Lorentz invariance in shape dynamics
NASA Astrophysics Data System (ADS)
Carlip, S.; Gomes, Henrique
2015-01-01
Shape dynamics is a reframing of canonical general relativity in which time reparametrization invariance is ‘traded’ for a local conformal invariance. We explore the emergence of Lorentz invariance in this model in three contexts: as a maximal symmetry, an asymptotic symmetry and a local invariance.
Supergravity with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Marakulin, A. O.; Sibiryakov, S. M.
Incompatibility of the principles of quantum field theory with general relativity is one of the most important problems in modern theoretical physics. A potential way out of this situation consists in restricting the domain of validity of some basic postulates of general relativity and abandoning them at high energy scales. A promising approach to quantization of gravity based on abandoning the Lorentz invariance has been proposed by Horava. The low-energy limit of the Horava theory, called khrono-metric model, presents a special case of the Einstein-aether gravity. In the latter model violation of the Lorentz invariance is described by the time-like vector field um with unit norm (umum = -1) called aether that minimally couples to the Einstein-Hilbert action for gravity.
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-01
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal. PMID:12484997
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity. PMID:12005620
Testing local Lorentz invariance with gravitational waves
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2016-06-01
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Lorentz invariance in loop quantum gravity
NASA Astrophysics Data System (ADS)
Pullin, Jorge; Rastgoo, Saeed; Gambini, Rodolfo
2011-04-01
We reconsider the argument of Collins, Perez, Sudarsky, Urrutia and Vucetich concerning violations of Lorentz invariance in the context of loop quantum gravity. We show that even if one introduces a lattice that violates Lorentz invariance at the Planck scale, this does not translate itself into large violations that would conflict with experiment.
Neutrinos as Probes of Lorentz Invariance
Díaz, Jorge S.
2014-01-01
Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.
Tests of Lorentz invariance with atomic clocks
NASA Astrophysics Data System (ADS)
Mohan, Lakshmi
Lorentz invariance has been the cornerstone of special relativity. Recent theories have been proposed which suggest violations of Lorentz invariance. Experiments have been conducted using clocks that place the strictest limits on these theories. The thesis focuses on the Mansouri and Sexl formulation and I calculate using this framework the Doppler effect, Compton effect, Maxwell's equations, Hydrogen energy levels and other effects. I conclude the thesis by suggesting a possible method of testing my results using atomic clocks.
Tests of Lorentz invariance: a 2013 update
NASA Astrophysics Data System (ADS)
Liberati, S.
2013-07-01
We present an updated review of Lorentz invariance tests in effective field theories (EFTs) in the matter as well as in the gravity sector. After a general discussion of the role of Lorentz invariance and a derivation of its transformations along the so-called von Ignatovski theorem, we present the dynamical frameworks developed within local EFT and the available constraints on the parameters governing the Lorentz breaking effects. In the end, we discuss two specific examples: the OPERA ‘affaire’ and the case of Hořava-Lifshitz gravity. The first case will serve as an example, and a caveat, of the practical application of the general techniques developed for constraining Lorentz invariance violation to a direct observation potentially showing these effects. The second case will show how the application of the same techniques to a specific quantum gravity scenario has far-reaching implications not foreseeable in a purely phenomenological EFT approach.
Lorentz invariance in chiral kinetic theory.
Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi
2014-10-31
We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle. PMID:25396362
From scale invariance to Lorentz symmetry.
Sibiryakov, Sergey
2014-06-20
It is shown that a unitary translationally invariant field theory in 1+1 dimensions, satisfying isotropic scale invariance, standard assumptions about the spectrum of states and operators, and the requirement that signals propagate with finite velocity, possesses an infinite dimensional symmetry given by one or a product of several copies of conformal algebra. In particular, this implies the presence of one or several Lorentz groups acting on the operator algebra of the theory. PMID:24996083
Hiding Lorentz invariance violation with MOND
Sanders, R. H.
2011-10-15
Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is somehow hidden to present limits of observational precision. Here I point out that a simple modification of the low-energy limit of Horava-Lifshitz gravity in its nonprojectable form can effectively camouflage the presence of a preferred frame in regions where the Newtonian gravitational field gradient is higher than cH{sub 0}; this modification results in the phenomenology of modified Newtonian dynamics (MOND) at lower accelerations. As a relativistic theory of MOND, this modified Horava-Lifshitz theory presents several advantages over its predecessors.
Are the invariance principles really truly Lorentz covariant?
Arunasalam, V.
1994-02-01
It is shown that some sections of the invariance (or symmetry) principles such as the space reversal symmetry (or parity P) and time reversal symmetry T (of elementary particle and condensed matter physics, etc.) are not really truly Lorentz covariant. Indeed, I find that the Dirac-Wigner sense of Lorentz invariance is not in full compliance with the Einstein-Minkowski reguirements of the Lorentz covariance of all physical laws (i.e., the world space Mach principle).
QCD breaks Lorentz invariance and colour
NASA Astrophysics Data System (ADS)
Balachandran, A. P.
2016-03-01
In the previous work [A. P. Balachandran and S. Vaidya, Eur. Phys. J. Plus 128, 118 (2013)], we have argued that the algebra of non-Abelian superselection rules is spontaneously broken to its maximal Abelian subalgebra, that is, the algebra generated by its completing commuting set (the two Casimirs, isospin and a basis of its Cartan subalgebra). In this paper, alternative arguments confirming these results are presented. In addition, Lorentz invariance is shown to be broken in quantum chromodynamics (QCD), just as it is in quantum electrodynamics (QED). The experimental consequences of these results include fuzzy mass and spin shells of coloured particles like quarks, and decay life times which depend on the frame of observation [D. Buchholz, Phys. Lett. B 174, 331 (1986); D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982; J. Fröhlich, G. Morchio and F. Strocchi, Phys. Lett. B 89, 61 (1979); A. P. Balachandran, S. Kürkçüoğlu, A. R. de Queiroz and S. Vaidya, Eur. Phys. J. C 75, 89 (2015); A. P. Balachandran, S. Kürkçüoğlu and A. R. de Queiroz, Mod. Phys. Lett. A 28, 1350028 (2013)]. In a paper under preparation, these results are extended to the ADM Poincaré group and the local Lorentz group of frames. The renormalisation of the ADM energy by infrared gravitons is also studied and estimated.
Lorentz invariance violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
ICECUBE Neutrinos and Lorentz Invariance Violation
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi
2015-06-01
The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
What do we know about Lorentz invariance?
Tasson, Jay D
2014-06-01
The realization that Planck-scale physics can be tested with existing technology through the search for spacetime-symmetry violation brought about the development of a comprehensive framework, known as the gravitational standard-model extension (SME), for studying deviations from exact Lorentz and CPT symmetry in nature. The development of this framework and its motivation led to an explosion of new tests of Lorentz symmetry over the past decade and to considerable theoretical interest in the subject. This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results. PMID:24875620
Test of Lorentz invariance with atmospheric neutrinos
NASA Astrophysics Data System (ADS)
Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Wilking, M. J.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.; Super-Kamiokande Collaboration
2015-03-01
A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the nonperturbative standard model extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the e μ , μ τ , and e τ sectors, improving the existing limits by up to 7 orders of magnitude and setting limits for the first time in the neutrino μ τ sector of the SME.
Search for anisotropic Lorentz invariance violation with γ -rays
NASA Astrophysics Data System (ADS)
Kislat, Fabian; Krawczynski, Henric
2015-08-01
While Lorentz invariance, the fundamental symmetry of Einstein's theory of general relativity, has been tested to a great level of detail, grand unified theories that combine gravity with the other three fundamental forces may result in a violation of Lorentz symmetry at the Planck scale. These energies are unattainable experimentally. However, minute deviations from Lorentz invariance may still be present at much lower energies. These deviations can accumulate over large distances, making astrophysical measurements the most sensitive tests of Lorentz symmetry. One effect of Lorentz invariance violation is an energy-dependent photon dispersion of the vacuum resulting in differences of the light travel time from distant objects. The Standard Model Extension (SME) is an effective theory to describe the low-energy behavior of a more fundamental grand unified theory, including Lorentz- and C P T -violating terms. In the SME the Lorentz-violating operators can in part be classified by their mass dimension d , with the lowest order being d =5 . However, measurements of photon polarization have constrained operators with d =5 setting lower limits on the energy at which they become dominant well beyond the Planck scale. On the other hand, these operators also violate C P T , and thus d =6 could be the leading order. In this paper we present constraints on all 25 real coefficients describing anisotropic nonbirefringent Lorentz invariance violation at mass dimension d =6 in the SME. We used Fermi-LAT observations of 25 active galactic nuclei to constrain photon dispersion and combined our results with previously published limits in order to simultaneously constrain all 25 coefficients. This represents the first set of constraints on these coefficients of mass dimension d =6 , whereas previous measurements were only able to constrain linear combinations of all 25 coefficients.
How is Lorentz invariance encoded in the Hamiltonian?
NASA Astrophysics Data System (ADS)
Kajuri, Nirmalya
2016-07-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
Living with ghosts in Lorentz invariant theories
Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu
2013-01-01
We argue that theories with ghosts may have a long lived vacuum state even if all interactions are Lorentz preserving. In space-time dimension D = 2, we consider the tree level decay rate of the vacuum into ghosts and ordinary particles mediated by non-derivative interactions, showing that this is finite and logarithmically growing in time. For D > 2, the decay rate is divergent unless we assume that the interaction between ordinary matter and the ghost sector is soft in the UV, so that it can be described in terms of non-local form factors rather than point-like vertices. We provide an example of a nonlocal gravitational-strength interaction between the two sectors, which appears to satisfy all observational constraints.
Concurrent tests of Lorentz invariance in β -decay experiments
NASA Astrophysics Data System (ADS)
Vos, K. K.; Wilschut, H. W.; Timmermans, R. G. E.
2015-11-01
Modern experiments on neutron and allowed nuclear β decay search for new semileptonic interactions, beyond the left-handed electroweak force. We show that ongoing and planned β -decay experiments, with isotopes at rest and in flight, can be exploited as sensitive tests of Lorentz invariance. The variety of correlations that involve the nuclear spin, the direction of the emitted β particle, and the recoil direction of the daughter nucleus allow for relatively simple experiments that give direct bounds on Lorentz violation. The pertinent observables are decay-rate asymmetries and their dependence on sidereal time. We discuss the potential of several asymmetries that together cover a large part of the parameter space for Lorentz violation in the gauge sector. High counting statistics is required.
High Energy Astrophysics Tests of Lorentz Invariance Violation
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2004-01-01
Observations of the multi-TeV spectra of the Mkn 501 and other nearby BL Lac objects exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker and Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz invariance violation. Such constraints have important implications for some quantum gravity and large extra dimension models. A much smaller amount of Lorentz invariance violation has potential implications for understanding the spectra of ultrahigh energy cosmic rays.
Quantum Gravity and Lorentz Invariance Violation in the Standard Model
Alfaro, Jorge
2005-06-10
The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter {alpha} that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be vertical bar {alpha} vertical bar <{approx}10{sup -22}-10{sup -23}.
Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation
NASA Astrophysics Data System (ADS)
Cooper, Patrick; Dubovsky, Sergei; Mohsen, Ali
2014-04-01
We describe a UV complete asymptotically fragile Lorentz-invariant theory exhibiting superluminal signal propagation. Its low energy effective action contains "wrong" sign higher dimensional operators. Nevertheless, the theory gives rise to an S matrix, which is defined at all energies. As expected for a nonlocal theory, the corresponding scattering amplitudes are not exponentially bounded on the physical sheet, but otherwise are healthy. We study some of the physical consequences of this S matrix.
A Quantum Simulation on the Emergence of Lorentz Invariance
NASA Astrophysics Data System (ADS)
Zueco, David; Quijandría, Fernando; Blas, Diego; Pujòlas, Oriol
2014-03-01
Lorentz invariance (LI) is one of the best tested symmetries of Nature. It is natural to think that LI is a fundamental property. However, this does not need to be so. In fact, it could be an emergent symmetry in the low energy world. One motivation on Lorentz-violating theories may come from consistent non-relativistic models of gravity, where LI appears at low energies. The basic approach is by taking two interacting quantum fields. The bare (uncoupled fields) have different light velocities, say v1 and v2. The coupling tends to ``synchronize'' those velocities providing a common light velocity: the LI emergence. So far, only perturbative calculations are available. In this perturbative regime the emergence of LI is too slow. Therefore it is mandatory going beyond perturbative calculations. In this talk I will discuss that such models for emergent Lorentz Invariance can be simulated in an analog quantum simulator. In 1+1 dimensions two transmission lines coupled trough Josephson Junctions do the job. We show that the emergence can be checked by measuring photon correlations. Everything within the state of the art in circuit QED. We show that our proposal can provide a definite answer about the LI emergence hypothesis in the strong coupling regime.
f(T) gravity and local Lorentz invariance
Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.
2011-03-15
We show that in theories of generalized teleparallel gravity, whose Lagrangians are algebraic functions of the usual teleparallel Lagrangian, the action and the field equations are not invariant under local Lorentz transformations. We also argue that these theories appear to have extra degrees of freedom with respect to general relativity. The usual teleparallel Lagrangian, which has been extensively studied and leads to a theory dynamically equivalent to general relativity, is an exception. Both of these facts appear to have been overlooked in the recent literature on f(T) gravity, but are crucial for assessing the viability of these theories as alternative explanations for the acceleration of the Universe.
Tests of CPT, Lorentz invariance and the WEP with antihydrogen
Holzscheiter, M.H.; ATHENA Collaboration
1999-03-01
Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.
Cosmic-ray Tests of Lorentz Invariance Violations
NASA Astrophysics Data System (ADS)
Cowsik, Ramanath; Nussinov, Shmuel; Sarkar, Utpal
2012-07-01
The recent report of superluminal velocities for muon neutrinos by the OPERA collaboration working at the particle accelerators at CERN has stimulated considerable interest amongst cosmic ray scientists. The violations of Lorentz Invariance is studied within the context of the model due to Coleman and Glashow that allows for the possibility of different terminal velocities for different particles, some of which may exceed the speed of light in vacuum. We review the data on cosmic ray neutrinos and muons and on neutrinos of astrophysical origins to show that these imply very strict bounds on any such violations of Lorentz Invariance. The observations of GZK neutrinos with instruments such as ANITA will push these bounds to extremely small values. References: S. Coleman & S. Glashow, Phys. Lett. B405, 249 (1997), Phys. Rev, D 59, 116008 (1999); R. Cowsik * B.V. Sreekantan, Phys. Lett. B 449, 219 (1999), T Adam et al., arXiv:1109.4897v1 [hep-ex]; A.G. Cohen & S. Glashow, Phys Rev. Lett, 107, 181803 (2011); R. Cowsik et al., Phys Rev Lett. 107, 251801 (2011).
Consistency relation for the Lorentz invariant single-field inflation
Huang, Qing-Guo
2010-05-01
In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral shape bispectrum, namely f{sub NL}{sup orth.} ≤ −0.054f{sub NL}{sup equil.}. In particular, for the single-field Dirac-Born-Infeld (DBI) inflation, the consistency relation becomes f{sub NL}{sup orth.} = 0.070f{sub NL}{sup equil.} ≤ 0. These consistency relations are also valid in the mixed scenario where the quantum fluctuations of some other light scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τ{sub NL}{sup loc.} > ((6/5)f{sub NL}{sup loc.}){sup 2}. Comparing these consistency relations to WMAP 7yr data, there is still a big room for the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL.
Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons
Altarev, I.; Gutsmiedl, E.; Baker, C. A.; Iaydjiev, P.; Ivanov, S. N.; Ban, G.; Lefort, T.; Naviliat-Cuncic, O.; Quemener, G.; Bodek, K.; Kistryn, S.; Zejma, J.; Daum, M.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Mtchedlishvili, A.; Petzoldt, G.
2009-08-21
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and {sup 199}Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b{sub perpendicular}<2x10{sup -20} eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |g{sub n}|<0.3 eV/c{sup 2} m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |g{sub n}|<3x10{sup -4} eV/c{sup 2} m.
Testing Lorentz Invariance with Laser-Cooled Cesium Atomic Frequency Standards
NASA Technical Reports Server (NTRS)
Klipstein, William M.
2004-01-01
This slide presentation reviews the Lorentz invariance testing during the proposed PARCS experiment. It includes information on the primary atomic reference clock in space (PARCS), cesium, laser cooling, and the vision for the future.
Constraints on Lorentz Invariance Violation using integral/IBIS observations of GRB041219A
NASA Astrophysics Data System (ADS)
Laurent, P.; Götz, D.; Binétruy, P.; Covino, S.; Fernandez-Soto, A.
2011-06-01
One of the experimental tests of Lorentz invariance violation is to measure the helicity dependence of the propagation velocity of photons originating in distant cosmological obejcts. Using a recent determination of the distance of the gamma-ray burst GRB 041219A, for which a high degree of polarization is observed in the prompt emission, we are able to improve by four orders of magnitude the existing constraint on Lorentz invariance violation, arising from the phenomenon of vacuum birefringence.
Conditions for Lorentz-invariant superluminal information transfer without signaling
NASA Astrophysics Data System (ADS)
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2016-03-01
We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.
Testing Lorentz invariance using an odd-parity asymmetric optical resonator
Baynes, Fred N.; Luiten, Andre N.; Tobar, Michael E.
2011-10-15
We present the first experimental test of Lorentz invariance using the frequency difference between counter-propagating modes in an asymmetric odd-parity optical resonator. This type of test is {approx}10{sup 4} more sensitive to odd-parity and isotropic (scalar) violations of Lorentz invariance than equivalent conventional even-parity experiments due to the asymmetry of the optical resonator. The disadvantages of odd-parity resonators have been negated by the use of counter-propagating modes, delivering a high level of immunity to environmental fluctuations. With a nonrotating experiment our result limits the isotropic Lorentz violating parameter {kappa}-tilde{sub tr} to 3.4{+-}6.2x10{sup -9}, the best reported constraint from direct measurements. Using this technique the bounds on odd-parity and scalar violations of Lorentz invariance can be improved by many orders of magnitude.
Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics
NASA Astrophysics Data System (ADS)
RÈ©bilas, Krzysztof
2010-03-01
Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.
Invariance principle for the stochastic Lorentz lattice gas
Hollander, F. den ); Naudts, J.; Redig, F. )
1992-03-01
The authors prove scaling to nondegenerate Brownian motion for the path of a test particle in the stochastic Lorentz lattice gas on Z[sup d] under a weak ergodicity assumption on the scatterer distribution. They prove that recurrence holds almost surely in d [le] 2. Transience in d [ge] 3 remains open.
Tests of Lorentz and CPT Invariance in Space
NASA Technical Reports Server (NTRS)
Mewes, Matthew
2003-01-01
I give a brief overview of recent work concerning possible signals of Lorentz violation in sensitive clock-based experiments in space. The systems under consideration include atomic clocks and electromagnetic resonators of the type planned for flight on the International Space Station.
Search for Violation of Lorentz Invariance in tt Production and Decay at the D0 Experiment
NASA Astrophysics Data System (ADS)
Whittington, Denver
2012-03-01
Data used in the analysis of the tt production cross section in the lepton + jets channel is examined as a function of sidereal time. According to the standard model extension (SME), any sidereal time dependence in the yield would reflect the violation of Lorentz Invariance in the top quark sector. Within the SME framework, we set upper limits on the XX, XY, XZ, YY, and YZ components of the coefficients (cQ)μν33 and (cU)μν33 used to parametrize violation of Lorentz invariance in the top quark sector.
Lorentz-invariant actions for chiral p-forms
Pasti, P.; Sorokin, D.; Tonin, M.
1997-05-01
We demonstrate how a Lorentz-covariant formulation of the chiral p-form model in D=2(p+1) containing infinitely many auxiliary fields is related to a Lorentz-covariant formulation with only one auxiliary scalar field entering a chiral p-form action in a nonpolynomial way. The latter can be regarded as a consistent Lorentz-covariant truncation of the former. We make the Hamiltonian analysis of the model based on the nonpolynomial action and show that the Dirac constraints have a simple form and are all first class. In contrast with the Siegel model the constraints are not the square of second-class constraints. The canonical Hamiltonian is quadratic and determines the energy of a single chiral p-form. In the case of D=2 chiral scalars the constraint can be improved by use of a {open_quotes}twisting{close_quotes} procedure (without the loss of the property to be first class) in such a way that the central charge of the quantum constraint algebra is zero. This points to the possible absence of an anomaly in an appropriate quantum version of the model. {copyright} {ital 1997} {ital The American Physical Society}
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics
Chung, Keng-Yeow; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Mueller, Holger
2009-07-01
We present atom-interferometer tests of the local Lorentz invariance of post-Newtonian gravity. An experiment probing for anomalous vertical gravity on Earth, which has already been performed, uses the highest-resolution atomic gravimeter so far. The influence of Lorentz violation in electrodynamics is also taken into account, resulting in combined bounds on Lorentz violation in gravity and electrodynamics. Expressed within the standard model extension or Nordtvedt's anisotropic universe model, we limit 12 linear combinations of seven coefficients for Lorentz violation at the part per billion level, from which we derive limits on six coefficients (and seven when taking into account additional data from lunar laser ranging). We also discuss the use of horizontal interferometers, including atom-chip or guided-atom devices, which potentially allow the use of longer coherence times in order to achieve higher sensitivity.
Search for a Lorentz invariant velocity distribution of a relativistic gas
NASA Astrophysics Data System (ADS)
Curado, Evaldo M. F.; Germani, Felipe T. L.; Soares, Ivano Damião
2016-02-01
We examine the problem of the relativistic velocity distribution in a 1-dim relativistic gas in thermal equilibrium. We use numerical simulations of the relativistic molecular dynamics for a gas with two components, light and heavy particles. However in order to obtain the numerical data our treatment distinguishes two approaches in the construction of the histograms for the same relativistic molecular dynamic simulations. The first, largely considered in the literature, consists in constructing histograms with constant bins in the velocity variable and the second consists in constructing histograms with constant bins in the rapidity variable which yields Lorentz invariant histograms, contrary to the first approach. For histograms with constant bins in the velocity variable the numerical data are fitted accurately by the Jüttner distribution which is also not Lorentz invariant. On the other hand, the numerical data obtained from histograms constructed with constant bins in the rapidity variable, which are Lorentz invariant, are accurately fitted by a Lorentz invariant distribution whose derivation is discussed in this paper. The histograms thus constructed are not fitted by the Jütter distribution (as they should not). Our derivation is based on the special theory of relativity, the central limit theorem and the Lobachevsky structure of the velocity space of the theory, where the rapidity variable plays a crucial role. For v2 /c2 ≪ 1 and 1 / β ≡kB T /m0c2 ≪ 1 the distribution tends to the Maxwell-Boltzmann distribution.
Lorentz-force-perturbed orbits with application to J2-invariant formation
NASA Astrophysics Data System (ADS)
Peng, Chao; Gao, Yang
2012-08-01
The Lorentz force acting on an electrostatically charged spacecraft in the Earth's magnetic field provides a new propellantless means for controlling a spacecraft's orbit. Assuming that the Lorentz force is much smaller than the gravitational force, the perturbation of a charged spacecraft's orbit by the Lorentz force in the Earth's magnetic field, which is simplified as a titled rotating dipole, is studied in this article. Our research starts with the derivation of the equations of motion in geocentric equatorial inertial Cartesian coordinates using Lagrange mechanics, and then derives the Gauss variational equations involving Lorentz-force perturbation using a set of nodal inertial coordinates as an intermediate step. Subsequently, the approximate averaged changes in classical orbital elements, including single-orbit-averaged and one-day-averaged changes, are obtained by employing orbital averaging. We have found that the approximate analytic one-day-averaged changes in semi-major axis, eccentricity, and inclination are nearly zero, and those in the other three angular orbital elements are affected by J2 and Lorentz-force perturbations. This characteristic is applied to model bounded relative orbital motion in the presence of the Lorentz force, which is termed Lorentz-augmented J2-invariant formation. The necessary condition for J2-invariant formation is derived when the chief spacecraft's reference orbit is either circular or elliptical. It is shown that J2-invariant formation is easier to implement if the deputy spacecraft is capable of establishing electric charge. All conclusions drawn from the approximate analytic solutions are verified by numerical simulation.
Seven Experiments to Test the Local Lorentz Invariance of c
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.
2005-01-01
The speed of light has never been measured directly with a moving detector to test the fundamental assertion of special relativity that c is invariant to motion of the observer. Seven simple experiments are proposed, four of which could test the invariance of c to motion of the detector. Three other observations of moving sources could test Einstein s second postulate and the relativity of stellar aberration. There are lingering concerns that the speed of light may depend on the motion of the observer, after all. This issue can now be resolved by experiment.
Benacquista, M.J.
1988-01-01
The gravitational many-body parameterized post-Newtonian (PNN) Lagrangian for compact celestial bodies is extended to second post-Newtonian order and is constrained to exhibit the invariances observed in nature-generalized Lorentz invariance, the strong equivalence principle, and the isotropy of the gravitational potential. These invariances are imposed on the Lagrangian using an empirical approach which is based on calculated observables rather than through formal procedures involving post-Newtonian approximations of transformations. When restricted in this way, the Lagrangian possesses two free parameters which can be related to light-deflection experiments and the effect of an environment of proximate matter on such experiments.
Lorentz invariance violation and IceCube neutrino events
NASA Astrophysics Data System (ADS)
Tomar, Gaurav; Mohanty, Subhendra; Pakvasa, Sandip
2015-11-01
The IceCube neutrino spectrum shows a flux which falls of as E -2 for sub PeV energies but there are no neutrino events observed above ˜ 3 PeV. In particular the Glashow resonance expected at 6.3 PeV is not seen. We examine a Planck scale Lorentz violation as a mechanism for explaining the cutoff of observed neutrino energies around a few PeV. By choosing the one free parameter the cutoff in neutrino energy can be chosen to be between 2 and 6.3 PeV. We assume that neutrinos (antineutrinos) have a dispersion relation E 2 = p 2 - (ξ3 /M Pl) p 3, and find that both π + and π - decays are suppressed at neutrino energies of order of few PeV. We find that the μ - decay being a two-neutrino process is enhanced, whereas μ + decay is suppressed. The K + → π 0 e + ν e is also suppressed with a cutoff neutrino energy of same order of magnitude, whereas {K}-to {π}^0{e}-{overline{ν}}_e is enhanced. The nto {p}+{e}-{overline{ν}}_e decay is suppressed (while the overline{n}to {p}-{e}+{ν}_e is enhanced). This means that the {overline{ν}}_e expected from n decay arising from p + γ → Δ → π + n reaction will not be seen. This can explain the lack of Glashow resonance events at IceCube. If no Glashow resonance events are seen in the future then the Lorentz violation can be a viable explanation for the IceCube observations at PeV energies.
Alternative approaches to Lorentz violation invariance in loop quantum gravity inspired models
Alfaro, Jorge; Reyes, Marat; Morales-Tecotl, Hugo A.; Urrutia, L.F.
2004-10-15
Recent claims point out that possible violations of Lorentz symmetry appearing in some semiclassical models of extended matter dynamics motivated by loop quantum gravity can be removed by a different choice of phase-space variables. In this note we show that such alternative is inconsistent with (i) the choice of variables in the regularized underlying quantum theory from which the effective theories are derived and (ii) the application of the correspondence principle. A consistent choice will violate standard Lorentz invariance, with the exception of trivial zero Planck scale corrections which are allowed by the analysis. Thus, for nontrivial corrections, to preserve a relativity principle in these models, the linear realization of Lorentz symmetry should be extended or superseded.
Search for violation of Lorentz invariance in top quark pair production and decay.
Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Aoki, M; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Berger, M S; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; García-González, J A; García-Guerra, G A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jesik, R; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kostelecký, V A; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Shivpuri, R K; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Titov, M; Tokmenin, V V; Tsai, Y-T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; White, A; Whittington, D; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Zennamo, J; Zhao, T; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2012-06-29
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3 fb(-1) of integrated luminosity, we search for violation of Lorentz invariance by examining the tt[over ¯] production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the tt[over ¯] production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c(Q))(μν33) and (c(U))(μν33) containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero. PMID:23004960
Search for Violation of Lorentz Invariance in Top Quark Pair Production and Decay
Abazov V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Berger, M. S.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Perez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kostelecky, V. A.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; et al.
2012-06-27
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3 fb{sup -1} of integrated luminosity, we search for violation of Lorentz invariance by examining the t{bar t} production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the t{bar t} production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c{sub Q}){sub {mu}{nu}33} and (c{sub U}){sub {mu}{nu}33} containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero.
Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry
Obukhov, Yuri N.; Rubilar, Guillermo F.
2006-09-15
We discuss conservation laws for gravity theories invariant under general coordinate and local Lorentz transformations. We demonstrate the possibility to formulate these conservation laws in many covariant and noncovariant(ly looking) ways. An interesting mathematical fact underlies such a diversity: there is a certain ambiguity in a definition of the (Lorentz-) covariant generalization of the usual Lie derivative. Using this freedom, we develop a general approach to the construction of invariant conserved currents generated by an arbitrary vector field on the spacetime. This is done in any dimension, for any Lagrangian of the gravitational field and of a (minimally or nonminimally) coupled matter field. A development of the ''regularization via relocalization'' scheme is used to obtain finite conserved quantities for asymptotically nonflat solutions. We illustrate how our formalism works by some explicit examples.
On the assertion that PCT violation implies Lorentz non-invariance
NASA Astrophysics Data System (ADS)
Dütsch, Michael; Gracia-Bondía, José M.
2012-05-01
Out of conviction or expediency, some current research programs (Kostelecký (2008) [1], Kostelecký and Russell (2011) [2], Ferrero and Altschul (2011) [3], Anselmi (2009) [4]) take for granted that "PCT violation implies violation of Lorentz invariance". We point out that this claim (Greenberg (2002) [5]) is still on somewhat shaky ground. In fact, for many years there has been no strengthening of the evidence in this direction. However, using causal perturbation theory, we prove here that when starting with a local PCT-invariant interaction, PCT symmetry can be maintained in the process of renormalization.
Search for Violations of Lorentz Invariance and CPT Symmetry in B_{(s)}^{0} Mixing.
Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Niess, V; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S
2016-06-17
Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14}) GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic. PMID:27367382
Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics
NASA Astrophysics Data System (ADS)
Christov, C. I.
2006-04-01
Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
NASA Astrophysics Data System (ADS)
Kanazawa, Koichi; Koike, Yuji; Metz, Andreas; Pitonyak, Daniel; Schlegel, Marc
2016-03-01
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relations for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN →h X . With the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; Metz, Andreas; Schlegel, Marc
2016-03-14
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity. PMID:24702346
NASA Astrophysics Data System (ADS)
Lin, Kai; Satheeshkumar, V. H.; Wang, Anzhong
2016-06-01
In this paper, we show the existence of static and rotating universal horizons and black holes in gravitational theories with broken Lorentz invariance. We pay particular attention to the ultraviolet regime, and show that universal horizons and black holes exist not only in the low energy limit but also at the ultraviolet energy scales. This is realized by presenting various static and stationary exact solutions of the full theory of the projectable Hořava gravity with an extra U(1) symmetry in (2 +1 )-dimensions, which, by construction, is power-counting renormalizable.
Alfaro, Jorge; Urrutia, Luis F.
2010-01-15
We introduce a new version of nonlinear electrodynamics which is produced by a spontaneous symmetry breaking of Lorentz invariance induced by the nonzero vacuum expectation value of the gauge invariant electromagnetic field strength. The symmetry breaking potential is argued to effectively arise from the integration of massive gauge bosons and fermions in an underlying fundamental theory. All possible choices of the vacuum lead only to the remaining invariant subgroups T(2) and HOM(2). We explore in detail the plane wave solutions of the linearized sector of the model for an arbitrary vacuum. They present two types of dispersion relations. One corresponds to the case of the usual Maxwell electrodynamics with the standard polarization properties of the fields. The other dispersion relation involves anisotropies determined by the structure of the vacuum. The corresponding fields reflect these anisotropies. The model is stable in the small Lorentz invariance violation (LIV) approximation. We have also embedded our model in the photon sector of the standard model extension, in order to translate the many bounds obtained in the latter into corresponding limits for our parameters. The one-way anisotropic speed of light is calculated for a general vacuum, and its isotropic component is strongly bounded by {delta}-tildec/c<2x10{sup -32}. The anisotropic violation contribution is estimated by introducing an alternative definition for the difference of the two-way speed of light in perpendicular directions, {Delta}c, that is relevant to Michelson-Morley type of experiments and which turns out to be also strongly bounded by {Delta}c/c<10{sup -32}. Finally, we speculate on the relation of the vacuum energy of the model with the cosmological constant and propose a connection between the vacuum fields and the intergalactic magnetic fields.
Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares.
Wang, Zi-Yi; Liu, Ruo-Yu; Wang, Xiang-Yu
2016-04-15
It was recently proposed that a giant flare of the blazar PKS B1424-418 at redshift z=1.522 is in association with a PeV-energy neutrino event detected by IceCube. Based on this association we here suggest that the flight time difference between the PeV neutrino and gamma-ray photons from blazar flares can be used to constrain the violations of equivalence principle and the Lorentz invariance for neutrinos. From the calculated Shapiro delay due to clusters or superclusters in the nearby universe, we find that violation of the equivalence principle for neutrinos and photons is constrained to an accuracy of at least 10^{-5}, which is 2 orders of magnitude tighter than the constraint placed by MeV neutrinos from supernova 1987A. Lorentz invariance violation (LIV) arises in various quantum-gravity theories, which predicts an energy-dependent velocity of propagation in vacuum for particles. We find that the association of the PeV neutrino with the gamma-ray outburst set limits on the energy scale of possible LIV to >0.01E_{pl} for linear LIV models and >6×10^{-8}E_{pl} for quadratic order LIV models, where E_{pl} is the Planck energy scale. These are the most stringent constraints on neutrino LIV for subluminal neutrinos. PMID:27127950
Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares
NASA Astrophysics Data System (ADS)
Wang, Zi-Yi; Liu, Ruo-Yu; Wang, Xiang-Yu
2016-04-01
It was recently proposed that a giant flare of the blazar PKS B1424-418 at redshift z =1.522 is in association with a PeV-energy neutrino event detected by IceCube. Based on this association we here suggest that the flight time difference between the PeV neutrino and gamma-ray photons from blazar flares can be used to constrain the violations of equivalence principle and the Lorentz invariance for neutrinos. From the calculated Shapiro delay due to clusters or superclusters in the nearby universe, we find that violation of the equivalence principle for neutrinos and photons is constrained to an accuracy of at least 1 0-5, which is 2 orders of magnitude tighter than the constraint placed by MeV neutrinos from supernova 1987A. Lorentz invariance violation (LIV) arises in various quantum-gravity theories, which predicts an energy-dependent velocity of propagation in vacuum for particles. We find that the association of the PeV neutrino with the gamma-ray outburst set limits on the energy scale of possible LIV to >0.01 Ep l for linear LIV models and >6 ×10-8Ep l for quadratic order LIV models, where Ep l is the Planck energy scale. These are the most stringent constraints on neutrino LIV for subluminal neutrinos.
Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays
NASA Technical Reports Server (NTRS)
Scully, S. T.; Stecker, F. W.
2009-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.
The Spectrum of Ultrahigh Energy Cosmic Rays and Constraints on Lorentz Invariance Violation
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2008-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn off photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then use a chi-squared analysis to compare our results with the experimental UHECR data and thereby place limits on the amount of LIV. We also discuss how a small amount of LIV that is consistent with the experimental data can still lead to a recovery of the cosmic ray flux at higher energies than presently observed.
A Z{sub 3} generalization of Pauli's principle, quark algebra and the Lorentz invariance
Kerner, Richard
2012-09-24
The fundamental difference between bosons and fermions is that they obey two alternative representations of the Z{sub 2} group, resulting in symmetric or anti-symmetric binary commutation relations. Our aim is to explore possibilities offered by ternary Z{sub 3} generalization commutation relations. This leads to cubic and ternary algebras which are a direct generalization of usual commutation relations, with Z{sub 3}-grading replacing the usual Z{sub 2}-grading. Properties and structure of such algebras are discussed, with special interest in a low-dimensional one, with two generators. Invariant cubic forms on such algebras are introduced, and it is shown how the SL(2,C) group arises naturally as the symmetry group preserving these forms. In the case of lowest dimension, with only two generators, it is shown how the cubic combinations of elements of the same Z{sub 3} grade behave like Lorentz spinors, while binary products of elements of this algebra with an element of the conjugate algebra behave like Lorentz vectors. The wave equation generalizing the Dirac operator to the Z{sub 3}-graded case is introduced, whose diagonalization leads to a third-order equation. The solutions of this equation cannot propagate because their exponents always contain non-oscillating real damping factor. We show how certain cubic products can propagate nevertheless. The model suggests the origin of the color SU(3) symmetry obeyed by quark states.
Status and prospects for CPT and Lorentz invariance violation searches in neutral meson mixing
NASA Astrophysics Data System (ADS)
van Tilburg, Jeroen; van Veghel, Maarten
2015-03-01
An overview of current experimental bounds on CPT violation in neutral meson mixing is given. New values for the CPT asymmetry in the B0 and Bs0 systems are deduced from published BaBar, Belle and LHCb results. With dedicated analyses, LHCb will be able to further improve the bounds on CPT violation in the D0, B0 and Bs0 systems. Since CPT violation implies violation of Lorentz invariance in an interacting local quantum field theory, the observed CPT asymmetry will exhibit sidereal- and boost-dependent variations. Such CPT-violating and Lorentz-violating effects are accommodated in the framework of the Standard Model Extension (SME). The large boost of the neutral mesons produced at LHCb results in a high sensitivity to the corresponding SME coefficients. For the B0 and Bs0 systems, using existing LHCb results, we determine with high precision the SME coefficients that are not varying with sidereal time. With a full sidereal analysis, LHCb will be able to improve the existing SME bounds in the D0, B0 and Bs0 systems by up to two orders of magnitude.
Flambaum, V V
2016-08-12
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the _{90}^{229}Th nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest _{55}^{133}Cs, _{37}^{85}Rb, _{37}^{87}Rb, _{80}^{201}Hg, _{54}^{131}Xe, and _{10}^{21}Ne are performed. The results for _{10}^{21}Ne are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude. PMID:27563955
Search for Violation of $CPT$ and Lorentz Invariance in $${B_s^0}$$ Meson Oscillations
Abazov, Victor Mukhamedovich
2015-06-12
We present the first search for CPT-violating effects in the mixing of B0s mesons using the full Run II data set with an integrated luminosity of 10.4 fb-1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B0s → µ±D±s as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2 × 10-12 GeV and (-0.8 < ΔaT -more » 0.396ΔaZ < 3.9) × 10-13 GeV.« less
Search for Violation of CPT and Lorentz Invariance in Bs(0) Meson Oscillations.
Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Borysova, M; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cuth, J; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Fauré, A; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Gogota, O; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Savitskyi, M; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schott, M; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2015-10-16
We present the first search for CPT-violating effects in the mixing of Bs(0) mesons using the full Run II data set with an integrated luminosity of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay Bs(0)→μ(±)Ds(±) as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥<1.2×10(-12) GeV and (-0.8<ΔaT-0.396ΔaZ<3.9)×10(-13) GeV. PMID:26550864
NASA Astrophysics Data System (ADS)
Flambaum, V. V.
2016-08-01
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the Th22990 nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest Cs13355 , Rb8537 , Rb8737 , Hg20180 , Xe13154 , and Ne2110 are performed. The results for Ne2110 are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude.
Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions
NASA Technical Reports Server (NTRS)
Scully, Sean T.; Stecker, Floyd W.
2010-01-01
We have previously shown that a very small amount of Lorentz invariance violation (UV), which suppresses photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with cosmic background radiation (CBR) photons, can produce a spectrum of cosmic rays that is consistent with that currently observed by the Pierre Auger Observatory (PAO) and HiRes experiments. Here, we calculate the corresponding flux of high energy neutrinos generated by the propagation of UHECR protons through the CBR in the presence of UV. We find that UV produces a reduction in the flux of the highest energy neutrinos and a reduction in the energy of the peak of the neutrino energy flux spectrum, both depending on the strength of the UV. Thus, observations of the UHE neutrino spectrum provide a clear test for the existence and amount of UV at the highest energies. We further discuss the ability of current and future proposed detectors make such observations.
Stanwix, Paul L; Tobar, Michael E; Wolf, Peter; Susli, Mohamad; Locke, Clayton R; Ivanov, Eugene N; Winterflood, John; van Kann, Frank
2005-07-22
We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz invariance in the framework of the photon sector of the standard model extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured kappa(ZZ)(e-) component of 2.1(5.7) x 10(-14), and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of -0.9(2.0) x 10(-10) on the isotropy parameter, P(MM) = delta-beta + 1 / 2 is set, which is more than a factor of 7 improvement. PMID:16090785
Stanwix, Paul L.; Tobar, Michael E.; Susli, Mohamad; Locke, Clayton R.; Ivanov, Eugene N.; Winterflood, John; Kann, Frank van; Wolf, Peter
2005-07-22
We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz invariance in the framework of the photon sector of the standard model extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured {kappa}-tilde{sub e-}{sup ZZ} component of 2.1(5.7)x10{sup -14}, and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of -0.9(2.0)x10{sup -10} on the isotropy parameter, P{sub MM}={delta}-{beta}+(1/2) is set, which is more than a factor of 7 improvement.
Gamma-ray burst polarization reduction induced by the Lorentz invariance violation
NASA Astrophysics Data System (ADS)
Lin, Hai-Nan; Li, Xin; Chang, Zhe
2016-08-01
It has been observed that photons in the prompt emission of some gamma-ray bursts (GRBs) are highly polarized. The high polarization is used by some authors to give a strict constraint on the Lorentz invariance violation (LIV). If the Lorentz invariance is broken, the polarization vector of a photon may rotate during its propagation. The rotation angle of polarization vector depends on both the photon energy and the distance of source. It is believed that if high polarization is observed, then the relative rotation angle (denoted by α) of polarization vector of the highest energy photon with respect to that of the lowest energy photon should be no more than π/2. Otherwise, the net polarization will be severely suppressed, thus couldn't be as high as what was actually observed. In this paper, we will give a detailed calculation on the evolution of GRB polarization arising from LIV effect duration the propagation. It is shown that the polarization degree rapidly decrease as α increases, and reaches a local minimum at α ≈ π, then increases until α ≈ 3π/2, after that decreases again until α ≈ 2π, etc. The polarization degree as a function of α oscillates with a quasi-period T ≈ π, while the oscillating amplitude gradually deceases to zero. Moreover, we find that a considerable amount (more than 60% of the initial polarization) of polarization degree can be conserved when α ≈ π/2. The polarization observation in a higher and wider energy band, a softer photon spectrum, and a higher redshift GRB is favorable in order to tightly constrain LIV effect.
NASA Astrophysics Data System (ADS)
Šoln, Josip
2009-08-01
For the electroweak interactions, the massive neutrino perturbative kinematical procedure is developed in the massive neutrino Fock space. The perturbation expansion parameter is the ratio of neutrino mass to its energy. This procedure, within the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-modified electroweak Lagrangian, calculates the cross-sections with the new neutrino energy projection operators in the massive neutrino Fock space, resulting in the dominant Lorentz invariant standard model massless flavor neutrino cross-sections. As a consequence of the kinematical relations between the massive and massless neutrinos, some of the neutrino oscillation cross-sections are Lorentz invariance violating. But all these oscillating cross-sections, some of which violate the flavor conservation, being proportional to the squares of neutrino masses are practically unobservable in the laboratory. However, these neutrino oscillating cross-sections are consistent with the original Pontecorvo neutrino oscillating transition probability expression at short time (baseline), as presented by Dvornikov. From these comparisons, by mimicking the time dependence of the original Pontecorvo neutrino oscillating transition probability, one can formulate the dimensionless neutrino intensity-probability I, by phenomenologically extrapolating the time t, or, equivalently the baseline distance L away from the collision point for the oscillating differential cross-section. For the incoming neutrino of 10 MeV in energy and neutrino masses from Fritzsch analysis with the neutrino mixing matrix of Harrison, Perkins and Scott, the baseline distances at the first two maxima of the neutrino intensity are Lsime281 and 9279 km. The intensity I at the first maximum conserves the flavor, while at the second maximum, the intensities violate the flavor, respectively, in the final and initial state. At the end some details are given as to how one should be able to verify experimentally these neutrino
Collective Lorentz invariant dynamics on a single ‘polynomial’ worldline
NASA Astrophysics Data System (ADS)
Kassandrov, Vladimir V.; Khasanov, Ildus Sh; Markova, Nina V.
2015-10-01
Consider a worldline of a pointlike particle parameterized by polynomial functions, together with the light cone (‘retardation’) equation of an inertially moving observer. Then a set of apparent copies, R- or C-particles, defined by the (real or complex conjugate) roots of the retardation equation will be detected by the observer. We prove that for any ‘polynomial’ worldline the induced collective dynamics of R-C particles obeys a whole set of canonical conservation laws (for total momentum, angular momentum and the analogue of mechanical energy). Explicit formulas for the values of total angular momentum and the analogue of total rest energy (rest mass) are obtained; the latter is ‘self-quantized’, i.e. for any worldline takes only integer values. The dynamics is Lorentz invariant though different from the canonical relativistic mechanics. Asymptotically, at large values of the observer’s proper time, the R-C particles couple and then assemble into compact incoming/outgoing clusters. As a whole, the evolution resembles the process of (either elastic or inelastic) scattering of a beam of composite particles. Throughout the paper the consideration is purely algebraic, with no resort to differential equations of motion, field equations, etc.
Search for Violation of $CPT$ and Lorentz Invariance in ${B_s^0}$ Meson Oscillations
Abazov, Victor Mukhamedovich
2015-06-12
We present the first search for CPT-violating effects in the mixing of B^{0}_{s} mesons using the full Run II data set with an integrated luminosity of 10.4 fb^{-1} of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B^{0}_{s} → µ^{±}D^{±}_{s} as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2 × 10^{-12} GeV and (-0.8 < ΔaT - 0.396Δa_{Z} < 3.9) × 10^{-13} GeV.
Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Chang, Zhe; Li, Xin; Lin, Hai-Nan; Sang, Yu; Wang, Ping; Wang, Sai
2016-04-01
In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation (LIV). As the most energetic explosions in the Universe, gamma-ray bursts (GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale M QG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB, we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M QG > 5.05 × 1014 GeV in the linearly corrected case, is from GRB 140622A. Our constraint on M QG, although not as tight as previous results, is the safest and most reliable so far. Supported by National Natural Science Foundation of China (11375203, 11305181, 11322545, 11335012) and Knowledge Innovation Program of The Chinese Academy of Sciences
Search for Violation of CPT and Lorentz Invariance in B-s(0) Meson Oscillations
Abazov, V. M.
2015-10-14
We present the first search for CPT-violating effects in the mixing of B^{0}_{s} mesons using the full Run II data set with an integrated luminosity of 10.4 fb^{-1} of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B^{0}_{s} → µ^{±}D^{±}_{s} as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPTand Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥ < 1.2 × 10^{-12} GeV and (-0.8 < ΔaT - 0.396Δa_{Z} < 3.9) × 10^{-13} GeV.
Search for Violations of Lorentz Invariance and C P T Symmetry in B(s) 0 Mixing
NASA Astrophysics Data System (ADS)
Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration
2016-06-01
Violations of C P T symmetry and Lorentz invariance are searched for by studying interference effects in B0 mixing and in Bs0 mixing. Samples of B0→J /ψ KS0 and Bs0→J /ψ K+K- decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1 . No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and C P T symmetry. Results are expressed in terms of the standard model extension parameter Δ aμ with precisions of O (10-15) and O (10-14) GeV for the B0 and Bs0 systems, respectively. With no assumption on Lorentz (non)invariance, the C P T -violating parameter z in the Bs0 system is measured for the first time and found to be R e (z ) =-0.022 ±0.033 ±0.005 and I m (z ) =0.004 ±0.011 ±0.002 , where the first uncertainties are statistical and the second systematic.
NASA Technical Reports Server (NTRS)
Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.
2013-01-01
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)
Comment on ''Subtleties of Lorentz invariance and Shapes of the Nucleon''
Franz Gross; G. Ramalho; M.T. Pena
2007-08-07
The paper on ''Subtleties of Lorentz invariance and Shapes of the Nucleon'' by Kvinikhidze and Miller (referred to as KM) was originally submitted as a comment on our manuscript ''A pure S-wave covariant model for the nucleon'' (referred to as GRP1). KM claimed that the definition of polarization states used in GRP1 was not covariant. Subsequently, GRP1 was rejected by the Physical Review (for reasons having nothing to do with the definition of the polarization states), the KM ''comment'' was accepted by Physical Review (now reclassified as a brief report), and we have nearly completed two new papers, one that is a substantial revision and replacement of GRP1 and another that applies these ideas to the {gamma}* + N {yields} {Delta} transition (we refer to these two papers collectively as GRP2). To add to the confusion, Kvinikhidze and Miller used the unpublished ''advisory report'' [prepared by one of us (FG) as part of the original review process] to revise their original draft. This advisory report contained a more complete discussion of our new definition of polarization states, a discussion not yet published anywhere (but included in more detail in GRP2, the papers we are preparing for publication). At this moment we find ourselves in the unusual position of being criticized for work that is either not yet published or exists only in a referee's report. The purposes of this comment are (i) to present the issues (referred to by KM but unpublished by us) in a coherent way that explains the physics, leaving a more complete discussion for GRP2, (ii) to answer the objections of KM, and (iii) to set the record straight (partly accomplished in this Introduction). The remainder of this comment is divided into three sections. In Sec. II, building on the physical intuition introduced in GRP1, we present a coherent discussion of wave functions and currents based on the new fixed-axis polarization vectors and show that they are covariant. In Sec. III we discuss one issue
A Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector
Adamson, P.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; Boehnlein, D.J.; Bogert, D.; /Fermilab /Indiana U.
2010-07-01
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found using the MINOS near detector.
Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector
Adamson, P.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Choudhary, B. C.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Plunkett, R. K.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.
2010-10-08
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector.
Célérier, Marie-Noëlle; Nottale, Laurent E-mail: laurent.nottale@obspm.fr
2014-05-15
Owing to the non-differentiable nature of the theory of Scale Relativity, the emergence of complex wave functions, then of spinors and bi-spinors occurs naturally in its framework. The wave function is here a manifestation of the velocity field of geodesics of a continuous and non-differentiable (therefore fractal) space-time. In a first paper (Paper I), we have presented the general argument which leads to this result using an elaborate and more detailed derivation than previously displayed. We have therefore been able to show how the complex wave function emerges naturally from the doubling of the velocity field and to revisit the derivation of the non-relativistic Schrödinger equation of motion. In the present paper (Paper II), we deal with relativistic motion and detail the natural emergence of the bi-spinors from such first principles of the theory. Moreover, while Lorentz invariance has been up to now inferred from mathematical results obtained in stochastic mechanics, we display here a new and detailed derivation of the way one can obtain a Lorentz invariant expression for the expectation value of the product of two independent fractal fluctuation fields in the sole framework of the theory of Scale Relativity. These new results allow us to enhance the robustness of our derivation of the two main equations of motion of relativistic quantum mechanics (the Klein-Gordon and Dirac equations) which we revisit here at length.
Laemmerzahl, Claus; Macias, Alfredo; Mueller, Holger
2005-01-15
All quantum gravity approaches lead to small modifications in the standard laws of physics which in most cases lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge nonconservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar tensor theories and higher dimensional brane theories predict CNC in four dimensions and some models violating special relativity have been shown to be connected with CNC. Its relation to the Einstein Equivalence Principle has been discussed. Because of this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r-Coulomb potential, and to a time dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC.
Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
Adamson, P.; Baller, B.; Bernstein, R. H.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Buckley-Geer, E.; Childress, S.; Choudhary, B. C.; Grossman, N.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Morfin, J.
2008-10-10
A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10{sup -4} and 10{sup -2} of the maximum expected, assuming a suppression of these signatures by a factor of 10{sup -17}.
NASA Astrophysics Data System (ADS)
Allmendinger, F.; Schmidt, U.; Heil, W.; Karpuk, S.; Sobolev, Yu.; Tullney, K.
2016-02-01
We performed a search for a Lorentz-invariance- and CPT-violating coupling of the 3He and 129Xe nuclear spins to posited background fields. Our experimental approach is to measure the free precession of nuclear spin polarized 3He and 129Xe atoms using SQUIDs as detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the co-located spin samples. As a result we obtain an upper limit on the equatorial component of the background field b˜⊥n < 8.4 ṡ 10‑34 GeV (68% C.L.). This experiment is currently the most precise test of spin anisotropy due to the excellent long spin-coherence time.
NASA Astrophysics Data System (ADS)
Chen, Q.; Magoulakis, E.; Schiller, S.
2016-01-01
We describe an improved Michelson-Morley-type laser apparatus for highly sensitive tests of Lorentz invariance in the electron and photon sectors. The realization of an ultrastable rotation table reduced by more than one order systematic effects occurring with the rotation period. We also reduced by one order the noise level, resulting in integration times smaller by more than one order. Under reasonable assumptions, we determine five coefficients of the standard model extension test theory, with uncertainties similar to the previous best experiments, but with a 30 times shorter data acquisition time span. Four coefficients are consistent with zero at the (4 - 8 )×10-18 level, while one, (κ˜ e -)Z Z≃5 ×10-17 , appears to be caused by unidentified systematic effects. In addition, the apparatus' performance leads to a limit for the strength of (hypothetical) space-time fluctuations improved by a factor of 3.7.
Schindler, M. R.; Fuchs, T.; Scherer, S.; Gegelia, J.
2007-02-15
We calculate the nucleon form factors G{sub A} and G{sub P} of the isovector axial-vector current and the pion-nucleon form factor G{sub {pi}}{sub N} in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p{sup 4}). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a{sub 1} as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G{sub A}. The inclusion of the axial-vector meson results in an improved description of the experimental data for G{sub A}, while the contribution to G{sub P} is small.
New pulsar limit on local Lorentz invariance violation of gravity in the standard-model extension
NASA Astrophysics Data System (ADS)
Shao, Lijing
2014-12-01
In the pure-gravity sector of the minimal standard-model extension, nine Lorentz-violating coefficients of a vacuum-condensed tensor field describe dominant observable deviations from general relativity, out of which eight were already severely constrained by precision experiments with lunar laser ranging, atom interferometry, and pulsars. However, the time-time component of the tensor field, s¯TT, dose not enter into these experiments, and was only very recently constrained by Gravity Probe B. Here we propose a novel idea of using the Lorentz boost between different frames to mix different components of the tensor field, and thereby obtain a stringent limit of s¯TT from binary pulsars. We perform various tests with the state-of-the-art white dwarf optical spectroscopy and pulsar radio timing observations, in order to get new robust limits of s¯TT. With the isotropic cosmic microwave background as a preferred frame, we get |s¯ TT|<1.6 ×10-5 (95% C.L.), and without assuming the existence of a preferred frame, we get |s¯ TT|<2.8 ×10-4 (95% C.L.). These two limits are respectively about 500 times and 30 times better than the current best limit.
NASA Astrophysics Data System (ADS)
Sidharth, B. G.; Das, Abhishek; Roy, Arka Dev
2016-05-01
This paper deals with the violation of Lorentz symmetry. The approach is based on Compton scattering which becomes modified due to a modified dispersion relation arising from a minimum spacetime cut off as in modern Quantum Gravity approaches. With this amendment, we find that two high-energy rays of different energies develop a time-lag. This time separation becomes prominent when the energies of the considered photons is ≥ 1 GeV. Extending our approach to gamma rays of cosmic origin we predict that they undergo innumerable such scattering processes before reaching us. Therefore, it accounts for the time-lag phenomena of gamma ray bursts ( GRB)'s which have been claimed to be observed. Also, we find that resorting to the modified Snyder-Sidharth Hamiltonian it is possible to extend the GZK cut off beyond its normal limit, 1020 eV. Some observations of ultra high energy cosmic rays support this. This extends the limits of special theory of relativity.
NASA Astrophysics Data System (ADS)
Pressler, David E.
2012-03-01
A great discrepancy exists - the speed of light and the neutrino speed must be identical; as indicated by supernova1987A; yet, OPERA predicts faster-than-light neutrinos. Einstein's theories are based on the invariance of the speed of light, and no privileged Galilean frame of reference exists. Both of these hypotheses are in error and must be reconciled in order to solve the dilemma. The Michelson-Morley Experiment was misinterpreted - my Neoclassical Theory postulates that BOTH mirrors of the interferometer physically and absolutely move towards its center. The result is a three-directional-Contraction, (x, y, z axis), an actual distortion of space itself; a C-Space condition. ``PRESSLER'S LAW OF C-SPACE: The speed of light, c, will always be measured the same speed in all three directions (˜300,000 km/sec), in ones own inertial reference system, and will always be measured as having a different speed in all other inertial frames which are at a different kinetic energy level or at a location with a different strength gravity field'' Thus, the faster you go, motion, or the stronger the gravity field the smaller you get in all three directions. OPERA results are explained; at the surface of Earth, the strength of gravity field is at maximum -- below the earth's surface, time and space is less distorted; therefore, time is absolutely faster accordingly. Reference OPERA's preprint: Neutrino's faster time-effect due to altitude difference; (10-13ns) x c (299792458m) = 2.9 x 10-5 m/ns x distance (730085m) + 21.8m.) This is consistent with the OPERA result.
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
NASA Astrophysics Data System (ADS)
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
NASA Astrophysics Data System (ADS)
Wei, Jun-Jie; Wu, Xue-Feng; Gao, He; Mészáros, Peter
2016-08-01
Five TeV neutrino events weakly correlated with five gamma-ray bursts (GRBs) were detected recently by IceCube. This work is an attempt to show that if the GRB identifications are verified, the observed time delays between the TeV neutrinos and gamma-ray photons from GRBs provide attractive candidates for testing fundamental physics with high accuracy. Based on the assumed associations between the TeV neutrinos and GRBs, we find that the limiting velocity of the neutrinos is equal to that of photons to an accuracy of ~ 1.9 × 10‑15 – 2.5 × 10‑18, which is about 104 – 107 times better than the constraint obtained with the neutrino possibly from a blazar flare. In addition, we set the most stringent limits up to date on the energy scale of quantum gravity for both the linear and quadratic violations of Lorentz invariance, namely EQG, 1 > 6.3 × 1018 – 1.5 × 1021 GeV and EQG, 2 > 2.0 × 1011 – 4.2 × 1012 GeV, which are essentially as good as or are an improvement of one order of magnitude over the results previously obtained by the GeV photons of GRB 090510 and the PeV neutrino from a blazar flare. Assuming that the Shapiro time delay is caused by the gravitational potential of the Laniakea supercluster of galaxies, we also place the tightest limits to date on Einstein's weak equivalence principle through the relative differential variations of the parameterized post-Newtonian parameter γ values for two different species of particles (i.e., neutrinos and photons), yielding Δγ ~ 10‑11 – 10‑13. However, it should be emphasized again that these limits here obtained are at best forecast of what could be achieved if the GRB/neutrino correlations would be finally confirmed.
Lorentz-invariant Bell's inequality
Kim, Won Tae; Son, Edwin J.
2005-01-01
We study Bell's inequality in relation to the Einstein-Podolsky-Rosen paradox in the relativistic regime. For this purpose, a relativistically covariant analysis is used in the calculation of the Bell's inequality, which results in the maximally violated Bell's inequality in any reference frame.
NASA Astrophysics Data System (ADS)
Gonçalves, Bruno; Dias Júnior, Mário M.; Ribeiro, Baltazar J.
2014-10-01
The exact Foldy-Wouthuysen transformation is performed in order to study the Dirac field interacting with many possible external fields associated with C P T -Lorentz violation. We also derived the calculation of equations of motion as well as the generalized Lorentz force corrected by the mentioned external fields. The main point is the interaction between the Dirac particle and the terms that have the multiplication of the electromagnetic field and the terms that break C P T -Lorentz. Finally, with the transformed Hamiltonian we were able to write an expression for the bound state of the theory and analyze it in the atomic experiments context. This result is an analytical expression that gives the possibility of the weakness of C P T -Lorentz terms to be compensated by the presence of a strong magnetic field.
Lorentz violation naturalness revisited
NASA Astrophysics Data System (ADS)
Belenchia, Alessio; Gambassi, Andrea; Liberati, Stefano
2016-06-01
We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.
Supersymmetry and Lorentz Violation in 5D
Garcia-Aguilar, J. D.; Perez-Lorenzana, A.; Pedraza-Ortega, O.
2011-10-14
We present a study for a Supersymmetric field theory with Lorentz-Violation terms in 5D. We perform the analysis in the context of the Berger-Kostelecky model (BK), adding one compactified dimension that explicitly breaks the Lorentz invariance. We introduce terms that encode this breaking, and find non trivial restrictions over boundary conditions of fields that one needs to close the supersymmetric algebra.
Supersymmetry and Lorentz Violation in 5D
NASA Astrophysics Data System (ADS)
García-Aguilar, J. D.; Pérez-Lorenzana, A.; Pedraza-Ortega, O.
2011-10-01
We present a study for a Supersymmetric field theory with Lorentz-Violation terms in 5D. We perform the analysis in the context of the Berger-Kostelecky model (BK), adding one compactified dimension that explicitly breaks the Lorentz invariance. We introduce terms that encode this breaking, and find non trivial restrictions over boundary conditions of fields that one needs to close the supersymmetric algebra.
Question of Lorentz violation in muon decay
NASA Astrophysics Data System (ADS)
Noordmans, J. P.; Onderwater, C. J. G.; Wilschut, H. W.; Timmermans, R. G. E.
2016-06-01
Possibilities to test the Lorentz invariance of the weak interaction in muon decay are considered. We derive the direction-dependent muon-decay rate with a general Lorentz-violating addition to the W -boson propagator. We discuss measurements of the directional and boost dependence of the Michel parameters and of the muon lifetime as a function of absolute velocity. The total muon-decay rate in the Lorentz-violating standard model extension is addressed. Suggestions are made for dedicated (re)analyses of the pertinent data and for future experiments.
Fourth Meeting on CPT and Lorentz Symmetry
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan
2008-03-01
Improved tests of Lorentz and CPT symmetry using noble-gas masers / A. Glenday, D. F. Phillips, and R. L. Walsworth -- A modern Michelson-Morley experiment using actively rotated optical resonators / S. Herrmann et al. -- Rotating experiments to test Lorentz invariance in the photon sector / M. E. Tobar et al. -- Lorentz violation, electrodynamics, and the cosmic microwave background / M. Mewes -- High energy astrophysical tests of Lorentz invariance / B. Altschul -- Fundamental physics experiments in space (within ESA) / T. J. Sumner -- The experimental foundations of the Dirac equation / C. Lämmerzahl -- Perspectives on Lorentz and CPT violation / V. A. Kostelecký -- Search for Lorentz and CPT violation effects in muon spin precession / B. L. Roberts -- Lorentz violation in a diffeomorphism-invariant theory / R. Jackiw -- Studies of CPT symmetry with ASACUSA / R. S. Hayano -- Neutrino oscillations and Lorentz violation with MiniBooNE / R. Tayloe and T. Katori -- Testing Lorentz and CPT invariance with MINOS near detector neutrinos / B. J. Rebel and S. L. Mufson -- Einstein-ther gravity: theory and observational constraints / T. Jacobson -- Tests of Lorentz-invariance violation in neutrino oscillations / K. Whisnant -- Search for CPT violation in neutral kaons at KLOE: status and perspectives / A. Di Domenico et al. -- Search for CPT violation in B[symbol]-B¯[symbol] oscillations with BABAR / D. P. Stoker -- Theoretical topics in spacetime-symmetry violations / R. Lehnert -- A second-generation co-magnetometer for testing fundamental symmetries / S. J. Smullin et al. -- Nambu-Goldstone and massive modes in gravitational theories with spontaneous Lorentz breaking / R. Bluhm -- The ALPHA antihydrogen experiment / N. Madsen et al. -- Atom interferometry tests the isotropy of post-Newtonian gravity / H. Müller et al. -- Probing Lorentz symmetry with gravitationally coupled matter / J. D. Tasson -- Torsion balance test of preferred-frame and weak coupling to
Probing Lorentz Invariance Using Coherent Optical Phenomena
NASA Astrophysics Data System (ADS)
Cotter, J. P.; Hill, M. P.; Varcoe, B. T. H.
2008-03-01
We have demonstrated an experimental method for detecting extremely small frequency shifts which can be used to access the least well known of the photon sector parameters κtr. Using an interferometric coherent double resonance a spectral feature of ~ 50Hz in width can be generated in an Ives-Stilwell like apparatus. The feature is robust against Doppler broadening and can be observed in a vapour cell.
Maxwell Duality, Lorentz Invariance, and Topological Phase
NASA Technical Reports Server (NTRS)
Dowling, J.; Williams, C.; Franson, J.
1999-01-01
We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena.
New bounds on isotropic Lorentz violation
Chris Carone; Marc Sher; Marc Vanderhaeghen
2006-09-19
Violations of Lorentz invariance that appear via operators of dimension four or less are completely parameterized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are nineteen dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10{sup -11} and 10{sup -32}; the remaining parameter, ktr, is isotropic and has a much weaker bound of order 10{sup -4}. In this Brief Report, we point out that ktr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10{sup -8}. With reasonable assumptions, we further show that this bound may be improved to 10{sup -14} by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz violating parameters in the pure gluonic sector of QCD.
Lorentz violating Julia-Toulouse mechanism
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Wotzasek, Clovis
2007-03-01
We study a Lorentz invariance violating extension for the pure photonic sector of the standard model. A phenomenological proposal is made for the condensation of topological defects in the presence of a constant rank-m tensor in the context of the Julia-Toulouse mechanism. Possible physical consequences leading to direct measurable effects over the confining properties of the elementary particles are explored.
Low Energy Lorentz Violation from Modified Dispersion at High Energies.
Husain, Viqar; Louko, Jorma
2016-02-12
Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities. PMID:26918976
Constraining Lorentz violation with cosmology.
Zuntz, J A; Ferreira, P G; Zlosnik, T G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities. PMID:19113765
Constraining Lorentz Violation with Cosmology
Zuntz, J. A.; Ferreira, P. G.; Zlosnik, T. G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities.
Test of Lorentz symmetry with trapped ions
NASA Astrophysics Data System (ADS)
Pruttivarasin, Thaned
2016-05-01
The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).
Theoretical Studies of Lorentz and CPT Symmetry
NASA Technical Reports Server (NTRS)
Kostelecky, V. Alan
2005-01-01
The fundamental symmetries studied here are Lorentz and CPT invariance, which form a cornerstone of the relativistic quantum theories used in modern descriptions of nature. The results obtained during the reporting period focus on the idea, originally suggested by the P.I. and his group in the late 1980s, that observable CPT and Lorentz violation in nature might emerge from the qualitatively new physics expected to hold at the Planck scale. What follows is a summary of results obtained during the period of this grant.
The 1895 Lorentz transformations: historical issues and present teaching
NASA Astrophysics Data System (ADS)
Provost, Jean-Pierre; Bracco, Christian
2016-07-01
We present the pedagogical interest for the teaching of special relativity of the 1895 Lorentz transformations, which are a simple modification of the Galilean ones, satisfying the invariance of light velocity at first order in V/c. Since they are also the infinitesimal version of the better known but more complicated 1904 Lorentz ones, they allow us to address the main topics of this teaching (time dilatation, length contraction, relativistic dynamics, invariance of electromagnetism) and to recover standard results through simple integrations or the use of invariants. In addition, they are directly related to important historical issues, including Einstein’s 1911 relativistic approach to gravitation.
Effect of bulk Lorentz violation on anisotropic brane cosmologies
Heydari-Fard, Malihe
2012-04-01
The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early time behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.
Generalizations of teleparallel gravity and local Lorentz symmetry
Sotiriou, Thomas P.; Barrow, John D.; Li Baojiu
2011-05-15
We analyze the relation between teleparallelism and local Lorentz invariance. We show that generic modifications of the teleparallel equivalent to general relativity will not respect local Lorentz symmetry. We clarify the reasons for this and explain why the situation is different in general relativity. We give a prescription for constructing teleparallel equivalents for known theories. We also explicitly consider a recently proposed class of generalized teleparallel theories, called f(T) theories of gravity, and show why restoring local Lorentz symmetry in such theories cannot lead to sensible dynamics, even if one gives up teleparallelism.
Combined Search for Lorentz Violation in Short-Range Gravity.
Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan
2016-08-12
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings. PMID:27563946
Combined Search for Lorentz Violation in Short-Range Gravity
NASA Astrophysics Data System (ADS)
Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G.; Long, J. C.; Weisman, E.; Xu, Rui; Kostelecký, V. Alan
2016-08-01
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10-9 m2 , improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Lorentz and CPT violation in the Standard-Model Extension
NASA Astrophysics Data System (ADS)
Lehnert, Ralf
2013-03-01
Lorentz and CPT invariance are among the symmetries that can be investigated with ultrahigh precision in subatomic physics. Being spacetime symmetries, Lorentz and CPT invariance can be violated by minuscule amounts in many theoretical approaches to underlying physics that involve novel spacetime concepts, such as quantized versions of gravity. Regardless of the underlying mechanism, the low-energy effects of such violations are expected to be governed by effective field theory. This talk provides a survey of this idea and includes an overview of experimental efforts in the field.
Lorentz-violating gravitoelectromagnetism
Bailey, Quentin G.
2010-09-15
The well-known analogy between a special limit of general relativity and electromagnetism is explored in the context of the Lorentz-violating standard-model extension. An analogy is developed for the minimal standard-model extension that connects a limit of the CPT-even component of the electromagnetic sector to the gravitational sector. We show that components of the post-Newtonian metric can be directly obtained from solutions to the electromagnetic sector. The method is illustrated with specific examples including static and rotating sources. Some unconventional effects that arise for Lorentz-violating electrostatics and magnetostatics have an analog in Lorentz-violating post-Newtonian gravity. In particular, we show that even for static sources, gravitomagnetic fields arise in the presence of Lorentz violation.
Reparametrization invariant collinear operators
Marcantonini, Claudio; Stewart, Iain W.
2009-03-15
In constructing collinear operators, which describe the production of energetic jets or energetic hadrons, important constraints are provided by reparametrization invariance (RPI). RPI encodes Lorentz invariance in a power expansion about a collinear direction, and connects the Wilson coefficients of operators at different orders in this expansion to all orders in {alpha}{sub s}. We construct reparametrization invariant collinear objects. The expansion of operators built from these objects provides an efficient way of deriving RPI relations and finding a minimal basis of operators, particularly when one has an observable with multiple collinear directions and/or soft particles. Complete basis of operators is constructed for pure glue currents at twist-4, and for operators with multiple collinear directions, including those appearing in e{sup +}e{sup -}{yields}3 jets, and for pp{yields}2 jets initiated via gluon fusion.
Remnant group of local Lorentz transformations in f (T ) theories
NASA Astrophysics Data System (ADS)
Ferraro, Rafael; Fiorini, Franco
2015-03-01
It is shown that the extended teleparallel gravitational theories, known as f (T ) theories, inherit some on shell local Lorentz invariance associated with the tetrad field defining the spacetime structure. We discuss some enlightening examples, such as Minkowski spacetime and cosmological (Friedmann-Robertson-Walker and Bianchi type I) manifolds. In the first case, we show that the absence of gravity reveals itself as an incapability in the selection of a preferred parallelization at a local level, due to the fact that the infinitesimal local Lorentz subgroup acts as a symmetry group of the frame characterizing Minkowski spacetime. Finite transformations are also discussed in these examples and, contrary to the common lore on the subject, we conclude that the set of tetrads responsible for the parallelization of these manifolds is quite vast and that the remnant group of local Lorentz transformations includes one- and two-dimensional Abelian subgroups of the Lorentz group.
Dynamical Lorentz symmetry breaking in 3D and charge fractionalization
Charneski, B.; Gomes, M.; Silva, A. J. da; Mariz, T.; Nascimento, J. R.
2009-03-15
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Cosmological constraints on Lorentz violating dark energy
Audren, B.; Lesgourgues, J.; Sibiryakov, S. E-mail: Diego.Blas@cern.ch E-mail: Sergey.Sibiryakov@cern.ch
2013-08-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ΘCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from ΛCDM. The differences appear at the level of perturbations. We show that in ΘCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code class. We then use the parameter inference code Monte Python to confront ΘCDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from ΛCDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level of 1.8%.
Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo
2016-07-01
A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.
Gauge invariance for a whole Abelian model
Chauca, J.; Doria, R.; Soares, W.
2012-09-24
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.
Lorentz symmetry breaking as a quantum field theory regulator
Visser, Matt
2009-07-15
Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just 'how much' Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [Phys. Rev. D 79, 084008 (2009)] on 3+1 dimensional quantum gravity.
Lorentz symmetry breaking as a quantum field theory regulator
NASA Astrophysics Data System (ADS)
Visser, Matt
2009-07-01
Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just “how much” Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Hořava’s recent article [Phys. Rev. DPRVDAQ1550-7998 79, 084008 (2009)10.1103/PhysRevD.79.084008] on 3+1 dimensional quantum gravity.
Tests of Lorentz and CPT symmetry with hadrons and nuclei
NASA Astrophysics Data System (ADS)
Noordmans, J. P.; de Vries, J.; Timmermans, R. G. E.
2016-08-01
We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark and gluon fields, we construct the effective chiral Lagrangian with hadronic and electromagnetic interactions induced by these operators. We develop the power-counting scheme and discuss loop diagrams and the one-pion-exchange nucleon-nucleon potential. The effective chiral Lagrangian is the basis for calculations of low-energy observables with hadronic degrees of freedom. As examples, we consider clock-comparison experiments with nuclei and spin-precession experiments with nucleons in storage rings. We derive strict limits on the dimension-five tensors that quantify Lorentz and CPT violation.
Lorentz Violation in Warped Extra Dimensions
Rizzo, Thomas G.; /SLAC
2011-08-11
Higher dimensional theories which address some of the problematic issues of the Standard Model(SM) naturally involve some form of D = 4 + n-dimensional Lorentz invariance violation (LIV). In such models the fundamental physics which leads to, e.g., field localization, orbifolding, the existence of brane terms and the compactification process all can introduce LIV in the higher dimensional theory while still preserving 4-d Lorentz invariance. In this paper, attempting to capture some of this physics, we extend our previous analysis of LIV in 5-d UED-type models to those with 5- d warped extra dimensions. To be specific, we employ the 5-d analog of the SM Extension of Kostelecky et al. which incorporates a complete set of operators arising from spontaneous LIV. We show that while the response of the bulk scalar, fermion and gauge fields to the addition of LIV operators in warped models is qualitatively similar to what happens in the flat 5-d UED case, the gravity sector of these models reacts very differently than in flat space. Specifically, we show that LIV in this warped case leads to a non-zero bulk mass for the 5-d graviton and so the would-be zero mode, which we identify as the usual 4-d graviton, must necessarily become massive. The origin of this mass term is the simultaneous existence of the constant non-zero AdS{sub 5} curvature and the loss of general co-ordinate invariance via LIV in the 5-d theory. Thus warped 5-d models with LIV in the gravity sector are not phenomenologically viable.
Impossibility of superluminal travel in Lorentz violating theories
NASA Astrophysics Data System (ADS)
Coutant, Antonin; Finazzi, Stefano; Liberati, Stefano; Parentani, Renaud
2012-03-01
Warp drives are space-times allowing for superluminal travel. However, they are quantum mechanically unstable because they produce a Hawking-like radiation which is blue shifted at their front wall without any bound. We reexamine this instability when local Lorentz invariance is violated at ultrahigh energy by dispersion, as in some theories of quantum gravity. Interestingly, even though the ultraviolet divergence is now regulated, warp drives are still unstable. Moreover the type of instability is different whether one uses a subluminal or a superluminal dispersion relation. In the first case, a black-hole laser yields an exponential amplification of the emitted flux whereas, in the second, infrared effects produce a linear growth of that flux. These results suggest that chronology could still be protected when violating Lorentz invariance.
New parametrization of lorentz transformations and tachyonic motion in special theory of relativity
Kapuscik, E.
2011-06-15
Assuming the existence of an invariant velocity a slightly generalized form of Lorentz transformations is derived. The group of these transformations has a simpler composition law than the group of standard Lorentz transformations has. It is shown that this new form allows the description of both subluminal and superluminal motions. It also allows to find all velocity-dependent tensors. In particular, the tachyonic momentum as a function of superluminal velocity is derived.
Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions
NASA Astrophysics Data System (ADS)
Dzuba, V. A.; Flambaum, V. V.; Safronova, M. S.; Porsev, S. G.; Pruttivarasin, T.; Hohensee, M. A.; Häffner, H.
2016-05-01
A number of theories aiming at unifying gravity with other fundamental interactions, including field theory, suggest the violation of Lorentz symmetry. Whereas the energy scale of such strongly Lorentz-symmetry-violating physics is much higher than that attainable at present by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies. Here, we carry out a systematic theoretical investigation to identify which atom shows the greatest promise for detecting a Lorentz symmetry violation in the electron-photon sector. We found that the ytterbium ion (Yb+) is an ideal system with high sensitivity, as well as excellent experimental controllability. By applying quantum-information-inspired technology to Yb+, we expect tests of local Lorentz invariance (LLI) violating physics in the electron-photon sector to reach levels of 10-23--five orders of magnitude more sensitive than the current best bounds.
Comment on ``Pairing interaction and Galilei invariance''
NASA Astrophysics Data System (ADS)
Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.
1999-05-01
A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.
On the Extended Lorentz Transformation Model and Its Application to Superluminal Neutrinos
NASA Astrophysics Data System (ADS)
Hamieh, Salah D.
2012-09-01
In this paper, we consider the apparent superluminal speed of neutrinos in their travel from CERN to Gran Susso, as measured by the OPERA experiment, within the framework of the Extended Lorentz Transformation Model. The model is based on a natural extension of Lorentz transformation by wick rotation. Scalar and Dirac's fields are considered and invariance under the new Lorentz group is discussed. Moreover, an extension of quantum mechanics to accommodate new particles is considered using the newly proposed Generalized-C quantum mechanics. A two dimensional represen- tation of the new Dirac's equation is therefore formulated and its solution is calculated.
First test of Lorentz violation with a reactor-based antineutrino experiment
NASA Astrophysics Data System (ADS)
Abe, Y.; Aberle, C.; dos Anjos, J. C.; Bergevin, M.; Bernstein, A.; Bezerra, T. J. C.; Bezrukhov, L.; Blucher, E.; Bowden, N. S.; Buck, C.; Busenitz, J.; Cabrera, A.; Caden, E.; Camilleri, L.; Carr, R.; Cerrada, M.; Chang, P.-J.; Chimenti, P.; Classen, T.; Collin, A. P.; Conover, E.; Conrad, J. M.; Crespo-Anadón, J. I.; Crum, K.; Cucoanes, A.; D'Agostino, M. V.; Damon, E.; Dawson, J. V.; Dazeley, S.; Dietrich, D.; Djurcic, Z.; Dracos, M.; Durand, V.; Ebert, J.; Efremenko, Y.; Elnimr, M.; Erickson, A.; Fallot, M.; Fechner, M.; von Feilitzsch, F.; Felde, J.; Fischer, V.; Franco, D.; Franke, A. J.; Franke, M.; Furuta, H.; Gama, R.; Gil-Botella, I.; Giot, L.; Göger-Neff, M.; Gonzalez, L. F. G.; Goodman, M. C.; Goon, J. TM.; Greiner, D.; Haag, N.; Habib, S.; Hagner, C.; Hara, T.; Hartmann, F. X.; Haser, J.; Hatzikoutelis, A.; Hayakawa, T.; Hofmann, M.; Horton-Smith, G. A.; Ishitsuka, M.; Jochum, J.; Jollet, C.; Jones, C. L.; Kaether, F.; Kalousis, L. N.; Kamyshkov, Y.; Kaplan, D. M.; Katori, T.; Kawasaki, T.; Keefer, G.; Kemp, E.; de Kerret, H.; Konno, T.; Kryn, D.; Kuze, M.; Lachenmaier, T.; Lane, C. E.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Lima, H. P., Jr.; Lindner, M.; López-Castaño, J. M.; LoSecco, J. M.; Lubsandorzhiev, B. K.; Lucht, S.; McKee, D.; Maeda, J.; Maesano, C. N.; Mariani, C.; Maricic, J.; Martino, J.; Matsubara, T.; Mention, G.; Meregaglia, A.; Meyer, M.; Miletic, T.; Milincic, R.; Miyata, H.; Mueller, Th. A.; Nagasaka, Y.; Nakajima, K.; Novella, P.; Obolensky, M.; Oberauer, L.; Onillon, A.; Osborn, A.; Ostrovskiy, I.; Palomares, C.; Pepe, I. M.; Perasso, S.; Perrin, P.; Pfahler, P.; Porta, A.; Potzel, W.; Pronost, G.; Reichenbacher, J.; Reinhold, B.; Remoto, A.; Röhling, M.; Roncin, R.; Roth, S.; Rybolt, B.; Sakamoto, Y.; Santorelli, R.; Sato, F.; Schönert, S.; Schoppmann, S.; Schwetz, T.; Shaevitz, M. H.; Shrestha, D.; Sida, J.-L.; Sinev, V.; Skorokhvatov, M.; Smith, E.; Spitz, J.; Stahl, A.; Stancu, I.; Stokes, L. F. F.; Strait, M.; Stüken, A.; Suekane, F.; Sukhotin, S.; Sumiyoshi, T.; Sun, Y.; Terao, K.; Tonazzo, A.; Toups, M.; Trinh Thi, H. H.; Valdiviesso, G.; Veyssiere, C.; Wagner, S.; Watanabe, H.; White, B.; Wiebusch, C.; Winslow, L.; Worcester, M.; Wurm, M.; Yanovitch, E.; Yermia, F.; Zimmer, V.
2012-12-01
We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension, we set the first limits on 14 Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.
Standard model with partial gauge invariance
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.; Kepuladze, Z.
2012-03-01
We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.
Thess, A; Votyakov, E V; Kolesnikov, Y
2006-04-28
We describe a noncontact technique for velocity measurement in electrically conducting fluids. The technique, which we term Lorentz force velocimetry (LFV), is based on exposing the fluid to a magnetic field and measuring the drag force acting upon the magnetic field lines. Two series of measurements are reported, one in which the force is determined through the angular velocity of a rotary magnet system and one in which the force on a fixed magnet system is measured directly. Both experiments confirm that the measured signal is a linear function of the flow velocity. We then derive the scaling law that relates the force on a localized distribution of magnetized material to the velocity of an electrically conducting fluid. This law shows that LFV, if properly designed, has a wide range of potential applications in metallurgy, semiconductor crystal growth, and glass manufacturing. PMID:16712237
Lorentz symmetry breaking in a cosmological context
NASA Astrophysics Data System (ADS)
Gresham, Moira I.
This thesis is comprised primarily of work from three independent papers, written in collaboration with Sean Carroll, Tim Dulaney, and Heywood Tam. The original motivation for the projects undertaken came from revisiting the standard assumption of spatial isotropy during inflation. Each project relates to the spontaneous breaking of Lorentz symmetry---in early Universe cosmology or in the context of effective field theory, in general. Chapter 1 is an introductory chapter that provides context for the thesis. Chapter 2 is an investigation of the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector "aether" fields. It is shown that models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. Chapter 3 is an investigation of the phenomenological properties of the one low-energy effective theory of spontaneous Lorentz symmetry breaking found in the previous chapter to have a globally bounded Hamiltonian and a perturbatively stable vacuum---the theory in which the Lagrangian takes the form of a sigma model. In chapter 4 cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton are examined. The dominant effects of a small, persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra are found using the "in-in" formalism of perturbation theory. It is found that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.
Bigravity and Lorentz-violating massive gravity
Blas, D.; Garriga, J.; Deffayet, C.
2007-11-15
Bigravity is a natural arena where a nonlinear theory of massive gravity can be formulated. If the interaction between the metrics f and g is nonderivative, spherically symmetric exact solutions can be found. At large distances from the origin, these are generically Lorentz-breaking bi-flat solutions (provided that the corresponding vacuum energies are adjusted appropriately). The spectrum of linearized perturbations around such backgrounds contains a massless as well as a massive graviton, with two physical polarizations each. There are no propagating vectors or scalars, and the theory is ghost free (as happens with certain massive gravities with explicit breaking of Lorentz invariance). At the linearized level, corrections to general relativity are proportional to the square of the graviton mass, and so there is no van Dam-Veltam-Zakharov discontinuity. Surprisingly, the solution of linear theory for a static spherically symmetric source does not agree with the linearization of any of the known exact solutions. The latter coincide with the standard Schwarzschild-(anti)-de Sitter solutions of general relativity, with no corrections at all. Another interesting class of solutions is obtained where f and g are proportional to each other. The case of bi-de Sitter solutions is analyzed in some detail.
NASA Astrophysics Data System (ADS)
Sakharov, Alexander; Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André
2009-06-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c = [1 ± (E/MvQG1)] or [1 ± (E/MvQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.
The de Broglie relations: Lorentz invariance and photons
NASA Astrophysics Data System (ADS)
Newburgh, R. G.
1985-08-01
A simple covariant derivation of the de Broglie relations breaks down when one considers propagation of light in an anisotropic medium. This breakdown results in two disappointing conclusions. The first is that the de Broglie relations are not completely universal and their covariance is restricted. The second is that wave-particle duality is not universal. In this paper a resolution of these problems is suggested, a resolution which is an extrapolation of ideas of de Broglie and Andrade e Silva. The relations are generalized for propagation in anisotropic media by defining a new phase wave with wave vector l in the direction of energy transport and distinct from the conventional electromagnetic wave. The introduction of l follows the method by which de Broglie associated a wave with an electron. The magnitude of l is omega u/c-squared where omega is the angular frequency and u the velocity of energy transport. The physical meaning of l and the covariance of physical laws in the presence of matter are discussed. An experiment is described which would test the existence of the phase wave associated with the new wave vector l. This experiment is essentially a Young two-slit experiment carried out within an anisotropic crystal.
Monogamy Equalities for Qubit Entanglement from Lorentz Invariance
NASA Astrophysics Data System (ADS)
Eltschka, Christopher; Siewert, Jens
2015-04-01
A striking result from nonrelativistic quantum mechanics is the monogamy of entanglement, which states that a particle can be maximally entangled only with one other party, not with several ones. While there is the exact quantitative relation for three qubits and also several inequalities describing monogamy properties, it is not clear to what extent exact monogamy relations are a general feature of quantum mechanics. We prove that in all many-qubit systems there exist strict monogamy laws for quantum correlations. They come about through the curious relationship between the nonrelativistic quantum mechanics of qubits and Minkowski space. We elucidate the origin of entanglement monogamy from this symmetry perspective and provide recipes to construct new families of such equalities.
Gravity from Lorentz Symmetry Violation
Potting, Robertus
2006-06-19
In general relativity, the masslessness of gravitons can be traced to symmetry under diffeomorphisms. In this talk, we consider another possibility, whereby the masslessness arises from spontaneous violation of Lorentz symmetry.
Impact of Lorentz violation on the Klein tunneling effect
NASA Astrophysics Data System (ADS)
Xiao, Zhi
2016-06-01
In this paper, we discuss the impact of a tiny Lorentz violating bμ term on the one-dimensional motion of a Dirac particle scattering on a rectangular barrier. We assume the experiment is done in a particular inertial frame, where the components of bμ are assumed constants. The results show that Lorentz violation modification to the transmission rate depends on the nature of bμ. For a purely time-like bμ=(b ,0 → ) , the transmission rate and resonant tunneling frequency are essentially unaltered compared with the Lorentz invariant counterparts, though the dispersion relation is slightly modified. For a space-like or light-like bμ , the incoming electron is polarized, and the Lorentz violation induced resonant frequency shift depends on the polarization. In fact, for certain special cases, like bμ=b (0 ,e→ Z) or bμ=b (1 ,e→ Z) , the absolute frequency difference between different helicity eigenstates with the same resonant number n is 2 b . In addition to being of theoretical interest in the high energy region, its quantum analogue may be experimentally realizable in other areas of physics, like graphene or optical lattices, and may generate some cross interests in both fields.
Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation
Anselmi, Damiano; Taiuti, Martina
2011-03-01
We study phenomena predicted by a renormalizable, CPT invariant extension of the standard model that contains higher-dimensional operators and violates Lorentz symmetry explicitly at energies greater than some scale {Lambda}{sub L}. In particular, we consider the Cherenkov radiation in vacuo. In a rather general class of dispersion relations, there exists an energy threshold above which radiation is emitted. The threshold is enhanced in composite particles by a sort of kinematic screening mechanism. We study the energy loss and compare the predictions of our model with known experimental bounds on Lorentz violating parameters and observations of ultrahigh-energy cosmic rays. We argue that the scale of Lorentz violation {Lambda}{sub L} (with preserved CPT invariance) can be smaller than the Planck scale, actually as small as 10{sup 14}-10{sup 15} GeV. Our model also predicts the Cherenkov radiation of neutral particles.
Low-energy phenomenology of scalarless standard-model extensions with high-energy Lorentz violation
Anselmi, Damiano; Ciuffoli, Emilio
2011-03-01
We consider renormalizable standard model extensions that violate Lorentz symmetry at high energies, but preserve CPT, and do not contain elementary scalar fields. A Nambu-Jona-Lasinio mechanism gives masses to fermions and gauge bosons and generates composite Higgs fields at low energies. We study the effective potential at the leading order of the large-N{sub c} expansion, prove that there exists a broken phase, and study the phase space. In general, the minimum may break invariance under boosts, rotations, and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among the parameters of the low-energy theory. We find that such relations are compatible with the experimental data within theoretical errors. We also study the mixing among generations, the emergence of the CKM matrix, and neutrino oscillations.
Low-energy phenomenology of scalarless standard-model extensions with high-energy Lorentz violation
NASA Astrophysics Data System (ADS)
Anselmi, Damiano; Ciuffoli, Emilio
2011-03-01
We consider renormalizable standard model extensions that violate Lorentz symmetry at high energies, but preserve CPT, and do not contain elementary scalar fields. A Nambu-Jona-Lasinio mechanism gives masses to fermions and gauge bosons and generates composite Higgs fields at low energies. We study the effective potential at the leading order of the large-Nc expansion, prove that there exists a broken phase, and study the phase space. In general, the minimum may break invariance under boosts, rotations, and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among the parameters of the low-energy theory. We find that such relations are compatible with the experimental data within theoretical errors. We also study the mixing among generations, the emergence of the CKM matrix, and neutrino oscillations.
Time and space transformations in a scator deformed Lorentz metric
NASA Astrophysics Data System (ADS)
Fernández-Guasti, M.
2014-09-01
The invariant transformations of a deformed Lorentz metric are explored. These transformations are described by the product operation with a unit magnitude element in hyperbolic scator algebra. The real scator set forms a group under the addition and product operations in a restricted space. However, the product is not distributive over addition. The restricted space condition is equivalent to the time-like subspace in special relativity. In 1+1 dimensions (time and one spatial variable), the deformation vanishes and the scator metric becomes identical to the Lorentz metric. In higher dimensions, time dilation and parallel space contraction are preserved albeit with slight quantitative modification. However, the deformed transformation also exhibits a transverse spatial elongation.
Complementarity of Galilean and Lorentz groups in the electrodynamics of inertially moving media
NASA Astrophysics Data System (ADS)
Barykin, V. N.
1989-09-01
A physical interpretation is given for the previously discovered ambiguity in the material equations of the electrodynamics of isotropic, inertially moving media. This ambiguity manifests itself in the complementarity of the equations which are invariant under the Galilean group, in some cases, and the Lorentz group, in other cases, as can be detected experimentally in the aberration phenomenon and the Doppler effect.
Complete classification of parallel Lorentz surfaces in four-dimensional neutral pseudosphere
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen
2010-08-01
A Lorentz surface of an indefinite space form is called parallel if its second fundamental form is parallel with respect to the Van der Waerden-Bortolotti connection. Such surfaces are locally invariant under the reflection with respect to the normal space at each point. Parallel surfaces are important in geometry as well as in general relativity since extrinsic invariants of such surfaces do not change from point to point. Parallel Lorentz surfaces in four-dimensional (4D) Lorentzian space forms are classified by Chen and Van der Veken ["Complete classification of parallel surfaces in 4-dimensional Lorentz space forms," Tohoku Math. J. 61, 1 (2009)]. Recently, explicit classification of parallel Lorentz surfaces in the pseudo-Euclidean 4-space E24 and in the pseudohyperbolic 4-space H24(-1) are obtained recently by Chen et al. ["Complete classification of parallel Lorentzian surfaces in Lorentzian complex space forms," Int. J. Math. 21, 665 (2010); "Complete classification of parallel Lorentz surfaces in neutral pseudo hyperbolic 4-space," Cent. Eur. J. Math. 8, 706 (2010)], respectively. In this article, we completely classify the remaining case; namely, parallel Lorentz surfaces in 4D neutral pseudosphere S24(1). Our result states that there are 24 families of such surfaces in S24(1). Conversely, every parallel Lorentz surface in S24(1) is obtained from one of the 24 families. The main result indicates that there are major differences between Lorentz surfaces in the de Sitter 4-space dS4 and in the neutral pseudo 4-sphere S24.
Probes of Lorentz violation in neutrino propagation
NASA Astrophysics Data System (ADS)
Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S.
2008-08-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1±(E/MνQG1)] or [1±(E/MνQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits MνQG1>2.7(2.5)×1010GeV for subluminal (superluminal) propagation and MνQG2>4.6(4.1)×104GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to MνQG1>2(4)×1011GeV for subluminal (superluminal) propagation and MνQG2>2(4)×105GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5μs and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach MνQG1˜7×105GeV (MνQG2˜8×103GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to MνQG1˜5×107GeV (MνQG2˜4×104GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to MνQG1˜4×108GeV and MνQG2˜7×105GeV.
Probes of Lorentz violation in neutrino propagation
Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Sakharov, Alexander S.
2008-08-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1{+-}(E/M{sub {nu}}{sub QG1})] or [1{+-}(E/M{sub {nu}}{sub QG2}){sup 2}], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits M{sub {nu}}{sub QG1}>2.7(2.5)x10{sup 10} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>4.6(4.1)x10{sup 4} GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M{sub {nu}}{sub QG1}>2(4)x10{sup 11} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>2(4)x10{sup 5} GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5 {mu}s and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M{sub {nu}}{sub QG1}{approx}7x10{sup 5} GeV (M{sub {nu}}{sub QG2}{approx}8x10{sup 3} GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to M{sub {nu}}{sub QG1}{approx}5x10{sup 7} GeV (M{sub {nu}}{sub QG2}{approx}4x10{sup 4} GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M{sub {nu}}{sub QG1}{approx}4x10{sup 8} GeV and M{sub {nu}}{sub QG2}{approx}7x10{sup 5} GeV.
Black hole entropy and Lorentz-diffeomorphism Noether charge
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Mohd, Arif
2015-12-01
We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.
Renormalization of high-energy Lorentz-violating QED
Anselmi, Damiano; Taiuti, Martina
2010-04-15
We study a QED extension that is unitary, CPT invariant, and super-renormalizable, but violates Lorentz symmetry at high energies, and contains higher-dimension operators (LVQED). Divergent diagrams are only one- and two-loop. We compute the one-loop renormalizations at high and low energies and analyze the relation between them. It emerges that the powerlike divergences of the low-energy theory are multiplied by arbitrary constants, inherited by the high-energy theory, and therefore can be set to zero at no cost, bypassing the hierarchy problem.
The Need for a First-order Quasi Lorentz Transformation
Censor, D.
2010-11-25
Solving electromagnetic scattering problems involving non-uniformly moving objects or media requires an approximate but consistent extension of Einstein's Special Relativity theory, originally valid for constant velocities only. For moderately varying velocities a quasi Lorentz transformation is presented. The conditions for form-invariance of the Maxwell equations, the so-called ''principle of relativity'', are shown to hold for a broad class of motional modes and time scales. A simple example of scattering by a harmonically oscillating mirror is analyzed in detail. Application to generally orbiting objects is mentioned.
Reflection theorem for Lorentz-Minkowski spaces
NASA Astrophysics Data System (ADS)
Lee, Nam-Hoon
2016-07-01
We generalize the reflection theorem of the Lorentz-Minkowski plane to that of the Lorentz-Minkowski spaces of higher dimensions. As a result, we show that an isometry of the Lorentz-Minkowski spacetime is a composition of at most 5 reflections.
NASA Astrophysics Data System (ADS)
Yamasaki, H.
1983-11-01
The use of the axial vector representing a three-dimensional rotation makes the rotation representation much more compact by extending the trigonometric functions to vectorial arguments. Similarly, the pure Lorentz transformations are compactly treated by generalizing a scalar rapidity to a vector quantity in spatial three-dimensional cases and extending hyperbolic functions to vectorial arguments. A calculation of the Wigner rotation simplified by using the extended functions illustrates the fact that the rapidity vector space obeys hyperbolic geometry. New representations bring a Lorentz-invariant fundamental equation of motion corresponding to the Galilei-invariant equation of Newtonian mechanics.
Spontaneous Lorentz symmetry breaking in non-linear electrodynamics
Urrutia, Luis F.
2010-07-29
A recently proposed model of non-linear electrodynamics arising from a gauge invariant spontaneous Lorentz symmetry breaking is reviewed. The potential providing the symmetry breaking is argued to arise from the integration of gauge bosons and fermions in an underlying theory. The invariant subgroups remaining after the symmetry breaking are determined, as well as the dispersion relations and polarization modes of the propagating linear sector or the model. Strong bounds upon the predicted anisotropy of the speed of light are obtained by embedding the model in the electromagnetic sector of the Standard Model Extension and taking advantage of the restrictions in the parameters derived there. Finally, a reasonable estimation of the intergalactic magnetic field is obtained by assuming that the vacuum energy of the model is described by the standard cosmological constant.
Technically natural dark energy from Lorentz breaking
Blas, D.
2011-07-01
We construct a model of dark energy with a technically natural small contribution to cosmic acceleration, i.e. this contribution does not receive corrections from other scales in the theory. The proposed acceleration mechanism appears generically in the low-energy limit of gravity theories with violation of Lorentz invariance that contain a derivatively coupled scalar field Θ. The latter may be the Goldstone field of a broken global symmetry. The model, that we call ΘCDM, is a valid effective field theory up to a high cutoff just a few orders of magnitude below the Planck scale. Furthermore, it can be ultraviolet-completed in the context of Hořava gravity. We discuss the observational predictions of the model. Even in the absence of a cosmological constant term, the expansion history of the Universe is essentially indistinguishable from that of ΛCDM. The difference between the two theories appears at the level of cosmological perturbations. We find that in ΘCDM the matter power spectrum is enhanced at subhorizon scales compared to ΛCDM. This property can be used to discriminate the model from ΛCDM with current cosmological data.
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10−18
Nagel, Moritz; Parker, Stephen R.; Kovalchuk, Evgeny V.; Stanwix, Paul L.; Hartnett, John G.; Ivanov, Eugene N.; Peters, Achim; Tobar, Michael E.
2015-01-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson–Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10−19 (95% confidence interval). This order of magnitude improvement over previous Michelson–Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry. PMID:26323989
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10(-18).
Nagel, Moritz; Parker, Stephen R; Kovalchuk, Evgeny V; Stanwix, Paul L; Hartnett, John G; Ivanov, Eugene N; Peters, Achim; Tobar, Michael E
2015-01-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry. PMID:26323989
Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?
NASA Astrophysics Data System (ADS)
Gambini, Rodolfo; Rastgoo, Saeed; Pullin, Jorge
2011-08-01
We discuss the applicability of the argument of Collins, Pérez, Sudarsky, Urrutia and Vucetich to loop quantum gravity. This argument suggests that Lorentz violations, even ones that only manifest themselves at energies close to the Planck scale, have significant observational consequences at low energies when one considers perturbative quantum field theory and renormalization. We show that non-perturbative treatments like those of loop quantum gravity may generate deviations of Lorentz invariance of a different type than those considered by Collins et al (2004 Phys. Rev. Lett. 93 191301) that do not necessarily imply observational consequences at low energy.
Gravity from spontaneous Lorentz violation
Kostelecky, V. Alan; Potting, Robertus
2009-03-15
We investigate a class of theories involving a symmetric two-tensor field in Minkowski spacetime with a potential triggering spontaneous violation of Lorentz symmetry. The resulting massless Nambu-Goldstone modes are shown to obey the linearized Einstein equations in a fixed gauge. Imposing self-consistent coupling to the energy-momentum tensor constrains the potential for the Lorentz violation. The nonlinear theory generated from the self-consistent bootstrap is an alternative theory of gravity, containing kinetic and potential terms along with a matter coupling. At energies small compared to the Planck scale, the theory contains general relativity, with the Riemann-spacetime metric constructed as a combination of the two-tensor field and the Minkowski metric. At high energies, the structure of the theory is qualitatively different from general relativity. Observable effects can arise in suitable gravitational experiments.
Torsional Oscillations with Lorentz Force
ERIC Educational Resources Information Center
Gluck, Paul
2007-01-01
We have built a device that uses the Lorentz force on a current-carrying wire situated in a magnetic field, F = I L x B, in order to demonstrate a slowly varying alternating current by means of an optical lever. The apparatus consists of a horseshoe magnet, a length of thin enamel-coated wire (ours was 0.3 mm thick), a signal generator, a…
Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses
Alan Dunn; Thomas Mehen
2006-10-16
We consider SU(2){sub L} x U(1) gauge invariant generalizations of a nonlocal, Lorentz violating mass term for neutrinos that preserves a SIM(2) subgroup. This induces Lorentz violating effects in QED as well as tree-level lepton family number violating interactions. Measurements of g{sub e} - 2 with trapped electrons severely constrain possible SIM(2) mass terms for electrons which violate C invariance. We study Lorentz violating effects in a C invariant and SIM(2) invariant extension of QED. We examine the Lorentz violating interactions of nonrelativistic electrons with electromagnetic fields to determine their impact on the spectroscopy of hydrogen-like atoms and g{sub e} - 2 measurements with trapped electrons. Generically, Lorentz violating corrections are suppressed by m{sub v}{sup 2}/m{sub e}{sup 2} and are within experimental limits. We study one-loop corrections to electron and photon self-energies and point out the need for a prescription to handle IR divergences induced by the nonlocality of the theory. We also calculate the tree level contribution to {mu} {yields} e + {gamma} from SIM(2) invariant mass terms.
Battat, James B. R.; Chandler, John F.; Stubbs, Christopher W.
2007-12-14
We present constraints on violations of Lorentz invariance based on archival lunar laser-ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies and is currently accurate to the equivalent of a few centimeters (parts in 10{sup 11} of the total distance). By analyzing this LLR data under the standard-model extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz violation. We found no evidence for Lorentz violation at the 10{sup -6} to 10{sup -11} level in these parameters. This work constitutes the first LLR constraints on SME parameters.
An extension of the concept of inertial frame and of Lorentz transformation*
Kerner, Edward H.
1976-01-01
It is shown how particular kinds of fractional-linear (or projective) transformations generalize the notion of inertial frame in that they ensure that free-particle motion goes over into free-particle motion. A ten-parameter group of such transformations is produced which generalize Lorentz transformations, and which involve besides c (velocity of light) a new fundamental length b; they encompass the ordinary Lorentz group in the limit that b becomes infinite. These extended Lorentz transformations are most simply understood as a type of rotation in the space of homogeneous coordinates, a rotation that unifies 3-space rotations, frame-shifts to moving frames, and space- as well as time-translations. The structure of the invariant differential line element and of the wave operator that generalize those of special relativity are discussed, and implications for the possible revision of usual physical statements are pointed out. PMID:16592318
Lorentz violation and Faddeev-Popov ghosts
Altschul, B.
2006-02-15
We consider how Lorentz-violating interactions in the Faddeev-Popov ghost sector will affect scalar QED. The behavior depends sensitively on whether the gauge symmetry is spontaneously broken. If the symmetry is not broken, Lorentz violations in the ghost sector are unphysical, but if there is spontaneous breaking, radiative corrections will induce Lorentz-violating and gauge-dependent terms in other sectors of the theory.
Homotopy invariance of η-invariants
Weinberger, Shmuel
1988-01-01
Intersection homology and results related to the higher signature problem are applied to show that certain combinations of η-invariants of the signature operator are homotopy invariant in various circumstances. PMID:16593961
Lorentz, Hendrik Antoon (1853-1928)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Born in Arnhem, Netherlands, became professor of mathematical physics at Leiden University. Nobel prizewinner 1902, jointly with PIETER ZEEMAN, for his mathematical theory of the electron demonstrating the effect of a strong magnetic field on wavelength of the light produced by an atom (this was before the discovery of the electron). Lorentz's name is commemorated in the FitzGerald-Lorentz contra...
Cosmic censorship in Lorentz-violating theories of gravity
NASA Astrophysics Data System (ADS)
Meiers, Michael; Saravani, Mehdi; Afshordi, Niayesh
2016-05-01
Is cosmic censorship special to general relativity, or can it survive a violation of local Lorentz invariance? Recent studies have shown that singularities in Lorentz -violating Einstein-Aether (or Horava-Lifshitz) theories can lie behind a universal horizon in simple black hole spacetimes. Even infinitely fast signals cannot escape these universal horizons. We extend this result, for an incompressible aether, to 3 +1 d dynamical or spinning spacetimes which possess inner Killing horizons, and show that a universal horizon always forms in between the outer and (would-be) inner horizons. This finding suggests a notion of cosmic censorship, given that geometry in these theories never evolves beyond the universal horizon (avoiding potentially singular inner Killing horizons). A surprising result is that there are 3 distinct possible stationary universal horizons for a spinning black hole, only one of which matches the dynamical spherical solution. This motivates dynamical studies of collapse in Einstein-Aether theories beyond spherical symmetry, which may reveal instabilities around the spherical solution.
Searches for Lorentz Violation in Top-Quark Production and Decay at Hadron Colliders
Whittington, Denver Wade
2012-07-01
We present a first-of-its-kind confirmation that the most massive known elementary particle obeys the special theory of relativity. Lorentz symmetry is a fundamental aspect of special relativity which posits that the laws of physics are invariant regardless of the orientation and velocity of the reference frame in which they are measured. Because this symmetry is a fundamental tenet of physics, it is important to test its validity in all processes. We quantify violation of this symmetry using the Standard-Model Extension framework, which predicts the effects that Lorentz violation would have on elementary particles and their interactions. The top quark is the most massive known elementary particle and has remained inaccessible to tests of Lorentz invariance until now. This model predicts a dependence of the production cross section for top and antitop quark pairs on sidereal time as the orientation of the experiment in which these events are produced changes with the rotation of the Earth. Using data collected with the DØ detector at the Fermilab Tevatron Collider, we search for violation of Lorentz invariance in events involving the production of a $t\\bar{t}$ pair. Within the experimental precision, we find no evidence for such a violation and set upper limits on parameters describing its possible strength within the Standard-Model Extension. We also investigate the prospects for extending this analysis using the ATLAS detector at the Large Hadron Collider which, because of the higher rate of $t\\bar{t}$ events at that experiment, has the potential to improve the limits presented here.
Three-dimensional Lorentz-violating action
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.
2014-03-01
We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.
Scale invariance, conformality, and generalized free fields
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina
2016-02-01
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.
Generalizing twisted gauge invariance
Duenas-Vidal, Alvaro; Vazquez-Mozo, Miguel A.
2009-05-01
We discuss the twisting of gauge symmetry in noncommutative gauge theories and show how this can be generalized to a whole continuous family of twisted gauge invariances. The physical relevance of these twisted invariances is discussed.
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.; Müller, Markus P.
2016-06-01
In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest, within a much simpler setting, that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distinct laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are ‘enough’ observables that can be measured universally on several different quantum systems, we show that the observers’ descriptions are related by an element of the orthochronous Lorentz group {{{O}}}+(3,1), together with a global scaling factor. Not only does this operational approach predict the Lorentz transformations, but it also accurately describes the behavior of relativistic Stern–Gerlach devices in the WKB approximation, and it correctly predicts that quantum systems carry Lorentz group representations of different spin. This result thus hints at a novel information-theoretic perspective on spacetime.
Strongly enhanced effects of Lorentz symmetry violation in highly charged ions
NASA Astrophysics Data System (ADS)
Safronova, Marianna; Dzuba, V. A.; Flambaum, V. V.; Porsev, S. G.; Pruttivarasin, T.; Hohensee, M. A.; Häffner, H.
2016-05-01
It has been suggested that Lorentz symmetry may be violated in theories aiming at unifying gravity with other fundamental interactions. While the energy scale of such strongly Lorentz symmetry-violating physics is much higher than that currently attainable by particle accelerators, the observable, but extremely small, Lorentz-violating effects may appear in low-energy experiments carried out with very high precision. In the atomic experiments testing local Lorentz invariance (LLI) of the electron motion in Coulomb potential of a nucleus, one searches for variations of the atomic energy levels when the orientation of the electronic wave function is rotated with respect to the standard reference frame. We carried out a systematic theoretical investigation of the sensitivity of a wide range of atomic systems to LLI violation. We find large sensitivities to LLI violating physics in Yb+ and a number of highly charged ions that should allow improvements of LLI tests in the electron-photon sector by several orders of magnitude.
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Dos Santos Cardoso-Bihlo, Elsa Maria; Nave, Jean-Christophe; Popovych, Roman
2012-11-01
Various subgrid-scale closure models break the invariance of the Euler or Navier-Stokes equations and thus violate the geometric structure of these equations. A method is shown which allows one to systematically derive invariant turbulence models starting from non-invariant turbulence models and thus to correct artificial symmetry-breaking. The method is illustrated by finding invariant hyperdiffusion schemes to be applied in the two-dimensional turbulence problem.
Kazinski, P O; Shipulya, M A
2011-06-01
We present a study of planar physical solutions to the Lorentz-Dirac equation in a constant electromagnetic field. In this case, we reduced the Lorentz-Dirac equation to one second-order differential equation. We obtained the asymptotics of physical solutions to this equation at large proper times. It turns out that, in a crossed constant uniform electromagnetic field with vanishing invariants, a charged particle enters a universal regime at large times. We found that the ratios of momentum components that tend to constants are determined only by the external field. This effect is essentially due to a radiation reaction. There is no such effect for the Lorentz equation in this field. PMID:21797506
NASA Astrophysics Data System (ADS)
Kazinski, P. O.; Shipulya, M. A.
2011-06-01
We present a study of planar physical solutions to the Lorentz-Dirac equation in a constant electromagnetic field. In this case, we reduced the Lorentz-Dirac equation to one second-order differential equation. We obtained the asymptotics of physical solutions to this equation at large proper times. It turns out that, in a crossed constant uniform electromagnetic field with vanishing invariants, a charged particle enters a universal regime at large times. We found that the ratios of momentum components that tend to constants are determined only by the external field. This effect is essentially due to a radiation reaction. There is no such effect for the Lorentz equation in this field.
Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V
2013-08-01
We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20). PMID:23952369
Spontaneous Lorentz violation, negative energy, and the second law of thermodynamics
Feldstein, Brian
2009-08-15
We reconsider the possibility of violating the generalized second law of thermodynamics in theories with spontaneous Lorentz violation. It has been proposed that this may be accomplished in particular with a black hole immersed in a ghost condensate background, which may be taken to break Lorentz invariance without appreciably distorting the space-time geometry. In this paper we show that there in fact exist solutions explicitly describing the flow of negative energy into these black holes, allowing for violation of the second law in a very simple way. This second law violation is independent of any additional assumptions such as couplings of the ghost condensate to secondary fields, and suggests that violation of the null energy condition may be the true source of pathology in these theories.
The photino sector and a confining potential in a supersymmetric Lorentz-symmetry-violating model
NASA Astrophysics Data System (ADS)
Belich, H.; Bernald, L. D.; Gaete, Patricio; Helayël-Neto, J. A.
2013-11-01
We study the spectrum of the minimal supersymmetric extension of the Carroll-Field-Jackiw model for Electrodynamics with a topological Chern-Simons-like Lorentz-symmetry violating term. We identify a number of independent background fermion condensates, work out the gaugino dispersion relation and propose a photonic effective action to consider aspects of confinement induced by the SUSY background fermion condensates, which also appear to signal Lorentz-symmetry violation in the photino sector of the action. Our calculations of the static potential are carried out within the framework of the gauge-invariant but path-dependent variables formalism which are alternative to the Wilson loop approach. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges.
Spontaneously broken Lorentz symmetry for Hamiltonian gravity
NASA Astrophysics Data System (ADS)
Gielen, Steffen; Wise, Derek K.
2012-05-01
In Ashtekar’s Hamiltonian formulation of general relativity, and in loop quantum gravity, Lorentz covariance is a subtle issue that has been strongly debated. Maintaining manifest Lorentz covariance seems to require introducing either complex-valued fields, presenting a significant obstacle to quantization, or additional (usually second class) constraints whose solution renders the resulting phase space variables harder to interpret in a spacetime picture. After reviewing the sources of difficulty, we present a Lorentz covariant, real formulation in which second class constraints never arise. Rather than a foliation of spacetime, we use a gauge field y, interpreted as a field of observers, to break the SO(3, 1) symmetry down to a subgroup SO(3)y. This symmetry breaking plays a role analogous to that in MacDowell-Mansouri gravity, which is based on Cartan geometry, leading us to a picture of gravity as “Cartan geometrodynamics.” We study both Lorentz gauge transformations and transformations of the observer field to show that the apparent breaking of SO(3, 1) to SO(3) is not in conflict with Lorentz covariance.
NASA Astrophysics Data System (ADS)
Delgado Acosta, E. G.; Banda Guzmán, V. M.; Kirchbach, M.
2015-03-01
We propose a general method for the description of arbitrary single spin- j states transforming according to ( j, 0) ⊕ (0, j) carrier spaces of the Lorentz algebra in terms of Lorentz tensors for bosons, and tensor-spinors for fermions, and by means of second-order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher ∂2 j order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz tensor (tensor-spinor) representation spaces hosting one sole ( j, 0) ⊕ (0, j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin- j sector of interest from the rest, while preserving the separate Lorentz and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are of second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2, 0) ⊕ (0, 3/2) is comfortably described by a second-order Lagrangian in the basis of the totally anti-symmetric Lorentz tensor-spinor of second rank, Ψ [ μν]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2, 0) ⊕ (0, 3/2) as part of Ψ [ μν] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross-section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.
Neutrino constraints on spontaneous Lorentz violation
Grossman, Yuval; Kilic, Can; Thaler, Jesse; Walker, Devin G.E.
2005-12-15
We study the effect of spontaneous Lorentz violation on neutrinos. We consider two kinds of effects: static effects, where the neutrino acquires a Lorentz-violating dispersion relation, and dynamic effects, which arise from the interactions of the neutrino with the Goldstone boson of spontaneous Lorentz violation. Static effects are well detailed in the literature. Here, special emphasis is given to the novel dynamic effect of Goldstone-Cerenkov radiation, where neutrinos moving with respect to a preferred rest frame can spontaneously emit Goldstone bosons. We calculate the observable consequences of this process and use them to derive experimental bounds from SN1987A and the CMBR. The bounds derived from dynamic effects are complementary to - and in many cases much stronger than - those obtained from static effects.
Lorentz Abraham Force and Power Equations
NASA Astrophysics Data System (ADS)
Yaghjian, Arthur D.
Toward the end of the nineteenth century Lorentz modeled the electron (“vibrating charged particle,” as he called it) by a spherical shell of uniform surface charge density and set about the difficult task of deriving the equation of motion of this electron model by determining, from Maxwell's equations and the Lorentz force law, the retarded self electromagnetic force that the fields of the accelerating charge distribution exert upon the charge itself [1]. (This initial work of Lorentz in 1892 on a moving charged sphere appeared five years before J.J. Thomson's “discovery” of the electron. It is summarized in English by J.Z. Buchwald [2, app. 7].) With the help of Abraham,1 a highly successful theory of the moving electron model was completed by the early 1900's [3, 4]. Before Einstein's papers [5, 6] on special relativity appeared in 1905, they had derived the following force equation of motion
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.; Sakharov, A. S.; Sarkisyan, E. K. G.
2008-03-01
We correct the fitting formula used [J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Astropart. Phys. 25 (2006) 402. Available from: arxiv:
Imperfect fluids, Lorentz violations, and Finsler cosmology
Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.
2010-09-15
We construct a cosmological toy model based on a Finslerian structure of space-time. In particular, we are interested in a specific Finslerian Lorentz violating theory based on a curved version of Cohen and Glashow's very special relativity. The osculation of a Finslerian manifold to a Riemannian manifold leads to the limit of relativistic cosmology, for a specified observer. A modified flat Friedmann-Robertson-Walker cosmology is produced. The analogue of a zero energy particle unfolds some special properties of the dynamics. The kinematical equations of motion are affected by local anisotropies. Seeds of Lorentz violations may trigger density inhomogeneities to the cosmological fluid.
Signals for Lorentz violation in atomic spectroscopy
NASA Astrophysics Data System (ADS)
Vargas, Arnaldo J.; Kostelecký, V. Alan
2015-05-01
A breakdown of Lorentz and CPT symmetry has been proposed as a possible signal in several candidate theories of quantum gravity. This talk discusses the prospects for detecting Lorentz and CPT violation via atomic spectroscopy, using the effective field theory known as the Standard-Model Extension and including operators of both renormalizable and nonrenormalizable mass dimensions. The discussion targets commonly measured atomic transitions in experiments with conventional matter and with more exotic atoms such as antihydrogen, muonium, and muonic hydrogen. Potential signals are identified and constraints from existing data are obtained.
Aspects of holography in Lorentz-violating gravity
NASA Astrophysics Data System (ADS)
Bhattacharyya, Jishnu
The study of black hole thermodynamics has provided deep insights into the nature of quantum gravity. In particular, it is almost universally accepted nowadays that 'quantum gravity is holographic', so that the maximum amount of information allowed in a given region of spacetime is proportional to the area of the boundary rather than the volume of the region. This is against the conventional notion of extensivity of information (entropy), but in accord with Bekenstein's proposal on the proportionality of black hole entropy to its event horizon area. Due to the very definition of black holes, however, conventional black hole thermodynamics rely on the standard causal structure of general relativity dictated by local light cones. It may therefore seem that the notion of holography is ultimately tied to the same causal structure, and hence, on the equivalence principle and local Lorentz invariance. The goal of this dissertation is to re-evaluate this generally accepted wisdom. To that end, we consider a modified gravity theory called Einstein-aether theory. This theory violates local Lorentz invariance and therefore destroys the notion of a universal light cone. Yet, in the low energy limit, it possesses static and spherically symmetric solutions with 'universal horizons'---spacelike hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, this theory admits black hole solutions but with very different causal structures. In this dissertation, we investigate into how much of black hole thermodynamics carry over in this new setting. We consider static and spherically symmetric black hole solutions of Einstein-aether theory and establish the Smarr formula and the first law of black hole mechanics for them, with the relevant horizon now the universal horizon. We also consider tunneling of a scalar 'test' field through the universal horizon, and show that the latter radiates as a blackbody at a fixed temperature
Emergent Lorentz symmetry with vanishing velocity in a critical two-subband quantum wire.
Sitte, M.; Rosch, A.; Meyer, J. S.; Matveev, K. A.; Garst, M.; Materials Science Division; Univ. zu Koln; Ohio State Univ.
2009-01-01
We consider a quantum wire with two subbands of spin-polarized electrons in the presence of strong interactions. We focus on the quantum phase transition when the second subband starts to get filled as a function of gate voltage. Performing a one-loop renormalization group analysis of the effective Hamiltonian, we identify the critical fixed-point theory as a conformal field theory having an enhanced SU(2) symmetry and central charge 3/2. While the fixed point is Lorentz invariant, the effective 'speed of light' nevertheless vanishes at low energies due to marginally irrelevant operators leading to a diverging critical specific heat coefficient.
Emergent Lorentz symmetry with vanishing velocity in a critical two-subband quantum wire.
Sitte, M; Rosch, A; Meyer, J S; Matveev, K A; Garst, M
2009-05-01
We consider a quantum wire with two subbands of spin-polarized electrons in the presence of strong interactions. We focus on the quantum phase transition when the second subband starts to get filled as a function of gate voltage. Performing a one-loop renormalization group analysis of the effective Hamiltonian, we identify the critical fixed-point theory as a conformal field theory having an enhanced SU(2) symmetry and central charge 3/2. While the fixed point is Lorentz invariant, the effective "speed of light" nevertheless vanishes at low energies due to marginally irrelevant operators leading to a diverging critical specific heat coefficient. PMID:19518804
A New Lorentz Violating Nonlocal Field Theory From String-Theory
Ganor, Ori J.
2007-10-04
A four-dimensional field theory with a qualitatively new type of nonlocality is constructed from a setting where Kaluza-Klein particles probe toroidally compactified string theory with twisted boundary conditions. In this theory fundamental particles are not pointlike and occupy a volume proportional to their R-charge. The theory breaks Lorentz invariance but appears to preserve spatial rotations. At low energies, it is approximately N=4 Super Yang-Mills theory, deformed by an operator of dimension seven. The dispersion relation of massless modes in vacuum is unchanged, but under certain conditions in this theory, particles can travel at superluminal velocities.
Another route to the Lorentz transformations
NASA Astrophysics Data System (ADS)
Bessonov, E. G.
2016-05-01
This paper uses the Galilean relativity principle and the dependence of the rate of a clock on its velocity to derive the Lorentz transformations (LTs). Analyzing different ways of deriving the LTs provides different perspectives on them and their implications, as well as making them more accessible to a wide range of readers with an interest in relativistic physics.
Lorentz Contraction and Current-Carrying Wires
ERIC Educational Resources Information Center
van Kampen, Paul
2008-01-01
The force between two parallel current-carrying wires is investigated in the rest frames of the ions and the electrons. A straightforward Lorentz transformation shows that what appears as a purely magnetostatic force in the ion frame appears as a combined magnetostatic and electrostatic force in the electron frame. The derivation makes use of a…
The Lorentz Theory of Electrons and Einstein's Theory of Relativity
ERIC Educational Resources Information Center
Goldberg, Stanley
1969-01-01
Traces the development of Lorentz's theory of electrons as applied to the problem of the electrodynamics of moving bodies. Presents evidence that the principle of relativity did not play an important role in Lorentz's theory, and that though Lorentz eventually acknowledged Einstein's work, he was unwilling to completely embrace the Einstein…
Local Lorentz transformations and Thomas effect in general relativity
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2016-06-01
The tetrad method is used for an introduction of local Lorentz frames and a detailed analysis of local Lorentz transformations. A formulation of equations of motion in local Lorentz frames is based on the Pomeransky-Khriplovich gravitoelectromagnetic fields. These fields are calculated in the most important special cases and their local Lorentz transformations are determined. The local Lorentz transformations and the Pomeransky-Khriplovich gravitoelectromagnetic fields are applied for a rigorous derivation of a general equation for the Thomas effect in Riemannian spacetimes and for a consideration of Einstein's equivalence principle and the Mathisson force.
Detecting a Lorentz-violating field in cosmology
Li Baojiu; Barrow, John D.; Mota, David F.
2008-01-15
We consider cosmology in the Einstein-Aether theory (the generally covariant theory of gravitation coupled to a dynamical timelike Lorentz-violating vector field) with a linear Ae-Lagrangian. The 3+1 spacetime splitting approach is used to derive covariant and gauge invariant perturbation equations which are valid for a general class of Lagrangians. Restricting attention to the parameter space of these theories which is consistent with local gravity experiments, we show that there are tracking behaviors for the Ae field, both in the background cosmology and at the linear perturbation level. The primordial power spectrum of scalar perturbations in this model is shown to be the same as that predicted by standard general relativity. However, the power spectrum of tensor perturbation is different from that in general relativity, but has a smaller amplitude and so cannot be detected at present. We also study the implications for late-time cosmology and find that the evolution of photon and neutrino anisotropic stresses can source the Ae field perturbation during the radiation and matter dominated epochs, and as a result the CMB and matter power spectra are modified. However, these effects are degenerate with respect to other cosmological parameters, such as neutrino masses and the bias parameter in the observed galaxy spectrum.
A New Limit on Planck Scale Lorentz Violation from Gamma-ray Burst Polarization
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
Constraints on possible Lorentz invariance violation (UV) to first order in E/M(sub Plank) for photons in the framework of effective field theory (EFT) are discussed, taking cosmological factors into account. Then. using the reported detection of polarized soft gamma-ray emission from the gamma-ray burst GRB041219a that is indicative' of an absence of vacuum birefringence, together with a very recent improved method for estimating the redshift of the burst, we derive constraints on the dimension 5 Lorentz violating modification to the Lagrangian of an effective local QFT for QED. Our new constraints are more than five orders of magnitude better than recent constraints from observations of the Crab Nebula.. We obtain the upper limit on the Lorentz violating dimension 5 EFT parameter absolute value of zeta of 2.4 x 10(exp -15), corresponding to a constraint on the dimension 5 standard model extension parameter. Kappa (sup 5) (sub (v)oo) much less than 4.2 X 10(exp -3)4 / GeV.
Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry.
Pruttivarasin, T; Ramm, M; Porsev, S G; Tupitsyn, I I; Safronova, M S; Hohensee, M A; Häffner, H
2015-01-29
All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation
Lorentz force megahertz optical coherence elastography
NASA Astrophysics Data System (ADS)
Wu, Chen; Singh, Manmohan; Han, Zhaolong; Raghunathan, Raksha; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Larin, Kirill V.
2016-03-01
Optical Coherence Elastography (OCE) is a rapidly developing technique for assessing tissue biomechanical properties. This study demonstrates the first use of the Lorentz force to induce elastic waves within tissue to quantify the elasticity of tissue in combination with a phase-sensitive OCE system at ~1.5 million A-scans per second. The feasibility of this technique was tested on tissue-mimicking agar phantoms of various concentrations. The results as assessed by OCE were in good agreement with standard mechanical testing of the samples. After the preliminary experiments, the stiffness of porcine liver was examined. The results demonstrate that Lorentz force MHz OCE can be applied to study the elasticity of biological tissue effectively and has the potential for clinical applications due to rapid excitation and imaging.
Lorentz Gauge Theory and Spinor Interaction
NASA Astrophysics Data System (ADS)
Carlevaro, Nakia; Lecian, Orchidea Maria; Montani, Giovanni
A gauge theory of the Lorentz group, based on the different behavior of spinors and vectors under local transformations, is formulated in a flat space-time and the role of the torsion field within the generalization to curved space-time is briefly discussed. The spinor interaction with the new gauge field is then analyzed assuming the time gauge and stationary solutions, in the non-relativistic limit, are treated to generalize the Pauli equation.
The Lorentz anomaly via operator product expansion
Fredenhagen, Stefan; Hoppe, Jens Hynek, Mariusz
2015-10-15
The emergence of a critical dimension is one of the most striking features of string theory. One way to obtain it is by demanding closure of the Lorentz algebra in the light-cone gauge quantisation, as discovered for bosonic strings more than forty years ago. We give a detailed derivation of this classical result based on the operator product expansion on the Lorentzian world-sheet.
Lorentz symmetry breaking effects on relativistic EPR correlations
NASA Astrophysics Data System (ADS)
Belich, H.; Furtado, C.; Bakke, K.
2015-09-01
Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations.
Conformal invariance in noncommutative geometry and mutually interacting Snyder particles
NASA Astrophysics Data System (ADS)
Pramanik, Souvik; Ghosh, Subir; Pal, Probir
2014-11-01
A system of relativistic Snyder particles with mutual two-body interaction that lives in a noncommutative Snyder geometry is studied. The underlying novel symplectic structure is a coupled and extended version of (single-particle) Snyder algebra. In a recent work by Casalbuoni and Gomis [Phys. Rev. D 90, 026001 (2014)], a system of interacting conventional particles (in commutative spacetime) was studied with special emphasis on its conformal invariance. Proceeding along the same lines, we have shown that our interacting Snyder particle model is also conformally invariant. Moreover, the conformal Killing vectors have been constructed. Our main emphasis is on the Hamiltonian analysis of the conformal symmetry generators. We demonstrate that the Lorentz algebra remains undeformed, but validity of the full conformal algebra requires further restrictions.
Causal sets and conservation laws in tests of Lorentz symmetry
Mattingly, David
2008-06-15
Many of the most important astrophysical tests of Lorentz symmetry also assume that energy momentum of the observed particles is exactly conserved. In the causal set approach to quantum gravity a particular kind of Lorentz symmetry holds but energy-momentum conservation may be violated. We show that incorrectly assuming exact conservation can give rise to a spurious signal of Lorentz symmetry violation for a causal set. However, the size of this spurious signal is much smaller than can be currently detected and hence astrophysical Lorentz symmetry tests as currently performed are safe from causal set induced violations of energy-momentum conservation.
Electromagnetohydrodynamic Modeling of Lorentz Effect Imaging
Pourtaheri, Navid; Truong, Trong-Kha; Henriquez, Craig S.
2013-01-01
Lorentz Effect Imaging (LEI) is an MRI technique that has been proposed for direct imaging of neuronal activity. While promising results have been obtained in phantoms and in the human median nerve in vivo, its contrast mechanism is still not fully understood. In this paper, computational model simulations were used to investigate how electromagnetohydrodynamics (EMHD) may explain the LEI contrast. Three computational models of an electrolyte-filled phantom subject to an applied current dipole, synchronized to oscillating magnetic field gradients of an LEI protocol, were developed to determine the velocity and displacement of water molecules as well as the resulting signal loss in an MR image. The simulated images were compared to images from previous LEI phantom experiments with identical properties for different stimulus current amplitudes and polarities. The first model, which evaluated ion trajectories based on Stokes flow using different mobility values, did not generate an appreciable signal loss due to an insufficient number of water molecules associated with the ion hydration shells. The second model, which computed particle drift based on the Lorentz force of charged particles in free space, was able to approximate the magnitude, but not the distribution of signal loss observed in the experimental images. The third model, which computed EMHD based on the Lorentz force and Navier-Stokes equations for flow of a conducting fluid, provided results consistent with both the magnitude and distribution of signal loss seen in the LEI experiments. Our EMHD model further yields information on electrical potential, velocity, displacement, and pressure, which are not readily available in an experiment, thereby providing a robust means to study and optimize LEI for imaging neuronal activity in the human cortex. PMID:24056273
Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector
Adamson, P.; et al.
2012-02-01
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.
Lorentz Invariance Violation: the Latest Fermi Results and the GRB-AGN Complementarity
NASA Technical Reports Server (NTRS)
Bolmont, J.; Vasileiou, V.; Jacholkowska, A.; Piron, F.; Couturier, C.; Granot, J.; Stecker, F. W.; Cohen-Tanugi, J.; Longo, F.
2013-01-01
Because they are bright and distant, Gamma-ray Bursts (GRBs) have been used for more than a decade to test propagation of photons and to constrain relevant Quantum Gravity (QG) models in which the velocity of photons in vacuum can depend on their energy. With its unprecedented sensitivity and energy coverage, the Fermi satellite has provided the most constraining results on the QG energy scale so far. In this talk, the latest results obtained from the analysis of four bright GRBs observed by the Large Area Telescope will be reviewed. These robust results, cross-checked using three different analysis techniques set the limit on QG energy scale at E(sub QG,1) greater than 7.6 times the Planck energy for linear dispersion and E(sub QG,2) greater than 1.3 x 10(exp 11) gigaelectron volts for quadratic dispersion (95% CL). After describing the data and the analysis techniques in use, results will be discussed and confronted to latest constraints obtained with Active Galactic Nuclei.
Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity
Heinicke, Christian; Baekler, Peter; Hehl, Friedrich W.
2005-07-15
We show that the Einstein-aether theory of Jacobson and Mattingly (J and M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J and M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.
Cerenkov effect in Lorentz-violating vacua
Lehnert, Ralf; Potting, Robertus
2004-12-15
The emission of electromagnetic radiation by charges moving uniformly in a Lorentz-violating vacuum is studied. The analysis is performed within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension and confirms the possibility of a Cerenkov-type effect. In this context, various properties of Cerenkov radiation including the rate, polarization, and propagation features, are discussed, and the backreaction on the charge is investigated. An interpretation of this effect supplementing the conventional one is given. The emerging physical picture leads to a universal methodology for studying the Cerenkov effect in more general situations.
Lorentz Nonreciprocal Model for Hybrid Magnetoplasmonics
NASA Astrophysics Data System (ADS)
Floess, Dominik; Weiss, Thomas; Tikhodeev, Sergei; Giessen, Harald
2016-08-01
Using localized surface plasmons, the magneto-optical response of dielectric thin films can be resonantly amplified and spectrally tailored. While the experimental realization and numerical simulation of such systems received considerable attention, so far, there is no analytical theoretical description. Here, we present a simple, intrinsically Lorentz nonreciprocal coupled oscillator model that reveals the underlying physics inside such systems and yields analytical expressions for the resonantly enhanced magneto-optical response. The predictions of the model are in good agreement with rigorous numerical solutions of Maxwell's equations for typical sample geometries. Our ansatz is transferable to other complex and hybrid nanooptical systems and will significantly facilitate device design.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Funabashi, Masatoshi
2015-05-01
This study applies information geometry of normal distribution to model Japanese vowels on the basis of the first and second formants. The distribution of Kullback-Leibler (KL) divergence and its decomposed components were investigated to reveal the statistical invariance in the vowel system. The results suggest that although significant variability exists in individual KL divergence distributions, the population distribution tends to converge into a specific log-normal distribution. This distribution can be considered as an invariant distribution for the standard-Japanese speaking population. Furthermore, it was revealed that the mean and variance components of KL divergence are linearly related in the population distribution. The significance of these invariant features is discussed. PMID:25994716
Gauge invariants and bosonization
NASA Astrophysics Data System (ADS)
Kijowski, J.; Rudolph, G.; Rudolph, M.
1998-12-01
We present some results, which are part of our program of analyzing gauge theories with fermions in terms of local gauge invariant fields. In a first part the classical Dirac-Maxwell system is discussed. Next we develop a procedure which leads to a reduction of the functional integral to an integral over (bosonic) gauge invariant fields. We apply this procedure to the case of QED and the Schwinger model. In a third part we go some steps towards an analysis of the considered models. We construct effective (quantum) field theories which can be used to calculate vacuum expectation values of physical quantities.
Scale invariance in biophysics
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene
2000-06-01
In this general talk, we offer an overview of some problems of interest to biophysicists, medical physicists, and econophysicists. These include DNA sequences, brain plaques in Alzheimer patients, heartbeat intervals, and time series giving price fluctuations in economics. These problems have the common feature that they exhibit features that appear to be scale invariant. Particularly vexing is the problem that some of these scale invariant phenomena are not stationary-their statistical properties vary from one time interval to the next or form one position to the next. We will discuss methods, such as wavelet methods and multifractal methods, to cope with these problems. .
Lorentz Symmetric Aether and Its Accretion Onto Black Holes
NASA Astrophysics Data System (ADS)
Mirbabayi, Mehrdad
Finding a consistent formulation of Lorentz-invariant massive gravity, with the right number of five degrees of freedom has been a long-standing problem in theoretical physics. A two-parameter family of candidate models has been recently proposed by de Rham, Gabadadze, and Tolley who provided considerable evidence for the absence of any extra degree of freedom. Meanwhile, it has been shown that massive gravity can be thought of as a generally covariant theory of a medium described by four scalar fields -- the aether . In the first part of the thesis, I study this theory of four scalar fields and show that de Rham-Gabadadze-Tolley massive gravity is the unique theory in which one of the scalar fields remains non-dynamical, and the full gravitational theory propagates five degrees of freedom, thereby proving the conjecture. The second part of the thesis deals with black holes in massive electrodynamics and massive gravity. In particular, the sense in which black hole solutions approach their counterparts in massless theories as the photon (graviton) mass is taken to zero. I will introduce and calculate the discharge mode for a Schwarzschild black hole in massive electrodynamics. For small photon mass, the discharge mode describes the decay of the electric field of a charged star collapsing into a black hole. I will then argue that a similar ``discharge of mass'' occurs in massive gravity and leads to a process of black hole disappearance. The zero-mass limit is, nevertheless, smooth in that the discharge (disappearance) rate vanishes in the limit: it scales as m2rg where m is the photon (graviton) mass and rg is the Schwarzschild radius of the black hole.
Separation Control using Lorentz Force Actuators
NASA Astrophysics Data System (ADS)
Johari, H.; Tucker, A.; Thomas, S.
2003-11-01
To assess the feasibility of Lorentz force actuators for separation control, flow visualization experiments were conducted in a low-speed water tunnel. Salt was added to the tunnel to yield an electrical conductivity of one half of seawater. The setup consisted of a 1.3 m long flat plate followed by a 15^o ramp. The boundary layer was tripped near the flat plate leading edge, resulting in a fully turbulent 2D boundary layer. The Lorentz force actuator had 3 mm wide surface mounted electrodes and permanent magnets. The actuator, which was placed just upstream of the ramp, could be used to produce forces in the streamwise or spanwise direction. To reduce electrolysis and subsequent corrosion, the input power was modulated thus producing pulsatile forcing. The Reynolds number based on the freestream velocity and ramp length was ˜ 10^4. The flow separated shortly after the ramp and vortex shedding at a dimensionless frequency of ˜ 2 was observed. Although both streamwise and spanwise forcing were successful in reducing the separated region, the latter was much more effective. The spanwise forcing was most effective at frequencies 10 to 20 times the natural shedding frequency, whereas the streamwise forcing was effective at frequencies closer to the natural shedding frequency. The effectiveness of spanwise forcing is attributed to the generation of streamwise vorticity. Forcing in the direction opposite to the freestream resulted in complete separation at the start of the ramp.
Effect of VSR invariant Chern-Simons Lagrangian on photon polarization
Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj
2015-07-21
We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Idiographic Measurement Invariance?
ERIC Educational Resources Information Center
Willoughby, Michael T.; Sideris, John
2007-01-01
In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…
Pokhozhaev, Stanislav I
2011-06-30
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
Einstein gravity as a 3D conformally invariant theory
NASA Astrophysics Data System (ADS)
Gomes, Henrique; Gryb, Sean; Koslowski, Tim
2011-02-01
We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation-preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Hořava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.
Lorentz violation correction to the Aharonov-Bohm scattering
NASA Astrophysics Data System (ADS)
Anacleto, M. A.
2015-10-01
In this paper, using a (2 +1 )-dimensional field theory approach, we study the Aharonov-Bohm (AB) scattering with Lorentz symmetry breaking. We obtain the modified scattering amplitude to the AB effect due to the small Lorentz violation correction in the breaking parameter and prove that up to one loop the model is free from ultraviolet divergences.
Lorentz and CPT Tests with Spin-Polarized Solids
Bluhm, Robert; Kostelecky, V. Alan
2000-02-14
Experiments using macroscopic samples of spin-polarized matter offer exceptional sensitivity to Lorentz and CPT violation in the electron sector. Data from existing experiments with a spin-polarized torsion pendulum provide sensitivity in this sector rivaling that of all other existing experiments and could reveal spontaneous violation of Lorentz symmetry at the Planck scale. (c) 2000 The American Physical Society.
Lorentz force infiltration of fibrous preforms
NASA Astrophysics Data System (ADS)
Andrews, Richard M.; Mortensen, Andreas
1991-12-01
A new process for the production of metal matrix composites, whereby molten metal is forced into the interstices of a fibrous preform using electromagnetic body forces, is presented. These forces are created by subjecting the molten matrix to a concentrated transient magnetic field which, in turn, induces intense eddy currents in the melt. This gives rise to Lorentz forces which propel the metal into the preform. Equations governing the mechanics of Lorentz force infiltration of an axisymmetric preform surrounded by molten metal are solved numerically. A finite difference algorithm is applied to solve Maxwell's equation of electromagnetic field propagation and to determine the flux density as a function of radial position. The resulting Lorentz force is then calculated and balanced with the inertial, fluid friction and capillary forces, taking preform compression into account, to predict infiltration velocity and cumulative infiltration distance. Apparatuses were designed and constructed to infiltrate cylindrical preforms of 24 vol pct 3-μm-diameter chopped alumina fiber preforms with commercial purity aluminum. Two capacitor banks were charged from 1 to 4 kV and rapidly discharged to produce magnetic pulses of up to 4 tesla peak, at frequencies of 2 to 3 kHz in the infiltrating furnace. A commercial MAGNEFORM unit was also used to produce fields of up to 5 tesla at 5.6 kHz.-Sound composite samples were produced, to a depth of 1.8 mm into the preforms, with little or no breakage of fibers. Good agreement between theoretical model predictions and experimentally measured infiltration depths was demonstrated. Primary process variables for a given matrix-preform system, were the number of discharges, the magnetic pulse intensity and frequency, and the melt ring thickness. The model predicts a pulse frequency below which infiltration does not occur and an optimum frequency for maximum infiltration depth. Successive pulses are predicted to produce only slightly
NASA Astrophysics Data System (ADS)
Membiela, Federico Agustín; Bellini, Mauricio
2010-02-01
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.
Symmetry of the Lorentz boost: the relativity of colocality and Lorentz time contraction
NASA Astrophysics Data System (ADS)
Sharp, Jonathan C.
2016-09-01
Since the Lorentz boost is symmetric under exchange of x and ct, special relativistic phenomena will also manifest this symmetry. Firstly, simultaneity becomes paired with ‘colocality’ (‘at the same place’), and the ‘Relativity of Colocality’ becomes the dual to the well-known ‘Relativity of Simultaneity’. Further, Lorentz time contraction arises from reversal of the observation conditions pertaining to time dilation, expressible figuratively as ‘Moving clocks run slow, but moving time runs fast’. Symmetry also dictates that the most fundamental observational modes are: (1) the simultaneous observation of length, a process involving both the relativity of simultaneity and length contraction; and (2) the colocal measurement of duration, involving both the relativity of colocality and time contraction. Only the first of these modes is well known. The adoption of this symmetrical lexicon provides a necessary logical basis for interpretational studies of observation and measurement in special relativity.
Testing Lorentz symmetry with planetary orbital dynamics
NASA Astrophysics Data System (ADS)
Hees, A.; Bailey, Q. G.; Le Poncin-Lafitte, C.; Bourgoin, A.; Rivoldini, A.; Lamine, B.; Meynadier, F.; Guerlin, C.; Wolf, P.
2015-09-01
Planetary ephemerides are a very powerful tool to constrain deviations from the theory of general relativity (GR) using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.
NASA Astrophysics Data System (ADS)
Chamseddine, Riad
2016-04-01
A new vectorial representation for the successive Lorentz transformations (SLT) has recently been proved very convenient to achieve a straightforward treatment of the Thomas rotation effect. Such a representation rests on equivalent forms for the pure Lorentz transformation (PLT) and SLT whose physical meaning escaped us. The present paper fills this gap in by showing that those equivalent forms could represent appropriate world lines, lines and planes of simultaneity. Those geometric elements are particularly convenient to build up two new graphical representations for the SLT: the first rests on that equivalent form for the SLT, while the second takes the SLT as a PLT preceded or followed by a Thomas rotation and uses the equivalent form for the PLT. As an application, the SLT Lorentz contraction (SLTLC) formulas are derived for the first time. The dependence of the SLTLC on the Thomas rotation is put in evidence. The SLTLC along directions transverse and parallel to the composite velocity is studied. Original SLT Minkowski diagrams are given for the first time.
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L. )
1991-02-15
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum ({ital k}) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like log{ital V} with the lattice volume {ital V}. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being {ital c}-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the {phi}{sup 4} model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator {l angle}{phi}({ital k}){phi}({ital k}{prime}){r angle} in the {phi}{sup 4} model, investigate Euclidean invariance, and extract {ital m}{sub {ital R}} as well as {ital Z}{sub {ital R}}. Moreover we compute {l angle}{ital F}{sub {mu}{nu}}({ital k}){ital F}{sub {mu}{nu}}({ital k}{prime}){r angle} in the SU(2) model.
View Invariant Gait Recognition
NASA Astrophysics Data System (ADS)
Seely, Richard D.; Goffredo, Michela; Carter, John N.; Nixon, Mark S.
Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.
Unitary Representations of the Inhomogeneous Lorentz Group and Their Significance in Quantum Physics
NASA Astrophysics Data System (ADS)
Straumann, Norbert
Minkowski's great discovery of the spacetime structure behind Einstein's special theory of relativity (SR) had an enormous impact on much of twentieth-century physics. (For a historical account of Minkowski's Raum und Zeit lecture and Poincaré's pioneering contribution, we refer to [1] and Chap. 2, 10.1007/978-3-642-41992-8_2.) The symmetry requirement of physical theories with respect to the automorphism group of Minkowski spacetime - the inhomogeneous Lorentz or Poincaré group - is particularly constraining in the domain of relativistic quantum theory and led to profound insights. Among the most outstanding early contributions are Wigner's great papers on relativistic invariance [2]. His description of the (projective) irreducible representations of the inhomogeneous Lorentz group, that classified single particle states in terms of mass and spin, has later been taken up on the mathematical side by George Mackey, who developed Wigner's ideas into a powerful theory with a variety of important applications [3] [4] [5]. Mackey`s theory of induced representations has become an important part of representation theory for locally compact groups. For certain classes it provides a full description of all irreducible unitary representations.
Membiela, Federico Agustín; Bellini, Mauricio E-mail: membiela@mdp.edu.ar
2010-10-01
Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. We use simultaneously the Lorentz and Feynman gauges. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of electric and magnetic field modes during the early inflationary epoch of the universe on cosmological scales. This is the first time that solutions for the electric field fluctuations are investigated in a systematic way as embeddings for inflationary models in 4D. An important and new result here obtained is that the spectrum of the electric field fluctuations depend with the scale, such that the spectral index increases quadratically as the scale decreases.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, ``as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamics are Galilean invariant-i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities v<
Neutrino speed anomaly as signal of Lorentz violation
NASA Astrophysics Data System (ADS)
Lingli, Zhou; Ma, Bo-Qiang
2013-04-01
We make a reanalysis on the issue of neutrino speed anomaly by taking into account the newly reported data from the ICARUS experiment and other CNGS collaborations. We examine the consequence of the Lorentz violation on the neutrino speed in a new framework of standard model supplement (SMS), and find that the Lorentz violating parameters are constrained at least one order stronger than that of the earlier OPERA report. The combination with other phenomenological considerations puts more stringent constraints on the Lorentz violation of neutrinos.
Lorentz covariance, higher-spin superspaces and self-duality
Devchand, Chandrashekar; Nuyts, Jean
1998-12-15
Lorentz covariant generalisations of the notions of supersymmetry, superspace and self-duality are discussed. The essential idea is to extend standard constructions by allowing tangent vectors and coordinates which transform according to more general Lorentz representations than solely the spinorial and vectorial ones of standard lore. Such superspaces provide model configuration spaces for theories of arbitrary spin fields. Our framework is an elegant one for handling higher-dimensional theories in a manifestly SO(3,1) cavariant fashion. A further application is the construction of a hierarchy of solvable Lorentz covariant systems generalising four-dimensional self-duality.
Disentangling forms of Lorentz violation with complementary clock comparison experiments
Altschul, Brett
2009-03-15
Atomic clock comparisons provide some of the most precise tests of Lorentz and CPT symmetries in the laboratory. With data from multiple such experiments using different nuclei, it is possible to constrain new regions of the parameter space for Lorentz violation. Relativistic effects in the nuclei allow us to disentangle forms of Lorentz violation which could not be separately measured in purely nonrelativistic experiments. The disentangled bounds in the neutron sectors are at the 10{sup -28} GeV level, far better than could be obtained with any other current technique.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation. PMID:24815632
Gauge invariant quantum cosmology
NASA Technical Reports Server (NTRS)
Berger, Beverly K.
1987-01-01
The study of boundary conditions, the Hamiltonian constraint, reparameterization-invariance, and quantum dynamics, is presently approached by means of the path-integral quantization of minisuperspace models. The separation of the wave functions for expansion and contraction by the Feynman boundary conditions is such that there can be no interference between them. This is implemented by the choice of a contour in the complex plane, in order to define the phase of the square-root Arnowitt, Deser, and Misner (1960) Hamiltonian for expansion, collapse, and the classically forbidden region.
Larmor and the Prehistory of the Lorentz Transformations
ERIC Educational Resources Information Center
Kittel, C.
1974-01-01
A historical analysis is given of the development in 1900 of the Lorentz transformation of coordinates and time, and of electric and magnetic field components. The earlier work of Voight is discussed. (RH)
Traveling solitons in Lorentz and CPT breaking systems
Souza Dutra, A. de; Correa, R. A. C.
2011-05-15
In this work we present a class of traveling solitons in Lorentz and CPT breaking systems. In the case of Lorentz violating scenarios, as far as we know, only static solitonic configurations were analyzed up to now in the literature. Here it is shown that it is possible to construct some traveling solitons which cannot be mapped into static configurations by means of Lorentz boosts due to explicit breaking. In fact, the traveling solutions cannot be reached from the static ones by using something similar to a Lorentz boost in those cases. Furthermore, in the model studied, a complete set of exact solutions is obtained. The solutions present a critical behavior controlled by the choice of an arbitrary integration constant.
The estimates of approximations classes in the Lorentz space
NASA Astrophysics Data System (ADS)
Akishev, Gabdolla
2015-09-01
Exact order estimates are obtained for the best orthogonal trigonometric approximations of the Nikol'skii-Besov classes of periodic functions of many variables in the Lorentz space with the mixed norm.
Limits on neutron Lorentz violation from pulsar timing
Altschul, Brett
2007-01-15
Pulsars are the most accurate naturally occurring clocks, and data about them can be used to set bounds on neutron-sector Lorentz violations. If SO(3) rotation symmetry is completely broken for neutrons, then pulsars' rotation speeds will vary periodically. Pulsar timing data limits the relevant Lorentz-violating coefficients to be smaller than 1.7x10{sup -8} at at least 90% confidence.
Lorentz- and CPT-violating signals in Penning traps
NASA Astrophysics Data System (ADS)
Ding, Yunhua; Kostelecký, Alan
2016-05-01
CPT and Lorentz symmetries are fundamental properties of the Standard Model. However, violation of these symmetries is possible in an underlying unified theory such as strings. This talk will focus on possible experimental effects for Lorentz and CPT violations. In particular, observable signals in measurements of anomaly and cyclotron frequencies of particles and antiparticles in a Penning trap will be discussed. New constraints from existing data will be presented and prospective sensitivities in future experiments will be outlined.
The relation between the waveguide invariant and array invariant.
Song, H C; Cho, Chomgun
2015-08-01
The waveguide invariant β is based on the dependence of group speed on phase speed and summarizes the robust interference phenomenon in the range-frequency plane. Over the last decade the elegant approach has been utilized for various applications including passive source ranging. Separately, the array invariant approach [Lee and Makris, J. Acoust. Soc. Am. 119, 336-351 (2006)] has been proposed for a robust source-range estimator from beam-time intensity data using either a horizontal or vertical array. In this paper, it is shown that the array invariant can be derived from the waveguide invariant theory assuming β=1. PMID:26328705
Direct Lorentz force compensation flowmeter for electrolytes
NASA Astrophysics Data System (ADS)
Vasilyan, S.; Froehlich, Th.
2014-12-01
A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known "electromagnetic force" compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 106 S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.
The electrodeless Lorentz force thruster experiment
NASA Astrophysics Data System (ADS)
Weber, Thomas E.
The Electrodeless Lorentz Force (ELF) thruster is a novel type of plasma thruster, which utilizes Rotating Magnetic Field current drive within a diverging magnetic field to form, accelerate, and eject a Field Reversed Configuration plasmoid. The ELF program is a result of a Small Business Technology Transfer grant awarded to MSNW LLC by the Air Force Office of Scientific Research for the research of the revolutionary space propulsion concept represented by ELF. These grants are awarded to small businesses working in collaboration with a university, in this case, the University of Washington. The program was split into two concurrent research efforts; a numerical modeling study undertaken at the UW branch of the Plasma Science and Innovation Center, and an experimental effort taking place at the UW Plasma Dynamics Laboratory with additional support from MSNW (the latter being the subject of this dissertation). It is the aim of this dissertation is to present to the reader the necessary background information needed to understand the operation of the ELF thruster, an overview of the experimental setup, a review of the significant experimental findings, and a discussion regarding the operation and performance of the thruster.