooperative target satellite, a guidance, navigation and control system which uses measurements from optical sensors like cameras was designed and developed. During ground-based rendezvous, stability problems induced by delayed position measurements can be compensated by using a specially adapted navigation filter. Within the VIBANASS (VIsion BAsed NAvigation Sensor System) test campaign, hardware-in-the-loop tests on the terrestrial, robotic based facility EPOS 2.0 were performed to test and verify the developed guidance, navigation and control algorithms using real sensor measurements. We could demonstrate several safe rendezvous test cases in a closed loop mode integrating the VIBANASS camera system and the developed guidance, navigation and control system to a dynamic rendezvous simulation.

  8. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  9. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  10. Periodically driven ergodic and many-body localized quantum systems

    SciTech Connect

    Ponte, Pedro; Chandran, Anushya; Papić, Z.; Abanin, Dmitry A.

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disordered spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.

  11. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  12. Towards a closed-loop cochlear implant system: application of embedded monitoring of peripheral and central neural activity.

    PubMed

    Mc Laughlin, Myles; Lu, Thomas; Dimitrijevic, Andrew; Zeng, Fan-Gang

    2012-07-01

    Although the cochlear implant (CI) is widely considered the most successful neural prosthesis, it is essentially an open-loop system that requires extensive initial fitting and frequent tuning to maintain a high, but not necessarily optimal, level of performance. Two developments in neuroscience and neuroengineering now make it feasible to design a closed-loop CI. One development is the recording and interpretation of evoked potentials (EPs) from the peripheral to the central nervous system. The other is the embedded hardware and software of a modern CI that allows recording of EPs. We review EPs that are pertinent to behavioral functions from simple signal detection and loudness growth to speech discrimination and recognition. We also describe signal processing algorithms used for electric artifact reduction and cancellation, critical to the recording of electric EPs. We then present a conceptual design for a closed-loop CI that utilizes in an innovative way the embedded implant receiver and stimulators to record short latency compound action potentials ( ~1 ms), auditory brainstem responses (1-10 ms) and mid-to-late cortical potentials (20-300 ms). We compare EPs recorded using the CI to EPs obtained using standard scalp electrodes recording techniques. Future applications and capabilities are discussed in terms of the development of a new generation of closed-loop CIs and other neural prostheses. PMID:22328183

  13. A clinician-driven home care delivery system.

    PubMed

    August, D A; Faubion, W C; Ryan, M L; Haggerty, R H; Wesley, J R

    1993-12-01

    The financial, entrepreneurial, administrative, and legal forces acting within the home care arena make it difficult for clinicians to develop and operate home care initiatives within an academic setting. HomeMed is a clinician-initiated and -directed home care delivery system wholly owned by the University of Michigan. The advantages of a clinician-directed system include: Assurance that clinical and patient-based factors are the primary determinants of strategic and procedural decisions; Responsiveness of the system to clinician needs; Maintenance of an important role for the referring physician in home care; Economical clinical research by facilitation of protocol therapy in ambulatory and home settings; Reduction of lengths of hospital stays through clinician initiatives; Incorporation of outcome analysis and other research programs into the mission of the system; Clinician commitment to success of the system; and Clinician input on revenue use. Potential disadvantages of a clinician-based system include: Entrepreneurial, financial, and legal naivete; Disconnection from institutional administrative and data management resources; and Inadequate clinician interest and commitment. The University of Michigan HomeMed experience demonstrates a model of clinician-initiated and -directed home care delivery that has been innovative, profitable, and clinically excellent, has engendered broad physician, nurse, pharmacist, and social worker enthusiasm, and has supported individual investigator clinical protocols as well as broad outcomes research initiatives. It is concluded that a clinician-initiated and -directed home care program is feasible and effective, and in some settings may be optimal. PMID:8242586

  14. System Modeling of Gas Engine Driven Heat Pump

    SciTech Connect

    Mahderekal, Isaac; Shen, Bo; Vineyard, Edward

    2012-01-01

    To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

  15. A parallel multigrid method for data-driven multiprocessor systems

    SciTech Connect

    Lin, C.H.; Gaudiot, J.L.; Proskurowski, W.

    1989-12-31

    The multigrid algorithm (MG) is recognized as an efficient and rapidly converging method to solve a wide family of partial differential equations (PDE). When this method is implemented on a multiprocessor system, its major drawback is the low utilization of processors. Due to the sequentiality of the standard algorithm, the fine grid levels cannot start relaxation until the coarse grid levels complete their own relaxation. Indeed, of all processors active on the fine two dimensional grid level only one fourth will be active at the coarse grid level, leaving full 75% idle. In this paper, a novel parallel V-cycle multigrid (PVM) algorithm is proposed to cure the idle processors` problem. Highly programmable systems such as data-flow architectures are then applied to support this new algorithm. The experiments based on the proposed architecture show that the convergence rate of the new algorithm is about twice faster than that of the standard method and twice as efficient system utilization is achieved.

  16. COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

    SciTech Connect

    Abraham, TJ

    2003-10-22

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement

  17. Performance Assessment of a Large Scale Pulsejet- Driven Ejector System

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Litke, Paul J.; Schauer, Frederick R.; Bradley, Royce P.; Hoke, John L.

    2006-01-01

    Unsteady thrust augmentation was measured on a large scale driver/ejector system. A 72 in. long, 6.5 in. diameter, 100 lb(sub f) pulsejet was tested with a series of straight, cylindrical ejectors of varying length, and diameter. A tapered ejector configuration of varying length was also tested. The objectives of the testing were to determine the dimensions of the ejectors which maximize thrust augmentation, and to compare the dimensions and augmentation levels so obtained with those of other, similarly maximized, but smaller scale systems on which much of the recent unsteady ejector thrust augmentation studies have been performed. An augmentation level of 1.71 was achieved with the cylindrical ejector configuration and 1.81 with the tapered ejector configuration. These levels are consistent with, but slightly lower than the highest levels achieved with the smaller systems. The ejector diameter yielding maximum augmentation was 2.46 times the diameter of the pulsejet. This ratio closely matches those of the small scale experiments. For the straight ejector, the length yielding maximum augmentation was 10 times the diameter of the pulsejet. This was also nearly the same as the small scale experiments. Testing procedures are described, as are the parametric variations in ejector geometry. Results are discussed in terms of their implications for general scaling of pulsed thrust ejector systems

  18. Forecast and virtual weather driven plant disease risk modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  19. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    SciTech Connect

    Wang Jiao; Gong Jiangbin

    2010-02-15

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  20. Companion-driven dynamics in hot Jupiter systems

    NASA Astrophysics Data System (ADS)

    Ngo, Henry; Batygin, Konstantin; Knutson, Heather A.; Lewis, Nikole K.; de Wit, Julien

    2015-08-01

    Hot Jupiters are giant planets found on orbits that lie in close proximity to their host stars. In this region, the process of tidal dissipation is believed to be generally efficient, and should act to circularize planetary orbits on timescales much shorter than the inferred ages of the observed stars. However, at time of writing, one in six known hot Jupiters have eccentricities inconsistent with zero at the three sigma level and about one in twelve have eccentricities greater than 0.2. This discrepancy hints at the existence of a dynamical mechanism that acts to maintain hot Jupiter eccentricities in face of tidal dissipation for extended periods of time. Our recent radial velocity (RV) and direct imaging surveys find that 70% of hot Jupiter systems are expected to host a distant planetary or stellar mass companion. In this work, we examine whether dynamical interactions with these long period companions could be responsible for the excited hot Jupiter eccentricities. Specifically, we consider the one of the most eccentric known hot Jupiter systems, HAT-P-2, as a case study. The inner planet in this system has a mass approximately ten times that of Jupiter, a semi-major axis of 0.07 AU, and an orbital eccentricity of 0.5. Long-term radial velocity monitoring has revealed the presence of an even more massive outer companion located beyond 4 AU with a partially constrained orbit. We examine different dynamical scenarios for this system in order to determine whether or not this outer companion might be responsible for the inner planet's unusually large orbital eccentricity, and make predictions for the short-term orbital evolution of the system.

  1. Attentional and non-attentional systems in the maintenance of verbal information in working memory: the executive and phonological loops

    PubMed Central

    Camos, Valérie; Barrouillet, Pierre

    2014-01-01

    Working memory is the structure devoted to the maintenance of information at short term during concurrent processing activities. In this respect, the question regarding the nature of the mechanisms and systems fulfilling this maintenance function is of particular importance and has received various responses in the recent past. In the time-based resource-sharing (TBRS) model, we suggest that only two systems sustain the maintenance of information at the short term, counteracting the deleterious effect of temporal decay and interference. A non-attentional mechanism of verbal rehearsal, similar to the one described by Baddeley in the phonological loop model, uses language processes to reactivate phonological memory traces. Besides this domain-specific mechanism, an executive loop allows the reconstruction of memory traces through an attention-based mechanism of refreshing. The present paper reviews evidence of the involvement of these two independent systems in the maintenance of verbal memory items. PMID:25426049

  2. RBAC Driven Least Privilege Architecture For Control Systems

    SciTech Connect

    Hull, Julie; Markham, Mark

    2014-01-25

    The concept of role based access control (RBAC) within the IT environment has been studied by researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of RBAC which include reduced administrative workload and policies which are easier to analyze and apply. The goals of this research were to expand the application of RBAC in the following ways. • Apply RBAC to the control systems environment: The typical RBAC model within the IT environment is used to control a user’s access to files. Within the control system environment files are replaced with measurement (e.g., temperature) and control (e.g. valve) points organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC model is extended to support access to points and their parameters based upon roles while at the same time allowing permissions for the points to be defined at the asset level or point level directly. In addition, centralized policy administration with distributed access enforcement mechanisms was developed to support the distributed architecture of distributed control systems and SCADA. • Extend the RBAC model to include access control for software and devices: The established RBAC approach is to assign users to roles. This work extends that notion by first breaking the control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is then created for each of these three layers. The result is that RBAC can be used to define machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the potential to use RBAC for machine-to-machine connectivity within the internet of things. • Enable dynamic policy based upon the operating mode of the system: The IT environment is generally static with respect to policy. However, large cyber physical systems such as industrial controls have

  3. Measurable Control System Security through Ideal Driven Technical Metrics

    SciTech Connect

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based

  4. Many-body localization in periodically driven systems.

    PubMed

    Ponte, Pedro; Papić, Z; Huveneers, François; Abanin, Dmitry A

    2015-04-10

    We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase, in which eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time growth of entanglement entropy when the system is initially prepared in a product state, which distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms of an extensive number of emergent local integrals of motion, which naturally explains the spectral and dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving block decimation methods, suggest a direct transition between the two phases. PMID:25910094

  5. Experimental study of cryogenic liquid turbine expander with closed-loop liquefied nitrogen system

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Sun, Jinju; Song, Peng

    2015-04-01

    A cryogenic liquid turbine expander is developed as a replacement for traditional Joule-Thomson valves used in the cryogenic systems for the purpose of energy saving. An experimental study was conducted to evaluate the performance of the turbine expander and is the subject of this paper. The test rig comprises a closed-loop liquefied nitrogen system, cryogenic liquid turbine expander unit, and its auxiliary and measuring systems. The test operating parameters of the turbine expander are determined on the basis of flow similarity rules. Pre-cooling of the liquid nitrogen system is first performed, and then the tests are conducted at different flow rates and speed ratios. The turbine expander flow rate, inlet and outlet pressure and temperature, rotational speed and shaft torque were measured. Experimental results and their uncertainties were analyzed and discussed. The following are demonstrated: (1) For both test cases, turbine expander peak isentropic efficiency is respectively 78.8% and 68.4% obtained at 89.6% and 92% of the design flow rate. The large uncertainties in isentropic efficiency are caused by the large enthalpy variations subjected to small measurement uncertainties in temperature and pressure. (2) Total efficiency and hydraulic efficiency of the turbine expander are obtained. They are essentially the same, since both include flow-related effects and also bearing losses. Comparisons of total efficiency and hydraulic efficiency were used to justify measurement uncertainties of different quantities, since the former involves the measured mass flow rate and enthalpy drop (being dependant on inlet and outlet temperature and pressure), while the latter involves the actual shaft power, volume flow rate, and inlet and outlet pressure. (3) Losses in flow passages and the shaft-bearing system have been inferred based on the measured turbine expander total efficiency, isentropic efficiency, and mechanical efficiency, which are respectively 57.6-74.8%, 62

  6. Extending TOPS: Ontology-driven Anomaly Detection and Analysis System

    NASA Astrophysics Data System (ADS)

    Votava, P.; Nemani, R. R.; Michaelis, A.

    2010-12-01

    Terrestrial Observation and Prediction System (TOPS) is a flexible modeling software system that integrates ecosystem models with frequent satellite and surface weather observations to produce ecosystem nowcasts (assessments of current conditions) and forecasts useful in natural resources management, public health and disaster management. We have been extending the Terrestrial Observation and Prediction System (TOPS) to include a capability for automated anomaly detection and analysis of both on-line (streaming) and off-line data. In order to best capture the knowledge about data hierarchies, Earth science models and implied dependencies between anomalies and occurrences of observable events such as urbanization, deforestation, or fires, we have developed an ontology to serve as a knowledge base. We can query the knowledge base and answer questions about dataset compatibilities, similarities and dependencies so that we can, for example, automatically analyze similar datasets in order to verify a given anomaly occurrence in multiple data sources. We are further extending the system to go beyond anomaly detection towards reasoning about possible causes of anomalies that are also encoded in the knowledge base as either learned or implied knowledge. This enables us to scale up the analysis by eliminating a large number of anomalies early on during the processing by either failure to verify them from other sources, or matching them directly with other observable events without having to perform an extensive and time-consuming exploration and analysis. The knowledge is captured using OWL ontology language, where connections are defined in a schema that is later extended by including specific instances of datasets and models. The information is stored using Sesame server and is accessible through both Java API and web services using SeRQL and SPARQL query languages. Inference is provided using OWLIM component integrated with Sesame.

  7. Systems biology driven software design for the research enterprise

    PubMed Central

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-01-01

    Background In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. Results We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. Conclusion By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data. PMID:18578887

  8. PHELIX: design of transformer-driven linear implosion system

    SciTech Connect

    Turchi, Peter J; Atchison, Walter L; Rousculp, Chris L; Reinovsky, Robert E

    2008-01-01

    Experiments involving electromagnetically-imploded, solid-density liners can be achieved at reduced cost and energy if we start with a scale-size based on diagnostic resolution, rather than on the largest capacitor bank or generator we could bring to bear. For minimum resolution of 100 microns or less, many useful experiments could be performed with initial liner diameters that are factors of two to three smaller than used on high-energy systems, such as Atlas, thereby reducing energy requirements to sub-megajoule levels. Reduction in scale-size, however, also decreases the inductance change associated with liner motion relative to other inductances in the circuit. To improve coupling efficiency to liner kinetic energy, we invoke a current step-up transformer. Scaling relations have been developed for reducing the size and energy of such systems and compared with detailed numerical simulations. We discuss these calculations and describe the engineering embodiment of the resulting design for a system called PHELIX (Precision High Energy-density Liner Implosion eXperiment).

  9. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  10. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  11. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    SciTech Connect

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  12. Closed-loop optical stimulation and recording system with GPU-based real-time spike sorting

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Nguyen, Thoa; Cabral, Henrique; Gysbrechts, Barbara; Battaglia, Francesco; Bartic, Carmen

    2014-05-01

    Closed-loop brain computer interfaces are rapidly progressing due to their applications in fundamental neuroscience and prosthetics. For optogenetic experiments, the integration of optical stimulation and electrophysiological recordings is emerging as an imperative engineering research topic. Optical stimulation does not only bring the advantage of cell-type selectivity, but also provides an alternative solution to the electrical stimulation-induced artifacts, a challenge in closedloop architectures. A closed-loop system must identify the neuronal signals in real-time such that a strategy is selected immediately (within a few milliseconds) for delivering stimulation patterns. Real-time spike sorting poses important challenges especially when a large number of recording channels are involved. Here we present a prototype allowing simultaneous optical stimulation and electro-physiological recordings in a closed-loop manner. The prototype was implemented with online spike detection and classification capabilities for selective cell stimulation. Real-time spike sorting was achieved by computations with a high speed, low cost graphic processing unit (GPU). We have successfully demonstrated the closed-loop operation, i.e. optical stimulation in vivo based on spike detection from 8 tetrodes (32 channels). The performance of GPU computation in spike sorting for different channel numbers and signal lengths was also investigated.

  13. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  14. Data-driven systems and system-driven data: the story of the Flanders Heritage Inventory (1995-2015)

    NASA Astrophysics Data System (ADS)

    Van Daele, K.; Meganck, L.; Mortier, S.

    2015-08-01

    Over the past 20 years, heritage inventories in Flanders (Belgium) have evolved from printed books to digital inventories. It is obvious that a system that publishes a digital inventory needs to adapt to the user requirements. But, after years of working with a digital inventory system, it has become apparent that not only has the system been developed to the users needs, but also that user practice and the resulting data have been shaped by the system. Thinking about domain models and thesauri influenced our thinking about our methodology of surveying. Seeing our data projected on a common basemap led us to realise how intertwined and interdependent different types of heritage can be. The need for structured metadata has impressed upon us the need for good quality data, guaranteed by data entry standards, validation tools, and a strict editing workflow. Just as the researchers have transitioned from seeing their respective inventories as being significantly different to actually seeing the similarities between them, the information specialists have come to the realisation that there are synergies that can be achieved with other systems, both within and outside of our organisation. Deploying our inventories on the web has also changed how we communicate with the general public. Newer channels such as email and social media have enabled a more interactive way of communicating. But throughout the years, one constant has remained. While we do not expect the systems to live on, we do want the data in them to be available to future generations.

  15. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  16. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  17. A Hierarchy of Multi-Lane Driven Diffusive Systems with Unfair Resource Availability

    NASA Astrophysics Data System (ADS)

    Yesil, Ayse; Yalabik, Cemal

    We present a model system for objects which have the ability to move along columns with the availability of a low entropy resource which is provided abundantly to a first column. The ``unused'' part of this resource is available to objects in neighbouring consecutive columns. This forms a hierarchy of multi-lane driven diffusive systems, which displays interesting dynamics. We present results from Monte Carlo simulations of the system. Turkish Academy of Sciences (TUBA).

  18. Boundary driven open quantum many-body systems

    SciTech Connect

    Prosen, Tomaž

    2014-01-08

    In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.

  19. Antimatter Driven P-B11 Fusion Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2003-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing the plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system, which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement properties of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enters the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  20. Topological gaps without masses in driven graphene-like systems

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio

    2014-03-01

    We illustrate the possibility of realizing band gaps in graphene-like systems that fall outside the existing classification of gapped Dirac Hamiltonians in terms of masses. As our primary example we consider a band gap arising due to time-dependent distortions of the honeycomb lattice. By means of an exact, invertible, and transport-preserving mapping to a time-independent Hamiltonian, we show that the system exhibits Chern-insulating phases with quantized Hall conductivities +/-e2 / h . The chirality of the corresponding gapless edge modes is controllable by both the frequency of the driving and the manner in which sublattice symmetry is broken by the dynamical lattice modulations. We demonstrate that, while these phases are in the same topological sector as the Haldane model, they are nevertheless separated from the latter by a gap-closing transition unless an extra parameter is added to the Hamiltonian. Finally, we discuss a promising possible realization of this physics in photonic lattices. This work is supported in part by DOE Grant DEF-06ER46316 (T.I. and C.C.).

  1. Two-level systems driven by large-amplitude fields

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-06-15

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems.

  2. Antimatter Driven P-B11 Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  3. System description of the ANL (Argonne National Laboratory) Slurry Loop Testing facility (SLTF)

    SciTech Connect

    Porges, K.G.; Cox, S.A.; Brewer, W.E.; Hacker, D.S.

    1986-09-01

    This report describes a test loop specifically designed for dense slurries. The loop provides flow velocity and medium composition calibrations within 1%, as well as online rheometric characterization in non-Newtonian, laminar flow, by means of several unique calibration facilities developed at Argonne National Laboratory. Two horizontal test sections of 6 and 12 m length, as well as a vertical test section of 6 m length, are provided for flowmeter calibration; up to 5 flowmeters can be accommodated simultaneously. In addition to the online calibration schemes, which rank this test loop among the most accurate facilities currently existing, extensive laboratory characterization of grab samples is available. Initial work with coal/oil and coal/water slurries ranged over 60% solids. 18 refs., 26 figs., 1 tab.

  4. Prefiltering synthetic images for projection in hardware-in-the-loop systems

    NASA Astrophysics Data System (ADS)

    Flynn, David S.; Sieglinger, Breck A.; Coker, Charles F.

    1997-07-01

    A challenging problem associated with performing hardware- in-the-loop tests of imaging infrared seekers is projecting images that are spatially realistic. The problem is complicated by the fact that the targets may be small and unresolved at acquisition and grow to fill the field of view during the final guidance updates. Although characteristics of the projection system are usually thought of as determining the spatial realism, the imagery used to drive the projector is also important. For a pixelized projector, the driving imagery must be sampled at a rate determined by the sample spacing of the pixels in the projector. If the scenes contain important information that is small compared to the projector pixel spacing (that is, if they have important information at high spatial frequencies), then information may be lost in the sampling process if the images are not adequately bandlimited. This bandlimiting can be accomplished by prefiltering the scenes. At acquisition, targets are usually small; thus, prefiltering is necessary to preserve information about the target. Without such prefiltering, for example, infinitesimally small targets would never be seen unless they just happened to be at the exact location where the scene is sampled for a projector pixel. This paper reports the results of a study of various filters that might be used for prefiltering synthetic imagery generated to drive projectors in the KHILS facility. Projector and seeker characteristics typical of the KHILS facility were adopted for the study. Since the radiance produced by projectors is always positive, filters that can produce negative values were not considered. Figures of merit were defined based on the sensor-measured quantities such as radiant intensity, centroid, and spot size. The performance of prefilters of various shapes and sizes and for typical projector and seeker characteristics will be reported.

  5. Prediction of hydrodynamic properties of mixed-particle systems and theoretical analysis of loop pressure profile in a CFB unit

    SciTech Connect

    Das, M.; Meikap, B.C.; Saha, R.K.

    2008-07-15

    The hydrodynamic behaviors of mixed system of particles were investigated in a circulating fluidized bed (CFB) unit consisting of fast column (riser) with an inner diameter of 0.1016 m and a height of 5.62 m. Particle mixtures containing a Geldart group-A-like fluid catalytic cracking (FCC) catalyst with group-B-like sand and iron ore with coal were used to study the hydrodynamic features including static pressure, voidage, and loop pressure profile. The mixed system consisting of FCC catalyst and sand contained 20, 50, and 80 mass % sand, and the coal-iron ore mixture contained 80 mass % coal. The superficial air velocity ranged between 2.01 and 4.681 m/s, and the corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A comparison of the available experimental values for static pressure profiles at different operating conditions for mixed-particle systems shows good agreement with those predicted from the single-particle systems. Using experimental data on the loop pressure balance, a simplified theoretical analysis was performed to predict the pressure profile in the CFB loop. The deviations between the two sets of values are within reasonable limits of accuracy.

  6. Colloquium: Homochirality: Symmetry breaking in systems driven far from equilibrium

    NASA Astrophysics Data System (ADS)

    Saito, Yukio; Hyuga, Hiroyuki

    2013-04-01

    Subsequent to the discovery of chirality of organic molecules by Pasteur, living organisms have been found to utilize biomolecules of only one handedness. The origin of this homochirality in life still remains unknown. It is believed that homochirality is attained in two stages: the initial creation of a chirality bias and its subsequent amplification to pure chirality. In the last two decades, two novel experiments have established the second stage in different fields: Soai and co-workers achieved the amplification of enantiomeric excess in the production of chiral organic molecules, and Viedma obtained homochirality in the solution growth of sodium chlorate crystals. These experiments are explained by a theory with a nonlinear evolution equation for the chiral order parameter; nonlinear processes in reactions or in crystal growth induce enantiomeric excess amplification, and the recycling of achiral elements ensures homochirality. Recycling drives the system to a state far from equilibrium with a free energy higher than that of the equilibrium state.

  7. Universal persistence exponents in an extremally driven system

    NASA Astrophysics Data System (ADS)

    Head, D. A.

    2002-02-01

    The local persistence R(t), defined as the proportion of the system still in its initial state at time t, is measured for the Bak-Sneppen model. For one and two dimensions, it is found that the decay of R(t) depends on one of two classes of initial configuration. For a subcritical initial state, R(t)~t-θ, where the persistence exponent θ can be expressed in terms of a known universal exponent. Hence θ is universal. Conversely, starting from a supercritical state, R(t) decays by the anomalous form 1-R(t)~tτall until a finite time t0, where τall is also a known exponent. Finally, for the high dimensional model R(t) decays exponentially with a nonuniversal decay constant.

  8. An innovative ultra-capacitor driven shape memory alloy actuator with an embedded control system

    NASA Astrophysics Data System (ADS)

    Li, Peng; Song, Gangbing

    2014-08-01

    In this paper, an innovative ultra-capacitor driven shape memory alloy (SMA) actuator with an embedded control system is proposed targeting high power high-duty cycle SMA applications. The ultra-capacitor, which is capable of delivering massive amounts of instantaneous current in a compact dimension for high power applications, is chosen as the main component of the power supply. A specialized embedded system is designed from the ground up to control the ultra-capacitor driven SMA system. The control of the ultra-capacitor driven SMA is different from that of a regular constant voltage powered SMA system in that the energy and the voltage of the ultra-capacitor decrease as the system load increases. The embedded control system is also different from a computer-based control system in that it has limited computational power, and the control algorithm has to be designed to be simple while effective so that it can fit into the embedded system environment. The problem of a variable voltage power source induced by the use of the ultra-capacitor is solved by using a fuzzy PID (proportional integral and derivative) control. The method of using an ultra-capacitor to drive SMA actuators enabled SMA as a good candidate for high power high-duty cycle applications. The proposed embedded control system provides a good and ready-to-use solution for SMA high power applications.

  9. Development and application of a diagnostic system for electrically driven valves

    NASA Astrophysics Data System (ADS)

    Finkel', B. M.; Matveev, A. V.; Golovlev, V. V.; Ryazanova, M. G.; Yaryshev, A. B.

    2010-05-01

    We briefly describe the system for diagnosing electrically driven valves that was developed jointly at the All-Russia Institute for Nuclear Power Plant Research and ZAO Diaprom, and which is being put in operation at many Russian nuclear power stations for revealing a wide spectrum of malfunctions that may occur in valves and their drives.

  10. Legislation for a Demand-Driven System. Go8 Backgrounder 22

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2011

    2011-01-01

    One of several important pieces of higher education legislation in Parliament in 2011 is the "Higher Education Support Act Amendment ("Demand-Driven System and Other Measures") Bill". As its title makes clear, this Bill is intended to bring into effect the Government's commitment (announced in March 2009) to uncap the supply of…

  11. Reliable-linac design for accelerator-driven subcritical reactor systems.

    SciTech Connect

    Wangler, Thomas P.,

    2002-01-01

    Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these goals with superconducting proton-linac technology.

  12. System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

    NASA Technical Reports Server (NTRS)

    Aljuri, A. N.; Bursac, N.; Marini, R.; Cohen, R. J.

    2001-01-01

    Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989. c 2001. Elsevier Science Ltd. All rights reserved.

  13. Flow characteristics of continuous-flow left ventricular assist devices in a novel open-loop system.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H; Pardyjak, Eric R; Bamberg, Stacy

    2012-01-01

    Fluid-pumping technology is a mature engineering subject area with a well-documented knowledge base. However, the pump design optimization techniques accepted in industry are geared toward steady-state constant-flow conditions. In contrast, the implantation of a continuous-flow pump to aid the output of the human left ventricle subjects the device to perpetual variation. This study measures pressure-flow performance characteristics for both axial- and centrifugal continuous-flow rotary blood pumps across a wide range of pressure differential values under uniform conditions by means of a novel open-loop flow system. The axial-flow devices show lower hydraulic efficiency. All pumps yield best efficiency point at a head to flow coefficient ratio of approximately 1.7. The open-loop flow system accounts for the dynamic changes associated with human heart physiology and allows for more precise characterization of existing heart pumps and those in development. PMID:22990285

  14. Closed-loop control of a 2-D mems micromirror with sidewall electrodes for a laser scanning microscope system

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW

    2016-01-01

    This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.

  15. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  16. The solar-wind driven magnetosphere{endash}ionosphere as a complex dynamical system

    SciTech Connect

    Horton, W.; Smith, J.P.; Weigel, R.; Crabtree, C.; Doxas, I.; Goode, B.; Cary, J.

    1999-11-01

    The solar-wind driven magnetosphere{endash}ionosphere system is a classic example of a complex dynamical system (CDS). The defining properties of a CDS are (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. Noncompositionality means that the behavior of the system as a whole is different from the dynamics of its subcomponents taken with passive or no couplings. In particular the dynamics of the geomagnetic tail plasma depends on its coupling to the dissipative ionospheric plasma and on the nature of the solar-wind driving electric field over a suitably long (many hours) previous time interval. These complex dynamical system features are shown here in detail using the known WINDMI model for the solar-wind driven magnetosphere{endash}ionosphere (MI) system. Numerous features in the bifurcation sequence are identified with known substorm and storm characteristics. {copyright} {ital 1999 American Institute of Physics.}

  17. Prethermalization and exponentially slow energy absorption in periodically driven many-body systems

    NASA Astrophysics Data System (ADS)

    Abanin, Dmitry; Ho, Wen Wei; de Roeck, Wojciech; Huveneers, Francois

    We establish some general dynamical properties of lattice many-body systems that are subject to a high-frequency periodic driving. We prove that such systems have a quasi-conserved extensive quantity H*, which plays the role of an effective static Hamiltonian. The dynamics of the system (e.g., evolution of any local observable) is well-approximated by the evolution with the Hamiltonian H* up to time τ*, which is exponentially long in the driving frequency. We further show that the energy absorption rate is exponentially small in the driving frequency. In cases where H* is ergodic, the driven system prethermalizes to a thermal state described by H* at intermediate times t <τ* , eventually heating up to an infinite-temperature state at times t ~τ* . Our results indicate that rapidly driven many-body systems generically exhibit prethermalization and very slow heating. We briefly discuss implications for cold atoms experiments which realize topological states by periodic driving.

  18. A physical parameter identification method of Lévy-driven vibratory systems based on multipower variation processes

    NASA Astrophysics Data System (ADS)

    Du, Xiu-Li; Lin, Jin-Guan; Liu, Guo-Xiang; Zhou, Xiu-Qing

    2015-05-01

    In this paper, we put forward a physical parameter identification method of Lévy-driven engineering structures. Based on the properties of the quadratic variation and multipower variation processes, the structural dynamic equation is decomposed into the Gaussian continuous-time autoregressive (CAR) equation and the pure jump-driven CAR equation. Both equations have the same unknown parameters as those included in the Lévy-driven system. The parameters of the Lévy-driven system are identified by the maximum likelihood estimation method of the Gaussian CAR system. The numerical results demonstrate that the method works well.

  19. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas.

    PubMed

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-01-01

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683

  20. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas

    PubMed Central

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-01-01

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683