Sample records for los alamos nm

  1. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2018-01-16

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  2. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  3. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Living in Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. New Mexico: Los Alamos

    Atmospheric Science Data Center

    2014-05-15

    article title:  Los Alamos, New Mexico     View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...

  6. Science and Innovation at Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  8. Los Alamos Climatology 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  9. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  10. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  11. Critical partnerships: Los Alamos, universities, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe thatmore » the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.« less

  12. Water Supply at Los Alamos 1998-2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mgmore » in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no

  13. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green

  14. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  15. Publications of Los Alamos Research, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers releasedmore » as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.« less

  16. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  17. A Sailor in the Los Alamos Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, D. L.; Meade, Roger Allen

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. Tomore » meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.« less

  18. New Generation of Los Alamos Opacity Tables

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  19. SEDs at Los Alamos: A Personal Memoir

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2001-03-01

    I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.

  20. Fifty-one years of Los Alamos Spacecraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  1. Notes on Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    In 1954 an unknown author drafted a report, reprinted below, describing the Laboratory and the community as they existed in late 1953. This report, perhaps intended to be crafted into a public relations document, is valuable because it gives us an autobiographical look at Los Alamos during the first half of the 1950s. It has been edited to enhance readability.

  2. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2017-12-09

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  3. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarmie, N.; Rogers, F.J.

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  4. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured

  5. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2018-01-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  6. Using the Internet in Middle Schools: A Model for Success. A Collaborative Effort between Los Alamos National Laboratory (LANL) and Los Alamos Middle School (LAMS).

    ERIC Educational Resources Information Center

    Addessio, Barbara K.; And Others

    Los Alamos National Laboratory (LANL) developed a model for school networking using Los Alamos Middle School as a testbed. The project was a collaborative effort between the school and the laboratory. The school secured administrative funding for hardware and software; and LANL provided the network architecture, installation, consulting, and…

  7. Los Alamos Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergen, Benjamin Karl

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  8. Pre Incident Planning For The Los Alamos National Laboratory

    DTIC Science & Technology

    2017-12-01

    laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City

  9. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  10. Los Alamos, Toshiba probing Fukushima with cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create imagesmore » of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.« less

  11. A progress report on UNICOS misuse detection at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component ofmore » NADIR, along with the operational experiences and future plans for the system.« less

  12. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  13. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    2018-02-14

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  14. Flaws found in Los Alamos safety procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-12-01

    A US government panel on nuclear safety has discovered a series of safety issues at the Los Alamos National Laboratory, concluding that government oversight of the lab's emergency preparation has been ineffective.

  15. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  16. 75 FR 72829 - Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease Control and Prevention... release of the Final Report of the Los Alamos Historical Document Retrieval and Assessment (LAHDRA)Project... information about historical chemical or radionuclide releases from facilities at the Los Alamos National...

  17. Environmental surveillance at Los Alamos during 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  18. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  19. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  20. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  1. Los Alamos Before and After the Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 4, 2000, a prescribed fire was set at Bandelier National Monument, New Mexico, to clear brush and dead and dying undergrowth to prevent a larger, subsequent wildfire. Unfortunately, due to high winds and extremely dry conditions in the surrounding area, the prescribed fire quickly raged out of control and, by May 10, the blaze had spread into the nearby town of Los Alamos. In all, more than 20,000 people were evacuated from their homes and more than 200 houses were destroyed as the flames consumed about 48,000 acres in and around the Los Alamos area. The pair of images above were acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor, flying aboard NASA's Landsat 7 satellite, shortly before the Los Alamos fire (top image, acquired April 14) and shortly after the fire was extinguished (lower image, June 17). The images reveal the extent of the damage caused by the fire. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false-color image where vegetation appears as bright to dark green. Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. In the lower image, the areas recently burned appear bright red. Landsat 7 data courtesy United States Geological Survey EROS DataCenter. Images by Robert Simmon, NASA GSFC.

  2. Geothermal investigation of spring and well waters of the Los Alamos Region, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, F.E.; Sayer, S.

    1980-04-01

    The chemical and isotopic characters of 20 springs and wells in the Los Alamos area were investigated for indications of geothermal potential. These waters were compared with known hot and mineral springs from adjacent Valles Caldera and San Ysidro. All waters in the Los Alamos area are composed of meteoric water. Isotopic data show that the two primary aquifers beneath the Los Alamos region have different recharge areas. Relatively high concentrations of lithium, arsenic, chlorine, boron, and fluorine in some of the Los Alamos wells suggest these waters may contain a small fraction of thermal/mineral water of deep origin. Thermalmore » water probably rises up high-angle faults associated with a graben of the Rio Grande rift now buried by the Pajarito Plateau.« less

  3. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  4. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  5. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  6. Water Supply at Los Alamos during 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996.more » Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.« less

  7. History of Los Alamos Participation in Active Experiments in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongratz, Morris B.

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July ofmore » 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.« less

  8. Los Alamos high-power proton linac designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.P.

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  9. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been

  10. Los Alamos on Radio Café: Nina Lanza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina; Domandi, Mary-Charlotte

    2017-04-11

    First up in the new series is Los Alamos National Laboratory’s Nina Lanza from the Space and Remote Sensing group. Lanza is a planetary geologist who has been part of the Mars Curiosity Rover “ChemCam” team since 2012.

  11. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. R. Fresquez; J. D. Huchton; M. A. Mullen

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soils (0- to 12-in. [31 cm] depth underneath themore » tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of {sup 3}H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 {micro}Sv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.« less

  12. A New Generation of Los Alamos Opacity Tables

    DOE PAGES

    Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...

    2016-01-26

    We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less

  13. James L. Tuck Los Alamos ball lightning pioneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    1999-07-01

    James Tuck was well known for starting the Project Sherwood group at Los Alamos Scientific Laboratory in 1952. This group was formed to study and develop concepts for controlled fusion energy. In his later years after retiring from Controlled Fusion Division, he continued research at Los Alamos on the topic of ball lightning. He traveled widely giving lectures on both observations of others and his own experimental efforts. He collected anecdotal observations obtained from those in his lecture audiences during his travels and from responses from newspaper articles where he asked for specific information from ball lightning observers. He finallymore » cut off this collection of data when the number of responses became overwhelming. The author's primary publication on ball lightning was a short laboratory report. He planned on publishing a book on the subject but this was never completed before his death. Tuck focused his experimental effort on attempting to duplicate the production of plasma balls claimed to be observed in US Navy submarines when a switch was opened under overload conditions with battery power. During lunch breaks he made use of a Los Alamos N-division battery bank facility to mock up a submarine power pack and switch gear. This non-funded effort was abruptly terminated when an explosion occurred in the facility. An overview of Tuck's research and views will be given. The flavor Jim's personality as well as a ball produced with his experimental apparatus will be shown using video chips.« less

  14. Los Alamos on Radio Café: Ludmil Alexandrov

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domandi, Mary-Charlotte; Alexandrov, Ludmil

    In a creative breakthrough in cancer research, Ludmil Alexandrov, the J. Robert Oppenheimer Distinguished Postdoctoral Fellow at Los Alamos National Laboratory, combines Big Data, supercomputing and machine-learning to identify the telltale mutations of cancer. Knowing these mutational signatures can help researchers develop new methods of prevention.

  15. Induction Inserts at the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Ng, K. Y.

    2002-12-01

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to ˜ 130°C. An understanding of the instability and cure is presented.

  16. Los Alamos Team Demonstrates Bottle Scanner Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  17. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2018-02-13

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  18. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  19. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignitionmore » points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.« less

  20. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2018-04-16

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  1. Los Alamos Novel Rocket Design Flight Tested

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  2. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  3. Erosion and Deposition Monitoring Using High-Density Aerial Lidar and Geomorphic Change Detection Software Analysis at Los Alamos National Laboratory, Los Alamos New Mexico, LA-UR-17-26743

    NASA Astrophysics Data System (ADS)

    Walker, T.; Kostrubala, T. L.; Muggleton, S. R.; Veenis, S.; Reid, K. D.; White, A. B.

    2017-12-01

    The Los Alamos National Laboratory storm water program installed sediment transport mitigation structures to reduce the migration of contaminants within the Los Alamos and Pueblo (LA/P) watershed in Los Alamos, NM. The goals of these structures are to minimize storm water runoff and erosion, enhance deposition, and reduce mobility of contaminated sediments. Previous geomorphological monitoring used GPS surveyed cross-sections on a reach scale to interpolate annual geomorphic change in sediment volumes. While monitoring has confirmed the LA/P watershed structures are performing as designed, the cross-section method proved difficult to estimate uncertainty and the coverage area was limited. A new method, using the Geomorphic Change Detection (GCD) plugin for ESRI ArcGIS developed by Wheaton et al. (2010), with high-density aerial lidar data, has been used to provide high confidence uncertainty estimates and greater areal coverage. Following the 2014 monsoon season, airborne lidar data has been collected annually and the resulting DEMs processed using the GCD method. Additionally, a more accurate characterization of low-amplitude geomorphic changes, typical of low-flow/low-rainfall monsoon years, has been documented by applying a spatially variable error to volume change calculations using the GCD based fuzzy inference system (FIS). The FIS method allows for the calculation of uncertainty based on data set quality and density e.g. point cloud density, ground slope, and degree of surface roughness. At the 95% confidence level, propagated uncertainty estimates of the 2015 and 2016 lidar DEM comparisons yielded detectable changes greater than 0.3 m - 0.46 m. Geomorphic processes identified and verified in the field are typified by low-amplitude, within-channel aggradation and incision and out of channel bank collapse that over the course of a monsoon season result in localized and dectetable change. While the resulting reach scale volume change from 2015 - 2016 was often

  4. 75 FR 1793 - Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease... the following meeting. Name: Public Meeting of the Study Team for the Los Alamos Historical Document...

  5. Total electron content (TEC) variability at Los Alamos, New Mexico: A comparative study: FORTE-derived TEC analysis

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Roussel-Dupré, Robert

    2005-12-01

    Data collected from Fast On-Orbit Recording of Transient Events (FORTE) satellite-received Los Alamos Portable Pulser (LAPP) signals during 1997-2002 are used to derive the total electron content (TEC) at Los Alamos, New Mexico. The LAPP-derived TECs at Los Alamos are analyzed for diurnal, seasonal, interannual, and 27-day solar cycle variations. Several aspects in deriving TEC are analyzed, including slant to vertical TEC conversion, quartic effects on transionosperic signals, and geomagnetic storm effects on the TEC variance superimposed on the averaged TEC values.

  6. Optical velocimetry at the Los Alamos Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Tupa, Dale; Tainter, Amy; Neukirch, Levi; Hollander, Brian; Buttler, William; Holtkamp, David; The Los Alamos Proton Radiography Team Team

    2016-05-01

    The Los Alamos Proton Radiography Facility (pRad) employs a high-energy proton beam to image the properties and behavior of materials driven by high explosives. We will discuss features of pRad and describe some recent experiments, highlighting optical diagnostics for surface velocity measurements.

  7. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  8. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect tomore » see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.« less

  9. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquaticmore » habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.« less

  10. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012

  11. CICE, The Los Alamos Sea Ice Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth; Lipscomb, William; Jones, Philip

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of themore » ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.« less

  12. Portable MRI developed at Los Alamos

    ScienceCinema

    Espy, Michelle

    2018-02-14

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines just can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are

  13. Portable MRI developed at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines justmore » can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block

  14. Critical Infrastructure Protection- Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  15. Amphibians and Reptiles of Los Alamos County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  16. The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group

    2015-01-01

    The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.

  17. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists ofmore » three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.« less

  18. Tritium concentrations in bees and honey at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    Los Alamos National Laboratory (LANL) has maintained a network of honey bee colonies at LANL, perimeter (Los Alamos townsite and White Rock/Pajarito Acres) and regional (background) areas for over 15 years; the main objective of this honey bee network was to help determine the bioavailability of certain radionuclides in the environment. Of all the radionuclides studied ({sup 3}H, {sup 57}Co, {sup 7}Be, {sup 22}Na, {sup 54}Mn, {sup 83}Rb, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 90}Sr and total U), tritium was consistently detected in bees and was most readily transferred to the honey. In fact, honey collected from hives locatedmore » at TA-21, TA-33, TA-50, TA-53, and TA-54 and from White Rock/Pajarito Acres contained significantly higher concentrations of {sup 3}H than regional background hives. Based on the average concentration of all radionuclides measured over the years, the effective dose equivalent (EDE) from consuming 5 kg (11 lb) of honey collected from Los Alamos (townsite) and White Rock/Pajarito Acres, after regional background has been subtracted, was 0.0186 ({+-}0.0507) and 0.0016 ({+-}0.0010) mrem/yr, respectively. The highest EDE, based on the mean + 2SD (95% confidence level), was 0.1200 mrem/y; this was <0.2% of the International Commission on Radiological Protection permissible dose limit of 100 mrem/yr from all pathways.« less

  19. Geohydrology and simulation of ground-water flow near Los Alamos, north-central New Mexico

    USGS Publications Warehouse

    Frenzel, P.F.

    1995-01-01

    An existing model was modified in recognition of new geohydrologic interpretations and adjusted to simulate hydrographs in well fields in the Los Alamos area. Hydraulic-head drawdowns at the Buckman well field resulting from two projected ground-water-withdrawal alternatives were estimated with the modified model. The Chaquehui formation (informal usage) is the main new feature of recent hydrologic interpretations for the Los Alamos area. The Chaquehui occupies a 'channel' that was eroded or faulted into the Tesuque Formation, and the Chaquehui is more permeable than the Tesuque. The Chaquehui is a major producing zone in the Pajarito Mesa well field and to a lesser extent in the Guaje well field. Model modification included splitting the four layers of the McAda-Wasiolek model (McAda, D.P., and Wasiolek, Maryann, 1988, Simulation of the regional geohydrology of the Tesuque aquifer system near Santa Fe, New Mexico: U.S. Geological Survey Water- Resources Investigations Report 87-4056, 71 p.) into eight layers to better simulate vertical ground-water movement. Other model modifications were limited as much as possible to the area of interest near Los Alamos and consisted mainly of adjusting hydraulic-conductivity values representing the Tesuque Formation, Chaquehui formation (informal usage), and Puye Formation, and adjusting simulated recharge along the Pajarito Fault Zone west of Los Alamos. Adjustments were based mainly on simulation of fluctuations in measured hydraulic heads near Los Alamos. Two possible alternative plans for replacing Guaje well field production were suggested by Los Alamos National Laboratory. In the first plan (Guaje alternative), the Guaje field would be renewed with four new wells replacing the existing production wells in the Guaje field. In the second plan (Pajarito-Otowi alternative), the Guaje well field would be retired and its former production would be made up by additional withdrawals from the Pajarito Mesa and Otowi well fields. A

  20. Proton Radiography at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, Alexander

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies inmore » collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.« less

  1. Examination of the home destruction in Los Alamos associated with the Cerro Grande Fire - July 10, 2000

    Treesearch

    Jack D. Cohen

    2000-01-01

    I arrived at Los Alamos on May 14, 2000 to conduct an examination of the home destruction associated with the Cerro Grande Fire. My examination occurred between the afternoon of 5/14 and late afternoon on 5/16. I had contact with the southern command post incident management team, the Los Alamos Fire Department, and the Santa Fe National Forest.The...

  2. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  3. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  4. Lattice modeling and application of independent component analysis to high power, long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey

    The linear lattice properties of the Proton Storage Ring (PSR) at the Los Alamos Neutron Science Center (LANSCE) in Los Alamos, NM were measured and applied to determine a better linear accelerator model. We found that the initial model was deficient in predicting the vertical focusing strength. The additional vertical focusing was located through fundamental understanding of experiment and statistically rigorous analysis. An improved model was constructed and compared against the initial model and measurement at operation set points and set points far away from nominal and was shown to indeed be an enhanced model. Independent component analysis (ICA) is a tool for data mining in many fields of science. Traditionally, ICA is applied to turn-by-turn beam position data as a means to measure the lattice functions of the real machine. Due to the diagnostic setup for the PSR, this method is not applicable. A new application method for ICA is derived, ICA applied along the length of the bunch. The ICA modes represent motions within the beam pulse. Several of the dominate ICA modes are experimentally identified.

  5. Environmental surveillance at Los Alamos during 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality atmore » and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.« less

  6. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project

  7. Los Alamos National Laboratory Economic Analysis Capability Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo; Edwards, Brian Keith; Pasqualini, Donatella

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  8. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related tomore » the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.« less

  9. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrialmore » safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.« less

  10. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-03-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution ofmore » these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather.« less

  11. Surface water data at Los Alamos National Laboratory: 2009 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  12. Surface water data at Los Alamos National Laboratory: 2008 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  13. An Analysis on the TEC Variability and Ionospheric Scintillation at Los Alamos, New Mexico Derived from FORTE-Received LAPP Signals

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Roussel-Dupre, R.

    2003-12-01

    The total electron content (TEC) of ionosphere and its electron density irregularities (scintillation) have effects of degradation and disruption on radio signals passed between ground stations and orbiting man-made satellites. With the rapid increase in operational reliance on UHF/VHF satellite communication, it is desirable to obtain understandings of ionosphere TEC variability and scintillation characteristics to improve our ability of predicting satellite communication outages. In this work, data collected from FORTE satellite received LAPP (Los Alamos Portable Pulser) signals during 1998-2002 are used to derive TEC and ionospheric scintillation index at Los Alamos, New Mexico. To characterize in-situ TEC variability at Los Alamos, the FORTE-LAPP derived TECs are analyzed against diurnal, seasonal, solar activity, magnetic storm, and stratospheric warming. The results are also compared with the TEC estimates from the Los Alamos ionospheric transfer function (ITF) implemented with the global ionospheric models (IRI, PIM), and GPS -derived TEC maps. The FORTE-LAPP signals are also analyzed against two important measures of the effect of scintillation on broadband signals, the mean time delay and the time delay jitter. The results are used to examine coherence frequency bandwidth and compared with the predictions from a global scintillation model (WBMOD). The FORTE-LAPP analyzed and WBMOD predicted scintillation characteristics are used to investigate temporal and seasonal behavior of scintillation at Los Alamos.

  14. Environmental surveillance at Los Alamos during 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David; Gallagher, Pat; Hjeresen, Denny

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at andmore » near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.« less

  15. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Shaull; D. Ortiz; M.R. Alexander

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  16. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  17. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    DOE PAGES

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. Here, they are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integal cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributionsmore » in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.« less

  18. An organizational survey of the Los Alamos Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurberg, D.A.; Haber, S.B.

    An Organizational Survey (OS) was administered at the Los Alamos Site that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concern, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of culture;'' that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed duringmore » the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. While comparisons among groups are made, it is not the purpose of this report to make evaluative statements of which profile may be positive or negative. However, using the data presented in this report in conjunction with other evaluative activities, may provide useful insight into the organization. The OS administration at the Los Alamos Site was the ninth to occur at a Department of Energy (DOE) facility. All data from the OS is presented in group summaries, by organization, department or directorate within organization, supervisory level both overall and within organization, and staff classification within organization. Statistically significant differences between groups are identified and discussed. 9 refs., 94 figs., 11 tabs.« less

  19. An organizational survey of the Los Alamos Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurberg, D.A.; Haber, S.B.

    An Organizational Survey (OS) was administered at the Los Alamos Site that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concern, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of ``culture;`` that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed duringmore » the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. While comparisons among groups are made, it is not the purpose of this report to make evaluative statements of which profile may be positive or negative. However, using the data presented in this report in conjunction with other evaluative activities, may provide useful insight into the organization. The OS administration at the Los Alamos Site was the ninth to occur at a Department of Energy (DOE) facility. All data from the OS is presented in group summaries, by organization, department or directorate within organization, supervisory level both overall and within organization, and staff classification within organization. Statistically significant differences between groups are identified and discussed. 9 refs., 94 figs., 11 tabs.« less

  20. Los Alamos Canyon Ice Rink Parking Flood Plain Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Keller, David Charles

    2015-02-10

    The project location is in Los Alamos Canyon east of the ice rink facility at the intersection of West and Omega roads (Figure 1). Forty eight parking spaces will be constructed on the north and south side of Omega Road, and a lighted walking path will be constructed to the ice rink. Some trees will be removed during this action. A guardrail of approximately 400 feet will be constructed along the north side of West Road to prevent unsafe parking in that area.

  1. Resource Management Technology: Los Alamos Technical Capabilities for Emergency Management,

    DTIC Science & Technology

    1983-07-18

    synthetic fuels from coal (analogous to the Fischer-Tropsch process), olefin polymerization, and flue - gas desulfurization . In order to successfully...world. It has been a major research effort here for decades. Also, in the area of desulfurization of flue gases, Los Alamos scientists have been...Tectonic and Geochemical Controls on Copper-Molybdenum Porphyry Mineralization in the Southwestern United States (M. J. Aldrich and A. W. Laughlin) 1.0.6

  2. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, N.M.; Vanta, E.B.

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more thanmore » 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.« less

  3. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, P.R.; Armstrong, D.R.

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area ({congruent}7 km{sup 2}), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamosmore » and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL{sup -1} (1.9 pCi mL{sup -1}) to 27.75 Bq mL{sup -1} (749.9 pCi mL{sup -1}) (LANL Neutron Science Center); the average concentration of {sup 3}H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL{sup -1} (9.3 pCi mL{sup -1}) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL{sup -1} (99.3 pCi mL{sup -1}) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 {mu}Sv y{sup -1} (0.0074 mrem y{sup -1}) and 0.024 pSv y{sup -1} (0.0024 mrem y{sup -1}), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y{sup -1} (0.0334 mrem y{sup -1}) (Los Alamos townsitc).« less

  4. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  5. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media andmore » all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.« less

  6. Environmental surveillance at Los Alamos during 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David; Poff, Ben; Hjeresen, Denny

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and nearmore » the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory

  7. Environmental surveillance at Los Alamos during 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohen, K.; Stoker, A.; Stone, G.

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations,more » and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.« less

  8. A Handbook for Derivative Classifiers at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkula, Barbara Jean

    The Los Alamos Classification Office (within the SAFE-IP group) prepared this handbook as a resource for the Laboratory’s derivative classifiers (DCs). It contains information about United States Government (USG) classification policy, principles, and authorities as they relate to the LANL Classification Program in general, and to the LANL DC program specifically. At a working level, DCs review Laboratory documents and material that are subject to classification review requirements, while the Classification Office provides the training and resources for DCs to perform that vital function.

  9. Chemostatic behavior of major ions and contaminants in a semiarid spring and stream system near Los Alamos, NM, USA

    DOE PAGES

    Koger, Jace M.; Newman, Brent D.; Goering, Tim J.

    2018-04-19

    Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behavior). Chemostatic behavior is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of three springs and a stream near Los Alamos, New Mexico, USA, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro-1,3,5- trinitro-1,3,5-triazine) can alsomore » behave chemostatically. The chemostatic behavior of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reductionoxidation) and biogeochemically sensitive analytes (e.g., Fe, SO 4, & NO 3) display a combination of chemostatic and chemodynamic behavior, showing the influence of temporally variable conditions on stream and springs chemistries.« less

  10. Chemostatic behavior of major ions and contaminants in a semiarid spring and stream system near Los Alamos, NM, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, Jace M.; Newman, Brent D.; Goering, Tim J.

    Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behavior). Chemostatic behavior is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of three springs and a stream near Los Alamos, New Mexico, USA, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro-1,3,5- trinitro-1,3,5-triazine) can alsomore » behave chemostatically. The chemostatic behavior of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reductionoxidation) and biogeochemically sensitive analytes (e.g., Fe, SO 4, & NO 3) display a combination of chemostatic and chemodynamic behavior, showing the influence of temporally variable conditions on stream and springs chemistries.« less

  11. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent.more » After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.« less

  12. Stormwater Pollution Prevention Plan for the TA-60-02 Salvage Warehouse, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. The applicable stormwater discharge permit is EPA General Permit Registration Number NMR053915 (Los Alamos National Security (LANS) (U.S. EPA, June 2015). Contents of the Junemore » 4, 2015 Multi-sector General Permit can be viewed at: https://www.epa.gov/sites/production/files/2015- 10/documents/msgp2015_finalpermit.pdf This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-02 Salvage and Warehouse facility at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60-02 Salvage/ Warehouse and associated areas. The current permit expires at midnight on June 4, 2020. A copy of the facility NOI and LANS Delegation of Authority Letter are located in Appendix C of this SWPPP.« less

  13. Environmental surveillance at Los Alamos during 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriatemore » standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.« less

  14. Environmental surveillance at Los Alamos during 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Usingmore » comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.« less

  15. Los Alamos Plutonium Facility Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Montoya, A.; Wieneke, R.

    1997-02-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less

  16. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  17. Bradbury science museum: your window to Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deck, Linda Theresa

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  18. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  19. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T.S.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the streammore » monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.« less

  20. Los Alamos Guns Take Aim at Material's Mysteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byers, Mark; Moore, David; Dimarino, Steve

    Los Alamos National Laboratory scientists and technicians conduct thousands of experiments a year, delving into the fundamental nature of everything from supernovas to subatomic particles. One set of instruments used to better understand the fundamental nature of various materials are 10 scientific gun systems that fire various projectiles at high-tech targets to create enormous velocities, pressures, and temperatures - and using laser, x-ray, and other diagnostics - explore the very nature of metals and other materials. The hundreds of gun-based experiments conducted every year at the Laboratory require a highly-skilled staff of scientists and technicians, and has given rise tomore » a special organization called the "gun working group" to foster open communications, cooperation, problem-solving, and a healthy safety culture.« less

  1. Smoking patterns among Los Alamos National Laboratory employees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, M.C.; Wilkinson, G.S.

    Smoking patterns among 5507 employees at Los Alamos National Laboratory were investigated for those who underwent physical examinations by occupational physicians from 1978 to 1983. More male than female employees smoked, although differences in smoking rates between the sexes were not as large as differences observed for national smoking rates. Employees over 40 were more likely to smoke than younger employees, males consumed more cigarettes than did females, and Anglo employees smoked more cigarettes than did Hispanic employees. Highly educated employees smoked less than did less-educated workers, and staff members exhibited the lowest rates of smoking. Smoking cessation programs formore » Laboratory employees should be directed toward those subpopulations with the highest rates of smoking. 31 refs., 8 figs., 1 tab.« less

  2. Los Alamos Guns Take Aim at Material's Mysteries

    ScienceCinema

    Byers, Mark; Moore, David; Dimarino, Steve

    2018-05-30

    Los Alamos National Laboratory scientists and technicians conduct thousands of experiments a year, delving into the fundamental nature of everything from supernovas to subatomic particles. One set of instruments used to better understand the fundamental nature of various materials are 10 scientific gun systems that fire various projectiles at high-tech targets to create enormous velocities, pressures, and temperatures - and using laser, x-ray, and other diagnostics - explore the very nature of metals and other materials. The hundreds of gun-based experiments conducted every year at the Laboratory require a highly-skilled staff of scientists and technicians, and has given rise to a special organization called the "gun working group" to foster open communications, cooperation, problem-solving, and a healthy safety culture.

  3. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  4. Environmental Surveillance at Los Alamos during 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and nearmore » the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary

  5. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  6. A history of the working group to address Los Alamos community health concerns - A case study of community involvement and risk communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry Otway; Jon Johnson

    2000-01-01

    In May 1991, at a Department of Energy (DOE) public hearing at Los Alamos, New Mexico, a local artist claimed there had been a recent brain tumor cluster in a small Los Alamos neighborhood. He suggested the cause was radiation from past operations of Los Alamos National Laboratory. Data from the Laboratory's extensive environmental monitoring program gave no reason to believe this charge to be true but also could not prove it false. These allegations, reported in the local and regional media, alarmed the community and revealed an unsuspected lack of trust in the Laboratory. Having no immediate and definitivemore » response, the Laboratory offered to collaborate with the community to address this concern. The Los Alamos community accepted this offer and a joint Community-Laboratory Working Group met for the first time 29 days later. The working group set as its primary goal the search for possible carcinogens in the local environment. Meanwhile, the DOE announced its intention to fund the New Mexico Department of Health to perform a separate and independent epidemiological study of all Los Alamos cancer rates. In early 1994, after commissioning 17 environmental studies and meeting 34 times, the working group decided that the public health concerns had been resolved to the satisfaction of the community and voted to disband. This paper tells the story of the artist and the working group, and how the media covered their story. It summarizes the environmental studies directed by the working group and briefly reviews the main findings of the epidemiology study. An epilogue records the present-day recollections of some of the key players in this environmental drama.« less

  7. 77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... DEPARTMENT OF ENERGY Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is...

  8. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances

  9. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  10. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  11. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles D.; Hansen, Leslie A.

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed atmore » the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.« less

  12. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solarmore » neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.« less

  13. Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos

    NASA Astrophysics Data System (ADS)

    Parsons, D. Kent

    2017-09-01

    Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.

  14. Stormwater Pollution Prevention Plan for the TA-03-38 Metals Fabrication Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector AA-Fabricated Metal Products as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Metals Fabrication Shop at Los Alamos National Laboratory. Los Alamos National Laboratorymore » (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Metals Fabrication Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  15. Stormwater Pollution Prevention Plan for the TA-60-01 Heavy Equipment Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Heavy Equipment Shop at Los Alamos National Laboratory. Los Alamos Nationalmore » Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60-01 Heavy Equipment Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  16. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less

  17. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  18. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  19. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2004-01-22

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery andmore » storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.« less

  20. Reconnaissance assessment of erosion and sedimentation in the Canada de los Alamos basin, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Knott, J.M.

    1980-01-01

    An assessment of present erosion and sedimentation conditions in the Ca?ada de los Alamos basin was made to aid in estimating the impact of off-road-vehicle use on the sediment yield of the basin. Impacts of off-road vehicles were evaluated by reconnaissance techniques and by comparing the study area with other offroad-vehicle sites in California. Major-storm sediment yields for the basin were estimated using empirical equations developed for the Transverse Ranges and measurements of gully erosion in a representative off-road-vehicle basin. Normal major-storm yields of 73,200 cubic yards would have to be increased to about 98,000 cubic yards to account for the existing level of accelerated erosion caused by off-road vehicles. Long-term sediment yield of the Ca?ada de los Alamos basin upstream from its confluence with Gorman Creek, under present conditions of off-road-vehicle use, is approximately 420 cubic yards per square mile per year--a rate that is considerably lower than a previous estimate of 1,270 cubic yards per square mile per year for the total catchment area above Pyramid Lake.

  1. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  2. Los Alamos National Laboratory Meteorology Monitoring Program: 2016 Data Completeness/ Quality Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    This report summarizes data completeness by tower and by instrument for 2016 and compares that data with the Los Alamos National Laboratory (LANL) and American National Standards Institute (ANSI) 2015 standards. This report is designed to make data users aware of data completeness and any data quality issues. LANL meteorology monitoring goals include 95% completeness for all measurements. The ANSI 2015 standard requires 90% completeness for all measurements. This report documents instrument/tower issues as they impact data completeness.

  3. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Michael Charles

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  4. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  5. A Tracer Test at the Los Alamos Canyon Weir

    NASA Astrophysics Data System (ADS)

    Levitt, D. G.; Stone, W. J.; Newell, D. L.; Wykoff, D. S.

    2002-12-01

    A low-head weir was constructed in the Los Alamos Canyon to reduce the transport of contaminant-bearing sediment caused by fire-enhanced runoff off Los Alamos National Laboratory (LANL) property towards the Rio Grande following the May 2000 Cerro Grande fire at Los Alamos, New Mexico. Fractured basalt was exposed in the channel by grading during construction of the weir, and water temporarily ponds behind the weir following periods of runoff. In order to monitor any downward transport of contaminants into fractured basalt, and potentially downward to the regional ground water, three boreholes (one vertical, one at 43 degrees, and one at 34 degrees from horizontal) were installed for environmental monitoring. The boreholes penetrate to depths ranging from approximately 9 to 82 m below the weir floor. The two angled boreholes are fitted with flexible FLUTe liners with resistance sensors to measure relative moisture content and absorbent sampling pads for contaminant and environmental tracer sampling within the vadose zone. The two angled boreholes are also monitored for relative changes in moisture content by neutron logging. The vertical borehole penetrates three perched water zones and is equipped with four screens and sampling ports. In April 2002, a tracer test was initiated with the application of a 0.2 M (16,000 ppm) solution of potassium bromide (KBr) onto the weir floor. The tracer experiment was intended to provide data on travel times through the complex hydrogeologic media of fractured basalt. A precipitation and runoff event in June 2002 resulted in approximately 0.61 m of standing water behind the weir. If the KBr and flood waters were well mixed, the concentration of KBr in the flood waters was approximately 24 ppm. Bromide was detected in the absorbent membrane in the 43 degree hole at concentrations up to 2 ppm. Resistance sensors in the 43 degree borehole detected moisture increases within 3 days at a depth of 27 m, indicating an average wetting

  6. Los Alamos Laser Eye Investigation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, C. R.

    2005-01-01

    A student working in a laser laboratory at Los Alamos National Laboratory sustained a serious retinal injury to her left eye when she attempted to view suspended particles in a partially evacuated target chamber. The principle investigator was using the white light from the flash lamp of a Class 4 Nd:YAG laser to illuminate the particles. Since the Q-switch was thought to be disabled at the time of the accident, the principal investigator assumed it would be safe to view the particles without wearing laser eye protection. The Laboratory Director appointed a team to investigate the accident and to reportmore » back to him the events and conditions leading up to the accident, equipment malfunctions, safety management causal factors, supervisory and management action/inaction, adequacy of institutional processes and procedures, emergency and notification response, effectiveness of corrective actions and lessons learned from previous similar events, and recommendations for human and institutional safety improvements. The team interviewed personnel, reviewed documents, and characterized systems and conditions in the laser laboratory during an intense six week investigation. The team determined that the direct and primary failures leading to this accident were, respectively, the principle investigator's unsafe work practices and the institution's inadequate monitoring of worker performance. This paper describes the details of the investigation, the human and institutional failures, and the recommendations for improving the laser safety program.« less

  7. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    ScienceCinema

    Mohite, Aditya; Nie, Wanyi

    2018-05-11

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  8. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  9. Summary of a Gas Transport Tracer Test in the Deep Cerros Del Rio Basalts, Mesita del Buey, Los Alamos NM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, Philip H.; Rahn, Thomas A.; Ortiz, John Philip

    Here we describe results from a tracer test in the Cerros del Rio basalt beneath Mesita del Buey, Technical Area 54 (TA-54) at Los Alamos National Laboratory (LANL or the Laboratory). This report follows from plans outlined in our previous Tracer Test Work Plan (LANL 2016). These activities were conducted by LANL to further characterize subsurface properties of the Cerros del Rio basalts at Material Disposal Area (MDA) L (Figure 1.1-1). The work presented follows from the “Interim Measures Work Plan for Soil-Vapor Extraction of Volatile Organic Compounds from Material Disposal Area L, Technical Area 54, Revision 1,” submitted tomore » the New Mexico Environment Department (NMED) in September 2014 (LANL 2014). Remediation of the MDA L vapor plume by soil-vapor extraction (SVE) is recommended as part of the final remedy in the “Corrective Measures Evaluation Report for Material Disposal Area L, Solid Waste Management Unit 54-006, at Technical Area 54, Revision 2” to meet a remedial action objective of preventing groundwater from being impacted above a regulatory standard by the transport of volatile organic compounds (VOCs) to groundwater through soil vapor (LANL 2011).« less

  10. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  11. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  12. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  13. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  14. 75 FR 24957 - Decision to Evaluate a Petition to Designate a Class of Employees From the Los Alamos National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Laboratory. Location: Los Alamos, New Mexico. Job Titles and/or Job Duties: All employees of the Department.... Hinnefeld, Interim Director, Division of Compensation Analysis and Support, National Institute for...

  15. The Los ALamos Neutron Science Center Hydrogen Moderator System

    NASA Astrophysics Data System (ADS)

    Jarmer, J. J.; Knudson, J. N.

    2006-04-01

    At the Los Alamos Neutron Science Center (LANSCE), spallation neutrons are produced by an 800-MeV proton beam interacting with tungsten targets. Gun-barrel-type penetrations through the heavy concrete and steel shielding that surround the targets collimate neutrons to form neutron beams used for scattering experiments. Two liquid hydrogen moderators of one-liter volume each are positioned adjacent to the neutron-production targets. Some of the neutrons that pass through a moderator interact with or scatter from protons in the hydrogen. The neutron-proton interaction reduces the energy or moderates neutrons to lower energies. Lower energy "moderated" neutrons are the most useful for some neutron scattering experiments. We provide a description of the LANSCE hydrogen-moderator system and its cryogenic performance with proton beams of up to 125 micro-amp average current.

  16. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Keller, David Charles; Thompson, Brent E.

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2017 update retains the management guidelines from the 1999 HMP for listed species, and updates some descriptive information.

  17. New facility for ion beam materials characterization and modification at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.

  18. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Leslie A.

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects ofmore » ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.« less

  19. An experimental topographic amplification study at Los Alamos National Laboratory using ambient vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolte, Andrew C.; Cox, Brady R.; Lee, Richard C.

    An experimental study aimed at investigating potential topographic amplification of seismic waves was conducted on a 50-m-tall and 185-m-wide soft-rock ridge located at Los Alamos National Laboratory near Los Alamos, New Mexico. Ten portable broadband seismograph stations were placed in arrays across the ridge and left to record ambient vibration data for ~9 hours. Clear evidence of topographic amplification was observed by comparing spectral ratios calculated from ambient noise recordings at the toe, slope, and crest of the instrumented ridge. The inferred resonance frequency of the ridge obtained from the experimental recordings was found to agree well with several simplemore » estimates of the theoretical resonance frequency based on its geometry and stiffness. Results support the feasibility of quantifying the frequency range of topographic amplification solely using ambient vibrations, rather than strong or weak ground motions. Additionally, comparisons have been made between a number of widely used experimental methods for quantifying topographic effects, such as the standard spectral ratio, median reference method, and horizontal-to-vertical spectral ratio. As a result, differences in the amplification and frequency range of topographic effects indicated by these methods highlight the importance of choosing a reference condition that is appropriate for the site-specific conditions and goals associated with an experimental topographic amplification study.« less

  20. An experimental topographic amplification study at Los Alamos National Laboratory using ambient vibrations

    DOE PAGES

    Stolte, Andrew C.; Cox, Brady R.; Lee, Richard C.

    2017-03-14

    An experimental study aimed at investigating potential topographic amplification of seismic waves was conducted on a 50-m-tall and 185-m-wide soft-rock ridge located at Los Alamos National Laboratory near Los Alamos, New Mexico. Ten portable broadband seismograph stations were placed in arrays across the ridge and left to record ambient vibration data for ~9 hours. Clear evidence of topographic amplification was observed by comparing spectral ratios calculated from ambient noise recordings at the toe, slope, and crest of the instrumented ridge. The inferred resonance frequency of the ridge obtained from the experimental recordings was found to agree well with several simplemore » estimates of the theoretical resonance frequency based on its geometry and stiffness. Results support the feasibility of quantifying the frequency range of topographic amplification solely using ambient vibrations, rather than strong or weak ground motions. Additionally, comparisons have been made between a number of widely used experimental methods for quantifying topographic effects, such as the standard spectral ratio, median reference method, and horizontal-to-vertical spectral ratio. As a result, differences in the amplification and frequency range of topographic effects indicated by these methods highlight the importance of choosing a reference condition that is appropriate for the site-specific conditions and goals associated with an experimental topographic amplification study.« less

  1. Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier

    1999-03-01

    Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone

  2. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retentionmore » issues, and more.« less

  3. Los Alamos County Fire Department LAFD: TA-55 PF-4 Facility Familiarization Tour, OJT 55260

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Victor Stephen

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for Los Alamos County Fire Department (LAFD) personnel at the Plutonium Facility (PF-4) at Technical Area (TA)-55. These familiarization tours are official LANL business; the purpose of these tours is to orient the firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes the ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills andmore » abilities to perform firefighting operations and other emergency response tasks that cannot be provided by other LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.« less

  4. Statistical analyses of the background distribution of groundwater solutes, Los Alamos National Laboratory, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longmire, Patrick A.; Goff, Fraser; Counce, D. A.

    2004-01-01

    Background or baseline water chemistry data and information are required to distingu ish between contaminated and non-contaminated waters for environmental investigations conducted at Los Alamos National Laboratory (referred to as the Laboratory). The term 'background' refers to natural waters discharged by springs or penetrated by wells that have not been contaminated by LANL or other municipal or industrial activities, and that are representative of groundwater discharging from their respective aquifer material. These investigations are conducted as part of the Environmental Restoration (ER) Project, Groundwater Protection Program (GWPP), Laboratory Surveillance Program, the Hydrogeologic Workplan, and the Site-Wide Environmental Impact Statement (SWEIS).more » This poster provides a comprehensive, validated database of inorganic, organic, stable isotope, and radionuclide analyses of up to 136 groundwater samples collected from 15 baseline springs and wells located in and around Los Alamos National Laboratory, New Mexico. The region considered in this investigation extends from the western edge of the Jemez Mountains eastward to the Rio Grande and from Frijoles Canyon northward to Garcia Canyon. Figure 1 shows the fifteen stations sampled for this investigation. The sampling stations and associated aquifer types are summarized in Table 1.« less

  5. 2015 Los Alamos Space Weather Summer School Research Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of spacemore » weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with

  6. Availability of environmental radioactivity to honey bee colonies at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakonson, T.E.; Bostick, K.V.

    Data are presented on the availability of tritium, cesium 137, and plutonium to honey bee colonies foraging in the environment surrounding the Los Alamos Scientific Laboratory. Sources of these radionuclides in the laboratory environs include liquid and atmospheric effluents and buried solid waste. Honey bee colonies were placed in three canyon liquid waste disposal areas and were sampled frequently, along with honey, surface water, and surrounding vegetation, to qualitatively determine the availability of these radionuclides to bees (Apis mellifera) and to identify potential food chain sources of the elements. Tritium concentrations in bee and honey samples from the canyons increasedmore » rapidly from initial values of <1 pCi/ml moisture to as much as 9.2 nCi/ml in 75 days after placement of the hives in the canyons. Seasonal patterns in foraging activities as influenced by weather and food availability were apparent in the data. It appears that several sources of tritium were utilized by the colonies, including surface water in the canyons and vegetation receiving tritium from atmospheric effluents and buried solid waste. Concentrations of cesium 137 and plutonium were generally low or undetectable in bees throughout the study. However, levels of both nuclides increased by factors of 10 to 20 in bees from two of the canyon study areas during a 3-month period in 1973. It was speculated that the liquid effluents in the two canyons were the source of the increased concentrations in bee samples, since this water was the only significant source of /sup 137/Cs in the environs. The existence of at least three radionuclide sources in the Los Alamos Scientific Laboratory (LASL) environs complicates the interpretation of the data. However, it is apparent that honey bees can acquire /sup 3/H, /sup 137/Cs, and Pu from multiple sources in the environs.« less

  7. Environmental surveillance and compliance at Los Alamos during 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This report presents environmental data that characterize environmental performance and addresses compliance with environmental standards and requirements at Los Alamos National Laboratory (LANL or the Laboratory) during 1996. The Laboratory routinely monitors for radiation and for radioactive nonradioactive materials at Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1996 to assess external penetrating radiation; quantities of airborne emissions; and concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, the municipal water supply, soils and sediments,more » and foodstuffs. Using comparisons with standards and regulations, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment. Laboratory operations were in compliance with all major environmental regulations.« less

  8. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvage, R.D.

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure thatmore » future aircraft-crash frequency calculations are consistent with calculations in this report.« less

  9. Stormwater Pollution Prevention Plan for the TA-03-38 Carpenter's Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector A–Timber Products, Subsector A4 (Wood Products Facilities not elsewhere classified) as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Carpenter’s Shop at Los Alamosmore » National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Carpenter’s Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  10. Beam Loss Measurements at the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Spickermann, Thomas

    2005-06-01

    During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.

  11. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dashdorj, D.; MonAme Scientific Research Center, Ulaanbaatar; Mitchell, G. E.

    2009-03-31

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectramore » for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.« less

  12. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradbury, Norris E.; Meade, Roger Allen

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about themore » business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.« less

  13. Common ground: An environmental ethic for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, F.L.

    1991-01-01

    Three predominant philosophies have characterized American business ethical thinking over the past several decades. The first phase is the ethics of self-interest'' which argues that maximizing self-interest coincidentally maximizes the common good. The second phase is legality ethics.'' Proponents argue that what is important is knowing the rules and following them scrupulously. The third phase might be called stake-holder ethics.'' A central tenant is that everyone affected by a decision has a moral hold on the decision maker. This paper will discuss one recent initiative of the Los Alamos National Laboratory to move beyond rules and regulations toward an environmentalmore » ethic that integrates the values of stakeholder ethics'' into the Laboratory's historical culture and value systems. These Common Ground Principles are described. 11 refs.« less

  14. Los Alamos Shows Airport Security Technology at Work

    ScienceCinema

    Espy, Michelle; Schultz, Larry; Hunter, James

    2018-05-30

    Los Alamos scientists have advanced a Magnetic Resonance Imaging (MRI) technology that may provide a breakthrough for screening liquids at airport security. They've added low-power X-ray data to the mix, and as a result have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new system is named MagRay. The goal is to quickly and accurately distinguish between liquids that visually appear identical. For example, what appears to be a bottle of white wine could potentially be nitromethane, a liquid that could be used to make an explosive. Both are clear liquids, one would be perfectly safe on a commercial aircraft, the other would be strictly prohibited. How to tell them apart quickly without error at an airport security area is the focus of Michelle Espy, Larry Schultz and their team. In this video, Espy and the MagRay team explain how the new technology works, how they've developed an easy operator interface, and what the next steps might be in transitioning this technology to the private sector.

  15. World's Largest Gold Crystal Studied at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven; Nakotte, Heinz

    2014-04-03

    When geologist John Rakovan needed better tools to investigate whether a dazzling 217.78-gram piece of gold was in fact the world's largest single-crystal specimen - a distinguishing factor that would not only drastically increase its market value but also provide a unique research opportunity - he traveled to Los Alamos National Laboratory's Lujan Neutron Scattering Center to peer deep inside the mineral using neutron diffractometry. Neutrons, different from other probes such as X-rays and electrons, are able to penetrate many centimeters deep into most materials. Revealing the inner structure of a crystal without destroying the sample - imperative, as thismore » one is worth an estimated $1.5 million - would allow Rakovan and Lujan Center collaborators Sven Vogel and Heinz Nakotte to prove that this exquisite nugget, which seemed almost too perfect and too big to be real, was a single crystal and hence a creation of nature. Its owner, who lives in the United States, provided the samples to Rakovan to assess the crystallinity of four specimens, all of which had been found decades ago in Venezuela.« less

  16. World's Largest Gold Crystal Studied at Los Alamos

    ScienceCinema

    Vogel, Sven; Nakotte, Heinz

    2018-02-07

    When geologist John Rakovan needed better tools to investigate whether a dazzling 217.78-gram piece of gold was in fact the world's largest single-crystal specimen - a distinguishing factor that would not only drastically increase its market value but also provide a unique research opportunity - he traveled to Los Alamos National Laboratory's Lujan Neutron Scattering Center to peer deep inside the mineral using neutron diffractometry. Neutrons, different from other probes such as X-rays and electrons, are able to penetrate many centimeters deep into most materials. Revealing the inner structure of a crystal without destroying the sample - imperative, as this one is worth an estimated $1.5 million - would allow Rakovan and Lujan Center collaborators Sven Vogel and Heinz Nakotte to prove that this exquisite nugget, which seemed almost too perfect and too big to be real, was a single crystal and hence a creation of nature. Its owner, who lives in the United States, provided the samples to Rakovan to assess the crystallinity of four specimens, all of which had been found decades ago in Venezuela.

  17. Los Alamos nEDM Experiment and Demonstration of Ramsey's Method on Stored UCNs at the LANL UCN Source

    NASA Astrophysics Data System (ADS)

    Clayton, Steven; Chupp, Tim; Cude-Woods, Christopher; Currie, Scott; Ito, Takeyasu; Liu, Chen-Yu; Long, Joshua; MacDonald, Stephen; Makela, Mark; O'Shaughnessy, Christopher; Plaster, Brad; Ramsey, John; Saunders, Andy; LANL nEDM Collaboration

    2017-09-01

    The Los Alamos National Laboratory ultracold neutron (UCN) source was recently upgraded for a factor of 5 improvement in stored density, providing the statistical precision needed for a room temperature neutron electric dipole moment measurement with sensitivity 3 ×10-27 e . cm, a factor 10 better than the limit set by the Sussex-RAL-ILL experiment. Here, we show results of a demonstration of Ramsey's separated oscillatory fields method on stored UCNs at the LANL UCN source and in a geometry relevant for a nEDM measurement. We argue a world-leading nEDM experiment could be performed at LANL with existing technology and a short lead time, providing a physics result with sensitivity intermediate between the current limit set by Sussex-RAL-ILL, and the anticipated limit from the complex, cryogenic nEDM experiment planned for the next decade at the ORNL Spallation Neutron Source (SNS-nEDM). This work was supported by the Los Alamos LDRD Program, Project 20140015DR.

  18. Carbon Stripper Foils Used in the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Borden, M.; Plum, M. A.; Sugai, I.

    1997-05-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study by Dr. Isao Sugai have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two approximately 110 μg/cm2 foils are sandwiched together to produce an equivalent 220 μg/cm^2 foil. The combined foil is supported by 4-5 μm diameter carbon fibers attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 μA on target average current. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that Sugai's foils have slower shrinkage rates than other foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  19. Environmental surveillance at Los Alamos during 1991. Environmental protection group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewart, J.; Kohen, K.L.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriatemore » standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment.« less

  20. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less

  1. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goforth, James H; Oona, Henn; Tasker, Douglas G

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclearmore » Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.« less

  2. Los Alamos Shows Airport Security Technology at Work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle; Schultz, Larry; Hunter, James

    Los Alamos scientists have advanced a Magnetic Resonance Imaging (MRI) technology that may provide a breakthrough for screening liquids at airport security. They've added low-power X-ray data to the mix, and as a result have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new system is named MagRay. The goal is to quickly and accurately distinguish between liquids that visually appear identical. For example, what appears to be a bottle of white wine could potentially be nitromethane, a liquid that could be used to make an explosive. Both aremore » clear liquids, one would be perfectly safe on a commercial aircraft, the other would be strictly prohibited. How to tell them apart quickly without error at an airport security area is the focus of Michelle Espy, Larry Schultz and their team. In this video, Espy and the MagRay team explain how the new technology works, how they've developed an easy operator interface, and what the next steps might be in transitioning this technology to the private sector.« less

  3. Organizational cultural survey of the Los Alamos Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An Organizational Survey (OS) was administered at the Los Alamos Site that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of ``culture;`` that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed duringmore » the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. While comparisons among groups are made, it is not the purpose of this report to make evaluative statements of which profile may be positive or negative. However, using the data presented in this report in conjunction with other evaluative activities, may provide useful insight into the organization.« less

  4. Organizational cultural survey of the Los Alamos Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An Organizational Survey (OS) was administered at the Los Alamos Site that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of culture;'' that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed duringmore » the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. While comparisons among groups are made, it is not the purpose of this report to make evaluative statements of which profile may be positive or negative. However, using the data presented in this report in conjunction with other evaluative activities, may provide useful insight into the organization.« less

  5. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  6. Los Alamos radiation transport code system on desktop computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less

  7. Overview of the 1997 Dirac High-Magnetic Series at LOS Alamos

    NASA Astrophysics Data System (ADS)

    Clark, D. A.; Campbell, L. J.; Forman, K. C.; Fowler, C. M.; Goettee, J. D.; Mielke, C. H.; Rickel, D. G.; Marshall, B. R.

    2004-11-01

    During the summer of 1997, a series of high magnetic field experiments was conducted at Los Alamos National Laboratory. Four experiments utilizing Russian built MC-1 generators, which can reach fields as high as 10 Megagauss, and four smaller strip generator experiments at fields near 1.5 Megagauss were conducted. Experiments mounted on the devices included magnetoresistance of high temperature superconductors and semiconductors, optical reflectivity (conductivity) of semiconductors, magnetization of a magnetic cluster material and a semiconductor, Faraday rotation in a semiconductor and a magnetic cluster material, and transmission spectroscopy of molecules. Brief descriptions of the experimental setups, magnetic field measurement techniques, field results and various experiments are presented. Magnetic field data and other information on Dirac `97 can be found at .

  8. MANHATTAN: The View From Los Alamos of History's Most Secret Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Alan Brady

    This presentation covers the political and scientific events leading up to the creation of the Manhattan Project. The creation of the Manhattan Project’s three most significant sites--Los Alamos, Oak Ridge, and Hanford--is also discussed. The lecture concludes by exploring the use of the atomic bombs at the end of World War II. The presentation slides include three videos. The first is a short clip of the 100-ton Test. The 100-Ton Test was history’s largest measured blast at that point in time; it was a pre-test for Trinity, the world’s first nuclear detonation. The second clip features views of Trinity followedmore » a short statement by the Laboratory’s first director, J. Robert Oppenheimer. The final clip shows Norris Bradbury talking about arms control.« less

  9. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  10. Historic Manhattan Project Sites at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Ellen

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device wasmore » pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.« less

  11. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema

    McGehee, Ellen

    2018-05-11

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  12. Stormwater Pollution Prevention Plan for the TA-03-22 Power and Steam Plant, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector O-Steam Electric Generating Facilities as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-22 Power and Steam Plant at Los Alamos National Laboratory. Los Alamosmore » National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-22 Power and Steam Plant and associated areas. The current permit expires at midnight on June 4, 2020.« less

  13. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling andmore » remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.« less

  14. The Los Alamos Seismic Network (LASN): Recent Network Upgrades and Northern New Mexico Earthquake Catalog Updates

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; House, L. S.; Greene, M.; Ten Cate, J. A.; Schultz-Fellenz, E. S.; Kelley, R.

    2012-12-01

    From the first data recorded in the fall of 1973 to now, the Los Alamos Seismograph Network (LASN) has operated for nearly 40 years. LASN data have been used to locate more than 2,500 earthquakes in north-central New Mexico. The network was installed for seismic verification research, as well as to monitor and locate earthquakes near Los Alamos National Laboratory (LANL). LASN stations are the only earthquake monitoring stations in New Mexico north of Albuquerque. In the late 1970s, LASN included 22 stations spread over a geographic area of 150 km (N-S) by 350 km (E-W), of northern New Mexico. In the early 1980s, the available funding limited the stations that could be operated to a set of 7, located within an area of about 15 km (N-S) by 15 km (E-W), centered on Los Alamos. Over the last 3 years, 6 additional stations have been installed, which have considerably expanded the spatial coverage of the network. These new stations take advantage of broadband state-of-the-art sensors as well as digital recording and telemetry technology. Currently, 7 stations have broadband, three-component seismometers with digital telemetry, and the remaining 6 have traditional 1 Hz short-period seismometers with analog telemetry. In addition, a vertical array of accelerometers was installed in a wellbore on LANL property. This borehole station has 3-component digital strong-motion sensors. In addition, four forensic strong-motion accelerometers (SMA) are operated at LANL facilities. With 3 of the new broadband stations in and around the nearby Valles Caldera, LASN is now able to monitor any very small volcano-seismic events that may be associated with the caldera. We will present a complete description of the current LASN station, instrumentation and telemetry configurations, as well as the data acquisition and event-detection software structure used to record events in Earthworm. More than 2,000 earthquakes were detected and located in north-central New Mexico during the first 11

  15. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernandomore » Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.« less

  16. Los Alamos - A Short History

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger A.

    At 5:45 am on the morning of July 16, 1945, the world’s first atomic bomb exploded over a remote section of the southern New Mexican desert known as the Jornada del Muerto, the Journey of Death. Three weeks later, the atomic bombs known as Little Boy and Fat Man brought World War II to an end. Working literally around the clock, these first atomic bombs were designed and built in just thirty months by scientists working at a secret scientific laboratory in the mountains of New Mexico known by its codename, Project Y, better known to the world as Losmore » Alamos.« less

  17. Environmental Assessment and Finding of No Significant Impact: The Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2002-07-30

    The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSAs national security mission. To enable LANL to continue this enduring responsibility requires that NNSA maintain the capabilities and capacities required in support of its national mission assignments at LANL. To carry out its Congressionally assigned mission requirements, NNSA must maintain a safe and reliable infrastructure at LANL. Upgrades to the various utility services at LANL have been ongoing together with routine maintenance activities over the years. However, the replacement of a certain portion of natural gas service transmission pipelinemore » is now necessary as this delivery system element has been operating well beyond its original design life for the past 20 to 30 years and components of the line are suffering from normal stresses, strains, and general failures. The Proposed Action is to grant an easement to the Public Service Company of New Mexico (PNM) to construct, operate, and maintain approximately 15,000 feet (4,500 meters) of 12-inch (in.) (30-centimeter [cm]) coated steel natural gas transmission mainline on NNSA-administered land within LANL along Los Alamos Canyon. The new gas line would begin at the existing valve setting located at the bottom of Los Alamos Canyon near the Los Alamos County water well pump house and adjacent to the existing 12-in. (30-cm) PNM gas transmission mainline. The new gas line (owned by PNM) would then cross the streambed and continue east in a new easement obtained by PNM from the NNSA, paralleling the existing electrical power line along the bottom of the canyon. The gas line would then turn northeast near State Road (SR) 4 and be connected to the existing 12-in. (30-cm) coated steel gas transmission mainline, located within the right-of-way (ROW) of SR 502. The Proposed Action would also involve crossing a streambed twice. PNM would bore under the streambed for pipe

  18. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Morris, C. L.; Brown, E. N.; Agee, C.; ...

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  19. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-01-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  20. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  1. Additive manufacturing capabilities applied to inertial confinement confusion at Los Alamos National Laboratory

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Peterson, Dominic S.

    2016-08-01

    We describe the use at Los Alamos National Laboratory of additive manufacturing (AM) for a variety of jigs and coating, assembly, and radiography fixtures. Additive manufacturing has also been used to produce shipping containers of complex design that would be too costly to have fabricated using traditional techniques. The current goal for AM use in target fabrication is to increase target accuracy and rigidity. This has been realized by implementing AM into target stalk fabrication, allowing increased complexity to address target strength and the addition of features for alignment at facilities. As a result, we will describe the fabrication ofmore » these components and our plans to utilize AM in the future.« less

  2. Performance of the New Los Alamos UCN Source and Implications for Future Experiments

    NASA Astrophysics Data System (ADS)

    Makela, Mark; LANL UCN Team

    2017-01-01

    The Los Alamos Ultracold Neutron (UCN) source was replaced during this past summer and has been commissioned during the last few months. The new source is the result of lessons learned during the 10 year operation of the first UCN source and extensive Monte Carlo analysis. The new source is a spallation driven source based on a solid deuterium UCN moderator similar the previous one. This talk will present an overview of the new source design and the results of commissioning tests. The talk will conclude with a brief overview of the implications of source performance on the neutron lifetime and LANL nEDM experiments. This work was funded by LANL LDRD.

  3. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, David Charles; Hathcock, Charles Dean

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2015 update retains the management guidelines from the 1999 HMP for listed species, updates some descriptive information, and adds the New Mexico Meadow Jumping Mouse (Zapus hudsonius luteus) and Yellow-billed Cuckoo (Coccyzus americanus) which were federally listedmore » in 2014 (Keller 2015: USFWS consultation number 02ENNM00- 2015-I-0538).« less

  4. Overview and Status of the Los Alamos PSR Injection Upgrade Project

    NASA Astrophysics Data System (ADS)

    Fitzgerald, D. H.; Ahn, H.; Blind, B.; Borden, M. J.; Macek, R. J.; Neri, F.; Rose, C. R.; Thiessen, H. A.; Wilkinson, C. A.; Zumbro, M. V.

    1997-05-01

    An upgrade is in progress to the Los Alamos Proton Storage Ring (PSR) to allow direct injection of the H^- beam into the ring and provide a beam bump system to move the circulating beam off the stripper foil. The primary benefits of this upgrade are matching the transverse phase space of the injected beam to the PSR acceptance and reduction of foil hits by the circulating beam by a factor of ten. Foil thickness is optimized to minimize the combination of circulating-beam losses plus losses due to excited H^0 states produced at injection. An overall factor of four reduction in losses is expected. The project comprises extensive modifications of the injection line, the injection section of the ring, and the waste-beam transport line. We will discuss the goals of the project, present an overview of the technical design, and describe the status of the implementation plan.

  5. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Michael James

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less

  6. The performance of the upgraded Los Alamos Neutron Source

    NASA Astrophysics Data System (ADS)

    Ito, Takeyasu; LANL UCN Source Collaboration

    2017-09-01

    Los Alamos National Laboratory has been operating an ultracold (UCN) source based on a solid deuterium (SD2) UCN converter driven by spallation neutrons for over 10 years. It has recently been successfully upgraded, by replacing the cryostat that contains the cold neutron moderator, SD2 volume, and vertical UCN guide. The horizontal UCN guide that transports UCN out of the radiation shield was also replaced. The new design reflects lessons learned from the 10+ year long operation of the previous version of the UCN source and is optimized to maximize the cold neutron flux at the SD2 volume, featuring a close coupled cold neutron moderator, and maximize the transport of the UCN to experiments. During the commissioning of the upgraded UCN source, data were collected to measure its performance, including cold neutron spectra as a function of the cold moderator temperature, and the UCN density in a vessel outside the source. In this talk, after a brief overview of the design of the upgraded source, the results of the performance tests and comparison to prediction will be presented. This work was funded by LANL LDRD.

  7. Population array and agricultural data arrays for the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, K.W.; Duffy, S.; Kowalewsky, K.

    1998-07-01

    To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculatingmore » the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory.« less

  8. The Los Alamos Seismic Network (LASN): Improved Network Instrumentation, Local Earthquake Catalog Updates, and Peculiar Types of Data

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Ten Cate, J. A.; House, L. S.; Greene, M. K.; Morton, E.; Kelley, R. E.

    2013-12-01

    The Los Alamos Seismic Network (LASN) has operated for 41 years, and provided the data to locate more than 2,500 earthquakes in north-central New Mexico. The network was installed for seismic verification research, as well as to monitor and locate earthquakes near Los Alamos National Laboratory (LANL). LASN stations are the only monitoring stations in New Mexico north of Albuquerque. The original network once included 22 stations in northern Mew Mexico. With limited funding in the early 1980's, the network was downsized to 7 stations within an area of about 15 km (N-S) by 15 km (E-W), centered on Los Alamos. Over the last four years, eight additional stations have been installed, which have considerably expanded the spatial coverage of the network. Currently, 7 stations have broadband, three-component seismometers with digital telemetry, and the remaining 8 have traditional 1 Hz short-period seismometers with either analog telemetry or on-site digital recording. A vertical array of accelerometers was also installed in a wellbore on LANL property. This borehole array has 3-component digital strong-motion sensors. Recently we began upgrading the local strong-motion accelerometer (SMA) network as well, with the addition of high-resolution digitizers and high-sensitivity force-balance accelerometers (FBA). We will present an updated description of the current LASN station, instrumentation and telemetry configurations, as well as the data acquisition and event-detection software structure used to record events in Earthworm. Although more than 2,000 earthquakes were detected and located in north-central New Mexico during the first 11 years of LASN's operation (1973 to 1984), currently only 1-2 earthquakes per month are detected and located within about 150 km of Los Alamos. Over 850 of these nearby earthquakes have been located from 1973 to present. We recently updated the LASN earthquake catalog for north-central New Mexico up through 2012 and most of 2013. Locations

  9. The Effect of Added AL2O3 on the Propagation Behavior of an Al/CuO Nanoscale Thermite

    DTIC Science & Technology

    2008-01-01

    Malchi a, Richard A. Yetter a,*, T. J. Foley b, and Steven F. Son c a The Pennsylvania State University, University Park, PA, USA b Los Alamos National...Laboratory, Los Alamos, NM, USA c Purdue University, West Lafayette, IN, USA U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC...Pennsylvania State University, University Park, PA, USA b Los Alamos National Laboratory, Los Alamos, NM, USA c Purdue University, West Lafayette, IN, USA

  10. 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Thompson, Brent E.; Berryhill, Jesse Tobias

    Los Alamos National Security, LLC (LANS) biologists in the Environmental Compliance and Protection Division at Los Alamos National Laboratory (LANL) initiated a multi-year program in 2013 to monitor avifauna at two open detonation sites and one open burn site on LANL property. Monitoring results from these efforts are compared among years and with avifauna monitoring conducted at other areas across LANL. The objectives of this study are to determine whether LANL firing site operations impact bird abundance or diversity. LANS biologists completed the fourth year of this effort in 2016. The overall results from 2016 continue to indicate that operationsmore » are not negatively affecting bird populations. Data suggest that community structure may be changing at some sites and this trend will continue to be monitored.« less

  11. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Timothy James

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  12. University of New Mexico-Los Alamos National Laboratory Program in Volcanology

    NASA Astrophysics Data System (ADS)

    Goff, F.; Fischer, T.; Baldridge, W.; Wohletz, K.; Smith, G.; Heiken, G.; Valentine, G.; Elston, W.

    2002-05-01

    The UNM-LANL Program in Volcanology was a vision of Wolf Elston in the late 1980s. Finally established in mid-1992, the program takes advantage of the extensive volcanic record preserved in northern New Mexico, and of the unique expertise and exceptional research facilities existing at the two institutions. Courses are directed toward upper division and graduate level students. The Los Alamos participants are adjunct professors and they take an active role in creating courses, advising thesis candidates, and providing research support. The curriculum is flexible but has a core upper division class in Physical Volcanology. Other classes offered in various years have included Volcanology and Human Affairs; Magmatic and Geothermal Systems; Tectonics and Magma Generation; Volcanoes of North America; Instrumentation for Volcanology; and Advanced Igneous Petrology. Perhaps the most renowned class in the program is the Volcanology Summer Field Course offered in even numbered years. This 3.5-week class is based in the Jemez Mountains volcanic field, which contains the famous Valles caldera (1.2 Ma to 50 ka). All types of calc-alkaline to alkalic domes, flows, tuffs, and intrusions, plus derivative sediments, mineralized zones, and thermal fluids are available for instructional purposes. Students are required to complete nine rigorous field exercises starting with basic instruction in pyroclastic fall, flow, and surge, then progressing towards hydrothermally altered, intracaldera resurgent dome and moat deposits in an active hot spring and fumarole system. The class is open to graduate students, advanced undergraduates, and private sector employees with special needs. Enrollment is competitive with limited financial support and limited space for 17 students. Evening lectures, study time, lodging, and meals are provided at the UNM-owned Young's Ranch built in the 1920s, nestled in a canyon flanked by orange cliffs of Bandelier Tuff. About 120 students from 12 countries have

  13. Storm Water Quality in Los Alamos Canyon following the Cerro Grande Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Johansen; B. Enz; B. Gallaher

    In May 2000, the Cerro Grande Fire burned about 7400 acres of forest on the Los Alamos National Laboratory (LANL) and about 10,000 acres in watersheds above LANL on Santa Fe National Forest lands. The resulting burned landscapes raised concerns of increased storm water runoff and transport of contaminants by runoff in the canyons traversing LANL. On June 2 and 3, 2000, rain fell in the Los Alamos Canyon watershed generating storm water runoff in the canyon bottom. This event was important in that it was the first significant runoff on LANL following the fire and occurred in a canyonmore » containing known legacy waste sites. Samples from this runoff were analyzed for radionuclide, metal, inorganic, and organic constituents. Results show radionuclide concentrations at or below previous (pre-fire) maximum levels at locations on LANL and downstream. However, greater concentrations of some fallout-associated radionuclides (cesium-137 and strontium-90) were seen arriving on LANL from upstream areas compared to pre-fire conditions. Tests indicate most of the radionuclides in the samples were bound to sediments, not dissolved in water. Most radionuclide concentrations in sediments were below LANL Screening Action Levels, with cesium-137 and strontium-90 as exceptions. Most radionuclide concentrations in samples taken at LANL's downstream boundary were greater than those taken upstream, indicating the presence of contributing sources on LANL. For comparison purposes, doses were calculated on a mrem per liter of unfiltered water basis for 11 radionuclides commonly associated with atmospheric fallout and with LANL operations. The maximum dose was 0.094 mrem per liter unfiltered water and was largely associated with plutonium-239/240. In contrast, all filtered samples had total doses less than 0.001 mrem per liter. Compared to past data, potential doses were not increased by the fire during this initial runoff event. Of the 25 metals tested for, seven were above pre

  14. Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.

    2004-09-01

    We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.

  15. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  16. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  17. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE PAGES

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick; ...

    2015-08-13

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  18. Development of the Los Alamos National Laboratory Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Hoffer, James K.

    2003-05-15

    Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less

  19. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdsell, Kay Hanson; Stauffer, Philip H.; Atchley, Adam Lee

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  20. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  1. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  2. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Losmore » Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.« less

  3. Integrated sequence and immunology filovirus database at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusim, Karina; Yoon, Hyejin; Foley, Brian

    The Ebola outbreak of 2013–15 infected more than 28,000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. We report that as this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of knownmore » natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.« less

  4. Integrated sequence and immunology filovirus database at Los Alamos

    PubMed Central

    Yoon, Hyejin; Foley, Brian; Feng, Shihai; Macke, Jennifer; Dimitrijevic, Mira; Abfalterer, Werner; Szinger, James; Fischer, Will; Kuiken, Carla; Korber, Bette

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy. Database URL: www.hfv.lanl.gov PMID:27103629

  5. Integrated sequence and immunology filovirus database at Los Alamos

    DOE PAGES

    Yusim, Karina; Yoon, Hyejin; Foley, Brian; ...

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28,000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. We report that as this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of knownmore » natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.« less

  6. Calculations of the conditions for bunch leakage in the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Ohmori, C.

    1994-04-01

    Observations are consistent with the possibility of an "ep" instability in the Los Alamos Proton Storage Ring (PSR) with both bunched and unbunched beam. The instability requires electrons to be trapped within the beam, and calculations have shown that such trapping requires leakage of beam into the interbunch gap. Observationally, leakage of beam into the gap appears necessary for the onset of the instability. In this paper we present results of studies of the longitudinal beam dynamics at PSR parameters. The studies indicate that the combined effects of the rf buncher, longitudinal space charge, and injection mismatch are sufficient to cause the observed bunch leakage. Simulation results are presented and compared with PSR observations. Variations of PSR performance parameters are considered, and methods of improving bunch confinement are suggested and studied.

  7. LA-UR-14-27684, Analysis of Wildland Fire Hazard to the TWF at Los Alamos National Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, Sarah

    Wildfires represent an Anticipated Natural Phenomena Hazard for LANL and the surrounding area. The TWF facility is located in a cleared area and is surrounded on three sides by roadway pavement. Therefore, direct propagation of flames to the facility is not considered the most credible means of ignition. Rather, fires started by airborne transport of burning brands constitute the most significant wildland fire threat to the TWF. The purpose of this document is to update LA-UR-13-24529, Airborne Projection of Burning Embers – Planning and Controls for Los Alamos National Laboratory Facilities, to be specific to the TWF site and operations.

  8. Status of the flora of the Los Alamos National Environmental Research Park: a historical perspective. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T.S.; Tierney, G.D.

    1984-09-01

    Studies of the flora of the Los Alamos National Environmental Research Park (LA/NERP) are continued in Water and Pajarito Canyons and their extensions to natural boundaries outside the LA/NERP. Six plant communities and sixteen plant habitats are described for the plant communities and sixteen plant habitats are described for the study area. The status of endangered, threatened, and rare plant species in the study area is reviewed, and land-use history of the Pajarito Plateau is related to the levels of apparent anthropogenic disturbance in the study areas' six plant communities. 66 references, 20 figures.

  9. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  10. Analysis of Individual Carbonaceous Particles Emitted from the Las Conchas Wildfire, Los Alamos, NM, in June-July 2011

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; China, S.; Gorkowski, K.; Flowers, B. A.; Aiken, A. C.; Dubey, M. K.

    2012-12-01

    Carbonaceous aerosol emitted from biomass burning contributes significantly to atmospheric aerosol loadings regionally and globally. The net direct radiative forcing of biomass burning aerosol can be positive and/or negative and this depends on its composition, morphology and mixing state. Biomass burning aerosols can also change the cloud properties as they can act as cloud condensation nuclei. In this study we investigated biomass burning particles emitted from the Las Conchas wildfire in northern New Mexico that started on June 26, 2011 and burned an area of 245 square miles. Aerosol samples were collected on nucleopore filters at the Los Alamos National Laboratory during the third week of the wildfire event. Individual particles (~4000) were investigated using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) to distinguish different carbonaceous particles and their shape, size, elemental composition and mixing state. A thermo-denuder was used to remove compounds that are volatile at temperatures up to 200 C, leaving behind the black carbon and any compounds that did not volatize completely. Smoke particles consisted of a) tar balls, which are amorphous spherical carbonaceous organic aerosols; b) organic particles with inorganic inclusions, c) soot particles and (d) soot with various inclusions. Two distinct kinds of tar balls, "electronically" dark and bright, were found using the field-emission scanning electron microscopy and were characterized for ambient and denuded conditions to understand coating effects and aging. It was found that dark tar balls are generally larger in size than the bright ones. Additionally, the difference between the size of ambient-bright and the size of denuded-bright tar balls was larger than the difference between the size of ambient-dark and the size of denuded-dark tar balls. EDS analysis showed that 70% of the dark tar balls had higher (~60%) relative oxygen content than in the bright

  11. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinojosa, H.

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists thatmore » were a part of the initial research for the performance of these BAs, and more recent surveys.« less

  12. Final Progress Report: Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-08-10

    Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up andmore » ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.« less

  13. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  14. MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U. S. Senator Martin Heinrich (D-NM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    At the request of Katherine Richardson-McDaniel, Staff Member to U.S. Senator Martin Heinrich (D-NM), a high-level briefing was requested about MaRIE 1.0, the Matter-Radiation Interactions in Extremes effort at Los Alamos National Laboratory. What it would be, the mission need motivation, the scientific challenge, and the current favorable impact on both programs and people are shown in viewgraph form.

  15. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  16. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    USGS Publications Warehouse

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  17. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena

    2017-09-01

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  18. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  19. Recent UCN source developments at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.

    The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In themore » source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 {micro}amp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4.« less

  20. Los Alamos National Security, LLC Request for Interest (RFI) for Investment Mentors to participate in the Laboratory’s Entrepreneurial Postdoctoral Pilot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clow, Shandra Deann

    Los Alamos National Laboratory (LANL) is committed to understanding how the role of venture funding, new investment mechanisms, and fostering the development of a culture of entrepreneurship may enhance the Laboratory and bring strength and creativity to its people. LANL, in partnership with the University of California (UC), has created the Entrepreneurial Postdoctoral Fellowship Pilot (Pilot) to provide an immersion-based learning opportunity to post-doctoral researchers to develop and practice skills in entrepreneurship and comercialization.

  1. 2011 Los Alamos National Laboratory Riparian Inventory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed butmore » no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.« less

  2. Los Alamos National Laboratory considers the use of biodiesel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlin, M. K.

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops,more » as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.« less

  3. Los Alamos National Laboratory: A guide to records series supporting epidemiologic studies conducted for the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-01

    The purpose of this guide is to describe each series of records that pertains to the epidemiologic studies conducted by the Epidemiology Section of the Occupational Medicine Group (ESH-2) at the Department of Energy`s (DOE) Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico. The records described in this guide relate to occupational studies performed by the Epidemiology Section, including those pertaining to workers at LANL, Mound Plant, Oak Ridge Reservation, Pantex Plant, Rocky Flats Plant, and Savannah River Site. Also included are descriptions of other health-related records generated or collected by the Epidemiology Section and a small setmore » of records collected by the Industrial Hygiene and Safety Group. This guide is not designed to describe the universe of records generated by LANL which may be used for epidemiologic studies of the LANL work force. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of LANL the history and functions of LANL`s Health Division and Epidemiology Section, and the various epidemiologic studies performed by the Epidemiology Section. It provides information on the methodology that HAI used to inventory and describe records housed in the offices of the LANL Epidemiology Section in Technical Area 59 and at the LANL Records Center. Other topics include the methodology used to produce the guide, the arrangement of the detailed record series descriptions, and information concerning access to records repositories.« less

  4. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Plum, M.

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

  5. Evaluation of the Likelihood for Thermal Runaway for Nitrate Salt Containers in Storage at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Gunderson, Jake Alfred; Parker, Gary Robert

    2016-03-25

    In order to handle and process the existing Los Alamos National Laboratory (LANL) Nitrate Salt drums it is necessary to quantify the risk. One of the most obvious dangers is a repeat of the original violent reaction (2015), which would endanger nearby workers, not only with radioactive contamination, but also with large amounts of heat, dangerous corrosive gases and the physical dangers associated with a bursting drum. If there still existed a high probability of violent reaction, then these drums should only be accessed remotely. The objective of the work reported herein is to determine the likelihood of a similarmore » violent event occurring.« less

  6. The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System

    DTIC Science & Technology

    2007-06-01

    Systems Inc., Stennis Space Center. MS, USA d SHOM/CMO, Toulouse. France € Los Alamos National Laboratory, Los Alamos, NM. USA Received 1 October 2004...Global Ocean Data Assimilation ’U. of Miami, NRL, Los Alamos, NOAA/NCEP, NOAA/AOML, Experiment (GODAE). GODAE is a coordinated inter- NOAA/PMEL, PSI...of Miami, the Naval all three approaches and the optimal distribution is Research Laboratory (NRL), and the Los Alamos chosen at every time step. The

  7. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  8. Active damping of the e-p instability at the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.

    2007-12-01

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  9. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  10. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...

    2017-09-13

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  11. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less

  12. Application of 129I/127I Ratios in Groundwater Studies Conducted at Los Alamos National Laboratory, New Mexico

    NASA Astrophysics Data System (ADS)

    Longmire, P.; Dale, M.; Granzow, K.; Yanicak, S. M.

    2014-12-01

    Los Alamos National Laboratory (LANL) is an operating nuclear site that has released treated effluents from three plutonium-processing facilities since the mid 1940s. The radioisotope 129I (T1/2 = 15.7 Myrs) derived from235U and 239Pu processing at LANL is locally detected in groundwater above background concentrations. This isotope provides a unique tracer for groundwater investigations conducted at LANL that helps to identify source releases linked to groundwater-flow paths in aquifers subject to binary and ternary mixing of natural- and industrial-derived waters containing chromate and other chemicals. Bromide, chlorate, chloride, nitrate, perchlorate, sulfate, and tritium were associated with multiple outfalls at LANL and, therefore, do not provide unique chemical signatures identifying a specific point of release or source. Natural and anthropogenic ratios of 129I/127I measured in groundwater samples collected at LANL were quantified using accelerator mass spectrometry at Purdue Rare Isotope Measurement Laboratory, Purdue University. Anthropogenic ratios of 129I/127I range from 1,531 X 10-15 to 10,323 X 10-15 within perched-intermediate groundwater present in volcanoclastic and basalt aquifers (210 - 216 m depth). Anthropogenic ratios of 129I/127I range from 359 X 10-15 to 4,350 X 10-15 within the regional aquifer (280 m depth) consisting of volcanoclastic sediments of variable hydraulic properties. Local background ratios of 129I/127I have a narrow range of 171 X 10-15 to 378 X 10-15 in the regional aquifer. Dissolved iodide measured in groundwater at LANL is stable dominantly as iodate. Background concentrations of dissolved iodate (0.1 to 33.2 nM) are less variable compared to anthropogenic iodate (8.0 to 246 nM) in groundwater at the site. Variability in concentrations of anthropogenic iodate is controlled by heterogeneous source releases of iodate over time and non-uniform mixing of groundwater in the different aquifers.

  13. A model for microbially induced precipitation of vadose-zone calcites in fractures at LOS Alamos, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Newman, Brent D.; Campbell, Andrew R.; Norman, David I.; Ringelberg, David B.

    1997-05-01

    Fractures are unique environments that can concentrate the flow of water, nutrients, and contaminants. As such, fractures play an important role in controlling the flux of various substances into and through the vadose zone. Calcite fracture fillings are present in the near surface in the Bandelier Tuff Formation at Los Alamos, New Mexico, and provide a record of the geochemical and hydrologic processes that have occurred in fractures. The objective of this study was to examine calcite fracture fills in order to improve understanding of processes within fractures, and in particular those that lead to precipitation of calcite. Samples of calcite fillings were collected from vertical and horizontal fractures exposed in a shallow waste-burial pit. Scanning electron microscopy show morphologies which suggest that plants, fungi, and bacteria were important in the precipitation process. Quadrupole mass spectrometric analyses of fluid inclusion gases show predominantly methane (17-99%) and little to no oxygen (0-8%), suggesting the development of anaerobic conditions in the fractures. Ester-linked phospholipid biomarkers are evidence for a diverse microbial community in the fractures, and the presence of di-ether lipids indicate that the methane was generated by anaerobic bacteria. The calcite fillings apparently resulted from multiple biological and chemical processes in which plant roots in the fractures were converted to calcite. Roots grew into the fractures, eventually died, and were decomposed by bacteria and fungi. Anaerobic gases were generated from encapsulated organic material within the calcite via microbial decomposition, or were generated by microbes simultaneously with calcite precipitation. It is likely that the biological controls on calcite formation that occurred in the Los Alamos fractures also occurs in soils, and may explain the occurrence of other types of pedogenic calcites.

  14. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronowski, D.R.; Madsen, M.M.

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less

  15. Annual Report on the Activities and Publications of the DHS-DNDO-NTNFC Sponsored Post-doctoral Fellow at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rim, Jung Ho; Tandon, Lav

    This report is a summary of the projects Jung Rim is working on as a DHS postdoctoral fellow at Los Alamos National Laboratory. These research projects are designed to explore different radioanalytical methods to support nuclear forensics applications. The current projects discussed here include development of alpha spectroscopy method for 240/239Pu Isotopic ratio measurement, non-destructive uranium assay method using gamma spectroscopy, and 236U non-destructive uranium analysis using FRAM code. This report documents the work that has been performed since the start of the postdoctoral appointment.

  16. Investigations of Chemical and Biological Treatment Options for the Attenuation of Hexahydro-1,3,5-trinitro-1,3,5-triazine Contamination in Groundwater at Los Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Heerspink, B. P.; Wang, D.; Ware, D.; Marina, O.; Perkins, G.; WoldeGabriel, G. W.; Goering, T.; Boukhalfa, H.

    2017-12-01

    High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL) in Los Alamos, NM. Liquid effluents containing RDX released at LANL's Technical Area 16 (TA-16) resulted in the contamination of alluvial, perched-intermediate, and regional groundwater bodies. Past investigations have shown persistent RDX contamination in the perched-intermediate zone located between 225 to 311 m below ground surface, where transport studies have shown that RDX and its degradation products transport conservatively. In this study, we compared RDX degradation by chemical treatments using reduction by sodium dithionite, oxidation by potassium permanganate, and alkaline hydrolysis by carbonate/bicarbonate buffering, with microbial degradation under biostimulated conditions. The experiments were conducted using groundwater and sediments representative of the contaminated aquifer beneath TA-16. Batch testing showed that all chemical treatments degraded RDX very rapidly, with half-lives ranging from 50 minutes to 22 hours. Comparatively, RDX degradation in biostimulated reactors under strict anaerobic conditions was significantly slower, with half-lives of about 3 weeks. Results from column experiments with chemically treated sediments deviated from the results of the batch testing. Dithionite treated sediments reduced RDX with no breakthrough observed before clogging occurred at 50 pour volumes. Treatments by oxidation using potassium permanganate, and hydrolysis under buffered alkaline conditions, were less effective with complete RDX breakthrough after 2 pore volumes. No known degradation products were observed in the column effluents. RDX degradation in biostimulated columns was very effective initially for both treatments. However, the column biostimulated with safflower oil clogged very rapidly. The column biostimulated with molasses was very effective when molasses was

  17. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less

  18. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  19. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.

    2012-07-01

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiologicalmore » materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker

  20. Development of the Los Alamos continuous high average-power microsecond pulser ion accelerator

    NASA Astrophysics Data System (ADS)

    Bitteker, L. J.; Wood, B. P.; Davis, H. A.; Waganaar, W. J.; Boyd, I. D.; Lovberg, R. H.

    2000-10-01

    The continuous high average-power microsecond pulser (CHAMP) ion accelerator is being constructed at Los Alamos National Laboratory. Progress on the testing of the CHAMP diode is discussed. A direct simulation Monte Carlo computer code is used to investigate the puffed gas fill of the CHAMP anode. High plenum pressures and low plenum volumes are found to be desirable for effective gas puffs. The typical gas fill time is 150-180 μs from initiation of valve operation to end of fill. Results of anode plasma production at three stages of development are discussed. Plasma properties are monitored with electric and magnetic field probes. From this data, the near coil plasma density under nominal conditions is found to be on the order of 1×1016 cm-3. Large error is associated with this calculation due to inconsistencies between tests and the limitations of the instrumentation used. The diode insulating magnetic field is observed to result in lower density plasma with a more diffuse structure than for the cases when the insulating field is not applied. The importance of these differences in plasma quality on the beam production is yet to be determined.

  1. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Maurer

    1999-06-01

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons:more » americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.« less

  2. Studies of Annual and Seasonal Variations in Four Species of Reptiles and Amphibians at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, D.C.; Nelson, E.I.; Mullen, M.A.

    1998-07-01

    Baseline studies of reptiles and amphibians of the Pajarito wetlands at Los Alamos National Laboratory have been conducted by the Ecology group since 1990. With the data gathered from 1990-1997 (excluding 1992), we examined the annual and seasonal population changes of four species of reptiles and amphibians over the past seven years. The four species studied are the Woodhouse toad (Bufo woodhousii), the western chorus frog (Pseudacris triseriata), the many-lined skink (Eunzeces nudtivirgatus), and the plateau striped whiptail lizard (Cnemidophorus velox). Statistical analyses indicate a significant change on a seasonal basis for the western chorus frog and the many-lined skink.more » Results indicate a significant difference in the annual population of the Woodhouse toad.« less

  3. Studies of annual and seasonal variations in four species of reptiles and amphibians at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, E.I.; Haarmann, T.; Keller, D.C.

    1998-11-01

    Baseline studies of reptiles and amphibians of the Pajarito wetlands at Los Alamos National Laboratory have been conducted by the Ecology group since 1990. With the gathered data from 1990--1997 (excluding 1992), they plan to determine if patterns can be found in the annual and seasonal population changes of four species of reptiles and amphibians over the past seven years. The four species studied are the Woodhouse toad, the western chorus frog, the many-linked skink, and the plateau striped whiptail lizard. Statistical analysis results show that significant changes occurred on a seasonal basis for the western chorus frog and themore » many-lined skink. Results indicate a significant difference in the annual population of the Woodhouse toad.« less

  4. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  5. Results from the CACTI experiment: Air-Cerenkov and particle measurements of PeV air showers at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paling, S.; Hillas, A.M.; Berley, D.

    1997-07-01

    An array of six wide angle Cerenkov detectors was constructed amongst the scintillator and muon detectors of the CYGNUS II array at Los Alamos National Laboratory to investigate cosmic ray composition in the PeV region through measurements of the shape of Cerenkov lateral distributions. Data were collected during clear, moonless nights over three observing periods in 1995. Estimates of depths of shower maxima determined from the recorded Cerenkov lateral distributions align well with existing results at higher energies and suggest a mixed to heavy composition in the PeV region with no significant variation observed around the knee. The accuracy ofmore » composition determination is limited by uncertainties in the expected levels of depth of maximum predicted using different Monte-Carlo shower simulation models.« less

  6. Development of a paperless, Y2K compliant exposure tracking database at Los Alamos National Laboratory.

    PubMed

    Conwell, J L; Creek, K L; Pozzi, A R; Whyte, H M

    2001-02-01

    The Industrial Hygiene and Safety Group at Los Alamos National Laboratory (LANL) developed a database application known as IH DataView, which manages industrial hygiene monitoring data. IH DataView replaces a LANL legacy system, IHSD, that restricted user access to a single point of data entry needed enhancements that support new operational requirements, and was not Year 2000 (Y2K) compliant. IH DataView features a comprehensive suite of data collection and tracking capabilities. Through the use of Oracle database management and application development tools, the system is Y2K compliant and Web enabled for easy deployment and user access via the Internet. System accessibility is particularly important because LANL operations are spread over 43 square miles, and industrial hygienists (IHs) located across the laboratory will use the system. IH DataView shows promise of being useful in the future because it eliminates these problems. It has a flexible architecture and sophisticated capability to collect, track, and analyze data in easy-to-use form.

  7. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and amore » general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.« less

  8. “Internal Dosimetry is Multidisciplinary, Challenging, and Exciting” An interview with John Klumpp, Ph.D., Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Deepesh

    Here we want to give our student readers a good picture of what it is like to work in various types of organizations and possibly aid them in choosing a career that’s a good fit for them, we have introduced a new series in this section of the newsletter. We will be chatting with young professionals working in different settings— national laboratories, academia, hospitals, and industries—about their back - ground, their responsibilities, what they like about working for their employer, and what suggestions they have for students aspiring to a similar career. In the first installment of the series, Imore » talked to John Klumpp of Radiation Protection Services Group at Los Alamos National Laboratory about his experiences.« less

  9. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  10. The Tragic Bazooka Accident at Los Alamos on July 14, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skidmore, Cary Bradford

    In recent years the Laboratory has made information (documents, photographs, and perspectives) regarding the occupational explosives accidents that killed seven men in the late 1950s more accessible to the public. While pursuing this effort, we were reminded of similar tragedies that occurred to children of the community. The purpose of this paper is to make information that has come into our hands more available to the public regarding these accidents. Following this introduction, a brief synopsis is provided for each accident. The appendices contain source documents for the 1962 accident that are not generally available. The community of Los Alamos,more » New Mexico was born out of a military post created to support the secret Manhattan Project during World War II. Security was provided by military police and some training exercises were conducted using live ordnance. In two instances unexploded ordnance (UXO) from this era was found “in the field” by residents hiking in the local area and brought into town. Tragically, handling these “bazooka” rounds as “dud” munitions resulted in death for one child and injury to several others. The first accident occurred on Saturday, September 6, 1947, which resulted in injuries to two boys, ages 5 and 12. The second accident occurred on Saturday, July 14, 1962 and resulted in the death of one five-year-old boy, and injuries to four other children, ages 6 to 10 years-old. The latter accident is the primary focus of the paper.« less

  11. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeln, Terri G.

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tubemore » diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.« less

  12. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized bymore » the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.« less

  13. Classification of superficial lesions of the eye with an optical biopsy system: First trials with the Los Alamos instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glickman, R.D.; Gritz, D.C.; Held, K.S.

    the clinical diagnosis of a lesion often requires that a histological analysis be made of a physical specimen of the suspect tissue. In the present work, the authors have utilized an optical biopsy system (OBS) developed at Los Alamos National Laboratory which is safe for patient use and provides a large amount of optical data from the sampled tissue. An earlier version of this system has been used to study age-related changes in the ocular lens (10). The purpose of the present study is to establish the potential clinical utility of the OBS by determining if characteristic features in themore » optical signatures, obtained from a variety of ophthalmic lesions, are correlated with the histological features of tissue biopsies obtained from these patients.« less

  14. A report documenting the completion of the Los Alamos National Laboratory portion of the ASC level II milestone ""Visualization on the supercomputing platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, James P; Patchett, John M; Lo, Li - Ta

    2011-01-24

    This report provides documentation for the completion of the Los Alamos portion of the ASC Level II 'Visualization on the Supercomputing Platform' milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is the most computationally intensive portion of the visualization process. Formore » terascale platforms, commodity clusters with graphics processors (GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the perfromance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our tests. In addition, we evaluated CPU and CPU-based rendering performance. We encourage production visualization experts to consider

  15. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distancemore » below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.« less

  16. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix B: Surface ground motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, T.A.; Baker, D.F.; Edwards, C.L.

    1993-10-01

    Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less

  17. Tritium concentrations in bees and honey at Los Alamos National Laboratory: 1979-1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, P.R.; Armstrong, D.R.; Pratt, L.H.

    Honeybees are effective monitors of environmental pollution. The objective of this study was to summarize tritium ({sup 3}H) concentrations in bees and honey collected from within and around Los Alamos National Laboratory (LANL) over an 18-year period. Based on the long-term average, bees from nine out of eleven hives and honey from six out of eleven hives on LANL lands contained {sup 3}H that was significantly higher (p <0.05) than background. The highest average concentration of {sup 3}H in bees (435 pCi mL{sup -1}) collected over the years was from LANL`s Technical Area (TA) 54-a low-level radioactive waste disposal sitemore » (Area G). Similarly, the highest average concentration of {sup 3}H in honey (709 pCi mL{sup - 1}) was collected from a hive located near three {sup 3}H storage ponds at LANL TA-53. The average concentrations of {sup 3}H in bees and honey from background hives was 1.0 pCi mL{sup -1} and 1.5 pCi ML{sup -1}, respectively. Although the concentrations of 3H in bees and honey from most LANL and perimeter (White Rock/Pajarito Acres) areas were significantly higher than background, most areas, with the exception of TA-53 and TA-54, generally exhibited decreasing 3H concentrations over time.« less

  18. Overview of the Calcium-45 Beta Spectrum Measurement at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Royse, Camen; Nab/UNCB Teams Collaboration

    2017-09-01

    One smoking gun of BSM physics would be the observation of a non-zero Fierz interference term, a feature in the beta spectrum produced by scalar and tensor couplings. Calcium-45 is an almost ideal candidate with which to search for a Fierz term. It is a pure beta emitter with a low endpoint of 256 keV and a simple decay scheme, with a 7 / 2 - -> 7 / 2 - g.s. to g.s. branching ratio of 99.9981(11)%. Isospin selection rules ensure the decay is greater than about 98.5% pure Gamow-Teller and the integrated effect of the weak magnetism over the entire spectrum is expected to be only 0.13%. An experiment designed to precisely measure the beta spectrum of Ca-45 has been run over the past two summers at Los Alamos National Laboratory. The experiment is composed of a 4 π-capture magnetic spectrometer between two segmented arrays of hexagonal silicon detectors (similar to the Nab experiment), a helium gas cooling system, front end electronics and amplifiers, and a data acquisition system which synchronizes the timing from the signals coming from both detector arrays. Data is analyzed to account for the pile-up of signals and other physical and calibration factors. An overview of the design and execution of the experiment as divided into the above topics will be presented.

  19. Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube

    DOE PAGES

    Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena

    2016-04-12

    We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF 6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shockedmore » interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.« less

  20. The Management of Silica in Los Alamos National Laboratory Tap Water - A Study of Silica Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlberg, C.; Worland, V.P.; Kozubal, M.A.

    1999-07-01

    Well water at Los Alamos National Laboratory (LANL) has a silica (SiO{sub 2}) content of 60 to 100 mg/L, with 4 mg/L of magnesium, 13 mg/L calcium and lesser concentrations of other ions. On evaporation in cooling towers, when the silica concentration reaches 150 to 220 mg/L, silica deposits on heat transfer surfaces. When the high silica well water is used in the reprocessing of plutonium, silica remains in solution at the end of the process and creates a problem of removal from the effluent prior to discharge or evaporation. The work described in this Report is divided into twomore » major parts. The first part describes the behavior of silica when the water is evaporated at various conditions of pH and in the presence of different classes of anions: inorganic and organic. In the second part of this work it was found that precipitation (floccing) of silica was a function of solution pH and mole ratio of metal to silica.« less

  1. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenberg, Kari M.

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. Inmore » 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that

  2. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analytemore » levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.« less

  3. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 themore » Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.« less

  4. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  5. Floodplain Assessment for the North Ancho Canyon Aggregate Area Cleanup in Technical Area 39 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to collect soil investigation samples and remove contaminated soil within and around selected solid waste management units (SWMUs)more » near and within the 100-year floodplain (hereafter “floodplain”) in north Ancho Canyon at Los Alamos National Laboratory (LANL). The work is being performed to comply with corrective action requirements under the 2016 Compliance Order on Consent.« less

  6. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Funk, David John; Stevens, Patrice Ann

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options,more » ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.« less

  7. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottommore » mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat.« less

  8. Comparison of carbon and corrugated diamond stripper foils under operational conditions at the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Spickermann, T.; Borden, M. J.; Macek, R. J.; Shaw, R. W.; Feigerle, C. S.; Sugai, I.

    2008-06-01

    To accumulate high-intensity proton pulses, the Los Alamos Proton Storage Ring (PSR) uses the charge-exchange injection method. H - ions merge with already circulating protons in a bending magnet, and then are stripped off their two electrons in a carbon stripper foil. The circulating protons continue to interact with the foil. Despite efforts to minimize the number of these foil hits, like "painting" of the vertical phase space, they cannot totally be eliminated. As a result, foil heating and probably also radiation damage limit the lifetime of these foils. In recent years, LANL has collaborated with KEK to improve the carbon foils in use at PSR, and these foils now last typically for about 2 months. Recently, an alternative in the form of corrugated diamond foils has been proposed for use at SNS. These foils have now been tested in PSR production for a year, and have already shown to be at least as enduring as the LANL/KEK carbon foils. Advantages of the diamond foil concept, as well as some noteworthy differences that we observed with respect to the LANL carbon foils, will be discussed here.

  9. Background radioactivity in sediments near Los Alamos, New Mexico.

    PubMed

    McLin, Stephen G

    2004-07-26

    River and reservoir sediments have been collected annually by Los Alamos National Laboratory since 1974 and 1979, respectively. These background samples are collected from five river stations and four reservoirs located throughout northern New Mexico and southern Colorado. Analyses include 3H, 90Sr, 137Cs, total U, 238Pu, 239,240Pu, 241Am, gross alpha, gross beta, and gross gamma radioactivity. Surprisingly, there are no federal or state regulatory standards in the USA that specify how to compute background radioactivity values on sediments. Hence, the sample median (or 0.50 quantile) is proposed for this background because it reflects central data tendency and is distribution-free. Estimates for the upper limit of background radioactivity on river and reservoir sediments are made for sampled analytes using the 0.95 quantile (two-tail). These analyses also show that seven of ten analytes from reservoir sediments are normally distributed, or are normally distributed after a logarithmic or square root transformation. However, only three of ten analytes from river sediments are similarly distributed. In addition, isotope ratios for 137Cs/238Pu, 137Cs/239,240Pu, and 239,240Pu/238Pu from reservoir sediments are independent of clay content, total organic carbon/specific surface area (TOC/SSA) and cation exchange capacity/specific surface area (CEC/SSA) ratios. These TOC/SSA and CEC/SSA ratios reflect sediment organic carbon and surface charge densities that are associated with radionuclide absorption, adsorption, and ion exchange reactions on clay mineral structures. These latter ratio values greatly exceed the availability of background radionuclides in the environment, and insure that measured background levels are a maximum. Since finer-grained reservoir sediments contain larger clay-sized fractions compared to coarser river sediments, they show higher background levels for most analytes. Furthermore, radioactivity values on reservoir sediments have remained

  10. A Report on the Activities, Publications, and Pending Research of DHS/DOD Sponsored Post-doctoral Research Associate at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Floyd E.; Tandon, Lav

    Since beginning at Los Alamos National Laboratory in February of 2012, I have been working as a DHS./DNDO Postdoctoral Research Associate under the mentorship of Lav Tandon and Khalil Spencer (NA-22 and mass spectrometry). The focus of my efforts, in addition to pursuing needed training and qualifications, has been the application of various instrumental approaches (e.g. Thermal Ionization Mass Spectrometry; TIMS) to a range of systems of interest in materials characterization and nuclear forensics. Research to be pursued in the coming months shall include the continued use of such approaches to advance current methods for: modified total evaporation, monitoring criticalmore » minor isotope systems, and chronometry. Each of the above points will be discussed.« less

  11. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  12. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE PAGES

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  13. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.

  14. Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, J.; Gonzales, W.

    2007-07-01

    The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less

  15. Pulsed Discharge in Aerosol for Waste Water Clean-up.

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Gonzales, A.; Olson, T.; Puchkarev, V.; Rosocha, L.; Wessel, F.; Yankelevich, Y.

    1996-11-01

    Aerosol (drop diameter of 10-100 μm) is injected into a discharge reactor with a repetitively pulsed voltage of 40--60 kV, 50--150 ns, 10^2--10^3 Hz. The relatively large water dielectric constant and high degree of atomization result in efficient degradation of organic molecules. Results on the characterization of operational parameters of the device and on degradation performance for a variety of organic pollutants (paranitrophenol, di-Chlorophenol, per-chloro-ethylene) are discussed. Work was supported by the Los Alamos National Laboratories 96 LACOR Program. ^AUniversity of Southern California, Los Angeles, CA 94007 ^BLos Alamos National Laboratory, Los Alamos, NM 87545

  16. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  17. Geologic map of the Puye Quadrangle, Los Alamos, Rio Arriba, Sandoval, and Santa Fe Counties, New Mexico

    USGS Publications Warehouse

    Dethier, David P.

    2003-01-01

    The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.

  18. Los Alamos and Lawrence Livermore National Laboratories Code-to-Code Comparison of Inter Lab Test Problem 1 for Asteroid Impact Hazard Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Robert P.; Miller, Paul; Howley, Kirsten

    The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less

  19. Electromagnetic Pulse (EMP) from the Magnetic Bubble Source as a Discriminator of Underground Nuclear Explosions, Including Cavity Decoupling

    DTIC Science & Technology

    2011-02-01

    planned shock physics experiments (SPE) 4. Design/develop a very low frequency (VLF)/ELF pulsar to serve as an underground calibration source 5...Carry out underground (in tunnels, etc.) pulsar calibration experiments  A-1 APPENDIX A. ABBREVIATIONS AND ACRONYMS CORRTEX Continuous Reflectometry...Site Office P.O. Box 98521 M/S NLV 101 Las Vegas, NV 89193-8521 ATTN: Ping Lee 1 Los Alamos National Laboratory PO Box 1663 Los Alamos, NM 87545

  20. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less

  1. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolski, Jeffrey S.; Barlow, David B.; Macek, Robert J.

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improvedmore » model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.« less

  2. Federal enclaves: The community culture of Department of Energy cities Livermore, Los Alamos, Oak Ridge

    NASA Astrophysics Data System (ADS)

    Moore, Patrick Kerry

    During the Second World War, the United States Government funded the research of nuclear fusion to create the first atomic weapons. To accomplish this task, the Manhattan Engineering District recruited scientists and engineers to remote sites in New Mexico, Tennessee, and Washington. During the five decades of the Cold War, the congressionally created Atomic Energy Commission, and later the Department of Energy (DOE), funded and operated numerous facilities throughout the United States. The mission of the facilities was to design and stockpile atomic weapons and to further the understanding of nuclear energy. This dissertation examines the influences of the United States federal government on three communities associated with these facilities, Los Alamos, New Mexico, Oak Ridge, Tennessee, and Livermore, California. As isolated secret cities, these environments each created complex community structures. This work identifies how, unlike other community settings, the influences of the federal government, both directly and indirectly, created distinctive patterns of behavior within the residents of each city. Examining these behaviors within the framework of the dissertation's chapters provides the necessary context to understand fully the community culture of these Department of Energy cities. This work addresses contemporary community settings in new ways. It approaches the topic broadly by examining five specific areas of community interaction: social, political, business and economic, educational, and ethical. Through the use of oral history methodology and techniques, the researcher captured significant information from respondents. This approach provides valuable insights to the behavior and interaction of the individual populations while revealing important insights all aspects of each town's community culture.

  3. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D; Friedel, Reiner H W; Chen, Yue

    2008-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity bymore » assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.« less

  4. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvaggio, R.

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what thesemore » women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.« less

  5. Floodplain Assessment for the Upper Cañon de Valle Watershed Enhancement Project in Technical Area 16 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Keller, David Charles; Sartor, Karla A.

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to control the run-on of storm water by slowing water velocity and managing sediments from the upper portionsmore » of the Cañon de Valle watershed on Los Alamos National Laboratory (LANL) property with a number of new watershed controls near and within the 100-year floodplain (hereafter floodplain). The proposed work will comply with requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement) Number HWB-14-20.« less

  6. Dose Assessment of Los Alamos National Laboratory-Derived Residual Radionuclides in Soils within Tract A-18-2 for Land Conveyance and Transfer Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Whicker, Jeffrey Jay

    In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 at Los Alamos National Laboratory (LANL) for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/yr (<10 μSv/yr) for a hypothetical recreational user (compared with a dose limit of 25 mrem/yr [250 μSv/yr]). Dose estimates were based on the 95% upper confidence levels for radionuclide concentrations within the Tract. Dose estimates less than 3 mrem/yr are considered to be as lowmore » as reasonably achievable (ALARA), therefore no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 (DOE 2013) and Policy 412 (LANL 2014).« less

  7. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less

  8. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.

    2014-12-01

    This last summer we held the 4th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. On average we have accepted ~10 students per year to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving 20 min presentations on their research projects to the research group. Over the past four years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.

  9. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.

    2015-12-01

    This last summer we held the 5th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.

  10. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.; Woodroffe, J. R.

    2017-12-01

    In 2016 we held the 6th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students via competitive admissions to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and three postdoc hires to date.

  11. Specific Heat of Octahydro - 1,3,5,7 - Tetranitro - 1,3,5,7 - Tetrazocine (HMX).

    DTIC Science & Technology

    1983-01-01

    impurities probably consist of molecules of similar atomic weights as those present in the HMX molecule. Usually the major impurity in HMX is RDX (5...crystal and powdered blend HMX . Data beyond the normal transformation temperature (i.e. 0*6 transition ) were obtained from 472 to 486*K. Also, due to the...Cady, H.H.; Smith, L.C., "Studies on the Polymorphs of HMX ," Los Alamos Scientific Laboratory, Los Alamos, N.M., LAMS-2652, May 1962. (6) Brill, T.B

  12. Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourant, J.R.; Boyer, J.; Johnson, T.M.

    1995-03-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.« less

  13. Laser Hazards Bibliography

    DTIC Science & Technology

    1989-10-31

    Report LA-3204, Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (6 October 1964). 95. Craik , K. J. W., On the effects of...surgery (letter), Am J Opt, 97(5): 658-9,8 (May 1984). 437. Scott, Jennifer , "The computation of temperature rises in the human eye induced by infrared...radiation," Phys Med Biol, 33(2): 243-257 (1988). 438. Scott, Jennifer , "A finite modelof heat transport in the human eye," Phsy Med Biol, 33(2): 227-241

  14. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J.Lewis; A.Lavine; S.L.Reneau

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluationsmore » and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  15. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas.

    PubMed

    Nyhan, J W; White, G C; Trujillo, G

    1982-10-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.

  16. Bombs, Bosons and Beer Cans-Research at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Pynn, Roger

    1997-04-01

    The neutron scattering community is justifiably proud of the contributions it has made to basic research in many areas of science. Information obtained using neutrons has contributed strongly to our basic understanding of phenomena in diverse systems of interest to physicists, chemists and biologists - think, for example, of how little we would know about excitations in quantum fluids, the spin-density-wave state of chromium, electronic back-donation in the bonding of organometallic compounds, or the conformation of proteins and DNA in nucleosomes without neutron scattering. However, illustrious as this history of neutron scattering may be, it is not the only type of contribution neutrons have made to our modern scientific and technological enterprise. Increasingly in recent years, we have witnessed the application of neutrons to later parts of the R&D cycle, to problems that have been called ''strategic research'' and even in areas that are ''applied research'' or ''product development''. The purpose of my talk at this meeting is to illustrate this aspect of research at spallation neutron sources, using examples of work that has been done at the Los Alamos Neutron Science Center (LANSCE). Some of this work is driven by the fact that our principal funding agency, the Office of Defense Programs within the U.S. Department of Energy, has a need to master the science behind technologies relevant to nuclear weapons. Even so, most of the examples I have picked are equally relevant to the industrial sector and several would not shame even the most devout proponent of ''pure'' research. To demonstrate the breadth of the research performed at LANSCE, I will describe examples of recent experiments in the following areas: materials texture; temperature and particle velocity measurement in reacting high explosives; radiographic imaging with protons; chemical bonding in metal-dihydride complexes; and the structure of thin adhesive layers. LANSCE operates a user program and

  17. Welcome to the Manhattan Project National Historical Park!

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    2017-01-01

    The making of the Manhattan Project National Historical Park took more than five times longer than the Manhattan Project itself. The first efforts to preserve some of the Manhattan Project properties at Los Alamos began in 1999. Fifteen years later, Congress enacted legislation to create a Manhattan Project National Historical Park in late 2014. This session will recount the how the park came into being and what to expect when you visit the park at Los Alamos, NM, Oak Ridge, TN, and Hanford, WA. Welcome to the Manhattan Project National Historical Park!

  18. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE PAGES

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...

    2018-01-29

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  19. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.

    2018-01-01

    The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .

  20. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Karen

    Karen Davenport of Los Alamos National Laboratory discusses a high-throughput next generation genome finishing pipeline on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  2. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Hallie B.; Wright, Marjorie Alys

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for allmore » waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.« less

  3. Seismic Monitoring of Volcanic Hazards in Valles Caldera, NM

    NASA Astrophysics Data System (ADS)

    House, L.; Frostenson, D. K.

    2002-12-01

    Valles Caldera, in north central New Mexico, was formed by major eruptions at about 1.2 and 1.6 Ma. Less intense volcanism has continued since then, with the most recent activity dated at about 60Ka. Since the caldera lies only about 20 km west of Los Alamos, any new volcanic activity within it could endanger Los Alamos (as well as other communities nearby). To help monitor any new activity, a seismic station (PER) was installed near the southern edge of the caldera, about 6 km SE of the El Cajete vent, the source of the most recent activity. Proximity to El Cajete was the major siting criteria, though the exact placement of the station also depended on factors such as quality of rock outcrop, solar exposure, radio telemetry (limited by mountains), and accessibility. There have been no earthquakes within the caldera during nearly 30 years of operation of the Los Alamos Seismograph Network (LASN). Several earthquakes were located to the south of the caldera and within about 10 km of it; the largest was about magnitude 1.5, the smallest, about magnitude 0. Thus, it appears that the interior of the caldera is non-seismic, perhaps down to magnitude 0.5 or 0. The data from the new PER station improves the sensitivity of the monitoring, and can provide hypocenters of earthquakes too small to be located by the network. PER initially had short-period, high-gain, three-component instrumentation, and recently was upgraded with broad-band equipment. Data from PER are recorded as part of the full network, which requires several station triggers for an event trigger, and as a single-station network, which event triggers with just a single trace. The single-station recording resulted in many thousands of spurious triggers. We chose to study microearthquakes whose S-P times were 2 s or less at PER. These were very small, with magnitudes of about -1 or less. To locate them, we used P-wave particle motions, which can have large uncertainties, because of relatively low signal to

  4. An investigation into variable recharge behaviors among eight alluvial observation wells in Pajarito Canyon, Los Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmeer, S. R.

    2010-12-01

    Pajarito Canyon in Los Alamos, New Mexico trends west to east through the Pajarito Plateau from the headwaters in the Jemez Mountains, thirteen miles to the Rio Grande. In summer 2008, Los Alamos National Laboratory installed eight shallow wells, numbered PCAO-5, 6, 7a, 7b1, 7b2, 7c, 8 and 9, in the middle four miles of this canyon. Among these wells, five distinct recharge behaviors have been observed. PCAO-5 demonstrates seasonal recharge in response to annual snowmelt. PCAO-6, while just 400 feet further downstream, is considerably flashier and the well is often dry for months at a time. In PCAO-7a, 7b2 and 7c, another two miles downstream, the water level declined steadily since installation, with no recharge until spring 2010. PCAO-7b1 has not contained water since drilling. Downstream a further two miles, PCAO-8 and PCAO-9 were dry for the majority of 2009 and their hydrographs are more attenuated. This investigation was undertaken to explain the recharge behaviors of the wells, with the goal of improving site selection and design of alluvial wells to provide better representation of the alluvial aquifer. Water level data collected since July 2008 were used to compare the water columns of each well. Well construction diagrams were utilized to construct stratigraphic maps in order to compare well construction and lithology. Results indicate that PCAO-5 consistently contains water due to its location above a flood retention structure (FRS) and the placement of its screened interval immediately above the tuff layer, forcing water to travel through the screened interval. PCAO-6’s flashy, intermittent hydrograph is due to its location downstream of the FRS, and because the bottom of the screened interval rests 2.5 feet above the alluvium-tuff interface, providing a conduit below the screen of the well. The similar behaviors of PCAO-7a, 7b2 and 7c result from their near-identical construction, lithology and location. The general decline of water level until

  5. Engineering Design and Automation in the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wantuck, P. J.; Hollen, R. M.

    2002-01-01

    This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the

  6. Airport-Noise Levels and Annoyance Model (ALAMO) system's reference manual

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    The airport-noise levels and annoyance model (ALAMO) is described in terms of the constituent modules, the execution of ALAMO procedure files, necessary for system execution, and the source code documentation associated with code development at Langley Research Center. The modules constituting ALAMO are presented both in flow graph form, and through a description of the subroutines and functions that comprise them.

  7. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    McMahon, Ben

    2018-01-11

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  8. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, Ben

    2012-06-01

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. Black Thunder Coal Mine and Los Alamos National Laboratory experimental study of seismic energy generated by large scale mine blasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.L.; Gross, D.; Pearson, D.C.

    In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic,more » videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.« less

  10. Organic Chemical Concentrations in Eggs and Nestlings of Cavity Nesting Birds at and around Los Alamos National Laboratory

    DOE PAGES

    Gaukler, Shannon M.; Hathcock, Charles D.; Fair, Jeanne M.

    2018-02-13

    In 1943, Los Alamos National Laboratory (LANL) was established as part of the Manhattan project to design atomic weapons. LANL now operates as a multidisciplinary research institution. As part of an ongoing assessment of siterelated ecological risk, organochlorine pesticides, their metabolites, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), and 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were evaluated in western bluebird (Sialia mexicana) and ash-throated flycatcher (Myiarchus cinerascens) eggs relative to a developed but non-industrial reference area; PCBs and TEQs were also evaluated in nestlings. Chemicals were below detection limits in the majority of samples. Western bluebird eggs collected from the study area hadmore » significantly lower concentrations of dieldrin, oxychlordane, and trans-nonachlor when compared with eggs from the reference area. No differences were observed in concentrations of dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyltrichloroethane (DDT), and heptachlor epoxide. Ash-throated flycatcher eggs contained higher total TEQ concentrations when compared with western bluebird eggs; however, no differences in concentrations of DDE, DDT, dieldrin, or total PCBs were observed. No differences were observed in total PCBs or TEQs in nestlings between the two species. Western bluebird eggs contained higher levels of total PCBs and TEQs when compared with nestlings; no differences were observed in total PCBs or TEQs between ash-throated flycatcher eggs and nestlings. Chemical concentrations detected in eggs of both species were below levels that are associated with adverse effects reported in the scientific literature, suggesting that concentrations of organic chemicals observed here appear to be at levels causing negligible risks to local bird populations.« less

  11. Organic Chemical Concentrations in Eggs and Nestlings of Cavity Nesting Birds at and around Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaukler, Shannon M.; Hathcock, Charles D.; Fair, Jeanne M.

    In 1943, Los Alamos National Laboratory (LANL) was established as part of the Manhattan project to design atomic weapons. LANL now operates as a multidisciplinary research institution. As part of an ongoing assessment of siterelated ecological risk, organochlorine pesticides, their metabolites, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), and 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were evaluated in western bluebird (Sialia mexicana) and ash-throated flycatcher (Myiarchus cinerascens) eggs relative to a developed but non-industrial reference area; PCBs and TEQs were also evaluated in nestlings. Chemicals were below detection limits in the majority of samples. Western bluebird eggs collected from the study area hadmore » significantly lower concentrations of dieldrin, oxychlordane, and trans-nonachlor when compared with eggs from the reference area. No differences were observed in concentrations of dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyltrichloroethane (DDT), and heptachlor epoxide. Ash-throated flycatcher eggs contained higher total TEQ concentrations when compared with western bluebird eggs; however, no differences in concentrations of DDE, DDT, dieldrin, or total PCBs were observed. No differences were observed in total PCBs or TEQs in nestlings between the two species. Western bluebird eggs contained higher levels of total PCBs and TEQs when compared with nestlings; no differences were observed in total PCBs or TEQs between ash-throated flycatcher eggs and nestlings. Chemical concentrations detected in eggs of both species were below levels that are associated with adverse effects reported in the scientific literature, suggesting that concentrations of organic chemicals observed here appear to be at levels causing negligible risks to local bird populations.« less

  12. A Preliminary Survey of Terrestrial Plant Communities in the Sierra de los Valles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randy G. Balice

    To more fully understand the species compositions and environmental relationships of high-elevation terrestrial plant communities in the Los Alamos region, 30 plots in randomly selected, upland locations were sampled for vegetation, topographic, and soils characteristics. The locations of these plots were constrained to be above 2,134 m (7,000 ft) above mean sea level. The field results were summarized, analyzed, and incorporated into a previously developed classification of vegetation and land cover types. The revised and updated discussions of the environmental relationships at these sites and their associated species compositions are included in this report. A key to the major landmore » cover types in the Los Alamos region was also revised in accordance with the new information and included herein its entirety.« less

  13. Grepping Life: A New Paradigm for Analyzing Metagenomic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berendzen, Joel

    2010-06-04

    Joel Berendzen of Los Alamos National Laboratory discusses a phylogenetic method based on answering the question "What Would Google Do?" on June 4, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  14. Stellar integrated fluxes for 216 stars in the wavelength range 380 nm-900 NM

    NASA Astrophysics Data System (ADS)

    Petford, A. D.; Blackwell, D. E.; Booth, A. J.; Haddock, D. J.; Leggett, S. K.; Mountain, C. M.; Selby, M. J.; Arribas, S.

    1988-09-01

    The paper reports measurements of the integrated fluxes over the wavelength range 380 nm - 900 nm for 216 stars using a Reticon spectrometer in conjunction with the 1 m Kapteyn telescope of the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Methods are proposed for deriving visible integrated fluxes from 13-colour photometry, UBVRI and BV photometry. Such fluxes are useful for deriving stellar effective temperatures and angular diameters.

  15. Study of the longitudinal space charge compensation and longitudinal instability of the ferrite inductive inserts in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Beltran, Chris

    Future high intensity synchrotrons will have a large space charge effect. It has been demonstrated in the Proton Storage Ring (PSR) at the Los Alamos National Laboratory (LANL) that ferrite inductive inserts can be used to compensate for the longitudinal space charge effect. However, simply installing ferrite inductors in the PSR led to longitudinal instabilities that were not tolerable. It was proposed that heating the ferrite would change the material properties in such a way as to reduce the instability. This proposal was tested in the PSR, and found to be true. This dissertation investigates and describes the complex permeability of the ferrite at room temperature and at an elevated temperature. The derived complex permeability is then used to obtain an impedance at the two temperatures. The impedance is used to determine the amount of space charge compensation supplied by the inductors and predict the growth time and frequency range of the longitudinal instability. The impedance is verified by comparing the experimental growth time and frequency range of the longitudinal instability to theoretical and computer simulated growth times and frequency ranges of the longitudinal instability. Lastly, an approach to mitigating the longitudinal instability that does not involve heating the ferrite is explored.

  16. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less

  17. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzsimmons, Michael

    2012-06-01

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  18. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Fitzsimmons, Michael

    2018-01-22

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  19. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett`s initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates atmore » five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream.« less

  20. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    DOE PAGES

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; ...

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity andmore » Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.« less

  1. Electronic Spectra from Molecular Dynamics: A Simple Approach.

    DTIC Science & Technology

    1983-10-01

    82.30.Cr. 33.20K. S2.40.1s The authors provided phototypeset copy for this paper using REFER TlL EON, TOFF On UNIX I ELECTRONIC SPECTRA FROM MOLECULAR...Alamos National Laboratory Los Alamos, NM 87545 I. INTRODUCTION In this paper we show how molecular dynamics can be used in a simple manner to com...could equally use Monte Carlo or explicit integration over coordinates to compute equilibrium electronic absorption bands. How- ever, molecular

  2. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitt, Daniel Glenn; Birdsell, Kay Hanson; Jennings, Terry L.

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automatedmore » dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data

  3. 44 CFR 295.10 - Bringing a claim under the CGFAA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sign the Notice of Loss. If one is signing a Notice of Loss as the legal representative of a Claimant...) Notices of Loss may be filed with OCGFC by mail to P.O. Box 1480, Los Alamos, NM 87544-1480. OCGFC is...

  4. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A.

    2012-07-01

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. Withmore » wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m{sup 2

  5. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    USGS Publications Warehouse

    Baltz, E.H.; Abrahams, J.H.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure

  6. Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats.

    PubMed

    Batuk, Olga N; Conradson, Steven D; Aleksandrova, Olga N; Boukhalfa, Hakim; Burakov, Boris E; Clark, David L; Czerwinski, Ken R; Felmy, Andrew R; Lezama-Pacheco, Juan S; Kalmykov, Stepan N; Moore, Dean A; Myasoedov, Boris F; Reed, Donald T; Reilly, Dallas D; Roback, Robert C; Vlasova, Irina E; Webb, Samuel M; Wilkerson, Marianne P

    2015-06-02

    The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and μm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.

  7. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milewski, John O; Bernal, John E

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts inmore » testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.« less

  8. PSMA-Targeted Polygadolinium Clusters: A Novel Agent for Imaging Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    Los Alamos, NM, February 23, 2006 “A Smorgasbord of Half-Sandwiches and Meatballs of the Early Transition Metals, Lanthanides, and Bismuth...62. Mark Twain Section Meeting, American Chemical Society, April 1, 2005, Culver-Stockton College, MO. “New Vistas in Half-Sandwich and Meatball

  9. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Elizabeth J.; Dewart, Jean Marie; Deola, Regina

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete.more » In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.« less

  10. PSMA-Targeted Polygadolinium Clusters: A Novel Agent for Imaging Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    Los Alamos, NM, February 23, 2006 “A Smorgasbord of Half-Sandwiches and Meatballs of the Early Transition Metals, Lanthanides, and Bismuth” 62. Mark...Twain Section Meeting, American Chemical Society, April 1, 2005, Culver-Stockton College, MO. “New Vistas in Half-Sandwich and Meatball Complexes

  11. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  12. Los Alamos National Laboratory SAVY-4000 Field Surveillance Plan Update for 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Elizabeth J.; Stone, Timothy Amos; Smith, Paul Herrick

    The Packaging Surveillance Program section of the Department of Energy (DOE) Manual 441.1-1, Nuclear Material Packaging Manual (DOE 2008), requires DOE contractors to “ensure that a surveillance program is established and implemented to ensure the nuclear material storage package continues to meet its design criteria.” The Los Alamos National Laboratory (LANL) SAVY-4000 Field Surveillance Plan was first issued in FY 2013 (Kelly et al. 2013). The surveillance plan is reviewed annually and updated as necessary based on SAVY-4000 surveillance and other surveillance findings, as well as results of the lifetime extension studies (Blair et al. 2012, Weis et al. 2015a).more » The LANL SAVY-4000 Field Surveillance Plan Update was issued in 2014 (Kelly et al. 2014). This 2016 update reflects changes to the surveillance plan resulting from restrictions on handling residue materials greater than 500 g, the addition of specific engineering judgment containers, and 2015 surveillance findings. The SAVY-4000 container has a design life of five years, which was chosen as a conservative estimate of the functional properties of the materials used in the construction of the SAVY 4000 when exposed to the potential insults including temperature, corrosive materials and gases, and radiation. The SAVY-4000 container design basis is described in a safety analysis report (Anderson et al. 2013). In the National Nuclear Security Administration's (NNSA’s) approval of the safety analysis report, it was recommended that the design life clock begin on March 2014 (Nez et al. 2014). However, it is expected that a technical basis can be developed to extend the design life of the SAVY-4000 containers to approximately 40 years (Blair et al. 2012, Weis et al. 2015a). This surveillance plan update covers five years (2015–2019) and is developed to ensure SAVY-4000 containers meet their design criteria over the current five-year design life and to gather data that can be used in developing the

  13. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.

    1997-06-01

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on themore » basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 ({+-} 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs.« less

  14. LACED

    Science.gov Websites

    Search Site submit Feynman Center for Innovation Los Alamos National Laboratory Collaboration for Explosives Detection Los Alamos National Laboratory Los Alamos Collaboration for Explosives Detection Menu is built upon Los Alamos' unparalleled explosive detection capabilities derived from the expertise of

  15. 77 FR 68073 - Prevailing Rate Systems; Redefinition of the St. Louis, MO; Southern Missouri; Cleveland, OH; and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Albuquerque, NM, and El Paso, TX, wage areas to White Sands Missile Range. DATES: We must receive comments on... because the Department of Defense now refers to it as that White Sands Missile Range. OPM announced these... not include White Sands Missile Range portion) Los Alamos Mora Quay Rio Arriba Roosevelt San Miguel...

  16. Preliminary risk assessment of the Mexican Spotted Owl under a spatially-weighted foraging regime at the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.

    The Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory requires that the Department of Energy takes special precautions to protect the Mexican Spotted Owl (Strix occidentalis lucida). In order to do so, risk to the owl presented by radiological and nonradiological contaminants must be estimated. A preliminary risk assessment on the Mexican Spotted Owl in two Ecological Exposure Units (EEUs) was performed using a modified Environmental Protection Agency Quotient method, the FORTRAN model ECORSK4, and a geographic information system. Estimated doses to the owl under a spatially-weighted foraging regime were comparedmore » against toxicological reference doses generating hazard indices (HIs) and hazard quotients (HQs) for three risk source types. The average HI was 0.20 for EEU-21 and 0.0015 for EEU-40. Under the risk parameter assumptions made, hazard quotient results indicated no unacceptable risk to the owl, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. An HI of 1.0 was used as the evaluative criteria for determining the acceptability of risk. This value was exceeded (1.06) in only one of 200 simulated potential nest sites. Cesium-137, Ni, {sup 239}Pu, Al and {sup 234}U we`re among the constituents with the highest partial HQs. Improving model realism by weighting simulated owl foraging based on distance from potential nest sites decreased the estimated risk by 72% (0.5 HI units) for EEU-21 and by 97.6% (6.3E-02 HI units) for EEU-40. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, owl habitat, facility siting, and/or facility operations in order to maintain risk from contaminants at acceptably low levels.« less

  17. Abraham Pais Prize for History of Physics Lecture: Big, Bigger, Too Big? From Los Alamos to Fermilab and the SSC

    NASA Astrophysics Data System (ADS)

    Hoddeson, Lillian

    2012-03-01

    The modern era of big science emerged during World War II. Oppenheimer's Los Alamos laboratory offered the quintessential model of a government-funded, mission-oriented facility directed by a strong charismatic leader. The postwar beneficiaries of this model included the increasingly ambitious large laboratories that participated in particle physics--in particular, Brookhaven, SLAC, and Fermilab. They carried the big science they practiced into a new realm where experiments eventually became as large and costly as entire laboratories had been. Meanwhile the available funding grew more limited causing the physics research to be concentrated into fewer and bigger experiments that appeared never to end. The next phase in American high-energy physics was the Superconducting Super Collider, the most costly pure physics project ever attempted. The SSC's termination was a tragedy for American science, but for historians it offers an opportunity to understand what made the success of earlier large high-energy physics laboratories possible, and what made the continuation of the SSC impossible. The most obvious reason for the SSC's failure was its enormous and escalating budget, which Congress would no longer support. Other factors need to be recognized however: no leader could be found with directing skills as strong as those of Wilson, Panofsky, Lederman, or Richter; the scale of the project subjected it to uncomfortable public and Congressional scrutiny; and the DOE's enforcement of management procedures of the military-industrial complex that clashed with those typical of the scientific community led to the alienation and withdrawal of many of the most creative scientists, and to the perception and the reality of poor management. These factors, exacerbated by negative pressure from scientists in other fields and a post-Cold War climate in which physicists had little of their earlier cultural prestige, discouraged efforts to gain international support. They made the SSC

  18. Evidence for OI 630.0 nm dayglow variations over low latitudes during onset of a substorm

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D.; Sekar, R.; Sastri, J. H.; Pathan, B. M.; Reeves, G. D.; Yumoto, K.; Kikuchi, T.

    2010-10-01

    Observations of OI 630.0 nm dayglow intensity from Mt. Abu (magnetic latitude (MLAT): 16.2°N magnetic longitude (MLONG): 148°E) at two different directions corresponding to two different magnetic latitudes (MLATZenith: 16.2°N and MLAT20°Elevation: 22.2°N) revealed nearly simultaneous intensity enhancements on 2 February 2002 (Ap = 19) during 0554-0635 universal time (UT) (1124-1205 Indian Standard Time (IST); IST = UT + 5.5 h). This feature is found to be absent on a typical control day (3 February 2002; Ap = 4). The dayglow enhancements were concomitant with enhancements in the E-region zonal electric field inferred from deviations of the northward component of magnetic field (ΔH) obtained from a meridional chain of magnetometers encompassing the dip equatorial and low-latitude regions. Simultaneous positive bay signatures in ΔH were also recorded at all stations along the 210° magnetic meridian (MM) in the afternoon sector (˜1454-1535 magnetic local time). The changes in the solar wind parameters including the dawn-to-dusk component of IEF and ram pressure are found negligible during 0554-0635 UT. However, the variations in the auroral electrojet and ring current indices indicate the presence of a substorm during 0554-0635 UT. Sudden enhancements in the energetic particle fluxes measured by the Los Alamos National Laboratory (LANL) 1991-080 satellite at geosynchronous altitude provide evidence for the onset of the expansion phase of a magnetospheric substorm. Therefore, the present investigation adduces the response of 630.0 nm dayglow intensities over low latitudes corresponding to the onset of the expansion phase of an auroral/magnetospheric substorm.

  19. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews,more » and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.« less

  20. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezei, F.; Thompson, J.

    1998-12-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developmentsmore » to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.« less

  1. FRC Compression Heating Experiment (FRCHX) at AFRL

    DTIC Science & Technology

    2007-06-01

    Air Force Research Laboratory ( AFRL ) and Los Alamos National Laboratory (LANL) have been... Air Force Research Laboratory , Directed Energy Directorate, 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 USA 8. PERFORMING ORGANIZATION REPORT...Matt Domonkos, Don Gale, Bernard Martinez, Jerry Parker, Dale Ralph, Ed Ruden, and Wayne Sommars Air Force Research Laboratory , Directed

  2. Floodplain and Wetland Assessment for the Mortandad Wetland Enhancement and the DP Dissipater Projects at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    This floodplain and wetland assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands” and a wetland is defined as “an area that is inundated or saturated by surface or groundwater at a frequency and durationmore » sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions, including swamps, marshes, bogs, and similar areas.” In this action, DOE is proposing two projects to improve wetland and floodplain function at Los Alamos National Laboratory (LANL). The proposed work will comply with corrective action requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement)1 Number HWB-14-20. The first project is located in Technical Areas (TA)-03 in upper Mortandad Canyon. The upper Mortandad wetlands have existing stormwater controls that need to be rehabilitated. Head-cut formation is occurring at the downstream portion of the wetland. This project will repair damages to the wetland and reduce the future erosion potential. The second project is located in TA-21 in Delta Prime (DP) Canyon. The intent of the DP Dissipater Project in DP Canyon is to install stormwater control structures in DP Canyon to retain low channel flows and reduce downstream sediment transport as well as peak flows during low and moderate storm events. Due to increased erosion, the stream bank in this area has unstable vertical walls within the stream channel. The DOE prepared this floodplain and

  3. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  4. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  5. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAVRON, VICTOR I.; HILL, TONY S.; PITCHER, ERIC J.

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number ofmore » minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  6. Videos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Web Policies

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Research Opportunities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. Business opportunities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Publications

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Emergency Communication

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. Civilian Nuclear Program

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. Laboratory Directed Research & Development (LDRD)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Collaboration

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Radical Supercomputing

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Media Contacts

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Capabilities: Science Pillars

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Social Media

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. Payments to the Lab

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Nuclear Deterrence and Stockpile Stewardship

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Location and Infrastructure

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Dual Career Services

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Science Briefs

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Teachers (K-12)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Career Videos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Tiny plastic lung mimics human pulmonary function

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Students (K-12)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Environmental Management System

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. About Us

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Emerging Threats and Opportunities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Business

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. Energy Sustainability

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. Energy Security Solutions

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Reusing Water

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Community Leaders Survey

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Green Purchasing

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Features

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Mission, Vision, Values

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. News Releases

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Office of Science

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Protecting Against Nuclear Threats

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Regional Education Partners

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Invoicing, Payments Info

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Obeying Environmental Laws

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Education Office Housing

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Looking inside plutonium

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Community Videos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Cultural Preservation

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. Speakers Bureau

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Copyright, Legal

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Protecting Wildlife

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. Community Feature Stories

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. Visitors

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Lab Organizations

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Ion Beam Materials Lab

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Economic Development

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Mission

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Higher Education

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. Frontiers in Science Lectures

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Public Reading Room: Environmental Documents, Reports

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Leadership, Governance

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. 70+ Years of Innovations

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Quantum Institute

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Community

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Center for Nonlinear Studies

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. STEM Education Programs

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. October 2015

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. LANL Contacts

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. Taking Care of our Trails

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Panel: If I Only Knew Then What I Know Now

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Applied Energy Program

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. What We Monitor & Why

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. STEM Education

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Bradbury Science Museum

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. User Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Our History

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Travel Reimbursement

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Giving

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. Operational Excellence

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. New MagViz Airport Liquid Analysis System Undergoes Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-12-18

    LOS ALAMOS, New Mexico, December 16, 2008—An innovative application of a technology first used for medical imaging may enhance airport security if Los Alamos National Laboratory scientists are successful. Los Alamos technologists have adapted Magnetic Res

  1. New MagViz Airport Liquid Analysis System Undergoes Testing

    ScienceCinema

    None

    2017-12-09

    LOS ALAMOS, New Mexico, December 16, 2008—An innovative application of a technology first used for medical imaging may enhance airport security if Los Alamos National Laboratory scientists are successful. Los Alamos technologists have adapted Magnetic Res

  2. Infrasonic observations of large-scale HE events

    NASA Technical Reports Server (NTRS)

    Whitaker, Rodney W.; Mutschlecner, J. Paul; Davidson, Masha B.; Noel, Susan D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Dibyendu; Buhay, Christian; Van Tonder, Andries

    From left to right: Dibyendu Kumar of the University of Florida, Christian Buhay of Baylor College of Medicine, Andries van Tonder of Wellcome Sanger Trust Institute, Anna Montmayeur of the Broad Institute and Karen Davenport of Los Alamos National Laboratory at the Finishing forum on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  4. Engineering Institute

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryEngineering Institute Addressing national needs by fostering specialized recruiting and strategic partnerships Los Alamos National LaboratoryEngineering Institute Menu NSEC Educational Programs Los Alamos Dynamics Summer

  5. 76 FR 28222 - Extension of the Public Review and Comment Period and Announcement of an Additional Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los Alamos National Laboratory...

  6. Airport-Noise Levels and Annoyance Model (ALAMO) user's guide

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    A guide for the use of the Airport-Noise Level and Annoyance MOdel (ALAMO) at the Langley Research Center computer complex is provided. This document is divided into 5 primary sections, the introduction, the purpose of the model, and an in-depth description of the following subsystems: baseline, noise reduction simulation and track analysis. For each subsystem, the user is provided with a description of architecture, an explanation of subsystem use, sample results, and a case runner's check list. It is assumed that the user is familiar with the operations at the Langley Research Center (LaRC) computer complex, the Network Operating System (NOS 1.4) and CYBER Control Language. Incorporated within the ALAMO model is a census database system called SITE II.

  7. 77 FR 13360 - Energy Employees Occupational Illness Compensation Program Act of 2000, as Amended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Sands Missile Range. 1945. Hangar 481, Kirtland AFB Albuquerque 1989-1996. Kirtland Operations Office, Kirtland Albuquerque 1964-Present. AFB. Los Alamos Medical Center Los Alamos 1952-1963. Los Alamos National.... Institute, Kirtland AFB. Project Gasbuggy Nuclear Explosion Site Farmington 1967-1973; 1978; 1992-Present...

  8. Proceedings of the first ERDA statistical symposium, Los Alamos, NM, November 3--5, 1975. [Sixteen papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, W L; Harris, J L

    1976-03-01

    The First ERDA Statistical Symposium was organized to provide a means for communication among ERDA statisticians, and the sixteen papers presented at the meeting are given. Topics include techniques of numerical analysis used for accelerators, nuclear reactors, skewness and kurtosis statistics, radiochemical spectral analysis, quality control, and other statistics problems. Nine of the papers were previously announced in Nuclear Science Abstracts (NSA), while the remaining seven were abstracted for ERDA Energy Research Abstracts (ERA) and INIS Atomindex. (PMA)

  9. Perceptions of general environmental problems, willingness to expend federal funds on these problems, and concerns regarding the Los Alamos National Laboratory: Hispanics are more concerned than Whites.

    PubMed

    Burger, Joanna; Myers, O; Boring, C S; Dixon, C; Lord, C; Ramos, R; Shukla, S; Gochfeld, Michael

    2004-06-01

    Perceptions about general environmental problems, governmental spending for these problems, and major concerns about the US Department of Energy's Los Alamos National Laboratory (LANL) were examined by interviewing 356 people attending a gun show in Albuquerque, New Mexico. The hypothesis that there are differences in these three areas as a function of ethnicity was examined. We predicted that if differences existed, they would exist for all three evaluations (general environmental problems, government spending, and environmental concerns about LANL). However, this was not the case; there were fewer ethnic differences concerning LANL. Hispanics rated most general environmental problems higher than Whites and rated their willingness to expend federal funds higher than Whites, although all groups gave a lower score on willingness than on concern. Further, the congruence between these two types of ratings was higher for Hispanics than for others. In general, the concerns expressed by subjects about LANL showed few ethnic differences, and everyone was most concerned about contamination. These data indicate that Hispanics attending a gun show are equally or more concerned than others about environmental problems generally but are not more concerned about LANL. The data can be useful for developing future research and stewardship plans and for understanding general environmental problems and their relationship to concerns about LANL. More generally, they indicate that the attitudes and perceptions of Hispanics deserve increased study in a general population.

  10. Bradbury Science Museum

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  11. From biofuels to predicting the flu

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  12. Bradbury

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  13. Institute for Materials Science

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryInstitute for Materials Science Incubate - Innovate - Integrate Los Alamos National Laboratory Institute for Materials educational center in NSEC focused on fostering the advancement of materials science at Los Alamos National

  14. Apply

    Science.gov Websites

    linkedin facebook Twitter YouTube Twitter Content Apply now » Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Laboratory Delivering Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Alamos Collaboration

  15. Climate change and the Arctic

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  16. Regional Economic Development

    Science.gov Websites

    Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation key programs to achieve regional technology commercialization from Los Alamos. The programs below help

  17. Research Capabilities

    Science.gov Websites

    Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation . thumbnail of Energy and Subsurface Laura Barber, Business Development Laura Barber Energy: Los Alamos is

  18. Richard P. Feynman Center for Innovation

    Science.gov Websites

    Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation self-healing, self-forming mesh network of long range radios. READ MORE supercomputer Los Alamos

  19. The Shock and Vibration Digest. Volume 18, Number 7

    DTIC Science & Technology

    1986-07-01

    long-term dynamic irregularity of a soluble Los Alamos, NM, July 21-23, 1981 quantum mechanical model known as the Jaynes - Cummings model . The analysis...substructure models are obtained % substructure computation can be performed by approximating each state space vector as a independently of the other...Non- and rotational residual flexibilities at the inter- linear joint behavior is modeled by an equivalent face. Data were taken in the form of

  20. Introduction to Violent Sun-Earth Connection Events of October-November 2003

    DTIC Science & Technology

    2005-09-30

    of i with the largest energy extractable from the huge associ- Novemberactions whonsiderimpothe omnic ated active regions. A plot summarizing solar...Geotail/EPIC and Los Alamos, NM 87545, USA. 6 of 6 Form Approved REPORT DOCUMENTATION PAGE "OMB No. 0704-0188 Public reporting burden for this...ES) 10. SPONSORIMONITOR’S ACRONYM(S) AFRL/VSBXS 11. SPONSORIMONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION I AVAILABILITY STATEMENT Approved for Public

  1. Inner Radiation Belt Representation of the Energetic Electron Environment: Model and Data Synthesis Using the Salammbo Radiation Belt Transport Code and Los Alamos Geosynchronous and GPS Energetic Particle Data

    NASA Technical Reports Server (NTRS)

    Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.

    2004-01-01

    The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.

  2. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improvedmore » designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the

  3. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, Brian J.; Rafael, M.-C.

    2009-01-01

    BBecause vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and field trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cutting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG.

  4. Kinetics of Bacteriophage λ Deoxyribonucleic Acid Infection of Escherichia coli

    PubMed Central

    Barnhart, Benjamin J.

    1965-01-01

    Barnhart, Benjamin J. (Los Alamos Scientific Laboratory, University of California, Los Alamos, N.M.). Kinetics of bacteriophage λ deoxyribonucleic acid infection of Escherichia coli. J. Bacteriol. 90:1617–1623. 1965.—The kinetics of Escherichia coli K-12 infection by phage λ deoxyribonucleic acid (DNA) were determined. An initial lag of 55 to 80 sec was found to be the time required for infecting DNA to become deoxyribonuclease-insensitive at 33 C. When cell-DNA interactions were stopped by washing away unbound DNA, the already bound DNA continued to infect the cell at rates described by linear kinetics with no apparent lag. Whereas the lag period was relatively insensitive to DNA and cell concentrations, both the lag and the subsequent linear portions of the rate curves were temperature-sensitive. Cell and DNA dose-response curves prescribed hyperbolic functions. Similarities between λ DNA infection of E. coli and bacterial transformation systems are discussed. PMID:5322721

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mariann R.; Clow, Shandra Deann

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  6. The Role of Congress in the Strategic Posture of the United States, 1942-1960, Manhattan Project to the New Look

    DTIC Science & Technology

    2010-05-01

    infrastructure at Los Alamos, Argonne, Oak Ridge, Hanford and elsewhere. But of equal or greater significance for the future strategic posture was the role...nuclear laboratories and defense industrial infrastructure at Los Alamos, Argonne, Oak Ridge, Hanford and elsewhere would design, test, and build...conferences which I attended at Washington, Los Alamos, Argonne, Hanford , and elsewhere, is written in sincere hopes of being helpful to you.... Those

  7. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair

  8. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.; Malkowski, K.; Joachimski, M.M.

    2009-01-01

    At Hancock Summit West, Nevada, western USA, uppermost Givetian (upper Middle Devonian) and lower and middle Frasnian (lower Upper Devonian) rocks of the lower Guilmette Formation include, in stratigraphic sequence, carbonate-platform facies of the conodont falsiovalis, transitans, and punctata Zones; the type Alamo Breccia Member of the middle punctata Zone; and slope facies of the punctata and hassi Zones. The catastrophically deposited Alamo Breccia and related phenomena record the ~ 382??Ma Alamo event, produced by a km-scale bolide impact into a marine setting seaward of an extensive carbonate platform fringing western North America. Re-evaluation of conodonts from the lower Guilmette Formation and Alamo Breccia Member, together with regional sedimentologic and conodont biofacies comparisons, now firmly locates the onset of the Johnson et al. (1985) transgressive-regressive (T-R) cycle IIc, which occurred after the start of the punctata Zone, within a parautochthonous megablock low in the Alamo Breccia. Whole-rock carbon isotope analyses through the lower Guilmette Formation and Alamo Breccia Member reveal two positive ??13Ccarb excursions: (1) a small, 3??? excursion, which is possibly correlative with the falsiovalis Event previously identified from sections in Western Europe and Australia, occurs below the breccia in the Upper falsiovalis Zone to early part of the transitans Zone; and (2) a large, multi-part excursion, dominated by a 6??? positive shift, begins above the start of the punctata Zone and onset of T-R cycle IIc and continues above the Alamo Breccia, ending near the punctata- hassi zonal boundary. This large excursion correlates with the punctata Event, a major positive ??13C excursion previously recognized in eastern Laurussia and northern Gondwana. Consistent with previous studies, at Hancock Summit West the punctata Event is apparently not associated with any regional extinctions or ecosystem reorganizations. In the study area, onset of the

  9. The Coordinated Noninvasive Studies (CNS) Project. Phase 1. Appendices

    DTIC Science & Technology

    1991-12-01

    34Bandwidth of three-element patterns and its effect on relative ear advantages," to Acoustical Society of America, Cincinnati. Abstract: J Acoust Soc Amer...Acoustical Society of America, Cincinnati. Abstract: J Acoust Soc Amer 73: S60. "Cerebral metabolic effects of auditory stimulation," to Brain Breakfast...Laboratory, Los Alamos NM. "PET and the cortex: the effects of auditory stimulation on cerebral blood flow," to Department of Speech and Hearing Sciences

  10. 47 CFR 15.712 - Interference protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....1 10-30 meters 14.4 0.74 (b) TV translator, Low Power TV (including Class A) and Multi-channel Video... Telescope Array 121 28 24 W 40 49 04 N Arecibo Observatory 066 45 11 W 18 20 46 N Green Bank Telescope (GBT... 07 07 W 34 18 04 N Kitt Peak, AZ 111 36 42 W 31 57 22 N Los Alamos, NM 106 14 42 W 35 46 30 N Ft...

  11. The Sound of Freedom. Naval Weapons Technology at Dahlgren, Virginia, 1918-2006

    DTIC Science & Technology

    2006-01-01

    the TRINITY device, before later succeeding J. Robert Oppenheimer as the director of Los Alamos National Laboratory. Other former Dahlgren...and the Computer (Cambridge, Mass.: The MIT Press, 1999); Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE...Minutes of Advisory Council. 3. Ibid. 4. Ibid.; Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE Computer

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, Miranda Huang

    Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52- 06NA25396. Los Alamos is a mission-centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and engineering for both government and private customers. LANS is opening this formal Request for Information (RFI) to gauge interest in engaging as an industry partner to LANS for collaboration in advancing the bio-assessment platform described below. Please see last section for details on submitting a Letter ofmore » Interest.« less

  13. Determination of the Shock Properties of Ceramic Corbit 98: 98% Alumina

    DTIC Science & Technology

    2010-06-01

    sapphire or aluminum. A single stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used...stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used a higher performance gun...Gigapascals, one billion pascals of pressure or force per unit area HEL Hugoniot elastic limit LANL Los Alamos National Lab mm Millimeter, or one

  14. Electronic Information Management for PfP Nations (La gestion electronique des informations pour les pays du PfP)

    DTIC Science & Technology

    2003-04-01

    such repositories containing electronic information sources that can be used for academic research. The Los Alamos Physics Archive, providing access to...Pinfield, Gardner and MacColl. 2002). The first e-print server was the Los Alamos Physics Archive, presently known as arXiv.org, which was created in 1991...by Ginsparg (Ginsparg 1996; Luce 2001; McKiernan 2000) at the Los Alamos National Laboratory, to give access to pre-prints in the domain of high

  15. Engineering Design Handbook. Explosions in Air. Part One

    DTIC Science & Technology

    1974-07-15

    Characteristics in the 6. R. E. Shear, Detonation Properties of Calculation of Non-Steady Compressible Pentolite, BRL Rept. No. 1159, 1961. Flows, Los Alamos ...6 (June 1955). Particle-and-Force Method, Los Alamos Sci. Lab., LA 3144, September 1964. 19. H. L Brode, Point Source Explosion in Air, The Rand Corp...RM-1824-AEC, 29. F. H. Harlow and B. D. Meixner, The December 3, 1956. Particle-and-Force Computing Method in Fluid Dynamics, Los Alamos Scientific

  16. The Origin and Evolution of U.S. Naval Strategic Nuclear Policy to 1960

    DTIC Science & Technology

    1986-12-01

    program at Los Alamos that would actually build the bomb. Groves named Captain William S. Parsons who had graduated in 1922 from Annapolis and later from...the Naval Postgraduate School. Parsons went to Los Alamos after having worked extensively in developing and fleet testing proximity fuses. Upon his...arrival at the security gate of Los Alamos the dearth of naval personnel at work on the project contributed to his arrest by the guard on duty. The

  17. History of the Naval Weapons Center, China Lake, California. Volume 2 The Grand Experiment at Inyokern

    DTIC Science & Technology

    1978-01-01

    32. Ibid. 33. Unpublished narrative histories , U.S. Na\\ ii Administration in World War 11, Cominandant, Eleventh Naval District, 1943 - 1945 ...A-bomb inventory arose, there would be no doubt about the substance of the word. "Hnouuhl" THt LOS ALAMOS CONN LCI ION When the histories ol...then known as the Manhattan Project, at Los Alamos . New Mexico. Although Los Alamos was started exactly a year before NO IS tat the end ol l’M2

  18. Nonlinear Behavior in Optical and Other Systems

    DTIC Science & Technology

    1987-09-01

    6b OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION University of Arizona J I pCb)AFOSR/NM 6c. ADDRESS (Orr Stat. and 11P Code) 7b ADDRIESS (City Stew ...Abel Klein Stanford UC Irvine Francois Delyon Robert Knapp tcole Polytechnique Courant Institute Charles Doering Willis E. Lamb , Jr. Los Alamos...Casperson W. E. Lamb , Jr. Portland State University University of Arizona M. Cohen M. Lax NMSU City College of the CUNY K. Druhl B. LeMesurier

  19. Constraining Line-of-sight Confusion in the Corona Using Linearly Polarized Observations of the Infrared FeXIII 1075nm and SiX 1430nm Emission Lines

    NASA Astrophysics Data System (ADS)

    Dima, G. I.; Kuhn, J. R.; Berdyugina, S.

    2017-12-01

    Measurements of the coronal magnetic field are difficult because of the intrinsically faint emission of coronal plasma and the large spurious background due to the bright solar disk. This work addresses the problem of resolving the confusion of the line-of-sight (LOS) integration through the optically-thin corona being observed. Work on developing new measuring techniques based on single-point inversions using the Hanle effect has already been described (Dima et al. 2016). It is important to develop a technique to assess when the LOS confusion makes comparing models and observations problematic. Using forward integration of synthetic emission through magnetohydrodynamic (MHD) models together with simultaneous linearly polarized observations of the FeXIII 1075nm and SiX 1430nm emission lines allows us to assess LOS confusion. Since the lines are both in the Hanle saturated regime their polarization angles are expected to be aligned as long as the gas is sampling the same magnetic field. If significant contributions to the emission is taking place from different regions along the LOS due to the additive nature of the polarized brightness the measured linear polarization between the two lines will be offset. The size of the resolution element is important for this determination since observing larger coronal regions will confuse the variation along the LOS with that in the plane-of-sky. We also present comparisons between synthetic linearly polarized emission through a global MHD model and observations of the same regions obtained using the 0.5m Scatter-free Observatory for Limb Active Regions and Coronae (SOLARC) telescope located on Haleakala, Maui. This work is being done in preparation for the type of observations that will become possible when the next generation 4m DKIST telescope comes online in 2020.

  20. Research Library

    Science.gov Websites

    Los Alamos National Laboratory Research Library Search Site submit Contact Us | Remote Access | Subject Guides Los Alamos National Laboratory Menu Contacts Remote Catalog About Awards Electronic Public Research Library: delivering essential knowledge services for national security sciences since 1947 Los

  1. Photos

    Science.gov Websites

    Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los

  2. Newsroom

    Science.gov Websites

    Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los

  3. The role of configuration interaction in the LTE opacity of Fe

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, David; Magee, Norm; Armstrong, Gregory; Abdallah, Joe; Sherrill, Manolo; Fontes, Christopher; Zhang, Honglin; Hakel, Peter

    2013-05-01

    The Los Alamos National Laboratory code ATOMIC has been recently used to generate a series of local-thermodynamic-equilibrium (LTE) light element opacities for the elements H through Ne. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. Recent efforts have resulted in comprehensive new calculations of the opacity of Fe. In this presentation we explore the role of configuration interaction (CI) in the Fe opacity, and show where CI influences the monochromatic opacity. We present such comparisons for conditions of astrophysical interest. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  4. Evolving forest fire burn severity classification algorithms for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.

    2001-08-01

    Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

  5. Commission on Protecting and Reducing Government Secrecy.

    DTIC Science & Technology

    1997-03-03

    just four years after the first American test. As will be discussed, we had learned of the Los Alamos spies in December 1946-December 20, to be precise...destroyed Nagasaki in August 1945 . Now the stakes were raised. This sequence was described in a lecture by Hans Bethe, "My Road From Los Alamos ," given at...would be episodic successes in the years to come, but none equal to earlier feats. New York of the 1930s. Los Alamos . Some unions. The State Department

  6. Los Alamos science, Number 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  7. Los Alamos National Laboratory: Phonebook

    Science.gov Websites

    Phonebook DexOnline DOE More Phonebooks Enter a name or email address. SEARCH TIPS: Search by name e.g. John or Doe or John Doe . This directory is U.S. Government property, published for the official business

  8. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, J.C.

    1981-09-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.

  9. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haarmann, T.K.; Fresquez, P.R.

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 239,240}Pu, {sup 3}H, and total uranium. Sample results from one colony were higher than the upper (95%) level background concentration for {sup 238}Pu.

  10. A Year of Programming.

    DTIC Science & Technology

    1987-01-01

    ramgopal@im4u.utexas.edu (606)- 262 -0765 30 University of Texas Institute of Encapsulation, Modularization, TEXAS Year of Programming and Reusability Austin...Mathematics University of Maryland White Hall College Park, MD 20742 Ithaca, NY 14853 den@brillig.umd.edu 607-255- 4640 301-454-1516 Mr. Lars W. Ericson Mr...Bedford, MA 01730 Mail Stop B2% farmer%faron@mitre-bedford.ARPA Los Alamos, NM 87545 617- 271 -2749 jhf@lanl.gov 505-667-7158 Ms. Amy Felty Mr. Arthur

  11. A Manual for the Prediction of Blast and Fragment Loadings on Structures

    DTIC Science & Technology

    1981-08-01

    H. and Amsden, A. A., "Fluid Dynamics---An Introductory 4100, Los Alamos Scientific Laboratory, University of California, New Mexico, February 1970...Navy Explosives Safety Board, "The Missile Hazard from Explosions," Technical Paper No. 2, ,December 1945 . Arvidsson, T. and Eriksson, L... Alamos Scientific Laboratory, Los Alamos , New-Mexico, June 1975. "Behavior and Utilization of Explosives in Engineering Design and Biomechda-. ical

  12. Total Quality Management and nuclear weapons: A historian`s perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  13. Stormwater Pollution Prevention Plan TA-60 Asphalt Batch Plant Revision 2: January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Leonard Frank

    The Stormwater Pollution Prevention Team (PPT) is applicable to operations at the Technical Area (TA)- 60 Asphalt Batch Plant (ABP) located on Eniwetok Drive/Sigma Mesa, in Los Alamos County, New Mexico at Los Alamos National Laboratory (LANL).

  14. Dissolved pesticides in the Alamo River and the Salton Sea, California, 1996-97

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Kuivila, Kathryn; Bergamaschi, Brian A.

    2002-01-01

    Water samples were collected from the Alamo River and the Salton Sea, California, in autumn 1996 and late winter/early spring 1997 and analyzed for dissolved pesticides. The two seasons chosen for sampling were during pesticide application periods in the Imperial Valley. Pesticide concentrations were measured in filtered water samples using solid-phase extraction and analyzed by gas chromatography/mass spectrometry. Generally, the highest concentrations were measured in the Alamo River. The concentrations of carbaryl, chlorpyrifos, cycloate, dacthal, diazinon, and eptam were highest in samples collected in autumn 1996. In contrast, the concentrations of atrazine, carbofuran, and malathion were highest in samples collected in late winter/early spring 1997. The highest concentrations measured of atrazine, carbofuran, dacthal, eptam, and malathion all exceeded 1,000 nanograms per liter.

  15. Fate and transport of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its degradation products in sedimentary and volcanic rocks, Los Alamos, New Mexico.

    PubMed

    Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim; Ware, Doug S; Marina, Oana; Perkins, George; Vesselinov, Velimir V; WoldeGabriel, Giday

    2017-09-01

    High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extent of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d ) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Results also showed no measurable differences between the transport properties of RDX and its degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fate and transport of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its degradation products in sedimentary and volcanic rocks, Los Alamos, New Mexico

    DOE PAGES

    Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim; ...

    2017-05-02

    High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extentmore » of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments in this paper were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Finally, results also showed no measurable differences between the transport properties of RDX and its degradation products.« less

  17. Fate and transport of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its degradation products in sedimentary and volcanic rocks, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim

    High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extentmore » of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments in this paper were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Finally, results also showed no measurable differences between the transport properties of RDX and its degradation products.« less

  18. 75 FR 60745 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos...

  19. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  20. Radionuclide concentrations in honey bees from Area G at TA-54 during 1997. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haarmann, T.K.; Fresquez, P.R.

    Honey bees were collected from two colonies located at Los Alamos National Laboratory`s Area G, Technical Area 54, and from one control (background) colony located near Jamez Springs, NM. Samples were analyzed for the following: cesium ({sup 137}Cs), americium ({sup 241}Am), plutonium ({sup 238}Pu and {sup 239,240}Pu), tritium ({sup 3}H), total uranium, and gross gamma activity. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 238}Pu and {sup 3}H.