Science.gov

Sample records for low energy transitions

  1. Exchange and relaxation effects in low-energy radiationless transitions

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1978-01-01

    The effect on low-energy atomic inner-shell Coster-Kronig and super Coster-Kronig transitions that is produced by relaxation and by exchange between the continuum electron and bound electrons was examined and illustrated by specific calculations for transitions that deexcite the 3p vacancy state of Zn. Taking exchange and relaxation into account is found to reduce, but not to eliminate, the discrepancies between theoretical rates and measurements.

  2. Internal Conversion Coefficients for Low-Energy Nuclear Transitions

    NASA Astrophysics Data System (ADS)

    Band, I. M.; Trzhaskovskaya, M. B.

    1993-09-01

    Presented here are calculated internal conversion coefficients (ICCs) of gamma rays for 35 observed low-energy nuclear transitions having Eγ ≲ 3 keV. Additionally, the ICCs for 24 high-multipole-order transitions which have been measured extensively are also given. The ICC calculations have been performed using Dirac-Fock electron wave functions, the exchange terms of the Dirac-Fock equations being included wthout any approximations both for the interaction between bound electrons and the interaction between bound and free electrons. Our previous studies have shown that the Dirac-Fock method allows ICC values to be obtained in best agreement with experimental data.

  3. Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing

    NASA Astrophysics Data System (ADS)

    Nosonovsky, Michael; Bhushan, Bharat

    2008-10-01

    The concept of superhydrophobicity was introduced in the 1990s as a result of the investigation of the microstructure of extremely water-repellent plant leaves. Since that time, artificial superhydrophobic surfaces have been developed and implemented, stimulated by advances in nanotechnology, and giving one of the most successful examples of a bio-inspired technology transferred into engineering applications. Superhydrophobicity is usually defined as the ability of a surface to have (i) a very high water contact angle (CA) and (ii) low CA hysteresis. Here we argue that the ability of a water droplet to bounce off a surface constitutes a third property that is crucial for applications. Furthermore, this property is naturally related to the first two properties, since the energy barriers separating the 'sticky' and 'non-sticky' states needed for bouncing droplets have the same origin as those needed for high CA and for low CA hysteresis.

  4. Energy at the Frontier: Low Carbon Energy System Transitions and Innovation in Four Prime Mover Countries

    NASA Astrophysics Data System (ADS)

    Araujo, Kathleen M.

    All too often, discussion about the imperative to change national energy pathways revolves around long timescales and least cost economics of near-term energy alternatives. While both elements certainly matter, they don't fully reflect what can drive such development trajectories. This study explores national energy transitions by examining ways in which four prime mover countries of low carbon energy technology shifted away from fossil fuels, following the first global oil crisis of 1973. The research analyzes the role of readiness, sectoral contributions and adaptive policy in the scale-up and innovations of advanced, alternative energy technologies. Cases of Brazilian biofuels, Danish wind power, French nuclear power and Icelandic geothermal energy are analyzed for a period of four decades. Fundamentally, the research finds that significant change can occur in under 15 years; that technology complexity need not necessarily impede change; and that countries of different governance approaches and consumption levels can effectuate such transitions. This research also underscores that low carbon energy technologies may be adopted before they are competitive and then become competitive in the process. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  5. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  6. Low-energy description of the metal-insulator transition in the rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Subedi, Alaska; Peil, Oleg E.; Georges, Antoine

    2015-02-01

    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and Hund's coupling J , the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of interaction parameters. Furthermore, we find that when U -3 J is small or negative, a spontaneous instability to bond disproportionation takes place for large enough J . This minimal theory emphasizes that a small or negative charge-transfer energy, a large Hund's coupling, and a strong coupling to bond disproportionation are the key factors underlying the transition. Experimental consequences of this theoretical picture are discussed.

  7. Low-Energy Asteroid and Comet Transit Analysis using Isolating Blocks

    NASA Astrophysics Data System (ADS)

    Anderson, Rodney L.; Chodas, Paul; Easton, Robert W.; Lo, Martin W.

    2016-05-01

    It is well known that asteroids and comets typically capture or transit near a planet by traveling through the L1 and L2 libration point gateways. These regions are therefore key to understanding the mechanism by which these captures, transits, and potential impacts occur. Recently, Anderson, Easton, and Lo (2015) explored the L2 region in the Earth-Moon system using isolating blocks in the circular restricted three-body problem (CRTBP). Isolating blocks provide a theoretically rigorous method for computing the invariant manifolds of libration point periodic orbits and all possible transit trajectories at a particular Jacobi constant in the CRTBP. Using isolating block methods allows us to directly compute and study the transit trajectories used by comets and asteroids in the low-energy regimes common for these types of bodies. In this study, both L1 and L2 isolating blocks are computed for the Sun-Earth and Sun-Jupiter CRTBP systems to compute trajectories transiting near the Earth and Jupiter. Statistics based on transit time, periapse passages, and exit location are first computed. Then individual trajectory solutions corresponding to different trajectory types are analyzed. The transit trajectories are also characterized using their orbital elements and compared to known comets and asteroids. These results show that the invariant manifolds of the orbits in the isolating block control and guide the dynamics of comets and asteroids as they temporarily capture between the L1 and L2 region of a planet or satellite.Reference: Anderson, R. L., R. W. Easton, M. W. Lo (2015), AAS/AIAA Astrodynamics Conf., AAS 15-615.

  8. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Sinha, Chandana

    2009-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  9. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  10. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. PMID:23020369

  11. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  12. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    NASA Astrophysics Data System (ADS)

    Hirano, Y.; Kiyama, S.; Fujiwara, Y.; Koguchi, H.; Sakakita, H.

    2015-11-01

    A high current density (≈3 mA/cm2) hydrogen ion beam source operating in an extremely low-energy region (Eib ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when Eib is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  13. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge. PMID:26628125

  14. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  15. Rotational transitions induced by collisions of HD+ ions with low-energy electrons

    NASA Astrophysics Data System (ADS)

    Motapon, O.; Pop, N.; Argoubi, F.; Mezei, J. Zs; Epee, M. D. Epee; Faure, A.; Telmini, M.; Tennyson, J.; Schneider, I. F.

    2014-07-01

    A series of computations based on multichannel quantum defect theory have been performed in order to produce the cross sections of rotational transitions (excitations Ni+-2→ Ni+, deexcitations Ni+ → Ni+-2, with Ni+=2 to 10) and of their competitive process, the dissociative recombination, induced by collisions of HD+ ions with electrons in the energy range 10-5 to 0.3 eV. Maxwell anisotropic rate coefficients, obtained from these cross sections in the conditions of the Heidelberg Test Storage Ring (TSR) experiments (kBTt=2.8 meV and kBTl=45 μeV), have been reported for those processes in the same electronic energy range. Maxwell isotropic rate coefficients have been presented as well for electronic temperatures up to a few hundred Kelvins. Very good overall agreement is found between our results for rotational transitions and the former theoretical computations as well as with experiment. Furthermore, due to the full rotational computations performed, the accuracy of the resulting dissociative recombination cross sections is improved considerably.

  16. Land use impacts of low-carbon energy system transition - the case of UK bioenergy deployment under the Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Lupton, R.; Skelton, S.

    2015-12-01

    The UK Department of Energy and Climate Change has developed four low-carbon energy transition pathways - the Carbon Plan - towards achieving the legally binding 80% territorial greenhouse gas emissions reduction, stipulated in the 2008 Climate Change Act by 2050. All the pathways require increase in bioenergy deployment, of which a significant amount could be indigenously sourced from crops. But will increased domestic production of energy crops conflict with other land use and ecosystem priorities? To address this question, a coupled analysis of the four energy transition pathways and land use has been developed using an integrated resource accounting platform called ForeseerTM. The two systems are connected by the bioenergy component, and are projected forward in time to 2050, under different scenarios of energy crop composition and yield, and accounting for various constraints on land use for agriculture and ecosystem services. The results show between 7 and 61% of UK agricultural land could be required to meet bioenergy deployment projections under different combinations of crop yield and compositions for the transition pathways. This could result in competition for land for food production and other socio-economic and ecological land uses. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.

  17. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  18. Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein.

    PubMed

    Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito

    2016-02-01

    Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition. PMID:26766583

  19. Measurement of the Spectral Distribution of Low Energy Electrons emitted as a result of MVV Auger Transition in Cu(100)

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Joglekar, P. V.; Shastry, K.; Weiss, A. H.; Hulbert, S. L.

    2011-10-01

    Auger Photoelectron Coincidence Spectroscopy (APECS) was used to investigate the physics of the Low Energy tail (LET) region of the Auger spectrum of a Cu (100) sample. A beam of 200eV photons was incident on the sample and two Cylindrical Mirror Analyzers (CMA's) were used to select the energy of electrons emitted from the sample. An APECS spectra was obtained with one of the CMA's fixed at the energy 136.25eV, which corresponds to the core photoemission peak. The APECS spectra contains the contributions from electrons excited by the MVV Auger transition plus a background due to true coincidences between photo-emitted valence band electrons that undergo inelastic scattering and transfer part of their energy with other valence electrons. Coincidence measurements were made with the fixed analyzer set at various energies between the core and the valence band. These measurements were used to obtain an estimate of the background due to the inelastically scattered valence band electrons.

  20. Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua

    NASA Astrophysics Data System (ADS)

    Barido, Diego Ponce de Leon; Johnston, Josiah; Moncada, Maria V.; Callaway, Duncan; Kammen, Daniel M.

    2015-10-01

    The global carbon emissions budget over the next decades depends critically on the choices made by fast-growing emerging economies. Few studies exist, however, that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Here, we use Nicaragua as a case study to highlight the importance of high-resolution open access data and modeling platforms to evaluate fuel-switching strategies and their resulting cost of power under realistic technology, policy, and cost scenarios (2014-2030). Our results suggest that Nicaragua could cost-effectively achieve a low-carbon grid (≥80%, based on non-large hydro renewable energy generation) by 2030 while also pursuing multiple development objectives. Regional cooperation (balancing) enables the highest wind and solar generation (18% and 3% by 2030, respectively), at the least cost (US127 MWh-1). Potentially risky resources (geothermal and hydropower) raise system costs but do not significantly hinder decarbonization. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices. Nicaragua’s options illustrate the opportunities and challenges of power system decarbonization for emerging economies, and the key role that open access data and modeling platforms can play in helping develop low-carbon transition pathways.

  1. Inducing phase transitions of T-like BiFeO3 films by low-energy He implantation

    NASA Astrophysics Data System (ADS)

    Herklotz, Andreas; Beekman, Christianne; Rus, Stefania Florina; Ivanov, Ilia; Balke, Nina; Ward, Thomas Zac

    Ferroelectric phase transitions of BiFeO3 are found to be controllable through the application of single axis, out-of-plane strain. Low-energy He implantation has been deployed to induce out-of-plane strain in T-like BFO films, while the compressive in-plane strain due to the coherent growth on LaAlO3 substrates remains fixed. Our data shows that He implantation triggers a MC -MA - T phase sequence of the T polymorph that is identical to structural changes that are induced with increasing temperature. Mixed phases nanodomains phases are gradually suppressed and disappear above a certain He doping level. Our data shows that the ferroelectric and optical properties of BiFeO3 films critically depend on the He doping level. Thus, the results demonstrates that He implantation can be used as an intriguing approach to study lines in the rich phase space of BFO films that can't be accessed by simple heteroepitaxy. This effort was wholly supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division, with user projects supported at ORNL's Center for Nanophase Materials Research (CNMS) which is also sponsored by DOE-BES.

  2. Low energy cyclotron production of multivalent transition metals for PET imaging and therapy

    NASA Astrophysics Data System (ADS)

    Avila-Rodriguez, Miguel Angel

    Recent advances in high-resolution tomographs for small animals require the production of nonconventional long-lived positron emitters to label novel radiopharmaceuticals for PET-based molecular imaging. Radioisotopes with an appropriate half life to match the kinetics of slow biological processes will allow to researchers to study the phamacokinetics of PET ligands over several hours, or even days, on the same animal, with the injection of a single dose. In addition, radionuclides with a suitable half life can potentially be distributed from a central production site making them available in PET facilities that lack an in-house cyclotron. In the last few years there has been a growing interest in the use of PET ligands labeled with radiometals, particularly isotopes of copper, yttrium and zirconium. Future clinical applications of these tracers will require them to be produced reliably and efficiently. This thesis work deals with implementing and optimizing the production of the multivalent transition metals 61,64Cu, 86Y and 89Zr for molecular PET imaging and therapy. Our findings in the production of these radionuclides at high specific activity on an 11 MeV proton-only cyclotron are presented. Local applications of these tracers, including Cu-ATSM for in vivo quantification of hypoxia, synthesis of targeted radiopharmaceuticals using activated esters of DOTA, and a novel development of positron emitting resin microspheres, are also be discussed. As a result of this thesis work, metallic radionuclides are now efficiently produced on a weekly basis in sufficient quality and quantity for collaborating scientists at UW-Madison and external users in other Universities across the country.

  3. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43.

    PubMed

    Hall, Jeremy; Renger, Thomas; Picorel, Rafael; Krausz, Elmars

    2016-01-01

    Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions. PMID:26449206

  4. Interplay between low-energy optical phonon modes and structural transition in PrT2Zn20 (T=Ru and Ir)

    NASA Astrophysics Data System (ADS)

    Wakiya, K.; Onimaru, T.; Tsutsui, S.; Matsumoto, K. T.; Nagasawa, N.; Baron, A. Q. R.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Takabatake, T.

    2015-03-01

    Atomic dynamics of PrT2Zn20 for T=Ru with a structural transition at Ts=138 K and T=Ir without such a transition have been studied by inelastic X-ray scattering (IXS) measurements. The IXS spectra for T=Ru reveal an optical phonon excitation at 3 meV. We assign it to low-energy vibration of the Zn atom at the 16c site by taking account of the first principles calculation [Hasegawa et al. 2012 J. Phys.: Conf. Proc. 391 012016]. For T=Ir, on the other hand, the optical excitation at 3 meV was not observed. The contrasting results indicate that the low-energy optical phonon mode has a role in the structural transition in PrRu2Zn20 and isostructural La counterparts.

  5. Low floor mass transit vehicle

    DOEpatents

    Emmons, J. Bruce; Blessing, Leonard J.

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  6. Low-lying electronic states of the OH radical: Potential energy curves, dipole moment functions, and transition probabilities

    NASA Astrophysics Data System (ADS)

    Qin, X.; Zhang, S. D.

    2014-12-01

    The six doublet and the two quartet electronic states (2Σ+(2), 2Σ-, 2Π(2), 2Δ, 4Σ-, and 4Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X2Π and A2Σ+ of OH are predicted by numerical solving the radial Schrödinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X2Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A2Σ+-X2Π transition are discussed and compared with existing experimental values.

  7. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation

    NASA Astrophysics Data System (ADS)

    Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R. A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K.

    2015-09-01

    Ion irradiation induced modifications of the thermomagnetic properties of equiatomic FeRh thin films have been investigated. The application of 20 keV Ne+ ions at different fluencies leads to broadening of the antiferromagnetic to ferromagnetic phase transition as well as a shift of the transition temperature towards lower temperatures with increasing ion fluence. Moreover, the ferromagnetic background at low temperatures generated by the ion irradiation leads to pronounced saturation magnetisation at 5 K. Complete erasure of the transition, i.e. ferromagnetic ordering through the whole temperature regime was achieved at a Ne+ fluence of 3 × 1014 ions/cm2. It does not coincide with the complete randomization of the chemical ordering of the crystal lattice.

  8. Polarization correlations for electron-impact excitation of the resonant transitions of Ne and Ar at low incident energies

    NASA Astrophysics Data System (ADS)

    Hargreaves, L. R.; Campbell, C.; Khakoo, M. A.; McConkey, J. W.; Zatsarinny, O.; Bartschat, K.; Stauffer, A. D.; McEachran, R. P.

    2013-02-01

    The electron-polarized-photon coincidence method is used to determine linear and circular polarization correlations in vacuum ultraviolet (VUV) for the differential electron-impact excitation of neon and argon resonance transitions at impact energies of 25 and 30 eV at small scattering angles up to 40°. The circular polarization correlation is found to be positive in the case of Ne at 25 eV and supports the prediction of the present B-spline R-matrix theory concerning the violation of a long-established propensity rule regarding angular momentum transfer in electron-impact excitation of S→P transitions. Comparisons with the results from the present relativistic distorted-wave approximation and an earlier semirelativistic distorted-wave Born model are also made. For the case of Ar, at 25 and 30 eV, the circular polarization measurements remain in agreement with theory, but provide limited evidence as to whether or not the circular polarization at small scattering angles is also positive. For the linear polarizations, much better agreement with theory is obtained than in earlier measurements carried out by S. H. Zheng and K. Becker [Z. Phys. DZDACE20178-768310.1007/BF01436735 23, 137 (1992); J. Phys. BJPAMA40022-370010.1088/0953-4075/26/3/022 26, 517 (1993)].

  9. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  10. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy (229)Th Nuclear Isomeric Transition.

    PubMed

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-06-26

    We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600)  s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches. PMID:26197124

  11. European transition to a low carbon electricity system using a mix of variable renewable energies: carbon saving trajectories as functions of production and storage capacity.

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Creutin, Jean-Dominique

    2016-04-01

    Today, most of the produced energy is generated from fossil energy sources (i.e. coal, petroleum). As a result, the energy sector is still the main source of greenhouse gas in the atmosphere. For limiting greenhouse gas emission, a transition from fossil to renewable energy is required, increasing gradually the fraction energy coming from variable renewable energy (i.e. solar power, wind power and run-of-the river hydropower, hereafter denoted as VRE). VRE penetration, i.e. the percentage of demand satisfied by variable renewables assuming no storage capacity, is hampered by their variable and un-controllable features. Many studies show that combining different VRE over space smoothes their variability and increases their global penetration by a better match of demand fluctuations. When the demand is not fully supplied by the VRE generation, backup generation is required from stored energy (mostly from dams) or fossil sources, the latter being associated with high greenhouse gas emission. Thus the VRE penetration is a direct indicator of carbon savings and basically depends on the VRE installed capacity, its mix features, and on the installed storage capacity. In this study we analyze the European transition to a low carbon electricity system. Over a selection of representative regions we analyze carbon saving trajectories as functions of VRE production and storage capacities for different scenarios mixing one to three VRE with non-renewables. We show substantial differences between trajectories when the mix of sources is far from the local optimums, when the storage capacity evolves. We bring new elements of reflection about the effect of transport grid features from local independent systems to a European "copper plate". This work is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/).

  12. Examining the low energy electrodynamics of the superconductor-insulator transition in the potential topological superconductor Tl4(Tl1-xSnx)Te3

    NASA Astrophysics Data System (ADS)

    Laurita, N. J.; Arpino, K. A.; Koopayeh, S. M.; McQueen, T. M.; Armitage, N. P.

    The search for an intrinsic single crystal topological superconductor is one of the most dynamic areas of modern condensed matter physics. One of the best candidates of such a material is Tl5Te3 (Tc = 2 . 3 K), which previous ARPES measurements have shown possesses a Dirac cone within its superconducting gap. However, the fundamental nature of superconductivity, i.e. the superconducting order parameter, in Tl5Te3 remains unknown. Additionally, it has been shown that Tl5Te3 undergoes a superconducting-insulator transition upon doping with Sn. With no band parity inversion expected in the fully Sn doped compound one expects a topological supercondutor - trivial insulator transition, the nature of which is also unknown. In this work we use highly sensitive microwave cavity perturbation measurements, a direct probe of the superfluid density, to study the low energy electrodynamics of superconductivity in Tl5Te3 and its corresponding superconductor-insulator transition upon Sn doping. Work at Johns Hopkins was supported by the Gordon and Betty Moore Foundation through Grant GBMF2628, the DOE-BES through DE-FG02-08ER46544, and the ARCS Foundation.

  13. The Effect of Disorder on the Free-Energy for the Random Walk Pinning Model: Smoothing of the Phase Transition and Low Temperature Asymptotics

    NASA Astrophysics Data System (ADS)

    Berger, Quentin; Lacoin, Hubert

    2011-01-01

    We consider the continuous time version of the Random Walk Pinning Model (RWPM), studied in (Berger and Toninelli (Electron. J. Probab., to appear) and Birkner and Sun (Ann. Inst. Henri Poincaré Probab. Stat. 46:414-441, 2010; arXiv:0912.1663). Given a fixed realization of a random walk Y on ℤ d with jump rate ρ (that plays the role of the random medium), we modify the law of a random walk X on ℤ d with jump rate 1 by reweighting the paths, giving an energy reward proportional to the intersection time Lt(X,Y)=int0t {1}_{Xs=Ys} {d}s: the weight of the path under the new measure is exp ( βL t ( X, Y)), β∈ℝ. As β increases, the system exhibits a delocalization/localization transition: there is a critical value β c , such that if β> β c the two walks stick together for almost-all Y realizations. A natural question is that of disorder relevance, that is whether the quenched and annealed systems have the same behavior. In this paper we investigate how the disorder modifies the shape of the free energy curve: (1) We prove that, in dimension d≥3, the presence of disorder makes the phase transition at least of second order. This, in dimension d≥4, contrasts with the fact that the phase transition of the annealed system is of first order. (2) In any dimension, we prove that disorder modifies the low temperature asymptotic of the free energy.

  14. Ionization transition in low-density plasma

    SciTech Connect

    Triger, S. A.; Khomkin, A. L.; Shumikhin, A. S.

    2011-09-15

    Ionization equilibrium in low-density low-temperature plasma is considered. It is demonstrated using hydrogen and cesium as examples that the Saha equation predicts an almost jump-like change in the electron density on isochors in a narrow temperature range. Thus, in contrast to a smooth rise in the degree of ionization with increasing temperature at high plasma densities, an increase in the temperature in low-density plasma should result in a sharp transition from a neutral state to a fully ionized plasma. This transition is accompanied by a jump-like increase in the electric conductivity. The relation of these effects to the recombination transition in the model of the early Universe is discussed. The possibility of observing such a transition experimentally and the problems concerning the time of plasma relaxation into an equilibrium state at long free path lengths of plasma particles are considered.

  15. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  16. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  17. Energy Transition Initiative: Islands Playbook (Book)

    SciTech Connect

    Not Available

    2015-01-01

    The Island Energy Playbook (the Playbook) provides an action-oriented guide to successfully initiating, planning, and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels. It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.

  18. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.; Feng, J.; Fujii, K.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{bar p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  19. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.

    1995-03-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{anti p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of superparticles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. They comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  20. Low energy antiproton beams

    NASA Astrophysics Data System (ADS)

    Klapisch, R.

    1992-04-01

    It was the invention of stochastic cooling by S. Van Meer that has allowed antiproton beams to become a powerful tool for the physicist. As a byproduct of the high energy proton-antiproton collider, a versatile low-energy facility, LEAR has been operating at CERN since 1984. The facility and its characteristics will be described as well as examples of its use for studying fundamental properties of the antiproton and for topics in atomic, nuclear and particle Physics.

  1. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  2. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  3. An Institutional Approach to Understanding Energy Transitions

    NASA Astrophysics Data System (ADS)

    Koster, Auriane Magdalena

    Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change. They see an opportunity for developing countries to avoid the negative consequences fossil-fuel-based energy systems, and also to increase resilience, by leap-frogging-over the centralized energy grid systems that dominate the developed world. Energy transitions pose both challenges and opportunities. Obstacles to transitions include 1) an existing, centralized, complex energy-grid system, whose function is invisible to most users, 2) coordination and collective-action problems that are path dependent, and 3) difficulty in scaling up RE technologies. Because energy transitions rely on technological and social innovations, I am interested in how institutional factors can be leveraged to surmount these obstacles. The overarching question that underlies my research is: What constellation of institutional, biophysical, and social factors are essential for an energy transition? My objective is to derive a set of "design principles," that I term institutional drivers, for energy transitions analogous to Ostrom's institutional design principles. My dissertation research will analyze energy transitions using two approaches: applying the Institutional Analysis and Development Framework and a comparative case study analysis comprised of both primary and secondary sources. This dissertation includes: 1) an analysis of the world's energy portfolio; 2) a case study analysis of five countries; 3) a description of the institutional factors likely to promote a transition to renewable-energy use; and 4) an in-depth case study of Thailand's progress in replacing nonrenewable energy sources with renewable energy sources. My research will

  4. Energy transition in developing countries

    SciTech Connect

    Not Available

    1984-01-01

    Contents cover: The energy outlook; Energy demand management; Energy supply prospects and issues; Management of the energy sector; Financing energy investments; The role of the World Bank; Assumptions used for natural gas netback studies; and World energy indicators.

  5. X-Ray Transition Energies Database

    National Institute of Standards and Technology Data Gateway

    SRD 128 X-Ray Transition Energies Database (Web, free access)   This X-ray transition table provides the energies and wavelengths for the K and L transitions connecting energy levels having principal quantum numbers n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100, fermium. There are two unique features of this data base: (1) a serious attempt to have all experimental values on a scale consistent with the International System of measurement (the SI) and (2) inclusion of accurate theoretical estimates for all transitions.

  6. Energy Released During the H-L Back Transition

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Kolemen, E.; Gohil, P.; McKee, G. R.; Yan, Z.; Schmitz, L.

    2015-11-01

    Prompt energy loss (ΔW) at the H-L transition, as a fraction of total stored energy before the transition, is about 30 % and is insensitive to density in ITER-similar DIII-D plasmas. Occasionally, some ELMs will appear before the transition and reduce total energy, thus reducing ΔW across the following transition. Other results (not in the ITER-similar shape) have shown that ELMs can be triggered in low powered H-modes, prior to H-L transitions, when the plasma is stable to ideal P-B modes (these are not typical type-I ELMs, despite superficial similarities) and E × B shear is strong. These are indeed ELMs occurring in H-mode and not part of a dithering transition. Finally, ELM ΔW is sensitive to edge toroidal rotation and becomes smaller than uncertainty (< 5 kJ) at low rotation (ωtor < 5 krad/s). These results point to a strategy where ΔW for the H-L transition may be reduced by the presence of (not type-I) ELMs before the transition, and ΔW for the ELMs may be reduced by controlling rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  7. Exciton complexes in low dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2014-08-01

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  8. Exciton complexes in low dimensional transition metal dichalcogenides

    SciTech Connect

    Thilagam, A.

    2014-08-07

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  9. Evidence for a second-order phase transition to a low-entropy glass

    NASA Astrophysics Data System (ADS)

    Royall, C. Patrick; Turci, Francesco; Speck, Thomas

    The physics underlying the glass transition is a major outstanding. Central its solution is whether there is some kind of thermodynamic transition to a ``ideal glass'', a disordered state with extremely low entropy, or whether in principle a liquid may be supercooled to arbitrary low temperature. Among the challenges that lie in tackling the glass transition are the immense timescales involved. Computer simulation, which might otherwise be able to pick up hints of a thermodynamic transition is limited by the small time-window over which a liquid can be equilibrated. Here we address this challenge using trajectory sampling in a system undergoing a first order nonequilibrium phase transition to a glassy state rich in low-energy geometric motifs. Extrapolation to equilibrium indicates that the transition would occur at a similar temperature at which the ideal glass transition is expected from extrapolation of dynamic and thermodynamic measurements. We further reweight nonequilibrium data to equilibrium leading to configurations representative of extremely low temperature, which indicate a transition to a low energy state at the ideal glass transition temperature. We thus interpret the ideal glass transition as the lower critical endpoint of this nonequilibrium transition.

  10. Distribution of glass transition temperatures Tg in polystyrene thin films as revealed by low-energy muon spin relaxation: A comparison with neutron reflectivity results

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiji; Ogawa, Hiroki; Kishimoto, Mizuki; Inoue, Rintaro; Suter, Andreas; Prokscha, Thomas

    2015-08-01

    In a previous paper [Phys. Rev. E 83, 021801 (2011), 10.1103/PhysRevE.83.021801] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ˜100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (μ SR ) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ˜100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the μ SR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings.

  11. Distribution of glass transition temperatures Tg in polystyrene thin films as revealed by low-energy muon spin relaxation: A comparison with neutron reflectivity results.

    PubMed

    Kanaya, Toshiji; Ogawa, Hiroki; Kishimoto, Mizuki; Inoue, Rintaro; Suter, Andreas; Prokscha, Thomas

    2015-08-01

    In a previous paper [Phys. Rev. E 83, 021801 (2011)] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ∼100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (μSR) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ∼100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the μSR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings. PMID:26382423

  12. Native proteins trap high-energy transit conformations

    PubMed Central

    Brereton, Andrew E.; Karplus, P. Andrew

    2015-01-01

    During protein folding and as part of some conformational changes that regulate protein function, the polypeptide chain must traverse high-energy barriers that separate the commonly adopted low-energy conformations. How distortions in peptide geometry allow these barrier-crossing transitions is a fundamental open question. One such important transition involves the movement of a non-glycine residue between the left side of the Ramachandran plot (that is, ϕ < 0°) and the right side (that is, ϕ > 0°). We report that high-energy conformations with ϕ ~ 0°, normally expected to occur only as fleeting transition states, are stably trapped in certain highly resolved native protein structures and that an analysis of these residues provides a detailed, experimentally derived map of the bond angle distortions taking place along the transition path. This unanticipated information lays to rest any uncertainty about whether such transitions are possible and how they occur, and in doing so lays a firm foundation for theoretical studies to better understand the transitions between basins that have been little studied but are integrally involved in protein folding and function. Also, the context of one such residue shows that even a designed highly stable protein can harbor substantial unfavorable interactions. PMID:26601321

  13. Theory of low transitions in CO discharge lasers

    NASA Technical Reports Server (NTRS)

    Sidney, B. D.; Mcinuille, R. M.; Smith, N. S.; Hassan, H. A.

    1976-01-01

    A self consistent theoretical model which couples the electron and heavy particle finite rate kinetics with the optical and fluid dynamic processes has been employed to identify the various parameters and explain the mechanism responsible for producing low lying transitions in slow flowing CO lasers. It is found that lasing on low lying transitions can be achieved at low temperatures for low pressures (or low flow rates) together with high partial pressures of the He and N2. The role of N2 has been identified as an additive responsible for reducing the electron temperature to a range where the transfer of electrical power to the lower vibrational modes of CO is optimum.

  14. Prediction of Transitional Flows in the Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Huang, George; Xiong, Guohua

    1998-01-01

    Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence

  15. Low energy aspects of circular accelerators

    SciTech Connect

    Holmes, S.D.

    1990-12-01

    Performance in circular accelerators can be limited by some of the same sorts of phenomena described by Miller and Wangler in their lectures on low energy behavior in linear accelerators. In general the strength of the perturbation required to degrade performance is reduced in circular accelerators due to the repetitive nature of the orbits. For example, we shall see that space-charge can severely limit performance in circular accelerators even when operating far from the space-charge dominated regime'' as defined in linear accelerators. We will be discussing two particular aspects of low energy operation in circular accelerators -- space-charge and transition. Low energy'' is defined within the context of these phenomena. We shall see that the phenomena are really only relevant in hadron accelerators.

  16. Aspects of energy transitions: History and determinants

    NASA Astrophysics Data System (ADS)

    O'Connor, Peter A.

    Energy intensity in the U.S. from 1780 to 2010 shows a declining trend when traditional energy is included, in contrast to the "inverted U-curve" seen when only commercial energy is considered. The analysis quantifies use of human and animal muscle power, wind and water power, biomass, harvested ice, fossil fuels, and nuclear power. Historical prices are provided for many energy resources. The analysis reaffirms the importance of innovation in conversion technologies in energy transitions. An increase in energy intensity in the early 20th century is explained by diminishing returns to pre-electric manufacturing systems, which produced a transformation in manufacturing. In comparison to similar studies for other countries, the U.S. has generally higher energy intensity. A population-weighted series of heating degree days and cooling degree days partially explains differences in energy intensity. Series are developed for 231 countries and territories with multiple reference temperatures, with a "wet-bulb" series accounting for the effects of humidity. Other variables considered include energy prices, income per capita, and governance indices. A panel regression of thirty-two countries from 1995 to 2010 establishes GDP per capita and share of primary energy as determinants of energy intensity, but fails to establish statistical significance of the climate variables. A group mean regression finds average heating and cooling degree days to be significant predictors of average energy intensity over the study period, increasing energy intensity by roughly 1.5 kJ per 2005 international dollar for each annual degree day. Group mean regression results explain differences in countries' average energy intensity, but not changes within a country over time. Energy Return on Investment (EROI) influences the economic competitiveness and environmental impacts of an energy resource and is one driver of energy transitions. The EROI of U.S. petroleum production has declined since 1972

  17. Energy efficient engine: Turbine transition duct model technology report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thurlin, R.

    1982-01-01

    The Low-Pressure Turbine Transition Duct Model Technology Program was directed toward substantiating the aerodynamic definition of a turbine transition duct for the Energy Efficient Engine. This effort was successful in demonstrating an aerodynamically viable compact duct geometry and the performance benefits associated with a low camber low-pressure turbine inlet guide vane. The transition duct design for the flight propulsion system was tested and the pressure loss goal of 0.7 percent was verified. Also, strut fairing pressure distributions, as well as wall pressure coefficients, were in close agreement with analytical predictions. Duct modifications for the integrated core/low spool were also evaluated. The total pressure loss was 1.59 percent. Although the increase in exit area in this design produced higher wall loadings, reflecting a more aggressive aerodynamic design, pressure profiles showed no evidence of flow separation. Overall, the results acquired have provided pertinent design and diagnostic information for the design of a turbine transition duct for both the flight propulsion system and the integrated core/low spool.

  18. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  19. A transitioning universe with anisotropic dark energy

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar

    2016-08-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  20. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  1. Low Energy Schools in Ireland

    ERIC Educational Resources Information Center

    Heffernan, Martin

    2004-01-01

    Out of a commitment to reducing carbon dioxide emissions, Ireland's Department of Education and Science has designed and constructed two low energy schools, in Tullamore, County Offaly, and Raheen, County Laois. With energy use in buildings responsible for approximately 55% of the CO[subscript 2] released into the atmosphere and a major…

  2. Phase transition of carbonate solvent mixture solutions at low temperatures

    NASA Astrophysics Data System (ADS)

    Okumura, Takefumi; Horiba, Tatsuo

    2016-01-01

    The phase transition of carbonate solvent mixture solutions consisting of ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and LiPF6 salt have been studied for improving the low temperature performance of lithium-ion batteries. The Li ion conductivity at 25 °C was maximum at x = 0.3 in a series of 1 M LiPF6 mixed carbonate solvents compositions consisting of ECxDMC0.5-0.5xEMC0.5-0.5x (x = 0 to 0.6), while the maximum tended to shift to x = 0.2 as the temperature lowered. The differential scanning calorimetry results showed that the freezing temperature depressions of EC in the 1 M LiPF6 solution were larger than those of the DMC or EMC. The chemical shift of 7Li nuclear magnetic resonance changed from a constant to increasing at around x = 0.3, which could be reasonably understood by focusing on the change in solvation energy calculated using Born equation. However, in the region of a high EC concentration of over x = 0.3 (EC/LiPF6 > 4) in the 1 M LiPF6 solution, the free EC from the solvation to the lithium ions seems to reduce the freezing temperature depression of the EC, and thus, decreases the ionic conductivity of the solution at low temperatures, due to the EC freezing.

  3. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  4. Activation energy of water structural transitions

    NASA Astrophysics Data System (ADS)

    Kholmanskiy, Alexander

    2015-06-01

    In this work, the nature of molecular motions that dominate in the thermodynamics of anomalies of liquid water properties in the range of 0-100 °C has been studied. Temperature dependencies of water properties have been approximated by exponential functions and the activation energies for water structure transitions have been evaluated. The activation energy values were compared with the energy spectra of characteristic vibrations and with those of cooperative molecular motion in the lattice-type structure of hydrogen bonds. It has been found that it is the reaction of hydrogen bond breaking that mainly limits the abnormal dynamics of water viscosity, self-diffusion, dielectric relaxation time and electric conductivity. It has been assumed that the thermodynamics of cooperative motion and resonance phenomena in water clusters form a basis for the differentiation mechanism of extrema points in temperature dependencies of water density, isobaric heat capacity, sound velocity, surface tension coefficient and compressibility.

  5. Energy bands in some transition metals

    NASA Astrophysics Data System (ADS)

    Laurent, D. G.

    1981-08-01

    Self consistent linear combination of Gaussian orbitals energy band calculations were performed for the two paramagnetic 3d transition metals, chromium and vanadium. The energy bands densities of states and Fermi surfaces were obtained using the two most popular local exchange correlation potentials (Kohn-Sham-Gaspar and von Barth-Hedin) for chromium and the Kohn-Sham-Gaspar potential alone for vanadium. A comparison was made with the available experimental data. New interpretations for some of the neutron scattering data are made in the chromium case. Results are also presented for the Compton profiles and optical conductivities. These correlate well with the experiments if appropriate angular averages (for the Compton profile) and lifetime effcts (for the optical conductivity) are included. The electron energy loss spectrum, computed over the range 0-6.5 eV agreed well with experiment.

  6. Density Functional Theory in Transition-Metal Chemistry: Relative Energies of Low-Lying States of Iron Compounds and the Effect of Spatial Symmetry Breaking

    SciTech Connect

    Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.

  7. Low-lying Gamow-Teller transitions in spherical nuclei

    SciTech Connect

    Cakmak, N.; Uenlue, S.; Selam, C.

    2012-01-15

    The Pyatov Method has been used to study the low-lying Gamow-Teller transitions in the mass region of 98 Less-Than-Or-Slanted-Equal-To A Less-Than-Or-Slanted-Equal-To 130. The eigenvalues and eigenfunctions of the total Hamiltonian have been solved within the framework of proton-neutron quasiparticle random-phase approximation. The low-lying {beta} decay log(ft) values have been calculated for the nuclei under consideration.

  8. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  9. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; Phan, Anthony; Friendlich, M.R.; Rodbell, Kenneth P.; Hakey, Mark C.; Dodd, Paul E.; Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Sierawski, B.D.

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  10. Energy transitions in the early 21st Century

    SciTech Connect

    Paul Meakin

    2013-01-01

    We are in the early stages of a long and complex transition from a global economy based on fossil energy to an economy based on low carbon renewable energy. However, fossil fuel resources are abundant and widely distributed, and they will remain the dominant source of primary energy for at least the next quarter century. In the United States, displacement of coal by natural gas for electric power generation has done more to reduce CO2 emissions than all new renewables combined, and this may occur globally for the next decade or two, even if the European Union does not take advantage of its large unconventional natural gas resources. Greater energy efficiency (not including the efficiencies associated with displacement of coal by gas) will also be more important than new renewables. Cost/benefit ratios are important for sustainability of the transition, and some energy efficiency technologies and displacement of coal by natural gas have lower cost/benefit ratios than wind power, solar power or biofuels. Money spent on the large scale deployment of wind, solar and especially biofuels would be better spent on research, development and demonstration of a broader suite of technologies that would support the energy transition, with a focus on improving the cost benefit ratios of already deployed technologies and developing alternatives. Advanced nuclear reactors, engineered geothermal systems, fossil fuel recovery coupled with CO2 sequestration and pre-combustion or post-combustion decarbonation of fossil fuels with geological CO2 sequestration are among the technologies that might be more cost effective than wind, solar or biofuels, and biofuels have serious adverse societal and environment consequences.

  11. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  12. Carbon budgets and energy transition pathways

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; van Soest, Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-07-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate and the deployment of low-carbon technology. Here, we show typical values for these indicators for different carbon budgets, using the recently compiled IPCC scenario database, and discuss how these vary as a function of non-CO2 forcing, energy use and policy delay. For carbon budgets of 2000 GtCO2 and less over the 2010–2100 period, supply of low carbon technologies needs to be scaled up massively from today’s levels, unless energy use is relatively low. For the subgroup of scenarios with a budget below 1000 GtCO2 (consistent with >66% chance of limiting global warming to below 2 °C relative to preindustrial levels), the 2050 contribution of low-carbon technologies is generally around 50%–75%, compared to less than 20% today (range refers to the 10–90th interval of available data).

  13. Physics with low energy hadrons

    SciTech Connect

    Guttierez, G.; Littenberg, L.

    1997-10-01

    The prospects for low energy hadron physics at the front end of a muon collider (FMC) are discussed. The FMC, as conceived for the purposes of this workshop, is pretty close to a classical idea of a koan factory. There is an order of magnitude advantage of the FMC front end over the AGS for K{sup {minus}} and {anti p} production below 5 GeV/c.

  14. Analysis of low energy electrons

    NASA Technical Reports Server (NTRS)

    Sharp, R. D.

    1973-01-01

    Simultaneous observations of low energy electrons in the plasma sheet and in the auroral zone were analyzed. Data from the MIT plasma experiment on the OGO-3 satellite and from the Lockheed experiment on the OV1-18 satellite were processed and compared. The OV1-18 carried thirteen magnetic electron spectrometers designed to measure the intensity, angular, and energy distributions of the auroral electrons and protons in the energy range below 50 keV. Two computer programs were developed for reduction of the OV1-18 data. One program computed the various plasma properties at one second intervals as a function of Universal Time and pitch angle; the other program produced survey plots showing the outputs of the various detectors on the satellite as a function of time on a scale of approximately 100 seconds per cm. The OV1-18 data exhibit the high degree of variability associated with substorm controlled phenomena.

  15. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  16. IBS and possible luminosity improvement for RHIC operation below transition energy

    SciTech Connect

    Fedotov,A.V.

    2009-05-04

    There is a strong interest in low-energy RHIC collisions in the energy range below present RHIC transition energy. These collisions win help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. For such low-energy RHIC operation, particle losses from the RF bucket are of particular concern since the longitudinal beam size is comparable to the existing RF bucket at low energies. In this paper, we explore an Intrabeam Scattering (IBS) feature below transition energy that drives the transverse and longitudinal beam temperatures towards equilibrium to see whether we can minimize longitudinal diffusion due to IBS and predict some luminosity improvement for the low-energy RHIC project.

  17. Household energy management strategies in Bulgaria's transitioning energy sector

    NASA Astrophysics Data System (ADS)

    Carper, Mark Daniel Lynn

    Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and

  18. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  19. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  20. Towards Low Energy Atrial Defibrillation

    PubMed Central

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF) power transmitter (ex vivo) and a passive (battery free) implantable power receiver (in vivo) that enables measurement of the intracardiacimpedance (ICI) during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter) and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform). An initial prototype was implemented and tested. In low-power (sense) mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock) mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR) or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR) chronosymmetric (6ms/6ms) amplitude asymmetric (negative phase at 50% magnitude) shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current) power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50–300 V). Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ) = 1.62 Ω), p < 0.01) while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA) within the same patient group (|∆(IAMSAS1-IAMSAS3)[1 Hz − 20 kHz] = 20.82 Ω-Hz (SD(σ) = 10.77 Ω-Hz), p < 0.01); both trends being absent in all patients that failed to cardiovert. Efficient

  1. Towards Low Energy Atrial Defibrillation.

    PubMed

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF) power transmitter (ex vivo) and a passive (battery free) implantable power receiver (in vivo) that enables measurement of the intracardiac impedance (ICI) during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter) and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform). An initial prototype was implemented and tested. In low-power (sense) mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock) mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR) or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR) chronosymmetric (6ms/6ms) amplitude asymmetric (negative phase at 50% magnitude) shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current) power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50-300 V). Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ) = 1.62 Ω), p < 0.01) while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA) within the same patient group (|∆(IAMSAS1-IAMSAS3)[1 Hz - 20 kHz] = 20.82 Ω-Hz (SD(σ) = 10.77 Ω-Hz), p < 0.01); both trends being absent in all patients that failed to cardiovert. Efficient

  2. Low energy consumption spintronics using multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Trassin, Morgan

    2016-01-01

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  3. Low transition-region characteristics of equatorial coronal holes

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Bocchialini, K.; Vial, J.-C.

    1997-01-01

    The results of observations concerning the low transition region of equatorial coronal holes, performed by the Solar and Heliospheric Observatory (SOHO), are discussed. A study performed by other authors led to the conclusion that the chromospheric network corresponding to an equatorial hole is brighter in some lines than the one corresponding to the quiet sun. A statistical study on equatorial holes using the Lyman beta lines from the solar ultraviolet measurements of emitted radiation (SUMER), onboard SOHO, is presented. The mean profiles of cell, network and bright points in and out of the coronal holes are discussed, together with the possible implications of the observations.

  4. Bridging analytical approaches for low-carbon transitions

    NASA Astrophysics Data System (ADS)

    Geels, Frank W.; Berkhout, Frans; van Vuuren, Detlef P.

    2016-06-01

    Low-carbon transitions are long-term multi-faceted processes. Although integrated assessment models have many strengths for analysing such transitions, their mathematical representation requires a simplification of the causes, dynamics and scope of such societal transformations. We suggest that integrated assessment model-based analysis should be complemented with insights from socio-technical transition analysis and practice-based action research. We discuss the underlying assumptions, strengths and weaknesses of these three analytical approaches. We argue that full integration of these approaches is not feasible, because of foundational differences in philosophies of science and ontological assumptions. Instead, we suggest that bridging, based on sequential and interactive articulation of different approaches, may generate a more comprehensive and useful chain of assessments to support policy formation and action. We also show how these approaches address knowledge needs of different policymakers (international, national and local), relate to different dimensions of policy processes and speak to different policy-relevant criteria such as cost-effectiveness, socio-political feasibility, social acceptance and legitimacy, and flexibility. A more differentiated set of analytical approaches thus enables a more differentiated approach to climate policy making.

  5. Low energy p p physics

    SciTech Connect

    Amsler, C.; Crowe, K. . Inst. fuer Physik; Lawrence Berkeley Lab., CA )

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of {bar p}p annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and {bar p}p interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with {bar p}'s at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs.

  6. Transition of Thermocapillary Flow in Low Prandtl Number Liquid Bridge

    NASA Astrophysics Data System (ADS)

    Sasaki, Hiroei; Matsumoto, Satoshi; Yoda, Erika; Imaishi, Nobuyuki; Yoda, Shinichi

    2005-11-01

    An experimental study of thermocapillary convection in the half-zone liquid bridge of low Prandtl number fluid was performed to observe the transition behavior from steady to oscillatory flows. In thermocapillary convection, one of the still open problems is the observation of onset of oscillatory flow in low Prandtl number fluids. Numerical simulations predicted that there would be two transition points which were a first and second critical Marangoni number (Mac1 and Mac2). However, an experimental verification has not been performed previously because of its difficulties. A molten tin was used as test fluid and a liquid bridge configuration was employed. The temperature distribution at the interface between the liquid bridge and the cold disk was measured by using several fine thermocouples. It could be experimentally detected that the axisymmetric steady flow changes to three-dimensional steady one with increasing the temperature difference. At higher temperature difference, onset of oscillatory flow was also observed. Experimental results concerning the critical Marangoni numbers agreed very well with numerical simulation.

  7. Low Pressure Phase Transitions in Wurtzite CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Meulenberg, Robert W.; Strouse, Geoffrey F.

    2001-03-01

    Over the last several years, significant efforts in understanding the effects of high pressures on quantum dots (QDs) have been reported. It has been shown that the high-pressure phase transition from wurtzite (WZ) to rock-salt for CdSe QDs is doubled (3 - 6 GPa), but the energy dependence of the absorption edge is near that of the bulk value (partialE/partialP 45 meV/GPa). Upon release of pressure, mixtures of both hexagonal and cubic (WZ and zinc blende (ZB), respectively) structures are seen, due to the low energy of interconversion of the lattice. Surprisingly, ZB is rarely observed for II-VI nanomaterials although it is thermodynamically preferred and moderate to low pressures should induce a WZ -> ZB phase transition. Experiments with pressures in lower pressure ranges (< 1 GPa) have been ignored and may give insight into these types of low energy phase transitions. We report findings of QD size dependent pressure coefficients and postulate that changes in the band structure of quantum confined semiconductors (which lead to these changes in the pressure coefficient) are a function of the compressibility and defect nature of the material, which induce surface reconstruction events. We present optical absorption and photoluminescence data, as well as time-resolved luminescence data to infer to the mechanism of the pressure dependence.

  8. Funding pathways to a low-carbon transition

    NASA Astrophysics Data System (ADS)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-07-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirations.

  9. Substituent effect on electronic transition energy of dichlorobenzyl radicals

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Chae, Sang Youl; Lee, Sang Kuk

    2016-01-01

    Ring-substituted benzyl radicals exhibit electronic energies of the D1 → D0 transition being shifted to red region with respect to the benzyl radical. The red-shifts of disubstituted benzyl radicals are highly dependent on the substitution positions irrespective of substituents. By analyzing the red-shifts of dichlorobenzyl radicals observed, we found that the substituent effect on electronic transition energy is attributed to the molecular plane shape of delocalized π electrons. We will discuss the influences of locations of Cl substituents on the D1 → D0 transition energies of dichlorobenzyl radicals using Hückel's molecular orbital theory.

  10. A closely packed system of low-mass, low-density planets transiting Kepler-11.

    PubMed

    Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B; Borucki, William J; Fressin, Francois; Marcy, Geoffrey W; Orosz, Jerome A; Rowe, Jason F; Torres, Guillermo; Welsh, William F; Batalha, Natalie M; Bryson, Stephen T; Buchhave, Lars A; Caldwell, Douglas A; Carter, Joshua A; Charbonneau, David; Christiansen, Jessie L; Cochran, William D; Desert, Jean-Michel; Dunham, Edward W; Fanelli, Michael N; Fortney, Jonathan J; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Koch, David G; Latham, David W; Lopez, Eric; McCauliff, Sean; Miller, Neil; Morehead, Robert C; Quintana, Elisa V; Ragozzine, Darin; Sasselov, Dimitar; Short, Donald R; Steffen, Jason H

    2011-02-01

    When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation. PMID:21293371

  11. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  12. [Relationships between settlement morphology transition and residents commuting energy consumption].

    PubMed

    Zhou, Jian; Xiao, Rong-Bo; Sun, Xiang

    2013-07-01

    Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition. PMID:24175530

  13. Low energy effective string cosmology

    SciTech Connect

    Copeland, E.J.; Lahiri, A.; Wands, D. )

    1994-10-15

    We give the general analytic solutions derived from the low energy string effective action for four-dimensional Friedmann-Robertson-Walker models with a dilaton and antisymmetric tensor field, considering both long and short wavelength modes of the [ital H] field. The presence of a homogeneous [ital H] field significantly modifies the evolution of the scale factor and dilaton. In particular it places a lower bound on the allowed value of the dilaton. The scale factor also has a lower bound but our solutions remain singular as they all contain regions where the spacetime curvature diverges signalling a breakdown in the validity of the effective action. We extend our results to the simplest Bianchi type I metric in higher dimensions with only two scale factors. We again give the general analytic solutions for long and short wavelength modes for the [ital H] field restricted to the three-dimensional space, which produces an anisotropic expansion. In the case of [ital H] field radiation (wavelengths within the Hubble length) we obtain the usual four-dimensional radiation-dominated FRW model as the unique late time attractor.

  14. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  15. KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY

    SciTech Connect

    Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Howell, Steve B.; Marcy, Geoffrey W.; Monet, David G.

    2010-04-20

    We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M {sub P} = 0.43 M {sub J}, but the radius is 50% larger, R {sub P} = 1.48 R {sub J}. The resulting density, {rho}{sub P} = 0.17 g cm{sup -3}, is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T {sub eff} = 6000 K. However, it is more massive and considerably larger than the Sun, M {sub *} = 1.35 M {sub sun} and R {sub *} = 1.84 R {sub sun}, and must be near the end of its life on the main sequence.

  16. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Myhrvold, N. P.; Caldeira, K.

    2012-03-01

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1-100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot.

  17. Low Thermal Conductance Transition Edge Sensor (TES) for SPICA

    SciTech Connect

    Khosropanah, P.; Dirks, B.; Kuur, J. van der; Ridder, M.; Bruijn, M.; Popescu, M.; Hoevers, H.; Gao, J. R.; Morozov, D.; Mauskopf, P.

    2009-12-16

    We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320 fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10{sup -19} W/{radical}(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10{sup -18} W/{radical}(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.

  18. Low Conversion Loss Mixers with Improved Finline Transition and Bandstop Filter

    NASA Astrophysics Data System (ADS)

    Yao, Changfei; Xu, Jinping; Chen, Mo

    2009-03-01

    A Ka-Band hybrid integrated single-ended mixer with low conversion loss is designed in this paper. In the proposed circuit architecture, metallic via holes are implemented along the mounting edge of substrate embedded in the split-block of WG (waveguide)-finline-microstrip transition. Simulated results show that the effect of high-order modes due to the mounting groove is effectively eliminated and the transition loss is greatly improved. Meanwhile, a slow wave and bandstop filter at Ka band, which presents an equivalent short circuit, is designed for the maximized utilization of idle frequency energy, RF and LO signal energy. In this way, the conversion loss of the mixer can be further improved. The lowest measured conversion loss 3.52dB is obtained at 32.2 GHz; the conversion loss is flat and less than 5.68dB over the frequency band from 29 to 34 GHz.

  19. The transition to the metallic state in low density hydrogen.

    PubMed

    McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results. PMID:26590549

  20. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  1. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  2. Minimum energy paths of wetting transitions on grooved surfaces.

    PubMed

    Pashos, George; Kokkoris, George; Boudouvis, Andreas G

    2015-03-17

    A method that computes minimum energy paths (MEPs) of wetting transitions is developed. The method couples the Cahn-Hilliard formulation of a modified phase-field method with the simplified string method. Its main computational kernel is the fast Fourier transform that is efficiently performed on graphics processing units. The effectiveness of the proposed method is demonstrated on two types of transitions of droplets on grooved surfaces. The first is the transition from the Cassie-Baxter wetting state to the Wenzel state, where it is shown that it progresses in a sequential manner with the droplet wetting each groove successively. The second transition type is a lateral displacement of the droplet against the grooves, where the droplet successively detaches/attaches from/to the rear/front protrusion of the surface (a transition in the reverse order is also possible). The energy barriers of both the transitions are extracted from the MEP; they are useful for the evaluation of the robustness of superhydrophobic surfaces (resistance to the Cassie-Baxter to Wenzel transition) and the droplet mobility on those surfaces (high mobility/small resistance to lateral displacements). The relation of the MEP with the potential transition paths coming from the solution space mapping is discussed. PMID:25715270

  3. Two Transiting Low Density Sub-Saturns from K2

    NASA Astrophysics Data System (ADS)

    Petigura, Erik A.; Howard, Andrew W.; Lopez, Eric D.; Deck, Katherine M.; Fulton, Benjamin J.; Crossfield, Ian J. M.; Ciardi, David R.; Chiang, Eugene; Lee, Eve J.; Isaacson, Howard; Beichman, Charles A.; Hansen, Brad M. S.; Schlieder, Joshua E.; Sinukoff, Evan

    2016-02-01

    We report the discovery and confirmation of K2-24 b and c, two sub-Saturn planets orbiting a bright (V = 11.3), metal-rich ([Fe/H] = 0.42 ± 0.04 dex) G3 dwarf in the K2 Campaign 2 field. The planets are 5.68 ± 0.56 {R}\\oplus and 7.82 ± 0.72 {R}\\oplus and have orbital periods of 20.8851 ± 0.0003 days and 42.3633 ± 0.0006 days, near the 2:1 mean-motion resonance. We obtained 32 radial velocities with Keck/HIRES and detected the reflex motion due to K2-24 b and c. These planets have masses of 21.0 ± 5.4 {M}\\oplus and 27.0 ± 6.9 {M}\\oplus , respectively. With low densities of 0.63 ± 0.25 g cm-3 and 0.31 ± 0.12 g cm-3, respectively, the planets require thick envelopes of H/He to explain their large sizes and low masses. Interior structure models predict that the planets have fairly massive cores of 17.6+/- 4.3 {M}\\oplus and 16.1+/- 4.2 {M}\\oplus , respectively. They may have formed exterior to their present locations, accreted their H/He envelopes at large orbital distances, and migrated in as a resonant pair. The proximity to resonance, large transit depths, and host star brightness offers rich opportunities for TTV follow-up. Finally, the low surface gravities of the K2-24 planets make them favorable targets for transmission spectroscopy by Hubble Space Telescope, Spitzer, and James Webb Space Telescope.

  4. Low-spin collective behavior in the transitional nuclei Mo86,88

    NASA Astrophysics Data System (ADS)

    Andgren, K.; Ganioǧlu, E.; Cederwall, B.; Wyss, R.; Bhattacharyya, S.; Brown, J. R.; De Angelis, G.; De France, G.; Dombrádi, Zs.; Gál, J.; Hadinia, B.; Johnson, A.; Johnston-Theasby, F.; Jungclaus, A.; Khaplanov, A.; Kownacki, J.; Lagergren, K.; La Rana, G.; Molnár, J.; Moro, R.; Singh, B. S. Nara; Nyberg, J.; Sandzelius, M.; Scheurer, J.-N.; Sletten, G.; Sohler, D.; Timár, J.; Trotta, M.; Valiente-Dobón, J. J.; Vardaci, E.; Wadsworth, R.; Williams, S.

    2007-07-01

    Low-spin structures in Mo86,88 were populated using the Ni58(Ar36, xαyp) heavy-ion fusion-evaporation reaction at a beam energy of 111 MeV. Charged particles and γ rays were emitted in the reactions and detected by the DIAMANT CsI ball and the EXOGAM Ge array, respectively. In addition to the previously reported low-to-medium spin states in these nuclei, new low-spin structures were observed. Angular correlation and linear polarization measurements were performed in order to unambiguously determine the spins and parities of intensely populated states in Mo88. Quasiparticle Random Phase Approximation (QRPA) calculations were performed for the first and second excited 2+ states in Mo86 and Mo88. The results are in qualitative agreement with the experimental results, supporting a collective interpretation of the low-spin states for these transitional nuclei.

  5. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  6. What is a low-energy house?

    SciTech Connect

    Litt, B.R.; Meier, A.K.

    1994-08-01

    Traditionally, a ``low-energy`` house has been one that used little energy for space heating. But space heating typically accounts for less than half of the energy used by new US homes, and for low heating energy homes, space heating is often the third largest end use, behind water heating and appliances, and sometimes behind cooling. Low space heat alone cannot identify a low-energy house. To better understand the determinants of a low-energy house, we collected data on housing characteristics, incremental costs, and energy measurements from energy-efficient houses around the world and in a range of climates. We compare the energy required to provide thermal comfort as well as water heating, and other appliances. We do not have a single definition of a low-energy house, but through comparisons of actual buildings, we show how different definitions and quantitative indicators fail. In comparing the energy use of whole houses, weather normalization can be important, but for cases in which heating or cooling energy is surpassed by other end uses, other normalization methods must be used.

  7. Universal energy transport law for dissipative and diffusive phase transitions

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Daraio, Chiara; Abeyaratne, Rohan; Kochmann, Dennis M.

    2016-03-01

    We present a scaling law for the energy and speed of transition waves in dissipative and diffusive media. By considering uniform discrete lattices and continuous solids, we show that—for arbitrary highly nonlinear many-body interactions and multistable on-site potentials—the kinetic energy per density transported by a planar transition wave front always exhibits linear scaling with wave speed and the ratio of energy difference to interface mobility between the two phases. We confirm that the resulting linear superposition applies to highly nonlinear examples from particle to continuum mechanics.

  8. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed Central

    Wallstrom, T C

    1995-01-01

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion. Images Fig. 2 PMID:11607590

  9. The carbon-consuming home: residential markets and energy transitions.

    PubMed

    Jones, Christopher

    2011-01-01

    Home heating and lighting markets have played crucial and underappreciated roles in driving energy transitions. When historians have studied the adoption of fossil fuels, they have often privileged industrial actors, markets, and technologies. My analysis of the factors that stimulated the adoption of anthracite coal and petroleum during the nineteenth century reveals that homes shaped how, when, and why Americans began to use fossil fuel energy. Moreover, a brief survey of other fossil fuel transitions shows that heating and lighting markets have been critical drivers in other times and places. Reassessing the historical patterns of energy transitions offers a revised understanding of the past for historians and suggests a new set of options for policymakers seeking to encourage the use of renewable energy in the future. PMID:22213886

  10. Understanding the human dimensions of a sustainable energy transition.

    PubMed

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  11. Understanding the human dimensions of a sustainable energy transition

    PubMed Central

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  12. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  13. STATE TRANSITIONS IN LOW-MASS X-RAY BINARIES

    SciTech Connect

    Bradley, Charles K.; Frank, Juhan

    2009-10-10

    We investigate the model of disk/coronal accretion into a black hole. We show that the inner regions of an accretion disk in X-ray binaries can transform from a cool standard disk to an advection-dominated flow through the known properties of Coulomb interaction in a two-temperature plasma, viscous heating, radiative processes, and thermal conduction. A hot, diffuse corona covering the disk is powered by accretion, but it exchanges mass with the underlying cold disk. If the accretion rate in the system is low enough, we show that the corona evaporates the disk away, leaving an advective flow to continue toward the hole. In the soft/hard transition commonly seen in X-ray binaries, we show that this advective flow can recondense back onto the underlying disk if the change in the system's accretion rate is slow enough due to thermal conduction. Unabsorbed spectra are produced to test against observations as well as prediction of the location of truncation radii of the accretion disk.

  14. Securing the Extremely Low-Densities of Low-Mass Planets Characterized by Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2015-12-01

    Transit timing variations (TTVs) provide an excellent tool to characterize the masses and orbits of dozens of small planets, including many at orbital periods beyond the reach of both Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified low-mass planets with surprisingly large radii and low densities (e.g., Kepler-79d, Jontof-Hutter et al. 2014; Kepler-51, Masuda 2014; Kepler-87c, Ofir et al. 2014). Additional low-density, low-mass planets will likely become public before ESS III (Jontof-Hutter et al. in prep). Collectively, these results suggest that very low density planets with masses of 2-6 MEarth are not uncommon in compact multiple planet systems. Some astronomers have questioned whether there could be an alternative interpretation of the TTV observations. Indeed, extraordinary claims require extraordinary evidence. While the physics of TTVs is rock solid, the statistical analysis of Kepler observations can be challenging, due to the complex interactions between model parameters and high-dimensional parameter spaces that must be explored. We summarize recent advances in computational statistics that enable robust characterization of planetary systems using TTVs. We present updated analyses of a few particularly interesting systems and discuss the implications for the robustness of extremely low densities for low-mass planets. Such planets pose an interesting challenge for planet formation theory and are motivating detailed theoretical studies (e.g., Lee & Chiang 2015 and associated ESS III abstracts).

  15. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  16. Reference free, high-precision measurements of transition energies in few electron argon ions

    NASA Astrophysics Data System (ADS)

    Szabo, Csilla I.; Amaro, Pedro; Guerra, Mauro; Schlesser, Sophie; Gumberidze, Alexander; Santos, José Paulo; Indelicato, Paul

    2013-04-01

    The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 → 1s2 1 S0 diagram line and the 1s2s 3 S1 → 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 Pj → 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 → 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.

  17. Low-carbon yak cheese: transition to biogas in a Himalayan socio-technical niche

    PubMed Central

    Campbell, Ben; Sallis, Paul

    2013-01-01

    This study looks at how potential for resilient low-carbon solutions can be understood and enhanced in the diverse environmental, economic and socio-political contexts in which actual scenarios of energy needs and diverse development pathways take shape. It discusses socio-technical transition approaches to assist implementation of a biogas digester system. This will replace fuelwood use in the high forests of Central Nepal, where yak cheese production provides livelihood income but is under threat from the Langtang National Park, which is concerned to protect biodiversity. Alternatives for digester design are discussed, and the consultative issues for deliberative processes among stakeholders’ varied agendas raised. PMID:24427516

  18. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  19. Transition to turbulence under low-pressure turbine conditions.

    PubMed

    Simon, T W; Kaszeta, R W

    2001-05-01

    In this paper, the topic of laminar to turbulent flow transition, as applied to the design of gas turbines, is discussed. Transition comes about when a flow becomes sufficiently unstable that the orderly vorticity structure of the laminar layer becomes randomly oriented. Vorticity with a streamwise component leads to rapid growth of eddies of a wide range of sizes and eventually to turbulent flow. Under "natural" transition, infinitesimal disturbances of selected frequencies grow. "Bypass transition" is a term coined to describe a similar process, but one driven by strong external disturbances. Transition proceeds so rapidly that the processes associated with "natural" transition seem to be "bypassed." Because the flow environment in the turbine is disturbed by wakes from upstream airfoils, eddies from combustor flows, jets from film cooling, separation zones on upstream airfoils and steps in the duct walls, transition is of the bypass mode. In this paper, we discuss work that has been done to characterize and model bypass transition, as applied to the turbine environment. PMID:11460650

  20. The transition to the metallic state in low density hydrogen

    SciTech Connect

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.

  1. The transition to the metallic state in low density hydrogen

    SciTech Connect

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.

  2. Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary

    2015-06-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Scaling and Topological Phase Transitions: Energy vs. Entropy

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Gulden, Tobias; Janas, Michael; Kamenev, Alex

    The critical point of a topological phase transition is described by a conformal field theory. Finite-size corrections give rise to a scaling function away from criticality for both energy and entanglement entropy of the system. While in the past the scaling function for the usual von Neumann entropy was found to be equal for the trivial and the topological side of the transition, we find that the scaling functions for energy and Renyi entropy with α > 1 are different for the two sides. This provides an easy tool to distinguish between the trivial and topological phases near criticality.

  4. Targeting Low-Energy Transfers to Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.

    2011-01-01

    A targeting scheme is presented to build trajectories from a specified Earth parking orbit to a specified low lunar orbit via a low-energy transfer and up to two maneuvers. The total transfer delta V (velocity) is characterized as a function of the Earth parking orbit inclination and the departure date for transfers to each given low lunar orbit. The transfer delta V (velocity) cost is characterized for transfers constructed to low lunar polar orbits with any longitude of ascending node and for transfers that arrive at the Moon at any given time during a month.

  5. The transition to the metallic state in low density hydrogen

    DOE PAGESBeta

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less

  6. ENERGY AND CARBON BUDGETS IN TRANSITIONAL CROPPING SYSTEMS IN MINNESOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and carbon budgets were constructed for a wide range of cropping systems during the transition from conventional cropping practices. Cropping system treatments included factorial combinations of: conventional and organic systems (CNV and ORG), conventional tillage and strip tillage (CT and ST...

  7. Modeling and control of distributed energy systems during transition between grid connected and standalone modes

    NASA Astrophysics Data System (ADS)

    Arafat, Md Nayeem

    Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different

  8. Stellar activity effects on high energy exoplanet transits

    NASA Astrophysics Data System (ADS)

    Llama, Joe; Shkolnik, Evgenya

    2016-01-01

    High energy (X-ray / UV) observations of transiting exoplanets have revealed the presence of extended atmospheres around a number of systems. At such high energies, stellar radiation is absorbed high up in the planetary atmosphere, making X-ray and UV observations a potential tool for investigating the upper atmospheres of exoplanets. At these high energies, stellar activity can dramatically impact the observations. At short wavelengths the stellar disk appears limb-brightened, and active regions appear as extended bright features that evolve on a much shorter timescale than in the optical making it difficult . These features impact both the transit depth and shape, affecting our ability to measure the true planet-to-star radius ratio.I will show results of simulated exoplanet transit light curves using Solar data obtained in the soft X-ray and UV by NASA's Solar Dynamics Observatory to investigate the impact of stellar activity at these wavelengths. By using a limb-brightened transit model coupled with disk resolved Solar images in the X-ray, extreme- and far-UV I will show how both occulted and unocculted active regions can mimic an inflated planetary atmosphere by changing the depth and shape of the transit profile. I will also show how the disk integrated Lyman-alpha Solar irradiance varies on both short and long timescales and how this variability can impact our ability to recover the true radius ratio of a transiting exoplanet.Finally, I will present techniques on how to overcome these effects to determine the true planet-to-star radius in X-ray and UV observations.

  9. Behavior of the low-frequency conductivity of silver iodide nanocomposites in the superionic phase transition region

    NASA Astrophysics Data System (ADS)

    Vergent'ev, T. Yu.; Koroleva, E. Yu.; Kurdyukov, D. A.; Naberezhnov, A. A.; Filimonov, A. V.

    2013-01-01

    The behavior of the specific conductivity of composites based on silver iodide embedded in porous glasses with an average pore diameter of 7 ± 1 nm and in artificial opals with a pore diameter of 40-100 nm has been investigated in the temperature range from 300 to 500 K. It has been shown that a decrease in the characteristic pore size does not lead to a change in the order of the phase transition and that the temperature of the transition to the superionic state of silver iodide in a porous glass and in an opal upon heating is close to the phase transition temperature T c in the bulk material (˜420 K). Upon cooling, the phase transition temperature T c significantly decreases, and the phase transition becomes diffuse. With a decrease in the pore size, the region of the temperature hysteresis of the phase transition increases. The dc conductivities of the composites have been estimated from the impedance diagrams. The temperature dependence of the dc conductivity of both composites has a thermally activated nature, and the slope of the curve σ(1/ T) changes near the phase transition, which indicates a change in the activation energy. The activation energies in the low-temperature and high-temperature phases have been estimated at ˜450-470 and ˜100 meV, respectively. The equivalent electrical circuit describing the charge transfer processes in the studied samples has been proposed.

  10. Excitation of the Yb II transitions terminating on the low-lying odd levels

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. M.

    2007-10-01

    Excitation of the transitions from the even levels of a singly charged ytterbium ion that terminate on the low-lying odd levels 4 f 13(2 F °)6 s 2 2 F °, 4 f 14(1 S)6 p 2 P °, and 4 f 13(2 F °7/2) 5 d6 p(3 D)3[3/2]° is experimentally studied by measuring 51 excitation cross sections at an electron energy of 50 eV, and 16 optical excitation functions are determined within the electron energy range 0 200 eV. The largest magnitudes of the measured cross sections exceed 3 × 10-17 cm2.

  11. The Simbol-X Low Energy Detector

    SciTech Connect

    Lechner, Peter

    2009-05-11

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  12. The low energy atmospheric antiproton albedo

    NASA Technical Reports Server (NTRS)

    Cole, J. B.; Ormes, J. F.

    1989-01-01

    The flux of albedo antiprotons in the 100-1000 MeV kinetic energy range produced by the cosmic ray primaries in the atmosphere is calculated. It is shown that this is not a significant background to measurements of the low energy anti-proton cosmic ray flux.

  13. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N2-Ar and O2-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N2-Ar and O2-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N2-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O2-Ar discharges, the dissociation fraction of O2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  14. Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom

    NASA Astrophysics Data System (ADS)

    Tian Yi, Zhang; Neng Wu, Zheng

    2009-08-01

    Full Text PDF Though the electrons configuration for boron atom is simple and boron atom has long been of interest for many researchers, the theoretical studies for properties of BI are not systematic, there are only few results reported on energy levels of high excited states of boron, and transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provided only multiplet results, values for transitions between high excited states are seldom performed. In this article, by using the scheme of the weakest bound electron potential model theory calculations for energy levels of five series are performed and with the same method we give the transition probabilities between excited states with considering fine structure effects. The comprehensive set of calculations attempted in this paper could be of some value to workers in the field because of the lack of published calculations for the BI systems. The perturbations coming from foreign perturbers are taken into account in studying the energy levels. Good agreement between our results and the accepted values taken from NIST has been obtained. We also reported some values of energy levels and transition probabilities not existing on the NIST data bases.

  15. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-01

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. PMID:26494184

  16. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  17. Low-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  18. Quenched disorder forbids discontinuous transitions in nonequilibrium low-dimensional systems.

    PubMed

    Villa Martín, Paula; Bonachela, Juan A; Muñoz, Miguel A

    2014-01-01

    Quenched disorder affects significantly the behavior of phase transitions. The Imry-Ma-Aizenman-Wehr-Berker argument prohibits first-order or discontinuous transitions and their concomitant phase coexistence in low-dimensional equilibrium systems in the presence of random fields. Instead, discontinuous transitions become rounded or even continuous once disorder is introduced. Here we show that phase coexistence and first-order phase transitions are also precluded in nonequilibrium low-dimensional systems with quenched disorder: discontinuous transitions in two-dimensional systems with absorbing states become continuous in the presence of quenched disorder. We also study the universal features of this disorder-induced criticality and find them to be compatible with the universality class of the directed percolation with quenched disorder. Thus, we conclude that first-order transitions do not exist in low-dimensional disordered systems, not even in genuinely nonequilibrium systems with absorbing states. PMID:24580210

  19. Energy loss of protons and deuterons at low energies in Pd polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Celedón, C.; Sánchez, E. A.; Moreno, M. S.; Arista, N. R.; Uribe, J. D.; Mery, M.; Valdés, J. E.; Vargas, P.

    2013-07-01

    We have investigated experimentally and by computer simulations the energy-loss distributions of low-energy (E<10 keV) protons and deuterons transmitted through polycrystalline palladium thin films. In contrast to previous experiments on various transition metals we find that the stopping power of Pd is proportional to the ion velocity. Data of protons and deuterons are coincident within the experimental uncertainties, showing the absence of an isotopic effect on the stopping power of Pd in this energy range. The experimental results were analyzed and compared with Monte Carlo computer simulations and previous theoretical models. The difference in the velocity dependence of the energy loss of hydrogen ions in Pd with respect to other transition metals (Cu, Ag, and Au) is explained by a theoretical analysis based on the properties of the d-electron bands of those elements.

  20. Low temperature magnetic transitions of single crystal HoBi

    SciTech Connect

    Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.; Budko, Sergei L.; Canfield, Paul C.

    2013-09-04

    We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

  1. Ring Counter Based ATPG for Low Transition Test Pattern Generation

    PubMed Central

    Begam, V. M. Thoulath; Baulkani, S.

    2015-01-01

    In test mode test patterns are applied in random fashion to the circuit under circuit. This increases switching transition between the consecutive test patterns and thereby increases dynamic power dissipation. The proposed ring counter based ATPG reduces vertical switching transitions by inserting test vectors only between the less correlative test patterns. This paper presents the RC-ATPG with an external circuit. The external circuit consists of XOR gates, full adders, and multiplexers. First the total number of transitions between the consecutive test patterns is determined. If it is more, then the external circuit generates and inserts test vectors in between the two test patterns. Test vector insertion increases the correlation between the test patterns and reduces dynamic power dissipation. The results prove that the test patterns generated by the proposed ATPG have fewer transitions than the conventional ATPG. Experimental results based on ISCAS'85 and ISCAS'89 benchmark circuits show 38.5% reduction in the average power and 50% reduction in the peak power attained during testing with a small size decoding logic. PMID:26075295

  2. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  3. Negative refraction with low absorption using Raman transitions with magnetoelectric coupling

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2010-07-15

    We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.

  4. Radiative lifetime and energy of the low-energy isomeric level in 229Th

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Schneider, Christian; Jeet, Justin; Hudson, Eric R.

    2015-11-01

    We estimate the range of the radiative lifetime and energy of the anomalous, low-energy 3 /2+(7.8 ±0.5 eV) state in the 229Th nucleus. Our phenomenological calculations are based on the available experimental data for the intensities of M 1 and E 2 transitions between excited levels of the 229Th nucleus in the Kπ[N nZΛ ] =5 /2+[633 ] and 3 /2+[631 ] rotational bands. We also discuss the influence of certain branching coefficients, which affect the currently accepted measured energy of the isomeric state. From this work, we establish a favored region, 0.66 ×106seV3/ω3≤τ ≤2.2 ×106seV3/ω3 , where the transition lifetime τ as a function of transition energy ω should lie at roughly the 95% confidence level. Together with the result of Beck et al. [LLNL-PROC-415170 (2009)], we establish a favored area where transition lifetime and energy should lie at roughly the 90% confidence level. We also suggest new nuclear physics measurements, which would significantly reduce the ambiguity in the present data.

  5. Energy Transition Initiative, Island Energy Snapshot - Grenada (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of Grenada - a small island nation consisting of the island of Grenada and six smaller islands in the southeastern Caribbean Sea - three of which are inhabited: Grenada, Carriacou, and Petite Martinique.

  6. Competition policy and the transition to a low-carbon, efficient electricity industry

    SciTech Connect

    Moss, Diana L.; Kwoka, John E. Jr.

    2010-08-15

    U.S. industries are facing intense pressures to become more energy efficient. Two concerns are driving this transition. One is the need to lower the carbon footprints of energy-intensive sectors. A second concern is the need to achieve energy security by reducing this country's reliance on foreign sources of energy supplies. (author)

  7. Energy neutral and low power wireless communications

    NASA Astrophysics Data System (ADS)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a

  8. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  9. A rocky planet transiting a nearby low-mass star

    NASA Astrophysics Data System (ADS)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michael; Jehin, Emmanuel; Stark, Antony; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christoph; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno; Udry, Stéphane; Wunsche, Anael

    2015-12-01

    Results from Kepler indicate that M dwarfs host, on average, at least 1.4 planets between 0.5 and 1.5 Earth radii per star. Yet, the closest small planets known to transit M dwarfs have been too distant to allow Doppler measurements of their masses or spectroscopic studies of their atmospheres. Here, we announce a new planet discovered by the MEarth-South observatory, an Earth-size planet transiting an M dwarf that is only 12 pc away. The density of the planet, determined from radial velocity observations with HARPS, is consistent with an Earth-like rock/iron composition. With an equilibrium temperature of 530K (assuming a Bond albedo of 0.3), this planet is cooler than most other rocky planets with measured densities. Although too hot to be habitable, it is cool enough that it may have retained a substantial atmosphere over its lifetime. Thanks to the star's proximity and its diminutive size of only 1/5th the radius of the Sun, this new world likely provides the first opportunity for our community to spectroscopically examine the atmosphere of a terrestrial exoplanet. We estimate that JWST could secure high signal-to-noise spectra of the planet's atmosphere, both in transmission during transit and in emission at secondary eclipse.

  10. Energy levels and radiative transition rates for Ba XLVIII

    NASA Astrophysics Data System (ADS)

    Khatri, Indu; Goyal, Arun; Aggarwal, Sunny; Singh, A. K.; Mohan, Man

    2016-01-01

    Energy levels and radiative rates are reported for transitions in F-like Ba XLVIII. Configuration interaction has been included among 27 configurations (generating 431 levels) over a wide energy range up to 618 Rydbergs, and the fully relativistic multi-configurational Dirac-Fock method adopted for the calculations. To assess the accuracy, calculations have also been performed with the flexible atomic code, FAC. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions from the lowest 3 levels, although calculations have been performed for a much larger number of levels. We have made comparisons of our results with existing available results and a good agreement has been achieved. Additionally, lifetimes for all 431 levels are listed.

  11. Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Simon, Terrence W.; Qiu, Songgang; Yuan, Kebiao; Ashpis, David (Technical Monitor); Simon, Fred (Technical Monitor)

    2000-01-01

    This report presents the results of an experimental study of transition from laminar to turbulent flow in boundary layers or in shear layers over separation zones on a convex-curved surface which simulates the suction surface of a low-pressure turbine airfoil. Flows with various free-stream turbulence intensity (FSTI) values (0.5%, 2.5% and 10%), and various Reynolds numbers (50,000, 100,000 200,000 and 300,000) are investigated. Reynold numbers in the present study are based on suction surface length and passage exit mean velocity. Flow separation followed by transition within the separated flow region is observed for the lower-Re cases at each of the FSTI levels. At the highest Reynolds numbers and at elevated FSn, transition of the attached boundary layer begins before separation, and the separation zone is small. Transition proceeds in the shear layer over the separation bubble. For both the transitional boundary layer and the transitional shear layer, mean velocity, turbulence intensity and intermittency (the fraction of the time the flow is turbulent) distributions are presented. The present data are compared to published distribution models for bypass transition, intermittency distribution through transition, transition start position, and transition length. A model developed for transition of separated flows is shown to adequately predict the location of the beginning of transition, for these cases, and a model developed for transitional boundary layer flows seems to adequately predict the path of intermittency through transition when the transition start and end are known. These results are useful for the design of low-pressure turbine stages which are known to operate under conditions replicated by these tests.

  12. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  13. Biomolecular dynamics: order-disorder transitions and energy landscapes.

    PubMed

    Whitford, Paul C; Sanbonmatsu, Karissa Y; Onuchic, José N

    2012-07-01

    While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions. PMID:22790780

  14. Biomolecular Dynamics: Order-Disorder Transitions and Energy Landscapes

    PubMed Central

    Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Onuchic, José N.

    2013-01-01

    While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively-weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss 1) the development of the energy landscape theory of biomolecular folding, 2) recent advances towards establishing a consistent understanding of folding and function, and 3) emerging themes in the functional motions of enzymes, biomolecular motors, and other biomolecular machines. Recent theoretical, computational, and experimental lines of investigation are providing a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provide significant contributions to the free-energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions. PMID:22790780

  15. Energy spectra and optical transitions in germanene quantum dots.

    PubMed

    Herath, Thakshila M; Apalkov, Vadym

    2016-04-27

    The band gap of buckled graphene-like materials, such as silicene and germanene, depends on external perpendicular electric field. Then a specially design profile of electric field can produce trapping potential for electrons. We study theoretically the energy spectrum and optical transitions for such designed quantum dots (QDs) in graphene-like materials. The energy spectra depend on the size of the QD and applied electric field in the region of the QD. The number of the states in the QD increases with increasing the size of the dot and the energies of the states have almost linear dependence on the applied electric field with the slope which increases with increasing the dot size. The optical properties of the QDs are characterized by two types of absorption spectra: interband (optical transitions between the states of the valence and conduction bands) and intraband (transitions between the states of conduction/valence band). The interband absorption spectra have triple-peak structure with peak separation around 10 meV, while intraband absorption spectra, which depend on the number of electrons in the dot, have double-peak structure. PMID:27008912

  16. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    SciTech Connect

    Pérez Moyet, Richard; Rossetti, George A.; Stace, Joseph; Amin, Ahmed; Finkel, Peter

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  17. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Pérez Moyet, Richard; Stace, Joseph; Amin, Ahmed; Finkel, Peter; Rossetti, George A.

    2015-10-01

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]C-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  18. Phase/Shape Transitions and the Two Neutron Separation Energies

    SciTech Connect

    Zamfir, N. V.; Anghel, Sabina; Cata-Danil, G.

    2008-11-11

    We investigated the evolution of experimental two-neutron separation energies (S{sub 2n}) along the isotopic chains for the even-even nuclei. In order to enhance the sensitivity of our search, differential variation of the S{sub 2n} has been investigated. The emphasis is on finding nonmonotonic behaviors which can be correlated with phase/shape transition. Correlations of the ground state S{sub 2n} values with the excited states energies R{sub 4/2} ratio are also discussed.

  19. Transitions into the negative-energy Dirac continuum

    SciTech Connect

    Krekora, P.; Su, Q.; Grobe, R.

    2004-11-01

    We compare the predictions of the single-particle Dirac equation with quantum field theory for an electron subjected to a space and time dependent field. We demonstrate analytically and numerically that a transition into the negative-energy subspace predicted by the single-particle Dirac equation is directly associated with the degree of suppression of pair-production as described by quantum field theory. We show that the portion of the mathematical wave function that populates the negative-energy states corresponds to the difference between the positron spatial density for systems with and without an electron initially present.

  20. Energy and population: transitional issues and eventual limits.

    PubMed

    Werbos, P J

    1990-08-01

    The implication of population size for US energy requirements is explored in this essay. The basic argument is that the present supply of fuels and energy technologies is not sustainable in the long run, that a wide range of choices is possible when a complete transition is made to sustainable technologies, and that the growth of population and the composition of this growth during the next 30 years are the most serious problems impacting on the achievement of sustainable technology. The importance and future of fuel oil is discussed as well as the transition to sustainable energy supplies: conservation, renewables, nuclear and coal. Dependency on oil can only be changed through time and the infusion of money, but even with these givens, the transition is also dependent on the political and budgetary climate. The race is between crisis and cure. It is argued that the soft energy systems (biomass, solar water heater, wind, hydro, and geothermal energy) along with conservation will increase easily and naturally, but the total potential from these sources amounts to only 10% of the present US energy supply. Conservation offers greater hope because 80% of end-use fossil fuel is used in transportation and industry. Further growth of the population in the US would create a demand to desalinate water, which would increase the demand for energy. A totally soft energy economy is probably not feasible without a drastic reduction in US population. The expected direction is in the increased use of coal, and then nuclear energy. Unfortunately, coal contributes to greenhouse warming, and the supply is limited to 60-100 years. Nuclear proliferation and terrorism is connected to the widespread use of nuclear energy. Some breakthrough technology with cold fusion may offer a safer alternative. High technology renewables such as solar cells can be competitive with nuclear energy, if prices can be kept down. on earth or in space, are being investigated. Exploring a variety of advanced

  1. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  2. Low energy strong electroweak sector with decoupling

    SciTech Connect

    Casalbuoni, R.; Dominici, D. |; Deandrea, A.; Gatto, R.; De Curtis, S.; Grazzini, M. |

    1996-05-01

    We discuss possible symmetries of effective theories describing spinless and spin-1 bosons, mainly to concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting bosons may possess a discrete symmetry imposing degeneracy of the two sets of bosons (degenerate BESS model). In such a case its effects at low energies become almost invisible and the model easily passes all low energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling, contrary to models with only vectors. For large mass of the degenerate spin-one bosons the model becomes identical at the classical level to the standard model taken in the limit of infinite Higgs boson mass. For these reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations, and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is conceivable that degenerate BESS has low mass spin-one states and gives quite visible signals at existing or forthcoming accelerators. {copyright} {ital 1996 The American Physical Society.}

  3. Photon strength and the low-energy enhancement

    SciTech Connect

    Wiedeking, M.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D.; Krtička, M.; Allmond, J. M.; Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L.; Goldblum, B. L.

    2014-08-14

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.

  4. Photon strength and the low-energy enhancement

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Krtička, M.; Bleuel, D. L.; Allmond, J. M.; Basunia, M. S.; Burke, J. T.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.

    2014-08-01

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in 95Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to 95Mo photon strength function data measured at the University of Oslo.

  5. Single crystal diffraction studies of phase transition of minerals across Fe high-low spin transition at high pressure

    NASA Astrophysics Data System (ADS)

    Merlini, M.; Hanfland, M.

    2011-12-01

    The spin state of Fe in structure of minerals relevant for the lower mantle mineralogy, is known to undergo a high to low spin state change. This phenomena is often coupled to a remarkable volume contraction and from a structural point of view, often is associated to isosymmetrical phase transition. Recent improvements at X-Ray beamlines for diffraction at extreme conditions at synchrotron facilities allow the possibility to perform single crystal diffraction and determine crystal structure of minerals at extreme conditions, including also structural studies across first or second order phase transition. The accurate knowledge of crystal structure and of phase behaviour at high pressure is a very important step in order to: 1-understand the physical properties; 2- have an accurate experimental constraint on numerical simulation. We report here three examples of structure determination by single crystal X-Ray diffraction at extreme conditions concerning phase transition related to Fe spin state change, measured at ID09A beamline (ESRF, France). CaFe2O4 undergoes a spin transition at 50 GPa. XRD before and after indicate the symmetry and crystal structure is the same. The transition is marked by 10 % volume contraction. The use of He as pressure transmitting media strongly reduced strain induced by pressure and let the crystal survive this transition, allowing for the first time direct determination of Fe-O bond length changes related to variation of spin state. The main structural difference between high and low spin structure is simply a collapse of FeO6 polyhedra. FeCO3 has been also investigated, and the results are also compared with already present in literature. FeCO3 undergoes a transition around 45 GPa, with a remarked hysteresis. In the pressure range 20-45 however an anomalous behaviour is noticed, probably related to a different spin interaction due to reduced Fe-Fe distances. Fe1-xS pyrrhotite has been investigated in two different structure (a

  6. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    SciTech Connect

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  7. Quantum effects in low-energy photofission of heavy nuclei

    SciTech Connect

    Tsipenyuk, Y.M.; Ostapenko, Y.B.; Smirenkin, G.N.; Soldatov, A.S.

    1984-09-01

    The article is devoted to quantum effects in highly deformed nuclei and the related features of the fission mechanism in the low-energy photofission of heavy nuclei. The following questions are considered: the spectrum of transition states (fission channels), the symmetry of the nuclear configuration in the deformation process, the features of the passage through the barrier due to the existence in the second well of quasistationary states of fissile and nonfissile modes, the isomeric-shelf phenomenon in deep sub-barrier fission, and the relation between the fragment mass distribution and the structure of the fission barrier.

  8. Developing and Using Green Skills for the Transition to a Low Carbon Economy

    ERIC Educational Resources Information Center

    Brown, Mike

    2015-01-01

    One of the strategies being advocated in response to climate change is the need to transition to a low carbon economy. Current projections show that within this transition, new jobs will be created, some eliminated and most others subjected to change. This article reports findings from interviews with a selection of twenty participants who are…

  9. Parity violation in low-energy

    SciTech Connect

    Martin Savage

    2001-12-01

    Parity violation in low-energy nuclear observables is included in the pionless effective field theory. The model-independent relation between the parity-violating asymmetry in polarized np -> d gamma and the non-nucleon part of the deuteron anapole moment is discussed. The asymmetry in np -> d gamma computed with KSW power-counting, and recently criticized by Desplanques, is discussed.

  10. Low energy [bar p] physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy [bar p] experiment at FNAL. This paper describes the performance of the Fermilab [bar p] Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in [bar p] + p [yields] [bar [Lambda

  11. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  12. Many-body energy localization transition in periodically driven systems

    SciTech Connect

    D’Alessio, Luca; Polkovnikov, Anatoli

    2013-06-15

    According to the second law of thermodynamics the total entropy of a system is increased during almost any dynamical process. The positivity of the specific heat implies that the entropy increase is associated with heating. This is generally true both at the single particle level, like in the Fermi acceleration mechanism of charged particles reflected by magnetic mirrors, and for complex systems in everyday devices. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. The dynamical localization is known to occur both at classical (Fermi–Ulam model) and at quantum levels (kicked rotor). However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in both classical and quantum periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. -- Highlights: •A dynamical localization transition in periodically driven ergodic systems is found. •This phenomenon is reminiscent of many-body localization in energy space. •Our results are valid for classical and quantum systems in the thermodynamic limit. •At critical frequency, the short time expansion for the evolution operator breaks down. •The transition is associated to a divergent time scale.

  13. Low energy Skyrmion-Skyrmion scattering

    SciTech Connect

    Gisiger, T.; Paranjape, M.B. )

    1994-07-15

    We study the scattering of two Skyrmions at low energy and large separation. We use the method proposed by Manton for truncating the degrees of freedom of the system from infinite to a manageable finite number. This corresponds to identifying the manifold consisting of the union of the low energy critical points of the potential along with the gradient flow curves joining these together and by positing that the dynamics is restricted here. The kinetic energy provides an induced metric on this manifold while restricting the full potential energy to the manifold defines a potential. The low energy dynamics is now constrained to these finite number of degrees of freedom. For a large separation of the two Skyrmions the manifold is parametrized by the variables of the product ansatz. We find the interaction between two Skyrmions coming from the induced metric, which was independently found by Schroers. We find that the static potential is actually negligible in comparison to this interaction. Thus to lowest order, at large separation, the dynamics reduces to geodesic motion on the manifold. We consider the scattering to first order in the interaction using the perturbative method of Lagrange and find that the dynamics in the no spin or charge exchange sector reduces to the Kepler problem.

  14. Low energy Skyrmion-Skyrmion scattering

    NASA Astrophysics Data System (ADS)

    Gisiger, T.; Paranjape, M. B.

    1994-07-01

    We study the scattering of two Skyrmions at low energy and large separation. We use the method proposed by Manton for truncating the degrees of freedom of the system from infinite to a manageable finite number. This corresponds to identifying the manifold consisting of the union of the low energy critical points of the potential along with the gradient flow curves joining these together and by positing that the dynamics is restricted here. The kinetic energy provides an induced metric on this manifold while restricting the full potential energy to the manifold defines a potential. The low energy dynamics is now constrained to these finite number of degrees of freedom. For a large separation of the two Skyrmions the manifold is parametrized by the variables of the product ansatz. We find the interaction between two Skyrmions coming from the induced metric, which was independently found by Schroers. We find that the static potential is actually negligible in comparison to this interaction. Thus to lowest order, at large separation, the dynamics reduces to geodesic motion on the manifold. We consider the scattering to first order in the interaction using the perturbative method of Lagrange and find that the dynamics in the no spin or charge exchange sector reduces to the Kepler problem.

  15. A rocky planet transiting a nearby low-mass star.

    PubMed

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere. PMID:26560298

  16. A rocky planet transiting a nearby low-mass star

    NASA Astrophysics Data System (ADS)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason A.; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A.; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C.; Udry, Stéphane; Wünsche, Anaël

    2015-11-01

    M-dwarf stars—hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun—are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  17. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  18. RHIC low energy beam loss projections

    SciTech Connect

    Satogata,T.

    2009-08-01

    For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main question is whether a normal injection run is feasible for an FY10 10-15 week operations run from a radiation safety perspective. A peripheral question is whether continuous injection operations is feasible from a radiation safety perspective. In continuous injection mode, we fill both rings, then continuously extract and reinject the oldest bunches that have suffered the most beam loss to increase the overall integrated luminosity. We expect to gain a factor of 2-3 in integrated luminosity from continuous injection at lowest energies if implemented[1]. Continuous injection is feasible by FY11 from an engineering perspective given enough effort, but the required extra safety controls and hardware dose risk make it unappealing for the projected luminosity improvement. Low-energy electron cooling will reduce beam losses by at least an order of magnitude vs normal low-energy operations, but low energy cooling is only feasible in the FY13 timescale and therefore beyond the scope of this note. For normal injection low energy estimates we assume the following: (1) RHIC beam total energies are E=2.5-10 GeV/u. (Continuous injection mode is probably unnecessary above total energies of E=7-8 GeV/u.); (2) RHIC operates only as a storage ring, with no acceleration; (3) 110 bunches of about 0.5-1.0 x 10{sup 9} initial bunch intensities (50-100% injection efficiency, likely conservative

  19. Low-Frequency, Low-G MEMS Piezoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Xu, R.; Kim, S. G.

    2015-12-01

    This paper reports the design, modeling and fabrication of a novel MEMS device for low-frequency, low-g vibration energy harvesting. The new design is based on bi-stable buckled beam structure. To implement the design at MEMS scale, we further proposed to employ residual stress in micro-fabricated thin films. With an electromechanical lumped model, the multi-layer beam could be designed to achieve bi-stability with desired frequency range and excitation amplitude. A macro-scale prototype has been built and tested to verifies the prediction of the performance enhancement of the bi-stable beam at low frequencies. A MEMS scale prototype has been fabricated and tested to verify the frequency range at low excitation amplitude. The MEMS device shows wide operating frequency range from 50Hz to 150Hz at 0.2g without external proof mass. The same device with external proof mass has lower frequency range (< 10Hz) with boosted deflection amplitude.

  20. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  1. IBS and Potential Luminosity Improvement for RHIC Operation Below Transition Energy

    SciTech Connect

    Fedotov,A.

    2009-01-02

    There is a strong interest in low-energy RHIC operations in the single-beam total energy range of 2.5-25 GeV/nucleon [1-3]. Collisions in this energy range, much of which is below nominal RHIC injection energy, will help to answer one of the key questions in the field of QeD about the existence and location of a critical point on the QCD phase diagram [4]. There have been several short test runs during 2006-2008 RHIC operations to evaluate RHIC operational challenges at these low energies [5]. Beam lifetimes observed during the test runs were limited by machine nonlinearities. This performance limit can be improved with sufficient machine tuning. The next luminosity limitation comes from transverse and longitudinal Intra-beam Scattering (IBS), and ultimately from the space-charge limit. Detailed discussion of limiting beam dynamics effects and possible luminosity improvement with electron cooling can be found in Refs. [6-8]. For low-energy RHIC operation, particle losses from the RF bucket are of particular concern since the longitudinal beam size is comparable to the existing RF bucket at low energies. However, operation below transition energy allows us to exploit an Intra-beam Scattering (IBS) feature that drives the transverse and longitudinal beam temperatures towards equilibrium by minimizing the longitudinal diffusion rate using a high RF voltage. Simulation studies were performed with the goal to understand whether one can use this feature of IBS to improve luminosity of RHIC collider at low-energies. This Note presents results of simulations which show that additional luminosity improvement for low-energy RHIC project may be possible with high RF voltage from a 56 MHz superconducting RF cavity that is presently under development for RHIC.

  2. Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Hultgren, Lennart .

    2000-01-01

    Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50,000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.

  3. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGESBeta

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  4. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  5. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  6. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  7. Low-energy generation in nanostructured Si

    NASA Astrophysics Data System (ADS)

    Kuznicki, Zbigniew T.; Meyrueis, Patrick

    2008-04-01

    Solar photon energy can be better used when totally transformed on collectable free-carriers. The conversion of one energetic photon could result in more than one free-carrier pair if a low-energy mechanism is involved. Such PV conversion represents a multistage nonlinear process and requires especially dedicated low-energy centers. A cascade-like progression is induced by the primary/fundamental/interband absorption. As shown by us previously, the corresponding structure can be realized, for example, with nanostructured Si. The experimental devices convert 400 nm photons into collectable primary and secondary free-carriers. The excess carriers can be drawn out into the external electrical circuit even in a multiinterface architecture containing a carrier collection limit. The superficial effect seems to be totally independent of the presence or not of a buried amorphized layer. This is the first simple experimental evidence for low-energy generation. The performance is inversely proportional to the incident light intensity. The thermodynamic limit of conventional photovoltaic conversion is lower than 30%, while in the case of the mechanism reported here, it can be propelled above 60%. An optimization of the effect by a suitable conditioning and annealing should be possible, opening the way to different applications, especially in the areas of nanophotovoltaics and very high efficiency solar cells.

  8. Energy harvesting based on FE-FE transition in ferroelectric single crystals.

    PubMed

    Guyomar, Daniel; Pruvost, Sebastien; Sebald, Gael

    2008-02-01

    The pyroelectric properties of Pb(Zn(1/3)Nb(2/3))(0955)Ti(0.045)O(3) single crystals versus an electric field have been studied for energy harvesting in this paper. Two thermodynamic cycles (Stirling and Ericsson) were used for this purpose. By applying an electric field, a FE-FE transition was induced, abruptly increasing the polarization. This transition minimized the supplied energy and improved the harvested energy. By discharging the single crystal at a higher temperature, a gain of 1100% was obtained with the Stirling cycle at 1 kV/mm (gain is defined as harvested energy divided by supplied energy). The study revealed that Stirling cycles are more interesting for low electric fields. Based on experimental results, simulations were carried out to estimate energy harvesting in high electric fields to evaluate the performances of thin samples (single crystals or oriented thin films). At high electric fields, both cycles gave almost the same energy harvesting, but Ericsson cycles were more appropriate to control the voltage on the sample. The simulation led to a harvested energy of 500 mJ/g for an applied electric field equal to 50 kV/mm. The efficiency with respect to Carnot was raised 20%. PMID:18334334

  9. Calibration of a γ- Re θ transition model and its application in low-speed flows

    NASA Astrophysics Data System (ADS)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  10. New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Zhidkova, I. E.

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.

  11. Low-energy-state dynamics of entanglement for spin systems

    SciTech Connect

    Jafari, R.

    2010-11-15

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  12. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  13. Low-energy positron interactions with xenon

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Makochekanwa, C.; Jones, A. C. L.; Caradonna, P.; Slaughter, D. S.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Bellm, S.; Lohmann, B.; Fursa, D. V.; Bray, I.; Mueller, D. W.; Stauffer, A. D.

    2011-12-01

    Low-energy interactions of positrons with xenon have been studied both experimentally and theoretically. The experimental measurements were carried out using a trap-based positron beam with an energy resolution of ˜80 meV, while the theoretical calculations were carried out using the convergent close-coupling method and the relativistic optical potential approach. Absolute values of the grand total, positronium formation and grand total minus positronium formation cross sections are presented over the energy range of 1-60 eV. Elastic differential cross sections (DCS), for selected energies, are also presented both below and above the positronium formation threshold. Fine energy-step measurements of the positronium formation cross section over the energy range of 4.4-8.4 eV, and measurements of the elastic DCS at the energies of 5.33 and 6.64 eV, have been carried out to investigate the ionization threshold regions corresponding to the 2P3/2 and 2P1/2 states of the Xe+ ion. The present results are compared with both experimental and theoretical values from the literature where available.

  14. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  15. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.; Guo, H. Y.; Naulin, V.; Rasmussen, J. Juul; Nielsen, A. H.; Wu, X. Q.; Yan, N.; Chen, L.; Shao, L. M.; Chen, R.; Wang, L.; Zhang, W.

    2016-03-01

    A new model for the low-to-high (L -H ) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L -H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L -H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  16. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    PubMed

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-01

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment. PMID:26991181

  17. Durable, Low-Surface-Energy Treatments

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.

    1992-01-01

    Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.

  18. Summary talk: Experiments at low energies

    NASA Astrophysics Data System (ADS)

    Leifels, Yvonne

    2016-01-01

    In heavy-ion collisions at beam energies √sNN between 1 and 150A GeV highest baryonic densities are reached at rather moderate temperatures. By varying the beam energy and the system size a broad range of the QCD phase diagram is scanned where several interesting phenomena are predicted by theoretical models. Apart from possible phase transitions and existence of a critical point in this regime, the production of strangeness and the interaction of strange particles with the surrounding hot and dense nuclear medium constitutes a prominent probe not only to address the underlying reaction mechanisms and production processes but in particular to constrain densities and temperatures reached in the course of the collision. Recent results on heavy-ion collisions in this beam energy regime obtained by various experimental collaborations are summarized, with special emphasis on strangeness production, rare probes, and critical phenomena. The importance of data on elementary reactions (i.e., pp, p+nucleus, and π+nucleus) as a bench mark for theoretical models and their relevance for understanding the underlying mechanisms of heavy-ion collisions are being discussed. Several interesting observables have been presented in various contributions, which give further motivation for the construction of high-rate experiments at new accelerator facilities.

  19. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  20. Steering quantum transitions between three crossing energy levels

    SciTech Connect

    Ivanov, S. S.; Vitanov, N. V.

    2008-02-15

    We calculate the propagator and the transition probabilities for a coherently driven three-state quantum system. The energies of the three states change linearly in time, whereas the interactions between them are pulse shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere. Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive estimates for the half-width of the excitation profile, and for the parameters required for creation of a maximally coherent superposition of the three states. These results are of potential interest in ladder climbing in alkali-metal atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1/2 particles. The results for the three-state system can be generalized, without essential difficulties, to higher dimensions.

  1. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  2. Low energy ion loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M.; Fang, X.; Ma, Y.

    2012-04-01

    Current data observations and modeling efforts have indicated that the low-energy pick-up ions on Mars significantly contribute to the overall escape rate. Due to the lack of a dipole magnetic field, the solar wind directly interacts with the dayside upper atmosphere causing particles to be stripped away. In this study, we use a 3-D Monte Carlo test particle simulation with virtual detectors to observe low energy ions (< 50 eV) in the Mars space environment. We will present velocity space distributions that can capture the asymmetric and non-gyrotropic features of particle motion. The effect of different solar conditions will also be discussed with respect to ion fluxes at various spatial locations as well as overall loss in order to robustly describe the physical processes controlling the distribution of planetary ions and atmospheric escape.

  3. Atomic ionization by neutrinos at low energies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Pang

    2016-05-01

    It is well-known that neutrino-electron scattering at low recoil energies provides sensitivity gain in constraining neutrinos’ magnetic moments and their possible milli-charges. However, in detectors with sub-keV thresholds, the binding effects of electrons become significant. In this talk, we present our recent works of applying ab initio calculations to germanium ionization by neutrinos at low energies. Compared with the conventional differential cross section formulae that were used to derive current experimental bounds, our results with less theoretical uncertainties set a more reliable bound on the neutrino magnetic moment and a more stringent bound on the neutrino milli-charge with current reactor antineutrino data taken from germanium detectors.

  4. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  5. Durable low surface-energy surfaces

    NASA Technical Reports Server (NTRS)

    Willis, Paul B. (Inventor); McElroy, Paul M. (Inventor); Hickey, Gregory H. (Inventor)

    1993-01-01

    A formulation for forming a low surface-energy surface on a substrate having (i) a fluoroalkyl silane having a low surface energy part, (ii) a liquid crystal silane operable for enhancing the orientation of the molecules of the fluoroalkyl silane and for crosslinking with the fluoroalkyl silane, and, (iii) a transport medium for applying the fluoroalkyl silane and the liquid crystal silane to the surface of a substrate. In one embodiment the formulation can includes a crosslinking agent for crosslinking the fluoroalkyl silane. In another embodiment the formulation has a condensation catalyst for enhancing chemical bonding of the fluoroalkyl silane to the substrate. The transport medium can be an alcohol such as methanol or ethanol.

  6. Pressure-driven high to low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6

    SciTech Connect

    O'Neal, K. R.; Liu, Z.; Miller, Joel S.; Fishman, Randy Scott; Musfeldt, J. L.

    2014-01-01

    Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high low spin transition in [Ru2(O2CMe)4]3[Cr(CN)6]. The extended nature of the diruthenium wavefunction combined with coupling to chromium-related local lattice distortions changes the relative energies of the and orbitals and drives the high low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism.

  7. Experimental Measurement of Low Energy Neutrino Interactions

    SciTech Connect

    Scholberg, Kate

    2011-11-23

    Neutrino interactions in the few to few tens of MeV range are of importance for several physics topics, including solar, supernova and reactor neutrinos, as well as future proposed oscillation and Standard Model test experiments. Although interaction cross-sections for some simple targets are well understood, very little experimental data exist for interactions with nuclei. This talk will discuss the motivation for measuring low energy neutrino interactions, the state of knowledge, and possible future strategies.

  8. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  9. Numerical Simulations of Steady and Unsteady Transition in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel

    1998-01-01

    Transition plays an important role in the prediction of losses and performance in low-pressure turbines. The transition location on a turbine blade may vary significantly because of the wakes from upstream blade rows, and intermittent flow separation can also affect the transition process in an unsteady flow environment. In the present investigation, an unsteady Navier-Stokes analysis is used to predict transition in a low-pressure turbine cascade and a low-pressure turbine stage. The numerical flow analysis is third-order spatially accurate and second-order temporally accurate, and the equations of motion are integrated using an implicit time-marching procedure. The Baldwin-Lomax and k-epsilon turbulence models, in conjunction with several algebraic transition models, have been used to predict the location of transition. Predicted results include unsteady blade loadings, time-histories of the pressure, transition locations and boundary layer quantities, as well as performance quantities and comparisons with the available experimental/design data.

  10. Low-Energy Impacts onto Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Seward, L. M.; Colwell, J. E.

    2011-12-01

    Collisions in space are vital to the formation and evolution of planetary bodies such as protoplanetary disks, planetary rings, the Kuiper belt, and the asteroid belt. Low-velocity impacts are common in planetary rings and protoplanetary disks. Saturn ring particles collide at speeds less than 1 m/s throughout most of the main rings, with more energetic collisions occurring in the dynamically stirred F ring. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into regolith. We use direct measurement of ejecta mass and high resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target size distribution, regolith depth, and target relative density, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. Our results show that the production of ejecta mass increases as a function of impact kinetic energy. The production of mass also increases as a function of target relative density to a point of maximum ejecta production, beyond which the trend reverses.

  11. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  12. Many-body energy localization transition in periodically driven system

    NASA Astrophysics Data System (ADS)

    D'Alessio, Luca; Polkovnikov, Anatoli

    2013-03-01

    According to the second law of thermodynamics the total entropy and energy of a system is increased during almost any dynamical process. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. We report numerical evidence based on exact diagonalization of small spin chains and theoretical arguments based on the Magnus expansion. Our findings are valid for both classical and quantum systems.

  13. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    SciTech Connect

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N{sub 2}-Ar and O{sub 2}-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N{sub 2}-Ar and O{sub 2}-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N{sub 2}-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O{sub 2} -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O{sub 2}-Ar discharges, the dissociation fraction of O{sub 2} molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  14. Methods Of Sensitometry For Low Energy Radiography

    NASA Astrophysics Data System (ADS)

    Bednarek, Daniel R.; Rudin, Stephen; Wong, Roland

    1982-02-01

    Inverse-square sensitometry for low kVp techniques is limited by air attenuation and beam hardening. It is thus difficult to obtain accurate H and D curves for mammographic screen-film combinations at technique factors used clinically. Methods are described for the determination of characteristic curves at low x-ray energies which provide composite intensity-scale curves using small changes in source-to-receptor distance and concomitant changes in either exposure time, beam attenuation, or kVp. H and D curves obtained at low kVp's using the various sensitometric approaches are compared with those obtained using inverse-square sensitometry; the relative merits of the different methods are discussed.

  15. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  16. Low to high energy beamstops for APT

    SciTech Connect

    Doll, D.; Hagan, T. van; Redler, K.; Tooker, J.; Baxter, A.; Schneider, D.; Spinos, F.; Fikani, M.; Funk, W.

    1998-12-31

    Beamstops are required for commissioning and operation of accelerators. The family of beamstops currently being developed for the DOE-sponsored Accelerator Production of Tritium (APT) program is addressed. The operational range encompasses proton energies of 6.7 MeV at the beginning of the RFQ to 1.7 GeV at the target/blanket, and both pulsed and cw operating modes. An additional beamstop was needed on a companion test facility to validate ion injector performance. This first of the series of beamstops has been built and operated; the second is under construction and will be operational by mid-1998. Particle stopping distance and duty factor drive the size and heat transfer capacity of these beamstops; the need for low neutron production and activation potential drives the material selection. At energies above 6.7 MeV, the preferred beamstop material is graphite with aluminum the choice for structures and helium the choice for coolant. Boronated water is the preferred shielding below 70 MeV, but is less suitable at higher energies because of the creation of Be-7. The evolution of the low-energy demonstration accelerator (LEDA) to 20 MeV and remaining APT beamstops are presented with performance ramifications and the status of the hardware and testing.

  17. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  18. Phase transition in the Jarzynski estimator of free energy differences.

    PubMed

    Suárez, Alberto; Silbey, Robert; Oppenheim, Irwin

    2012-05-01

    The transition between a regime in which thermodynamic relations apply only to ensembles of small systems coupled to a large environment and a regime in which they can be used to characterize individual macroscopic systems is analyzed in terms of the change in behavior of the Jarzynski estimator of equilibrium free energy differences from nonequilibrium work measurements. Given a fixed number of measurements, the Jarzynski estimator is unbiased for sufficiently small systems. In these systems the directionality of time is poorly defined and the configurations that dominate the empirical average, but which are in fact typical of the reverse process, are sufficiently well sampled. As the system size increases the arrow of time becomes better defined. The dominant atypical fluctuations become rare and eventually cannot be sampled with the limited resources that are available. Asymptotically, only typical work values are measured. The Jarzynski estimator becomes maximally biased and approaches the exponential of minus the average work, which is the result that is expected from standard macroscopic thermodynamics. In the proper scaling limit, this regime change has been recently described in terms of a phase transition in variants of the random energy model. In this paper this correspondence is further demonstrated in two examples of physical interest: the sudden compression of an ideal gas and adiabatic quasistatic volume changes in a dilute real gas. PMID:23004704

  19. Phase transition in the Jarzynski estimator of free energy differences

    NASA Astrophysics Data System (ADS)

    Suárez, Alberto; Silbey, Robert; Oppenheim, Irwin

    2012-05-01

    The transition between a regime in which thermodynamic relations apply only to ensembles of small systems coupled to a large environment and a regime in which they can be used to characterize individual macroscopic systems is analyzed in terms of the change in behavior of the Jarzynski estimator of equilibrium free energy differences from nonequilibrium work measurements. Given a fixed number of measurements, the Jarzynski estimator is unbiased for sufficiently small systems. In these systems the directionality of time is poorly defined and the configurations that dominate the empirical average, but which are in fact typical of the reverse process, are sufficiently well sampled. As the system size increases the arrow of time becomes better defined. The dominant atypical fluctuations become rare and eventually cannot be sampled with the limited resources that are available. Asymptotically, only typical work values are measured. The Jarzynski estimator becomes maximally biased and approaches the exponential of minus the average work, which is the result that is expected from standard macroscopic thermodynamics. In the proper scaling limit, this regime change has been recently described in terms of a phase transition in variants of the random energy model. In this paper this correspondence is further demonstrated in two examples of physical interest: the sudden compression of an ideal gas and adiabatic quasistatic volume changes in a dilute real gas.

  20. Low-Income African American Youth. Vulnerable Youth and the Transition to Adulthood

    ERIC Educational Resources Information Center

    Kuehn, Daniel; McDaniel, Marla

    2009-01-01

    The transition to adulthood could present challenges for African American youth from low-income families. This fact sheet uses data from the National Longitudinal Survey of Youth 1997 to explore racial differences in adolescent risk behavior, education, employment, and earnings among low income youth age 18 to 24. Differences discussed herein are…

  1. Borrowing and Working of Low-Income Students: The Impact of a Summer Transition Program

    ERIC Educational Resources Information Center

    De La Rosa, Mari Luna

    2012-01-01

    This study focuses on how low-income students determine employment and student loan borrowing options before they begin college, as part of the final stages of their college choice process. More specifically, this study asks, "during a six-week summer transition program, what choices are made by low-income students with employment or borrowing…

  2. Low Energy X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodruff, Wayne R.

    1981-10-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d=9.95Å) crystal. To preclude higher order (n≳1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than ˜1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surfaced photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminum light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any UV generated on or scattered by the crystal from illuminating the detector. High spectral enegy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα1,2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy X-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable.

  3. Landau-Zener transitions mediated by an environment: Population transfer and energy dissipation

    SciTech Connect

    Dodin, Amro; Simine, Lena; Segal, Dvira; Garmon, Savannah

    2014-03-28

    We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming individual, independent transitions between pairs of states. In contrast, the ground state survival probability at long time shows a novel, non-monotonic, functional form with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise.

  4. Landau-Zener transitions mediated by an environment: population transfer and energy dissipation.

    PubMed

    Dodin, Amro; Garmon, Savannah; Simine, Lena; Segal, Dvira

    2014-03-28

    We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming individual, independent transitions between pairs of states. In contrast, the ground state survival probability at long time shows a novel, non-monotonic, functional form with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise. PMID:24697472

  5. Boundary Layer Transition on Slender Cones in Conventional and Low Disturbance Mach 6 Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Hollis, Brian R.; Chang, Chau-Lyan; Singer, Bart A.

    2002-01-01

    An experimental investigation was conducted on a 5-degree half-angle cone and a 5-degree half-angle flared cone in a conventional Mach 6 wind tunnel to examine the effects of facility noise on boundary layer transition. The influence of tunnel noise was inferred by comparing transition onset locations determined from the present test to that previously obtained in a Mach 6 low disturbance quiet tunnel. Together, the two sets of experiments are believed to represent the first direct comparison of transition onset between a conventional and a low disturbance wind tunnel using a common test model and transition detection technique. In the present conventional hypersonic tunnel experiment, separate measurements of heat transfer and adiabatic wall temperatures were obtained on the conical models at small angles of attack over a range of Reynolds numbers, which resulted in laminar, transitional, and turbulent flow. Smooth model turbulent heating distributions are compared to that obtained with transition forced via discrete surface roughness. The model nosetip radius was varied to examine the effects of bluntness on transition onset. Despite wall to total temperature differences between the transient heating measurements and the adiabatic wall temperature measurement, the two methods for determining sharp cone transition onset generally yielded equivalent locations. In the 'noisy' mode of the hypersonic low disturbance tunnel, transition onset occurred earlier than that measured in the conventional hypersonic tunnel, suggesting higher levels of freestream acoustic radiation relative to the conventional tunnel. At comparable freestream conditions, the transition onset Reynolds number under low disturbance conditions was a factor of 1.3 greater than that measured on flared cone in the LaRC conventional hypersonic tunnel and a factor of 1.6 greater that the flared cone run in the low disturbance tunnel run 'noisy'. Navier-Stokes mean flow computations and linear stability

  6. Phase Transitions at Low Temperature (<77 K) by Means of Photopyroelectric Calorimetry

    NASA Astrophysics Data System (ADS)

    Oleaga, A.; Salazar, A.

    2012-11-01

    An ac photopyroelectric calorimeter has been designed and mounted to work at low temperatures (12 K to 77 K), where the sample is in a He atmosphere and with the detector region isolated from mechanical vibrations allowing the retrieval of high resolution measurements of thermal diffusivity and specific heat. The system has been used to study magnetic and ferroelectric phase transitions in RMnO3 (R = Sm, Tb, Dy). The high quality of the measurements has allowed study of the critical behavior of the transitions and extraction of their critical parameters. In the particular case of the antiferromagnetic-to-paramagnetic transition in SmMnO3, it belongs to the 3D-XY universality class while in the case of the lock-in, ferroelectric transition in TbMnO3, the results confirm that the transition is clearly second order.

  7. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  8. Fundamental Efficiency Limitations for Low Electron Energy Cathololuminescence

    SciTech Connect

    SEAGER,CARLETON H.; TALLANT,DAVID R.

    2000-08-01

    The design of field emission displays is severely constrained by the universally poor cathodoluminescence (CL) efficiency of most phosphors at low excitation energies. As part of the effort to understand this phenomenon, the authors have measured the time decay of spectrally-resolved, pulsed CL and photoluminescence (PL) in several phosphors activated by rare earth and transition metal impurities, including Y{sub 2}O{sub 3}:Eu, Y{sub 2}SiO{sub 5}:Tb, and Zn{sub 2}SiO{sub 4}:Mn. Activator concentrations ranged from {approximately}0.25 to 10%. The CL decay curves are always non-linear on a log(CL)-linear(time) plot--i.e. they deviate from first order decay kinetics. These deviations are always more pronounced at short times and larger activator concentrations and are largest at low beam energies where the decay rates are noticeably faster. PL decay is always slower than that seen for CL, but these differences disappear after most of the excited species have decayed. They have also measured the dependence of steady state CL efficiency on beam energy. They find that larger activator concentrations accelerate the drop in CL efficiency seen at low beam energies. These effects are largest for the activators which interact more strongly with the host lattice. While activator-activator interactions are known to limit PL and CL efficiency in most phosphors, the present data suggest that a more insidious version of this mechanism is partly responsible for poor CL efficiency at low beam energies. This enhanced concentration quenching is due to the interaction of nearby excited activators. These interactions can lead to non-radiative activator decay, hence lower steady state CL efficiency. Excited state clustering, which may be caused by the large energy loss rate of low energy primary electrons, appears to enhance these interactions. In support of this idea, they find that PL decays obtained at high laser pulse energies resemble the non-linear decays seen in the CL data.

  9. Low-temperature optical spectroscopy of single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Plechinger, Gerd; Nagler, Philipp; Schüller, Christian; Korn, Tobias

    In recent years, layered materials beyond graphene have attracted immense interest in the scientific community. Among those, particularly the semiconducting transition metal dichalcogenides (TMDCs) in their monolayer form are in the focus of the current research due to their intriguing optical properties and their potential application in valleytronic-based devices. The optical properties are governed by excitonic features, even at room temperature. The excitons in monolayer TMDCs have unusually large binding energies due to the two-dimensional carrier confinement and weak dielectric screening. Here, we investigate the photoluminescence spectra of monolayer TMDCs at low temperatures. We present clear evidence for the existence of biexcitons in monolayer WS2, exhibiting a superlinear behavior in excitation-power-dependent measurements. Applying a gate-voltage in a FET-configuration, we can identify charge-neutral and negatively charged excitons (trions) in the optical spectrum of different TMDCs. The trion binding energies range in the order of 30 meV. The evolution of the excitonic peaks under the application of external magnetic fields give further insight into the internal structure of these materials.

  10. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  11. Low energy demonstration accelerator technical area 53

    SciTech Connect

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  12. Low-energy ballistic lunar transfers

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.

    A systematic method is developed that uses dynamical systems theory to model, analyze, and construct low-energy ballistic lunar transfers (BLTs). It has been found that low-energy BLTs may be produced by intersecting the stable manifold of an unstable Earth-Moon three-body orbit with the Earth. A spacecraft following such a trajectory is only required to perform a single maneuver, namely, the Trans-Lunar Injection maneuver, in order to complete the transfer. After the Trans-Lunar Injection maneuver, the spacecraft follows an entirely ballistic trajectory that asymptotically approaches and arrives at the target lunar three-body orbit. Because these orbit transfers require no orbit insertion maneuver at the three-body orbit, the transfers may be used to send spacecraft 25--40% more massive than spacecraft sent to the same orbits via conventional, direct transfers. From the targeted three-body orbits, the spacecraft may transfer to nearly any region within the Earth-Moon system, including any location on the surface of the Moon. The systematic methods developed in this research allow low-energy BLTs to be characterized by six parameters. It has been found that BLTs exist in families, where a family of BLTs consists of transfers whose parameters vary in a continuous fashion from one end of the family to the other. The families are easily identified and studied using a BLT State Space Map (BLT Map). The present research studies BLT Maps and has surveyed a wide variety of BLTs that exist in the observed families. It has been found that many types of BLTs may be constructed between 185-km low Earth parking orbits and lunar three-body orbits that require less than 3.27 km/s and fewer than 120 days of transfer time. Under certain conditions, BLTs may be constructed that require less than 3.2 km/s and fewer than 100 days of transfer time. It has been found that BLTs may implement LEO parking orbits with nearly any combination of altitude and inclination; they may depart from

  13. Simulating boundary layer transition with low-Reynolds-number k-epsilon turbulence models. I - An evaluation of prediction characteristics. II - An approach to improving the predictions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. C.; Patankar, S. V.

    1991-01-01

    The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.

  14. Variable defect structures cause the magnetic low-temperature transition in natural monoclinic pyrrhotite

    NASA Astrophysics Data System (ADS)

    Koulialias, D.; Kind, J.; Charilaou, M.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.

    2016-02-01

    Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8) is a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials. Because of its low-temperature magnetic transition around 30 K also known as Besnus transition, which is considered to be an intrinsic property, this mineral phase is easily detectable in natural samples. Although the physical properties of pyrrhotite have intensively been studied, the mechanism behind the pronounced change in magnetization at the low-temperature transition is still debated. Here we report magnetization experiments on a pyrrhotite crystal (Fe6.6S8) that consists of a 4C and an incommensurate 5C* superstructure that are different in their defect structure. The occurrence of two superstructures is magnetically confirmed by symmetric inflection points in hysteresis measurements above the transition at about 30 K. The disappearance of the inflection points and the associated change of the hysteresis parameters indicate that the two superstructures become strongly coupled to form a unitary magnetic anisotropy system at the transition. From this it follows that the Besnus transition in monoclinic pyrrhotite is an extrinsic magnetic phenomenon with respect to the 4C superstructure and therefore the physics behind it is in fact different from that of the well-known Verwey transition.

  15. Transitions to spatiotemporal chaos and turbulence of flute instabilities in a low-{beta} magnetized plasma

    SciTech Connect

    Brochard, F.; Gravier, E.; Bonhomme, G.

    2006-03-15

    The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the low-{beta} plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability.

  16. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions.

    PubMed

    Kirilovsky, Diana

    2015-10-01

    Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated. PMID:25139327

  17. Modulation of low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Sari, J. W.

    1975-01-01

    The relation between the diffusion coefficient of cosmic rays in the solar wind and the power spectrum of interplanetary magnetic field fluctuations, established in recent theories, is tested directly for low energy protons (below 80 MeV). In addition, an attempt is made to determine whether the particles are scattered by magnetic field discontinuities or by fluctuations between discontinuities. Predictions of a perturbation solution of the Fokker-Planck equation are compared with observations of the cosmic ray radial gradient. It is found that at energies between 40 and 80 MeV, galactic cosmic ray protons respond to changes in the predicted diffusion coefficients (i.e., the relationship under consideration holds at these low energies). The relation between changes in the proton flux and modulation parameters is best when the contribution of discontinuities is subtracted, which means that scattering is caused by fluctuations between discontinuities. There appears to be no distinct relation between changes in the modulation parameters and changes in the intensity of 20 to 40 MeV protons.

  18. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  19. Phase Transitions as a Novel Mechanism for High-Speed Energy Storage

    NASA Astrophysics Data System (ADS)

    Bernholc, Jerry

    2013-03-01

    In many energy applications there is an urgent need to store and quickly discharge large amounts of electrical energy. Since capacitors can be discharged far quicker than batteries and fuel cells, they have much higher power densities. At present, highly insulating polymers with large breakdown fields, such as polypropylene, are the dielectrics of choice in high-power capacitors. However, their energy densities are quite low because of small dielectric constants. Ferroelectric polymers from the PVDF family have significantly larger dielectric constants, yet their energy densities are still rather low. This can be traced to early saturation of their displacement fields with the applied electric field, and to somewhat lower breakdown fields. However, an admixture of a small amount of another polymer, such as CTFE, results in a dramatic increase in the stored energy. We show that this highly non-linear increase in the energy density is due to the formation of disordered nanodomains with different copolymer concentrations, which undergo first-order non-polar to polar phase transitions with an increase of the applied field. The resulting energy density profile reproduces well the experimental data, while its variation with co-polymer concentration and distribution suggest avenues for additional substantial improvements in the stored energy. Most recently, we have identified a low-activation-energy pathway for these successive phase transformations. It provides further confirmation of the viability of the suggested energy storage mechanism and also enables fine-tuning of the kinetics of energy release by informed choices of suitable co-polymers. In collaboration with V. Ranjan, L. Yu, M. Buongiorno Nardelli and R. Dong.

  20. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect

    Eudy, L.; Chandler, K.

    2008-05-01

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA).

  1. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    PubMed

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities. PMID:26918976

  2. On the transition from strombolian to fountaining activity: a thermal energy-based driver

    NASA Astrophysics Data System (ADS)

    Bombrun, Maxime; Spampinato, Letizia; Harris, Andrew; Barra, Vincent; Caltabiano, Tommaso

    2016-02-01

    Since 1999, Mount Etna's (Italy) South-East crater system has been characterised by episodic lava fountaining. Each episode is characterised by initial strombolian activity followed by transition to sustained fountaining to feed high-effusion rate lava flow. Here, we use thermal infrared data recorded by a permanent radiometer station to characterise the transition to sustained fountaining fed by the New South-East crater that developed on the eastern flank of the South-East crater starting from January 2011. We cover eight fountaining episodes that occurred between 2012 and 2013. We first developed a routine to characterise event waveforms apparent in the precursory, strombolian phase. This allowed extraction of a database for thermal energy and waveform shape for 1934 events. We detected between 66 and 650 events per episode, with event durations being between 4 and 55 s. In total, 1508 (78 %) of the events had short waxing phases and dominant waning phases. Event frequency increased as climax was approached. Events had energies of between 3.0 × 106 and 5.8 × 109 J, with rank order analysis indicating the highest possible event energy of 8.1 × 109 J. To visualise the temporal evolution of retrieved parameters during the precursory phase, we applied a dimensionality reduction technique. Results show that weaker events occur during an onset period that forms a low-energy "sink". The transition towards fountaining occurs at 107 J, where subsequent events have a temporal trend towards the highest energies, and where sustained fountaining occurs when energies exceed 109 J. Such an energy-based framework allows researchers to track the evolution of fountaining episodes and to predict the time at which sustained fountaining will begin.

  3. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  4. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2001-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  5. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    NASA Astrophysics Data System (ADS)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms

  6. Computational Study of Low Energy Nuclear Scattering

    NASA Astrophysics Data System (ADS)

    Salazar, Justin; Hira, Ajit; Brownrigg, Clifton; Pacheco, Jose

    2013-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms ( Z<=9 ) from Palladium and other metals. First, a FORTRAN computer program was developed to compute stopping cross sections and scattering angles in Pd and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 10 to 140kev. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  7. Fission dynamics at low excitation energy

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.; Chiba, S.; Ivanyuk, F.

    2014-11-01

    The mass asymmetry in the fission of 236U at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  8. Monte Carlo Comparisons to a Cryogenic Dark Matter Search Detector with Low Transition-Edge-Sensor Transition Temperature

    SciTech Connect

    Leman, S.W.; McCarthy, K.A.; Brink, P.L.; Cabrera, B.; Cherry, M.; Silva, E.Do Couto E; Figueroa-Feliciano, E.; Kim, P.; Mirabolfathi, N.; Pyle, M.; Resch, R.; Sadoulet, B.; Serfass, B.; Sundqvist, K.M.; Tomada, A.; Young, B.A.; /Santa Clara U.

    2012-06-05

    We present results on phonon quasidiffusion and Transition Edge Sensor (TES) studies in a large, 3-inch diameter, 1-inch thick [100] high purity germanium crystal, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare calibration data with results from a Monte Carlo which includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels. The phonon energy is then parsed into TES based phonon readout channels and input into a TES simulator.

  9. Low energy beam transport system developments

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  10. The low energy booster project status

    SciTech Connect

    Tuttle, G.W.

    1993-05-01

    In order to achieve the required injection momentum, the Superconducting Super Collider (SSC) has an accelerator chain comprised of a Linear Accelerator and three synchrotrons. The Low Energy Booster (LEB) is the first synchrotron in this chain. The LEB project has made significant progress in the development of major subsystems and conventional construction. This paper briefly reviews the performance requirements of the LEB and describes significant achievements in each of the major subsystem areas. Highlighted among these achievements are the LEB foreign collaborations with the Budker Institute of Nuclear Physics (BINP) located in Novosibirsk, Russia.

  11. Simulation of low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Langelaar, M. H.; Breeman, M.; Mijiritskii, A. V.; Boerma, D. O.

    A new simulation program `MATCH' has been developed for a detailed analysis of low-energy ion scattering (LEIS) and recoiling data. Instead of performing the full calculation of the three-dimensional trajectories through the sample from the ion source towards the detector, incoming trajectories as well as reversed-time outgoing trajectories are calculated, separately. Finally, these trajectories are matched to obtain the yield. The program has been tested for spectra and azimuthal scans of scattering and recoiling events of various sample species in different scattering geometries.

  12. Annihilation of Low Energy Antiprotons in Hydrogen

    SciTech Connect

    Ovchinnikov, S.Yu.; Macek, J.H.

    2003-08-26

    The cross sections for annihilation of antiprotons in hydrogen are very important for designing the High-Performance Antiproton Trap (HiPAT). When antiprotons are trapped they undergo atomic reactions with background gases which remove them from the trap. First, antiprotons are captured into highly excited bound states by ejecting the bound electrons, then they are radiationally deexcited and, finally, they annihilate by nuclear interaction. An understanding of these process require reliable cross sections for low-energy collisions of antiprotons with atoms. We have developed a theoretical technique for accurate calculations of these cross sections.

  13. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  14. Mott metal-insulator transition induced by utilizing a glasslike structural ordering in low-dimensional molecular conductors

    NASA Astrophysics Data System (ADS)

    Hartmann, Benedikt; Müller, Jens; Sasaki, Takahiko

    2014-11-01

    We utilize a glasslike structural transition in order to induce a Mott metal-insulator transition in the quasi-two-dimensional organic charge-transfer salt κ -(BEDT-TTF)2Cu [N (CN)2Br ]. In this material, the terminal ethylene groups of the BEDT-TTF molecules can adopt two different structural orientations within the crystal structure, namely eclipsed (E) and staggered (S) with the relative orientation of the outer C-C bonds being parallel and canted, respectively. These two conformations are thermally disordered at room temperature and undergo a glasslike ordering transition at Tg˜75 K. When cooling through Tg, a small fraction that depends on the cooling rate remains frozen in the S configuration, which is of slightly higher energy, corresponding to a controllable degree of structural disorder. We demonstrate that, when thermally coupled to a low-temperature heat bath, a pulsed heating current through the sample causes a very fast relaxation with cooling rates at Tg of the order of several 1000 K /min . The freezing of the structural degrees of freedom causes a decrease of the electronic bandwidth W with increasing cooling rate, and hence a Mott metal-insulator transition as the system crosses the critical ratio (W/U ) c of bandwidth to on-site Coulomb repulsion U . Due to the glassy character of the transition, the effect is persistent below Tg and can be reversibly repeated by melting the frozen configuration upon warming above Tg. Both by exploiting the characteristics of slowly changing relaxation times close to this temperature and by controlling the heating power, the materials can be fine-tuned across the Mott transition. A simple model allows for an estimate of the energy difference between the E and S state as well as the accompanying degree of frozen disorder in the population of the two orientations.

  15. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  16. Household Energy Consumption: Community Context and the Fuelwood Transition*

    PubMed Central

    Link, Cynthia F.; Axinn, William G.; Ghimire, Dirgha J.

    2012-01-01

    We examine the influence of community context on change over time in households’ use of non-wood fuels. Our theoretical framework builds on sociological concepts in order to study energy consumption at the micro-level. The framework emphasizes the importance of nonfamily organizations and services in the local community as determinants of the transition from use of fuelwood to use of alternative fuels. We use multilevel longitudinal data on household fuel choice and community context from rural Nepal to provide empirical tests of our theoretical model. Results reveal that increased exposure to nonfamily organizations in the local community increases the use of alternative fuels. The findings illustrate key features of human impacts on the local environment and motivate greater incorporation of social organization into research on environmental change. PMID:23017795

  17. Transition metal oxide hierarchical nanotubes for energy applications.

    PubMed

    Wei, Wei; Wang, Yongcheng; Wu, Hao; Al-Enizi, Abdullah M; Zhang, Lijuan; Zheng, Gengfeng

    2016-01-15

    We report a general synthetic method for transition metal oxide (TMO) hierarchical nanotube (HNT) structures by a solution-phase cation exchange method from Cu2O nanowire templates. This method leads to the formation of hollow, tubular backbones with secondary, thin nanostructures on the tube surface, which substantially increases the surface reactive sites for electrolyte contacts and electrochemical reactions. As proofs-of-concept, several representative first-row TMO HNTs have been synthesized, including CoOx, NiOx, MnOx, ZnOx and FeOx, with specific surface areas much larger than nanotubes or nanoparticles of corresponding materials. An example of the potential energy storage applications of CoOx HNTs as supercapacitors is also demonstrated. PMID:26629880

  18. Energy levels and radiative rates for transitions in Ti VI

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti; Keenan, Francis; Msezane, Alfred Z.

    2012-06-01

    Energies for 568 levels among the n=3+3p^64l+3s3p^54l configurations of Ti VI are calculated using the GRASP (General-purpose Relativistic Atomic Structure Program) code, which is based on the multi-configuration Dirac-Fock (MCDF) method. Additionally, radiative rates are calculated for all types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2). Lifetimes are also calculated for all the levels and extensive comparisons are made with the earlier available data as well as with other parallel calculations from the FAC (Flexible Atomic Code). Discrepancies for several levels with the earlier calculations of Mohan et al, (ADNDT 93 105 (2007)) are highlighted.

  19. Dynamics of the mesosphere/lower thermosphere transition region at mid and low latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, M. F.

    2013-12-01

    The interface region between the mesosphere and lower thermosphere at mid and low latitudes remains one of the most poorly understood regions of the atmosphere. The altitude range between 90 and 110 km is characterized by rapid changes with height in the turbulence characteristics. Observational data have shown evidence for a transition from more isotropic to stratified turbulence at scales of a few hundred kilometers and, furthermore, the dominance of stratified turbulence in the region immediately above the nominal turbopause height before molecular diffusion becomes dominant. The turbulence characteristics not only influence the transport of mass, energy, and momentum, but may also affect the generation of bulk mean flows. The same region is characterized by large winds and shears. Winds similar to those that are observed are beginning to appear in general circulation models as the spatial resolution in the models improves, but the drivers for the winds are still generally unknown or poorly understood. The influence of plasma and electrodynamical processes become increasingly important with increasing height and can change the effective Coriolis force, which in turn affects planetary wave propagation. In addition, the observational evidence suggests that there is a rapid and generally unexplained increase in the magnitude of the vertical velocities across this transition region with vertical winds of 10 or more meters per second over periods of several hours. The drivers and effects of such large vertical winds are not understood at all. The unique dynamical properties of the mesosphere/lower thermosphere region will be described and arguments will be presented that critical parameters for understanding the various aspects of the dynamics of the region are the vorticity and divergence.

  20. HATS-8b: A Low-density Transiting Super-Neptune

    NASA Astrophysics Data System (ADS)

    Bayliss, D.; Hartman, J. D.; Bakos, G. Á.; Penev, K.; Zhou, G.; Brahm, R.; Rabus, M.; Jordán, A.; Mancini, L.; de Val-Borro, M.; Bhatti, W.; Espinoza, N.; Csubry, Z.; Howard, A. W.; Fulton, B. J.; Buchhave, L. A.; Henning, T.; Schmidt, B.; Ciceri, S.; Noyes, R. W.; Isaacson, H.; Marcy, G. W.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.

    2015-08-01

    HATS-8b is a low density transiting super-Neptune discovered as part of the HATSouth project. The planet orbits its solar-like G-dwarf host (V = 14.03+/- 0.10, {T}{eff} = 5679+/- 50 K) with a period of 3.5839 days. HATS-8b is the third lowest-mass transiting exoplanet to be discovered from a wide-field ground-based search, and with a mass of 0.138+/- 0.019 {M}{{J}} it is approximately halfway between the masses of Neptune and Saturn. However, HATS-8b has a radius of {0.873}-0.075+0.123 {R}{{J}}, resulting in a bulk density of just 0.259+/- 0.091 {{g}} {{cm}}-3. The metallicity of the host star is super-solar ([{Fe}/{{H}}] = 0.210+/- 0.080), providing evidence against the idea that low-density exoplanets form from metal-poor environments. The low density and large radius of HATS-8b results in an atmospheric scale height of almost 1000 km, and in addition to this there is an excellent reference star of nearly equal magnitude at just 19″ separation in the sky. These factors make HATS-8b an exciting target for future atmospheric characterization studies, particularly for long-slit transmission spectroscopy. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey site is operated in conjunction with MPIA, and the station at Siding Spring Observatory is operated jointly with ANU. This paper includes data gathered with the 6.5 m Magellan Telescopes located in LCO, Chile. The work is based in part on observations made with the MPG 2.2 m Telescope and the ESO 3.6 m Telescope at the ESO Observatory in La Silla. This paper uses observations obtained using the facilities of the Las Cumbres Observatory Global Telescope.

  1. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  2. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  3. Low energy CMOS for space applications

    NASA Astrophysics Data System (ADS)

    Panwar, Ramesh; Alkalaj, Leon

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  4. The Gardner Transition: A new approach for understanding low-temperature glasses

    NASA Astrophysics Data System (ADS)

    Charbonneau, Patrick

    Recent theoretical advances in the mean-field theory of glasses predict the existence deep in the glass phase of a novel phase transition, a so-called Gardner transition. This transition signals the emergence of a complex free energy landscape composed of a marginally stable hierarchy of sub-basins within a broad glass metabasin. It is thus the onset of marked changes in thermal and transport properties of glasses, and ultimately leads to the unusual critical behavior at jamming. The Gardner transition itself is immediately related to a diverging (i) characteristic relaxation time, (ii) caging susceptibility and (iii) correlation length of the caging heterogeneity as well as aging, even in well-thermalized glasses. We have detected some of these signatures both in a mean-field model and in standard hard-sphere glass formers. We find the results to quantitatively agree with theory in the former and qualitatively so in the latter, which suggest that the transition should be detectable in a wide array of numerical and experimental systems. Interestingly, although the Gardner transitions is primarily associated with structural glass formers, we also find features of the transition in crystals of polydisperse particles once the landscape becomes rough.

  5. Energy levels and transition probabilities in the neutron-rich lanthanide nucleus sup 156 Sm

    SciTech Connect

    Hellstroem, M.; Fogelberg, B.; Spanier, L.; Mach, H. )

    1990-05-01

    The decay of {sup 156}Pm has been studied resulting in the first detailed information on the excited states of {sup 156}Sm. About 25 levels were found, of which two were {gamma}-decaying isomers. The expected low-lying quadrupole vibrational levels could not be identified. The observed decay rates for {beta} and {gamma} transitions have enabled the classification of some levels, including the {beta}-decaying ground state of {sup 156}Pm, in terms of specific two-quasiparticle states. The total beta-decay energy of {sup 156}Pm was obtained as 5.155(35) MeV.

  6. X-ray transition yields of low-Z kaonic atoms produced in Kapton

    NASA Astrophysics Data System (ADS)

    Bazzi, M.; Beer, G.; Berucci, C.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Curceanu, C.; d'Uffizi, A.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Quaglia, R.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2013-10-01

    The X-ray transition yields of kaonic atoms produced in Kapton polyimide (C22H10N2O5) were measured for the first time in the SIDDHARTA experiment. X-ray yields of the kaonic atoms with low atomic numbers (Z=6,7, and 8) and transitions with high principal quantum numbers (n=5-8) were determined. The relative yields of the successive transitions in the same atoms and the yield ratios of carbon-to-nitrogen (C:N) and carbon-to-oxygen (C:O) for the same transitions were also determined. These X-ray yields provide important information for understanding the capture ratios and cascade mechanisms of kaonic atoms produced in a compound material, such as Kapton.

  7. Novel results on low energy neutrino physics

    NASA Astrophysics Data System (ADS)

    Bellini, Gianpaolo

    2012-07-01

    Many progresses have been achieved in the study of low energy neutrinos from Sun and Earth. In the solar neutrinos the flux from 7Be has been measured with a total error <5% (introducing strong constraints also on the pp flux), while the day/night effect in that energy region has been determined at 1%. The 8B neutrinos have been detected with a threshold down to 3 MeV, while the solar neutrinos flux from pep reaction has been measured together with a stringent limit on CNO. These results give the experimental proof of the neutrino oscillation in vacuum and the validation of the MSW-LMA model in that region, while the day/night allows the isolation of the LMA solution by means of the solar neutrinos only, without the assumption of CPT symmetry. The evidence of the antineutrinos produced within the Earth by radioactive decays is now very robust, but more statistics is needed to clearly estimate the radiogenic contribution to the terrestrial caloric energy.

  8. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  9. Low energy stable plasma calibration facility

    NASA Astrophysics Data System (ADS)

    Frederick-Frost, K. M.; Lynch, K. A.

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1×103/cm3to6×105/cm3, electron temperatures from 0.1to1.7eV, and plasma potentials from 0.5to8V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  10. Primary transitions between the yrast superdeformed band and low-lying normal deformed states in {sup 194}Pb

    SciTech Connect

    Hauschild, K.; Bernstein, L.A.; Becker, J.A.

    1996-12-31

    The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.

  11. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  12. Low-power laser induced metal-insulator transition in gold::vanadium dioxide nanoarrays

    NASA Astrophysics Data System (ADS)

    Ferrara, Davon W.; Macquarrie, Evan R.; Nag, Joyeeta; Haglund, Richard F.

    2010-10-01

    Vanadium dioxide (VO2) is a strongly-correlated electron material with a well-known semiconductor-to-metal transition (SMT) that can be induced thermally, optically, or electrically. By coating lithographically prepared arrays of gold nanoparticles (NPs) of diameter 140 nm with a 60 nm thick film of VO2 by pulsed laser deposition, hybrid Au::VO2 structures were created. Due to the sensitivity of the Au particle-plasmon resonance (PPR), a temperature dependent shift in the PPR can be generated by switching the VO2 from one phase to another, creating a tunable plasmonic metamaterial. To study the low-power switching characteristics of these structures, transient absorption measurements were made using a mechanically shuttered 785 nm pump laser, corresponding to the PPR resonance of the Au NPs, and 1550 nm CW probe. Results show that the presence of Au NPs significantly lowers the threshold laser power required to induce the SMT. Measurements on arrays of different grating constants (350 nm and 500 nm) support the hypothesis that the particles are acting as ``nano-radiators'' that absorb and redeposit thermal energy by scattering light back into the film. Finite element modeling was performed to better understand the complex thermodynamics of the structure.

  13. Energy boost in laser wakefield accelerators using sharp density transitions

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Ta Phuoc, K.; Malka, V.

    2016-05-01

    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.

  14. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  15. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  16. Low Energy Antiproton Experiments - A Review

    SciTech Connect

    Jungmann, Klaus P.

    2005-10-19

    Low energy antiprotons offer excellent opportunities to study properties of fundamental forces and symmetries in nature. Experiments with them can contribute substantially to deepen our fundamental knowledge in atomic, nuclear and particle physics. Searches for new interactions can be carried out by studying discrete symmetries. Known interactions can be tested precisely and fundamental constants can be extracted from accurate measurements on free antiprotons (p-bar's) and bound two- and three-body systems such as antihydrogen (H-bar = p-bare-), the antprotonic helium ion (He++p-bar)+ and the antiprotonic atomcule (He++p-bare-) . The trapping of a single p-bar in a Penning trap, the formation and precise studies of antiprotonic helium ions and atoms and recently the production of H-bar have been among the pioneering experiments. They have led already to precise values for p-bar parameters, accurate tests of bound two- and three-body Quantum Electrodynamics (QED), tests of the CPT theorem and a better understanding of atom formation from their constituents. Future experiments promise more precise tests of the standard theory and have a robust potential to discover new physics. Precision experiments with low energy p-bar's share the need for intense particle sources and the need for time to develop novel instrumentation with all other experiments, which aim for high precision in exotic fundamental systems. The experimental programs - carried out in the past mostly at the former LEAR facility and at present at the AD facility at CERN - would benefit from intense future sources of low energy p-bar's. The highest possible p-bar fluxes should be aimed for at new facilities such as the planned FLAIR facility at GSI in order to maximize the potential of delicate precision experiments to influence model building. Examples of key p-bar experiments are discussed here and compared with other experiments in the field. Among the central issues is their potential to obtain

  17. Energy scavenging from low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno V.

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54--19.6m/s 2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163microW and an average power of 13.6microW from an input acceleration of 9.8m/s 2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25microW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical

  18. Adsorption energy and spin state of first-row transition metals adsorbed on MgO(100)

    NASA Astrophysics Data System (ADS)

    Markovits, A.; Paniagua, J. C.; López, N.; Minot, C.; Illas, F.

    2003-03-01

    Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.

  19. The Transition Experiences of High-Achieving, Low-Income Undergraduates in an Elite College Environment

    ERIC Educational Resources Information Center

    McLoughlin, Paul J., II

    2012-01-01

    This hermeneutic phenomenological study describes the lived experiences of high-achieving, low-income undergraduates and their transition into a college environment historically reserved for wealthy students. The results of this study indicate that these students are flourishing in full need-based financial aid programs as a result of their own…

  20. Scenarios of transition to chaos competition in low-temperature plasma

    SciTech Connect

    Dimitriu, D. G.

    2013-11-13

    Dynamics of a fireball created in front of a positively biased electrode immersed into low-temperature plasma was experimentally investigated. By analyzing the time series of the oscillations of the current collected by the electrode, several successive scenarios of transitions to chaos were identified: by intermittencies, by cascade of sub-harmonic bifurcations and by quasi-periodicity (Ruelle-Takens scenario)

  1. Improving the Transition Outcomes of Low-Income Minority Youth with Disabilities

    ERIC Educational Resources Information Center

    Balcazar, Fabricio E.; Taylor-Ritzler, Tina; Dimpfl, Shawn; Portillo-Pena, Nelson; Guzman, Alberto; Schiff, Rachel; Murvay, Michele

    2012-01-01

    This study describes the results of a program developed to improve the transition outcomes of low-income minority youth with disabilities. The program relies on case management support to facilitate interagency collaboration. The participants included 164 graduates from special education and 26 youth from an equivalent comparison group. Two case…

  2. Best Practice Program for Low-Income African American Students Transitioning from Middle to High School

    ERIC Educational Resources Information Center

    Gentle-Genitty, Carolyn

    2009-01-01

    On the basis of systematic evaluation of three program databases, totaling 246 programs, this article provides a discussion on a best practice program for low-income African American students transitioning from middle school to high school in urban school settings. The main research question was "Of the programs touted as best practice, is there…

  3. Numerical modeling of transition to turbulence in low-pressure axial gas turbines

    NASA Astrophysics Data System (ADS)

    Flitan, Horia Constantin

    2002-09-01

    Experimental data from modern turbofan engines indicate that the low-pressure turbine stages experience a significant drop in efficiency as the aircraft reaches its cruise conditions at high altitude. Under these circumstances, the low Reynolds number flow allows the apparition of a boundary layer which is no longer turbulent but transitional in nature. A further decrease in velocity may lead to the separation of the highly unstable laminar portion accompanied by a dramatic growth in aerodynamic losses. The methods for numerically simulating the transitional flows occurring over turbine blades were reviewed. Two large categories were identified as suitable for numerical implementation into a fully-implicit, finite-difference, Navier-Stokes code. The first involved a Baldwin-Lomax turbulence model corrected for attached flow transition with an intermittency factor distribution. The general expression of Solomon, Walker and Gostelow was added to the code, in parallel with the zero-pressure gradient form of Narasimha, used for reference. In both cases transition inception is detected with the Abu-Ghannam Shaw correlation. Whenever laminar separation takes place, Robert's correlation for short bubble transition is activated. The second category comprised the two-equation, low Reynolds number turbulence models of Chien and Launder-Sharma. They have a certain ability to predict bypass transition and seem to better comprehend the physics of wake-induced transition. For the approximate factorization solution algorithm, the implicit part of the Launder-Sharma system was expressed in an original form. Also, the Kato-Launder correction was added to be used as an option. Numerical investigations of attached flow bypass transition and separated flow short bubble transitions were performed on two cascade geometries. The Abu-Ghannam Shaw criterion proved to be inaccurate for curved surfaces. The Solomon, Walker Gostelow distribution did not perform better than Narasimha

  4. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    SciTech Connect

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  5. Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence

    SciTech Connect

    Safronova, U. I.; Johnson, W. R.; Safronova, M. S.

    2007-10-15

    Relativistic many-body perturbation theory is applied to study properties of ions of the francium isoelectronic sequence. Specifically, energies of the 7s, 7p, 6d, and 5f states of Fr-like ions with nuclear charges Z=87-100 are calculated through third order; reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for 7s-7p, 7p-6d, and 6d-5f electric-dipole transitions; and 7s-6d, 7s-5f, and 5f{sub 5/2}-5f{sub 7/2} multipole matrix elements are evaluated to obtain the lifetimes of low-lying excited states. Moreover, for the ions Z=87-92 calculations are also carried out using the relativistic all-order single-double method, in which single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. With the aid of the single-double wave functions, we obtain accurate values of energies, transition rates, oscillator strengths, and the lifetimes of these six ions. Ground state scalar polarizabilities in Fr I, Ra II, Ac III, and Th IV are calculated using relativistic third-order and all-order methods. Ground state scalar polarizabilities for other Fr-like ions are calculated using a relativistic second-order method. These calculations provide a theoretical benchmark for comparison with experiment and theory.

  6. Low energy high pressure miniature screw valve

    DOEpatents

    Fischer, Gary J.; Spletzer, Barry L.

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  7. Phenomenological implications of low energy supersymmetry breaking

    SciTech Connect

    Dimopoulos, S. |; Dine, M.; Raby, S.; Thomas, S.; Wells, J.D.

    1996-07-01

    The experimental signatures for low energy supersymmetry breaking are presented. The lightest standard model superpartner is unstable and decays to its partner plus a Goldstino, G. For a supersymmetry breaking scale below a few 1,000 TeV this decay can take place within a detector, leading to very distinctive signatures. If a neutralino is the lightest standard model superpartner it decays by {chi}{sub 1}{sup 0} {r_arrow} {gamma} + G, and if kinematically accessible by {chi}{sub 1}{sup 0} {r_arrow} (Z{sup 0}, h{sup 0}, H{sup 0}, A{sup 0}) + G. These decays can give rise to displaced vertices. Alternately, if a slepton is the lightest standard model superpartner it decays by {tilde l} {r_arrow} l + G. This can be seen as a greater than minimum ionizing charged particle track, possibly with a kink to a minimum ionizing track.

  8. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  9. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  10. Particle Settling in Low Energy Turbulence

    NASA Astrophysics Data System (ADS)

    Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan

    2014-11-01

    Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.

  11. Low energy particle signature of substorm dipolarization

    SciTech Connect

    Liu, C.; Perez, J.D. ); Moore, T.E.; Chappell, C.R. )

    1994-02-01

    The low energy particle signature of substorm dipolarization is exhibited through a case study of RIMS data on DE-1 at [approximately]2100 MLT, ILAT = 59[degrees][approximately]65[degrees], L = 3.8 [approximately] 5.4 R[sub E], and geocentric distances 2.6[approximately]2.9 R[sub E]. A strong cross-field-line, poleward outflow that lasts for a few minutes with a velocity that reaches at least 50 km/s is correlated with substorm activity evidenced in the AE index and the MAG-1 data. All the major species (H[sup +], He[sup +], O[sup +]) are observed to have the same bulk velocity. The parallel velocities are strongly correlated with the perpendicular velocities. The parallel acceleration is shown to result from the centrifugal force of the ExB drift induced by the dipolarizing perturbation of the magnetic field. 9 refs., 4 figs.

  12. Highly correlated systems. Excitation energies of first row transition metals Sc--Cu

    SciTech Connect

    Raghavachari, K.; Trucks, G. W.

    1989-07-15

    The low-lying /ital d//sup /ital n/s//sup 2//r arrow//ital d//sup /ital n/+1//ital s//sup 1/ excitation energies of the first row transition metal atoms Sc--Cu are calculated using fourth-order M/congruent/ller--Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large /ital spd/ and /ital spdf/ basis sets. The MP4 method performs well for Sc--Mn but fails dramatically for Fe--Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. /ital f/ functions contribute 0.1--0.4 eV to the excitation energies for these systems. The highly correlated /ital d//sup 10/ state of the Ni atom is also considered in detail. The QCI technique obtains the /ital d//sup 9//ital s1//r arrow//ital d10/ splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree--Fock based methods can be successful in calculating excitation energies of transition metal atoms.

  13. Low energy AMS of americium and curium

    NASA Astrophysics Data System (ADS)

    Christl, Marcus; Dai, Xiongxin; Lachner, Johannes; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2014-07-01

    Accelerator mass spectrometry (AMS) has evolved over the past years as one of the most sensitive, selective, and robust techniques for actinide analyses. While analyses of U and Pu isotopes have already become routine at the ETH Zurich 0.5 MV AMS system "Tandy", there is an increasing demand for highly sensitive analyses of the higher actinides such as Am and Cm for bioassay applications and beyond. In order to extend the actinide capabilities of the compact ETH Zurich AMS system and to develop new, more sensitive bioassay routines, a pilot study was carried out. The aim was to investigate and document the performance and the potential background of Am and Cm analyses with low energy AMS. Our results show that 241Am and Cm isotopes can be determined relative to a 243Am tracer if samples and AMS standards are prepared identically with regard to the matrix elements, in which the sample is dispersed. In this first test, detection limits for Cm and Am isotopes are all in the sub-femtogram range and even below 100 ag for Cm isotopes. In a systematic background study in the mass range of the Cm isotopes, two formerly unknown metastable triply charged Th molecules were found on amu(244) and amu(248). The presence of such a background is not a principal problem for AMS if the stripper pressure is increased accordingly. Based on our first results, we conclude that ultra-trace analyses of Am and Cm isotopes for bioassay are very well possible with low energy AMS.

  14. The Low Energy Effective Area of the Chandra Low Energy Transmission Grating Spectrograph

    NASA Technical Reports Server (NTRS)

    Pease, D.; Drake, J. J.; Johnson, C. O.; Kashya, V.; Ratzlaff, P. W.; Wargelin, B. J.; Brinkman, A. C.; Kaastra, J. S.; vanderMeer, R.; Paerels, F. B.

    2000-01-01

    The Chandra X-ray Observatory was successfully launched on July 23, 1999, and subsequently began an intensive calibration phase. We present the preliminary results from the in-flight calibration of the low energy response of the High Resolution Camera spectroscopic readout (HRC-S) combined with the Low Energy Transmission Grating (LETG) aboard Chandra. These instruments comprise the Low Energy Transmission Grating Spectrograph (LETGS). For this calibration study, we employ a pure hydrogen non-LTE white dwarf emission model (T = 25000 K and log g = 9.0) for comparison with the Chandra observations of Sirius B. The pre-flight calibration of the LETGS effective area only covered wavelengths shortward of 44 A (E less than 277 eV). Our Sirius B analysis shows that the HRC-S quantum efficiency (QE) model assumed for longer wavelengths leads to an overestimate of the effective area by an average factor of about 1.6. We derive a correction to the low energy HRC-S QE model to match the predicted and observed Sirius B spectra over the wavelength range of 44-185 A. We make an independent test of our results by the comparison of a Chandra LETGS observation of HZ 43 with pure hydrogen model atmosphere predictions and find good agreement.

  15. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  16. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  17. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  18. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  19. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  20. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  1. Excitation of positive ions by low-energy electrons - Relevance to the Io Torus

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.; Shemansky, D. E.

    1993-01-01

    The importance of measuring electron-ion excitation cross sections in singly and multiply charged positive ions is outlined, and recent results for Mg II and O II ions are given using the JPL's electron energy-loss merged-beams apparatus. Theoretical comparisons are given with two five-state close-coupling calculations. The energy variation of the collision strength is fitted with a semiempirical analytic function which includes approximations to polarization, resonance, and exchange contributions. In O II, first spectra anywhere of electron excitation of the optically allowed transitions are presented. In addition, excitations of two low lying, optically forbidden transitions are detected for the first time.

  2. Two-site entropy and quantum phase transitions in low-dimensional models.

    PubMed

    Legeza, O; Sólyom, J

    2006-03-24

    We propose a new approach to study quantum phase transitions in low-dimensional lattice models. It is based on studying the von Neumann entropy of two neighboring central sites in a long chain. It is demonstrated that the procedure works equally well for fermionic and spin models, and the two-site entropy is a better indicator of quantum phase transition than calculating gaps, order parameters, or the single-site entropy. The method is especially convenient when the density-matrix renormalization-group algorithm is used. PMID:16605844

  3. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  4. Transition from supercapacitor to battery behavior in electrochemical energy storage

    SciTech Connect

    Conway, B.E. . Dept. of Chemistry)

    1991-06-01

    In this paper the storage of electrochemical energy in battery, supercapacitor, and double-layer capacitor devices is considered. A comparison of the mechanisms and performance of such systems enables their essential features to be recognized and distinguished, and the conditions for transition between supercapacitor and battery behavior to be characterized. Supercapacitor systems based on two-dimensional underpotential deposition reactions are highly reversible and their behavior arises from the pseudocapaccitance associated with potential-dependence of two-dimensional coverage of electroactive adatoms on an electrode substrate surface. Such capacitance can be 10-100 times the double-layer capacitance of the same electrode area. An essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants. Quai-two-dimensional systems, such as hyperextended hydrous RuP{sub 2}, also exhibit large pseudocapacitance which, in this case, is associated with a sequence of redox redox processes that are highly reversible.

  5. Replacing energy by von Neumann entropy in quantum phase transitions

    SciTech Connect

    Kopp, Angela; Jia Xun; Chakravarty, Sudip . E-mail: sudip@physics.ucla.edu

    2007-06-15

    We propose that quantum phase transitions are generally accompanied by non-analyticities of the von Neumann (entanglement) entropy. In particular, the entropy is non-analytic at the Anderson transition, where it exhibits unusual fractal scaling. We also examine two dissipative quantum systems of considerable interest to the study of decoherence and find that non-analyticities occur if and only if the system undergoes a quantum phase transition.

  6. Comment on ``Induced transitions and energy of a damped oscillator''

    NASA Astrophysics Data System (ADS)

    Papadopoulos, George J.; Hadjiagapiou, Ioannis A.

    1999-04-01

    In a recent paper Croxson [Phys. Rev. A 49, 588 (1994)] reported dissipation-induced transition probabilities from the ground state to higher states for a quantum harmonic oscillator. A partial approximate result was given for the oscillator to remain in its ground state, while for higher transitions the situation became complicated. Our approach provides an exact simple form closed expression for any order of transition. In addition, we supply the evolution of the work done by the system on its environment.

  7. Unconstrained Hamiltonian formulation of low energy QCD

    NASA Astrophysics Data System (ADS)

    Pavel, Hans-Peter

    2014-04-01

    Using a generalized polar decomposition of the gauge fields into gaugerotation and gauge-invariant parts, which Abelianises the Non-Abelian Gauss-law constraints to be implemented, a Hamiltonian formulation of QCD in terms of gauge invariant dynamical variables can be achieved. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian naturally admits a systematic strongcoupling expansion in powers of λ = g-2/3, equivalent to an expansion in the number of spatial derivatives. The leading-order term corresponds to non-interacting hybridglueballs, whose low-lying spectrum can be calculated with high accuracy by solving the Schrödinger-equation of the Dirac-Yang-Mills quantum mechanics of spatially constant fields (at the moment only for the 2-color case). The discrete glueball excitation spectrum shows a universal string-like behaviour with practically all excitation energy going in to the increase of the strengths of merely two fields, the "constant Abelian fields" corresponding to the zero-energy valleys of the chromomagnetic potential. Inclusion of the fermionic degrees of freedom significantly lowers the spectrum and allows for the study of the sigma meson. Higher-order terms in λ lead to interactions between the hybridglueballs and can be taken into account systematically using perturbation theory in λ, allowing for the study of IR-renormalisation and Lorentz invarianz. The existence of the generalized polar decomposition used, the position of the zeros of the corresponding Jacobian (Gribov horizons), and the ranges of the physical variables can be investigated by solving a system of algebraic equations. Its exact solution for the case of one spatial dimension and first numerical solutions for two and three spatial dimensions indicate that there is a finite

  8. Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William

    2016-05-01

    This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.

  9. Gas-liquid type phase transition in semiivietals at low temperatures and high magnetic fields

    NASA Astrophysics Data System (ADS)

    Mase, Shoichi; Fukami, Takeshi; Mori, Masatoshi; Inoue, Tomnio

    1982-07-01

    Remarkable anomalies have been found in the temperature and frequency dependences of the attenuation coefficient of sound waves in bismuth, antimony and pyrolytic graphite at low temperatures and high magnetic fields. The result for bismuth in particular is app]arently similar to those observed in second-order phase transition phenomena. On the basis of the Nakajima-Yoshioka-Kuramoto theory of the gas-liquid type phase transition in the electron-hole system, these anomalies are fairly well explained in terms of the fluctuation effect above the phase transition temperature, provided that the electron-hole correlation interaction is assumed to be sensitively dependent on the state of the overlapping of the electron and hole Landau levels.

  10. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    USGS Publications Warehouse

    Beringer, J.; Chapin, F. S., III; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  11. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  12. What is a low-energy house and who cares?

    SciTech Connect

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  13. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

  14. Energy balance in the solar transition region. II - Effects of pressure and energy input on hydrostatic models

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1991-01-01

    The radiation of energy by hydrogen lines and continua in hydrostatic energy-balance models of the transition region between the solar chromosphere and corona is studied using models which assume that mechanical or magnetic energy is dissipated in the hot corona and is then transported toward the chromosphere down the steep temperature gradient of the transition region. These models explain the average quiet sun and also the entire range of variability of the Ly-alpha lines. The relations between the downward energy flux, the pressure of the transition region, and the different hydrogen emission are described.

  15. Low energy scattering with a nontrivial pion

    SciTech Connect

    Fariborz, Amir H.

    2007-12-01

    An earlier calculation in a generalized linear sigma model showed that the well-known current algebra formula for low energy pion-pion scattering held even though the massless Nambu Goldstone pion contained a small admixture of a two-quark two-antiquark field. Here we turn on the pion mass and note that the current algebra formula no longer holds exactly. We discuss this small deviation and also study the effects of a SU(3) symmetric quark mass type term on the masses and mixings of the eight SU(3) multiplets in the model. We calculate the s-wave scattering lengths, including the beyond current algebra theorem corrections due to the scalar mesons, and observe that the effect of the scalar mesons is to improve the agreement with experiment. In the process, we uncover the way in which linear sigma models give controlled corrections (due to the presence of scalar mesons) to the current algebra scattering formula. Such a feature is commonly thought to exist only in the nonlinear sigma model approach.

  16. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  17. Low-energy electron collisions with biomolecules

    NASA Astrophysics Data System (ADS)

    Winstead, Carl; McKoy, Vincent

    2012-11-01

    We report recent progress in applying the Schwinger multichannel computational method to the interactions of slow electrons with biomolecules. Calculations on constituents of DNA, including nucleobases, phosphate esters, and models of the backbone sugar, have provided insight into the nature of the low-energy shape resonances, and thereby into possible sites and mechanisms for electron attachment that may lead to strand-breaking. At the same time, more approximate calculations on larger assemblies such as nucleosides and deoxyadenosine monophosphate indicate how the resonance properties of the subunits will or will not persist in DNA itself. We are pursuing a similar strategy for another major class of biomolecules, the proteins, by beginning with fixed-nuclei studies of the constituent amino acids; here we present preliminary results for the simplest amino acid, glycine. We also describe efforts directed at an improved understanding electron collisions with alcohols, which, in addition to basic scientific interest, may prove useful in the modeling of ignition and combustion within biofuel-powered engines.

  18. Low energy spin excitations in chromium metal

    SciTech Connect

    Pynn, R.; Azuah, R.T.; Stirling, W.G.; Kulda, J.

    1997-12-31

    Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 {+-} {delta},0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, {+-} {delta}) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions.

  19. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, i.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  20. Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.

    2005-01-01

    A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.

  1. Viscosity, glass transition and activation energy of solid cis-polyisoprene and trans-polyisoprene blends

    NASA Astrophysics Data System (ADS)

    Baboo, Mahesh; Sharma, Kananbala; Saxena, N. S.

    2011-11-01

    Blends of cis-polyisoprene (CPI) and trans-polyisoprene (TPI) have been prepared by solution casting to study viscosity, glass transition temperature and activation energy for the glass transition. The viscosity of blends having different weight ratios has been obtained through a single experiment measuring storage and loss modulus using the dynamic mechanical analyser technique. The glass transition temperature is determined through the temperature at which the minimum of temperature derivative curve of viscosity falls. The activation energy of glass transition and fragility index have been obtained by employing the Vogel-Fulchar-Tammann (VFT) equation by assuming non-Arrhenius behaviour of viscosity of polymer blends. Results indicate that both glass transition and activation energy for the glass transition are influenced by composition and crosslink density of the blend.

  2. A Framework for Characterizing the Atmospheres of Low-mass Low-density Transiting Planets

    NASA Astrophysics Data System (ADS)

    Fortney, Jonathan J.; Mordasini, Christoph; Nettelmann, Nadine; Kempton, Eliza M.-R.; Greene, Thomas P.; Zahnle, Kevin

    2013-09-01

    We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ~2-4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Z env values commonly 0.6-0.9, or ~100-400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5-12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Z env. However, values of Z env close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above T eq of ~800-1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and "warm Neptune" GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.

  3. A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS

    SciTech Connect

    Fortney, Jonathan J.; Nettelmann, Nadine; Mordasini, Christoph; Kempton, Eliza M.-R.; Greene, Thomas P.; Zahnle, Kevin

    2013-09-20

    We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ∼2-4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Z{sub env} values commonly 0.6-0.9, or ∼100-400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5-12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Z{sub env}. However, values of Z{sub env} close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above T{sub eq} of ∼800-1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and 'warm Neptune' GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.

  4. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  5. Reduced transition strengths of low-lying yrast states in chromium isotopes in the vicinity of N =40

    NASA Astrophysics Data System (ADS)

    Braunroth, Thomas; Dewald, A.; Iwasaki, H.; Lenzi, S. M.; Albers, M.; Bader, V. M.; Baugher, T.; Baumann, T.; Bazin, D.; Berryman, J. S.; Fransen, C.; Gade, A.; Ginter, T.; Gottardo, A.; Hackstein, M.; Jolie, J.; Lemasson, A.; Litzinger, J.; Lunardi, S.; Marchi, T.; Modamio, V.; Morse, C.; Napoli, D. R.; Nichols, A.; Recchia, F.; Stroberg, S. R.; Wadsworth, R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.

    2015-09-01

    Background: In neutron-rich nuclei around N =40 rapid changes in nuclear structure can be observed. While 68Ni exhibits signatures of a doubly magic nucleus, experimental data along the isotopic chains in even more exotic Fe and Cr isotopes—such as excitation energies and transition strengths—suggest a sudden rise in collectivity toward N =40 . Purpose: Reduced quadrupole transition strengths for low-lying transitions in neutron-rich 58,60,62Cr are investigated. This gives quantitative new insights into the evolution of quadrupole collectivity in the neutron-rich region close to N =40 . Method: The recoil distance Doppler-shift (RDDS) technique was applied to measure lifetimes of low-lying states in 58,60,62>Cr. The experiment was carried out at the National Superconducting Cyclotron Laboratory (NSCL) with the SeGA array in a plunger configuration coupled to the S800 magnetic spectrograph. The states of interest were populated by means of one-proton knockout reactions. Results: Data reveal a rapid increase in quadrupole collectivity for 58,60,62>Cr toward N =40 and point to stronger quadrupole deformations compared to neighboring Fe isotopes. The experimental B (E 2 ) values are reproduced well with state-of-the-art shell-model calculations using the LNPS effective interaction. A consideration of intrinsic quadrupole moments and B42 ratios suggest an evolution toward a rotational nature of the collective structures in Cr,6260. Compared to 58Cr, experimental B42 and B62 values for 60Cr are in better agreement with the E (5 ) limit. Conclusion: Our results indicate that collective excitations in neutron-rich Cr isotopes saturate at N =38 , which is in agreement with theoretical predictions. More detailed experimental data of excited structures and interband transitions are needed for a comprehensive understanding of quadrupole collectivity close to N =40 . This calls for additional measurements in neutron-rich Cr and neighboring Ti and Fe nuclei.

  6. Linking Lyα and Low-ionization Transitions at Low Optical Depth

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-08-01

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13293 and GO-12928.

  7. Compressible DNS of transitional and turbulent flow in a low pressure turbine cascade

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh; Deshpande, Suresh; Narasimha, Roddam

    2015-11-01

    Direct numerical simulation (DNS) of flow in a low pressure turbine cascade at high incidence is performed using a new in-house code ANUROOP. This code solves compressible Navier-Stokes equations in conservative form using finite volume technique and uses kinetic-energy consistent scheme for the flux calculations. ANUROOP is capable of handling flow past complex geometries using hybrid grid approach (separate grid topologies for the boundary layer and rest of the blade passage). This approach offers much more control in mesh spacing and distribution compared to elliptic grid technique, which is used in many previous studies. Also, in contrast to previous studies, focus of the current work is mainly on the boundary layer flow. The flow remains laminar on the pressure side of the blade, but separates in the aft region of the suction side leading to transition. Separation bubbles formed at this region are transient in nature and we notice multiple bubbles merging and breaking in time. In the mean flow however, only one bubble is seen. Velocity profiles very near to the leading edge of the suction side suggest strong curvature effect. Higher-order boundary layer theory that includes effect of curvature is found to be necessary to characterize the flow in this region. Also, the grid convergence study reveals interesting aspects of numerics vital for accurate simulation of this kind of complex flows. We would like to thank the Gas Turbine Enabling Technology (GATET) Program for funding this project. We also thank C-DAC, Pune and CSIR-4PI, Bangalore for providing computational resources.

  8. Low Temperature Structural Phase Transition of Ba3NaIr2O9

    SciTech Connect

    Conrad, H.; Loye, Z; Kim, S; Macquart, R; Smith, M; Lee, Y; Vogt, T

    2009-01-01

    Single crystal X-ray and synchrotron X-ray powder diffraction have been used to probe the structure of Ba3NaIr2O9 from 300 K down to 20 K. Ba3NaIr2O9 is found to undergo a structural transition from hexagonal symmetry, P63/mmc, at ambient temperature to monoclinic symmetry, C2/c, at low temperature. The evolution of the unit cell volume upon cooling is indicative of a higher order structural transition, and the symmetry breaking becomes apparent as the temperature is decreased. The low temperature monoclinic structure of Ba3NaIr2O9 contains strongly distorted [NaO6] and [IrO6] octahedra in comparison to the room temperature hexagonal structure.

  9. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M.; Fehrenbacher, Markus

    2014-08-04

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263 K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  10. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    SciTech Connect

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-28

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  11. Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow.

    PubMed

    Seshasayanan, Kannabiran; Alexakis, Alexandros

    2016-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched. PMID:26871152

  12. Energy surface and minimum energy paths for Fréedericksz transitions in bistable cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Ivanov, A. V.; Bessarab, P. F.; Aksenova, E. V.; Romanov, V. P.; Uzdin, V. M.

    2016-04-01

    The multidimensional energy surface of a cholesteric liquid crystal in a planar cell is investigated as a function of spherical coordinates determining the director orientation. Minima on the energy surface correspond to the stable states with particular director distribution. External electric and magnetic fields deform the energy surface and positions of minima. It can lead to the transitions between states, known as the Fréedericksz effect. Transitions can be continuous or discontinuous depending on parameters of the liquid crystal which determine an energy surface. In a case of discontinuous transition when a barrier between stable states is comparable with the thermal energy, the activation transitions may occur, and it leads to the modification of characteristics of the Fréedericksz effect with temperature without explicit temperature dependencies of liquid crystal parameters. A minimum energy path between stable states on the energy surface for the Fréedericksz transition is found using the geodesic nudged elastic band method. Knowledge of this path, which has maximal statistical weight among all other paths, gives the information about a barrier between stable states and configuration of director orientation during the transition. It also allows one to estimate the stability of states with respect to the thermal fluctuations and their lifetime when the system is close to the Fréedericksz transition.

  13. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Xia, X. X.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2011-04-01

    We report a high entropy metallic glass of Zn20Ca20Sr20Yb20(Li0.55Mg0.45)20 via composition design that exhibiting remarkable homogeneous deformation without shear banding under stress at room temperature. The glass also shows properties such as low glass transition temperature (323 K) approaching room temperature, low density and high specific strength, good conductivity, polymerlike thermoplastic manufacturability, and ultralow elastic moduli comparable to that of bones. The alloy is thermally and chemically stable.

  14. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature

    SciTech Connect

    Zhao, K.; Xia, X. X.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2011-04-04

    We report a high entropy metallic glass of Zn{sub 20}Ca{sub 20}Sr{sub 20}Yb{sub 20}(Li{sub 0.55}Mg{sub 0.45}){sub 20} via composition design that exhibiting remarkable homogeneous deformation without shear banding under stress at room temperature. The glass also shows properties such as low glass transition temperature (323 K) approaching room temperature, low density and high specific strength, good conductivity, polymerlike thermoplastic manufacturability, and ultralow elastic moduli comparable to that of bones. The alloy is thermally and chemically stable.

  15. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    2007-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.

  16. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.

  17. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  18. Nonequilibrium self-energy functional approach to the dynamical Mott transition

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix; Eckstein, Martin; Potthoff, Michael

    2016-06-01

    The real-time dynamics of the Fermi-Hubbard model, driven out of equilibrium by quenching or ramping the interaction parameter, is studied within the framework of the nonequilibrium self-energy functional theory. A dynamical impurity approximation with a single auxiliary bath site is considered as a reference system, and the time-dependent hybridization is optimized as prescribed by the variational principle. The dynamical two-site approximation turns out to be useful to study the real-time dynamics on short and intermediate time scales. Depending on the strength of the interaction in the final state, two qualitatively different response regimes are observed. For both weak and strong couplings, qualitative agreement with previous results of nonequilibrium dynamical mean-field theory is found. The two regimes are sharply separated by a critical point at which the low-energy bath degree of freedom decouples in the course of time. We trace the dependence of the critical interaction of the dynamical Mott transition on the duration of the interaction ramp from sudden quenches to adiabatic dynamics and therewith link the dynamical to the equilibrium Mott transition.

  19. Computational Analysis of Energy Pooling to Harvest Low-Energy Solar Energy in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Lacount, Michael; Shaheen, Sean; Rumbles, Garry; van de Lagemaat, Jao; Hu, Nan; Ostrowski, Dave; Lusk, Mark

    2014-03-01

    Current photovoltaic energy conversions do not typically utilize low energy sunlight absorption, leaving large sections of the solar spectrum untapped. It is possible, though, to absorb such radiation, generating low-energy excitons, and then pool them to create higher energy excitons, which can result in an increase in efficiency. Calculation of the rates at which such upconversion processes occur requires an accounting of all possible molecular quantum electrodynamics (QED) pathways. There are two paths associated with the upconversion. The cooperative mechanism involves a three-body interaction in which low energy excitons are transferred sequentially onto an acceptor molecule. The accretive pathway, requires that an exciton transfer its energy to a second exciton that subsequently transfers its energy to the acceptor molecule. We have computationally modeled both types of molecular QED obtaining rates using a combination of DFT and many-body Green function theory. The simulation platform is exercised by considering upconversion events associated with material composed of a high energy absorbing core of hexabenzocoronene (HBC) and low energy absorbing arms of oligothiophene. In addition, we make estimates for all competing processes in order to judge the relative efficiencies of these two processes.

  20. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    NASA Astrophysics Data System (ADS)

    Kahrl, Fredrich James

    Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be, the world's largest energy consumer. Since 2007, China has been the world's largest emitter of greenhouse gases (GHGs). Despite its large and rapidly expanding influence on global energy markets and the global atmosphere, on a per capita basis energy consumption and GHG emissions in China are low relative to developed countries. The Chinese economy, and with it energy use and GHG emissions, are expected to grow vigorously for at least the next two decades, raising a question of critical historical significance: How can China's economic growth imperative be meaningfully reconciled with its goals of greater energy security and a lower carbon economy? Most scholars, governments, and practitioners have looked to technology---energy efficiency, nuclear power, carbon capture and storage---for answers to this question. Alternatively, this study seeks to root China's future energy and emissions trajectory in the political economy of its multiple transitions, from a centrally planned to a market economy and from an agrarian to a post-industrial society. The study draws on five case studies, each a dedicated chapter, which are organized around three perspectives on energy and GHG emissions: the macroeconomy; electricity supply and demand; and nitrogen fertilizer production and use. Chapters 2 and 3 examine how growth and structural change in China's macroeconomy have shaped energy demand, finding that most of the dramatic growth in the country's energy use over the 2000s was driven by an acceleration of its investment-dominated, energy-intensive growth model, rather than from structural change. Chapters 4 and 5 examine efforts to improve energy efficiency and increase the share of renewable generation in the electric power sector, concluding that China's power system lacks the flexibility in generation, pricing, and demand to

  1. Low cost solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephans, J. B. (Inventor)

    1977-01-01

    A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe.

  2. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    SciTech Connect

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  3. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    SciTech Connect

    Berland, Brian; Hollingsworth, Russell

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  4. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  5. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  6. Development of a Low-energy Trigger for VERITAS

    SciTech Connect

    Kildea, J.

    2008-12-24

    During the 2007/2008 observing season a low-energy trigger configuration was developed and tested for VERITAS. The configuration makes uses of the small ({approx}35 m) baseline between two of the VERITAS telescopes and employs a much lower discriminator threshold and tighter coincidence window compared to the standard VERITAS trigger. Five hours of Crab Nebula ON/OFF observations were obtained in low-energy mode and were used to test new low-energy analysis algorithms. We present some details of the VERITAS low-energy trigger and the associated data analysis.

  7. Integral low-energy thermite igniter

    DOEpatents

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  8. Integral low-energy thermite igniter

    DOEpatents

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  9. Low-energy theory for the graphene twist bilayer

    NASA Astrophysics Data System (ADS)

    Weckbecker, D.; Shallcross, S.; Fleischmann, M.; Ray, N.; Sharma, S.; Pankratov, O.

    2016-01-01

    The graphene twist bilayer represents the prototypical system for investigating the stacking degree of freedom in few-layer graphenes. The electronic structure of this system changes qualitatively as a function of angle, from a large-angle limit in which the two layers are essentially decoupled—with the exception of a 28-atom commensuration unit cell for which the layers are coupled on an energy scale of ≈8 meV —to a small-angle strong-coupling limit. Despite sustained investigation, a fully satisfactory theory of the twist bilayer remains elusive. The outstanding problems are (i) to find a theoretically unified description of the large- and small-angle limits, and (ii) to demonstrate agreement between the low-energy effective Hamiltonian and, for instance, ab initio or tight-binding calculations. In this article, we develop a low-energy theory that in the large-angle limit reproduces the symmetry-derived Hamiltonians of Mele [Phys. Rev. B 81, 161405 (2010), 10.1103/PhysRevB.81.161405], and in the small-angle limit shows almost perfect agreement with tight-binding calculations. The small-angle effective Hamiltonian is that of Bistritzer and MacDonald [Proc. Natl. Acad. Sci. (U.S.A.) 108, 12233 (2011), 10.1073/pnas.1108174108], but with the momentum scale Δ K , the difference of the momenta of the unrotated and rotated special points, replaced by a coupling momentum scale g(c )=8/π √{3 }a sinθ/2 . Using this small-angle Hamiltonian, we are able to determine the complete behavior as a function of angle, finding a complex small-angle clustering of van Hove singularities in the density of states (DOS) that after a "zero-mode" peak regime between 0 .90°<θ <0 .15° limits θ <0 .05° to a DOS that is essentially that of a superposition DOS of all bilayer stacking possibilities. In this regime, the Dirac spectrum is entirely destroyed by hybridization for -0.25

  10. The low-energy photon tagger NEPTUN

    NASA Astrophysics Data System (ADS)

    Savran, D.; Lindenberg, K.; Glorius, J.; Löher, B.; Müller, S.; Pietralla, N.; Schnorrenberger, L.; Simon, V.; Sonnabend, K.; Wälzlein, C.; Elvers, M.; Endres, J.; Hasper, J.; Zilges, A.

    2010-02-01

    A new photon tagging spectrometer was built at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The system is designed for tagging photons in an energy range from 6 to 20 MeV with the emphasis on best possible energy resolution and intensity. The absolute energy resolution of photons at 10 MeV is expected to be about 20 keV. With scintillating fibres as focal-plane detectors a maximum rate of tagged photons of 104 keV -1s -1 will be achieved. Detailed design studies including Monte Carlo simulations are presented, as well as results for the measured tagged photon energy profile of the system realized so far. This photon-tagging facility will allow to determine the photon absorption cross-sections as a function of excitation energy and to study the decay patterns of nuclear photo-excitations in great detail.

  11. Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations

    NASA Technical Reports Server (NTRS)

    Nagai, T.; Horwitz, J. L.; Anderson, R. R.; Chappell, C. R.

    1985-01-01

    Low-energy ion pitch angle distributions are compared with plasma density profiles in the near-earth magnetosphere using ISEE 1 observations. The classical plasmapause determined by the sharp density gradient is not always observed in the dayside region, whereas there almost always exists the ion pitch angle distribution transition from cold, isotropic to warm, bidirectional, field-aligned distributions. In the nightside region the plasmapause density gradient is typically found, and it normally coincides with the ion pitch angle distribution transition. The sunward motion of the plasma is found in the outer part of the 'plasmaspheric' plasma in the dusk bulge region.

  12. Mapping between the Heisenberg XX Spin Chain and Low-Energy QCD

    NASA Astrophysics Data System (ADS)

    Pérez-García, David; Tierz, Miguel

    2014-04-01

    By using random matrix models, we uncover a connection between the low-energy sector of four-dimensional QCD at finite volume and the Heisenberg XX model in a 1D spin chain. This connection allows us to relate crucial properties of QCD with physically meaningful properties of the spin chain, establishing a dictionary between both worlds. For the spin chain, we predict a third-order phase transition and a Tracy-Widom law in the transition region. We also comment on possible numerical implications of the connection as well as on possible experimental implementations.

  13. Impacts of public transit improvements on ridership, and implications for physical activity, in a low-density Canadian city.

    PubMed

    Collins, Patricia A; Agarwal, Ajay

    2015-01-01

    Public transit ridership offers valuable opportunities for modest amounts of daily physical activity (PA). Transit is a more feasible option for most Canadian commuters who live too far from work to walk or cycle, yet public transit usage in midsized Canadian cities has historically remained low due to inefficient transit service. The objectives of this longitudinal study were threefold: to assess whether the introduction of express transit service in the low-density city of Kingston, Ontario, has translated to greater transit use among a targeted employee group; to document the characteristics of those employees that have shifted to transit; and to examine the PA levels of employees using transit compared to other commute modes. An online survey was administered in October 2013 and October 2014 to all non-student employees at Queen's University. 1356 employees completed the survey in 2013, and 1123 in 2014; 656 of these employees completed the survey both years, constituting our longitudinal sample. Year-round transit ridership increased from 5.5% in 2013 to 8.5% in 2014 (p < 0.001). Employees who shifted to transit had fewer household-level opportunities to drive to work and more positive attitudes toward transit. Transit commuters accrued an average of 80 minutes/week of commute-related PA, and 50 minutes/week more total PA than those that commuted entirely passively. Kingston Transit's express service has stimulated an increase in transit ridership among one of their target employers, Queen's University. The findings from this study suggest that shifting to transit from entirely passive commuting can generate higher overall PA levels. PMID:26844163

  14. Impacts of public transit improvements on ridership, and implications for physical activity, in a low-density Canadian city

    PubMed Central

    Collins, Patricia A.; Agarwal, Ajay

    2015-01-01

    Public transit ridership offers valuable opportunities for modest amounts of daily physical activity (PA). Transit is a more feasible option for most Canadian commuters who live too far from work to walk or cycle, yet public transit usage in midsized Canadian cities has historically remained low due to inefficient transit service. The objectives of this longitudinal study were threefold: to assess whether the introduction of express transit service in the low-density city of Kingston, Ontario, has translated to greater transit use among a targeted employee group; to document the characteristics of those employees that have shifted to transit; and to examine the PA levels of employees using transit compared to other commute modes. An online survey was administered in October 2013 and October 2014 to all non-student employees at Queen's University. 1356 employees completed the survey in 2013, and 1123 in 2014; 656 of these employees completed the survey both years, constituting our longitudinal sample. Year-round transit ridership increased from 5.5% in 2013 to 8.5% in 2014 (p < 0.001). Employees who shifted to transit had fewer household-level opportunities to drive to work and more positive attitudes toward transit. Transit commuters accrued an average of 80 minutes/week of commute-related PA, and 50 minutes/week more total PA than those that commuted entirely passively. Kingston Transit's express service has stimulated an increase in transit ridership among one of their target employers, Queen's University. The findings from this study suggest that shifting to transit from entirely passive commuting can generate higher overall PA levels. PMID:26844163

  15. Absence of low-temperature phase transitions in epitaxial BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Tenne, D. A.; Xi, X. X.; Li, Y. L.; Chen, L. Q.; Soukiassian, A.; Zhu, M. H.; James, A. R.; Lettieri, J.; Schlom, D. G.; Tian, W.; Pan, X. Q.

    2004-05-01

    We have studied phase transitions in epitaxial BaTiO3 thin films by Raman spectroscopy. The films are found to remain in a single ferroelectric phase over the temperature range from 5 to 325 K. The low-temperature phase transitions characteristic of bulk BaTiO3 (tetragonal-orthorhombic-rhombohedral) are absent in the films. X-ray diffraction shows that the BaTiO3 films are under tensile strain due to the thermal expansion mismatch with the buffer layer. A phase-field calculation of the phase diagram and domain structures in BaTiO3 thin films predicts, without any priori assumption, that an orthorhombic phase with in-plane polarization is the thermodynamically stable phase for such values of tensile strain and temperature, consistent with the experimental Raman results.

  16. Scan power-aware deterministic test scheme using a low-transition linear decompressor

    NASA Astrophysics Data System (ADS)

    Wang, Weizheng; Shuo, Cai; Xiang, Lingyun

    2015-04-01

    Growing test data volume and excessive testing power are both serious challenges in the testing of very large-scale integrated circuits. This article presents a scan power-aware deterministic test method based on a new linear decompressor which is composed of a traditional linear decompressor, k-input AND gates and T flip-flops. This decompression architecture can generate the low-transition deterministic test set for a circuit under test. When applying the test patterns generated by the linear decompressor, only a few transitions occur in the scan chains, and hence the switching activity during testing decreases significantly. Entire test flow compatible with the design is also presented. Experimental results on several large International Symposium on Circuits and Systems'89 and International Test Conference'99 benchmark circuits demonstrate that the proposed methodology can reduce test power significantly while providing a high compression ratio with limited hardware overhead.

  17. Energy harvesting from localized dynamic transitions in post-buckled elastic beams under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Borchani, Wassim

    The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post

  18. Energy landscape view of phase transitions and slow dynamics in thermotropic liquid crystals

    PubMed Central

    Chakrabarti, Dwaipayan; Bagchi, Biman

    2006-01-01

    Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic–nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima. PMID:16648269

  19. The role of transition in high-lift low-pressure turbines for aeroengines

    NASA Astrophysics Data System (ADS)

    Hodson, Howard P.; Howell, Robert J.

    2005-08-01

    The fan of a high bypass ratio turbo fan engine produces up to 80% of the total thrust of the engine. It is the low-pressure (LP) turbine that drives the fan and, on some engines, a number of compressor stages. The unsteady aerodynamics of the LP turbine, and in particular, the role of unsteady flow in laminar-turbulent transition, is the subject of this paper. The flow in turbomachines is unsteady due to the relative motion of the rows of blades. In the LP turbine, the wakes from the upstream blade rows provide the dominant source of unsteadiness. Because much of the blade-surface boundary-layer flow is laminar, one of the most important consequences of this unsteadiness is the interaction of the wakes with the suction-side boundary layer of a downstream blade. This is important because the blade suction-side boundary layers are responsible for most of the loss of efficiency and because the combined effects of random (wake turbulence) and periodic disturbances (wake velocity defect and pressure fields) cause the otherwise laminar boundary layer to undergo transition and eventually become turbulent. This paper discusses the development of unsteady flows in LP turbines and the process of wake-induced boundary-layer transition in low-pressure turbines and the loss generation that results. Particular emphasis will be placed on unsteady separating flows and how the effects of wakes may be exploited to control loss generation in the laminar-turbulent transition processes. This control has allowed the successful development of the latest generation of ultra-high-lift LP turbines. More recent developments, which harness the effects of surface roughness in conjunction with the wakes, are also presented.

  20. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis

    NASA Technical Reports Server (NTRS)

    Mueller, T. J.

    1984-01-01

    An experimental study of the Lissaman 7769 and Miley MO6-13-128 airfoils at low chord Reynolds numbers is presented. Although both airfoils perform well near their design Reynolds number of about 600,000, they each produce a different type of hysteresis loop in the lift and drag forces when operated below chord Reynolds numbers of 300,000. The type of hysteresis loop was found to depend upon the relative location of laminar separation and transition. The influence of disturbance environment and experimental procedure on the low Reynolds number airfoil boundary layer behavior is also presented. The use of potential flow solutions to help predict how a given airfoil will behave at low Reynolds numbers is also discussed.

  1. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    SciTech Connect

    Orlova, Maria; Khainakov, Sergey; Michailov, Dmitriy; Perfler, Lukas; Langes, Christoph; Kahlenberg, Volker; Orlova, Albina

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  2. Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.; Kenny, Barbara H.

    2004-01-01

    The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.

  3. Reaction dynamics of F+HD-->HF+D at low energies: Resonant tunneling mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Dong, Feng; Liu, Kopin

    2002-05-01

    The complete state-resolved differential cross section σ(v',j',θ;Ec), investigated in a crossed-beam scattering study, is presented for the title reaction at six initial collision energies (Ec) which are below or near the barrier energy. At low energies, all reactive flux is gated through a trapped resonance state via a tunneling process. Hence, it serves as a benchmark system for better understanding the reactive resonance phenomenon. In addition to highlighting various resonance fingerprints of experimental observable, the concept of resonant tunneling reaction mechanism is elucidated. Particular emphasis is placed on its distinction from the more conventional transition-state reaction mechanism.

  4. Multiphoton transitions between energy levels in a current-biased Josephson tunnel junction.

    PubMed

    Wallraff, A; Duty, T; Lukashenko, A; Ustinov, A V

    2003-01-24

    The escape of a current-biased Josephson tunnel junction from the zero-voltage state in the presence of weak microwave radiation is investigated experimentally at low temperatures. The measurements of the junction switching current distribution indicate the macroscopic quantum tunneling of the phase below a crossover temperature of T small star, filled approximately 280 mK. At temperatures below T small star, filled we observe both single-photon and multiphoton transitions between the junction energy levels by applying microwave radiation in the frequency range between 10 and 38 GHz to the junction. These observations reflect the anharmonicity of the junction potential containing only a small number of levels. PMID:12570519

  5. Review of lattice results concerning low-energy particle physics

    SciTech Connect

    Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; Jüttner, A.; Kaneko, T.; Laiho, J.; Lellouch, L.; Leutwyler, H.; Lubicz, V.; Lunghi, E.; Necco, S.; Onogi, T.; Pena, C.; Sachrajda, C. T.; Sharpe, S. R.; Simula, S.; Sommer, R.; Van de Water, R. S.; Vladikas, A.; Wenger, U.; Wittig, H.

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.

  6. Review of lattice results concerning low-energy particle physics

    DOE PAGESBeta

    Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; et al

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination ofmore » the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.« less

  7. Energy states and energy flow near the transition states of unimolecular reactions

    SciTech Connect

    Moore, C.B. |

    1994-10-01

    The use of lasers with jet-cooled samples has improved energy and angular momentum resolution for the reactant and time resolution for the rate constant by orders of magnitude. The resolution of product quantum states has added a new dimension to unimolecular dynamics. In the past, the geometry, barrier height and vibrational frequencies of the transition state in RRKM theory were adjusted to fit thermal unimolecular reaction rate data. There have been successful quantitative tests of the ability of ab initio theory to calculate transition state geometries accurately and barrier heights to a few kJ/mol for simple molecules. Predicted frequencies tend to be somewhat too high for the softest modes which are of most importance in determining rates; however, the basic normal modes and sequence of frequencies seem to be correctly predicted. RRKM theory can be used with ab initio results to predict rate constants to within a factor of two or three and may be used for quantitative extrapolation to conditions not accessible in the laboratory but important in practical situations. Experiments on single molecular eigenstates have revealed quantum statistical fluctuations in rates which are predicted quantitatively in the appropriate extension of RRKM theory. Many experiments seeking to demonstrate non-statistical or non-RRKM dynamics have demonstrated the very wide range of applicability of the RRKM model. A few such experiments have demonstrated a lack of complete vibrational energy randomization in a reactant molecule. Dynamical theory has provided an exact quantum analog to RRKM theory which will combine with future experiments to define the extent to which quantized motion along the reaction coordinate and coupling between the reaction coordinate and vibrational degrees of freedom at the transition state are important. 42 refs., 11 figs.

  8. Sputtering of SiC with low energy He and Ar ions under grazing incidence

    NASA Astrophysics Data System (ADS)

    Kosiba, R.; Ecke, G.; Ambacher, O.; Menyhard, M.

    2003-10-01

    The effect of low energy sputtering under grazing incidence upon the surface composition of SiC was investigated by Auger electron spectroscopy. The energy of the sputtering projectiles (He, Ar) varied from 200 to 1500 eV. Peak shifts to the higher energies with increasing argon ion energy were observed for all silicon and carbon Auger transitions. These shifts were explained by enhanced damage of the surface region within the sampling depth of the Auger electrons. The insensitivity of the Auger peak position to the energy of helium ions indicates that the damage state in the surface region does not change with the increasing energy of helium ions. An increase of the carbon concentration with the decrease of the argon energy was observed. The experiments were accompanied by dynamic Monte Carlo simulations by the TRIDYN code.

  9. Evidence for Multi-photon transitions between energy levels in a large Current-Biased Magnesium Diboride Josephson Heterojunction

    NASA Astrophysics Data System (ADS)

    Ramos, Roberto; Carabello, Steven; Lambert, Joseph; Cunnane, Daniel; Dai, Wenqing; Chen, Ke; Li, Qi; Xi, Xiaoxing

    2013-03-01

    When photons are strongly coupled to a quantum system, multiphoton transitions can be observed between two energy levels when the quantum energy of the exciting radiation, multiplied by an integer, matches the level spacing. This phenomenon can be observed in Josephson junction qubits exposed to weak microwave radiation at very low temperatures. At microwave resonance, the transition probability of a junction from superconducting to normal state is enhanced and these are used to map multiphoton transitions. We report observation of single- and multi-photon transitions between ground and first excited states in current-biased MgB2 thin film junctions by applying RF with frequencies between 0.5 and 3 Ghz. These large (up to 0.2mm x 0.3 mm) junctions consist of an MgB2 electrode insulated by native oxide from a lead (Pb) or tin (Sn) counter-electrode, and have areas at least 600 times bigger than Nb junctions previously shown to exhibit multiphoton transitions. The data is consistent with theoretical models of junctions behaving in the quantum limit and show anharmonicity of the junction potential when biased near the critical current.

  10. Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under Clear-Sky Conditions

    NASA Astrophysics Data System (ADS)

    Brötz, Björn; Eigenmann, Rafael; Dörnbrack, Andreas; Foken, Thomas; Wirth, Volkmar

    2014-07-01

    We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1-2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux

  11. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  12. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers

    NASA Astrophysics Data System (ADS)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2016-02-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium—like ice, salt, soil, or regolith—has been extensively investigated as a promising technique to search for ultrahigh-energy neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth's surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to ˜1 GHz . These properties encourage further work to evaluate the potential of a large-aperture ultrahigh-energy neutrino experiment based on the detection of transition radiation.

  13. Requirements for supercomputing in energy research: The transition to massively parallel computing

    SciTech Connect

    Not Available

    1993-02-01

    This report discusses: The emergence of a practical path to TeraFlop computing and beyond; requirements of energy research programs at DOE; implementation: supercomputer production computing environment on massively parallel computers; and implementation: user transition to massively parallel computing.

  14. Summary of low-energy aspects of QCD and medium-energy hadron parallel sessions

    SciTech Connect

    McClelland, J.B.

    1991-01-01

    Two sessions were organized dealing with low energy aspects of QCD. The first dealt with the issue of QCD dibaryons. The second session centered on mostly low-energy tests of QCD. This report discusses experiments dealing with these sessions.

  15. U.S. Energy Demand: Some Low Energy Futures

    ERIC Educational Resources Information Center

    Science, 1978

    1978-01-01

    Described is a study in which energy demands were analyzed and several plausable future energy scenarios were developed. The article attempts to illustrate the dynamics of energy demand and supply in the United States in order to aid future planning. (MDR)

  16. Low-energy antiprotons physics and the FLAIR facility

    NASA Astrophysics Data System (ADS)

    Widmann, E.

    2015-11-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR.

  17. A Compact Low-loss Magic-T using Microstrip-Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Moseley, Samuel H.; Papapolymerou, John; Laskar, Joy

    2007-01-01

    The design of a compact low-loss magic-T is proposed. The planar magic-T incorporates the compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The experimental results show that the magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has an average in-band insertion loss of 0.3 dB and small in-band phase and amplitude imbalance of less than plus or minus 1.6 deg. and plus or minus 0.3 dB, respectively.

  18. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents.

    PubMed

    Francisco, María; van den Bruinhorst, Adriaan; Kroon, Maaike C

    2013-03-11

    A new generation of designer solvents emerged in the last decade as promising green media for multiple applications, including separation processes: the low-transition-temperature mixtures (LTTMs). They can be prepared by mixing natural high-melting-point starting materials, which form a liquid by hydrogen-bond interactions. Among them, deep-eutectic solvents (DESs) were presented as promising alternatives to conventional ionic liquids (ILs). Some limitations of ILs are overcome by LTTMs, which are cheap and easy to prepare from natural and readily available starting materials, biodegradable, and renewable. PMID:23401138

  19. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  20. Low-energy positron interactions with krypton

    SciTech Connect

    Makochekanwa, C.; Machacek, J. R.; Jones, A. C. L.; Caradonna, P.; Slaughter, D. S.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Bellm, S.; Lohmann, B.; Fursa, D. V.; Bray, I.; Mueller, D.W.; Stauffer, A. D.; Hoshino, M.

    2011-03-15

    Cross sections for positron scattering from krypton have been measured with an energy resolution of {approx}60 meV over the energy range 0.5-60 eV. Absolute values of the grand total ({sigma}{sub GT}), positronium formation ({sigma}{sub Ps}), and grand total minus positronium formation ({sigma}{sub GT}-{sigma}{sub Ps},) cross sections are presented. Theoretical estimations of {sigma}{sub GT} and {sigma}{sub GT}-{sigma}{sub Ps} are also performed for this target using the convergent close-coupling method and the relativistic optical potential approach. We also provide experimental and theoretical results for elastic differential cross sections, for selected energies both below and above the Ps threshold. Where available, the present results are compared to both experimental and theoretical values from the literature.

  1. Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect

    Eudy, L.; Chandler, K.

    2010-11-01

    This document describes the fuel cell transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA). This document provides a description of the demonstration sites, funding sources, and data collection activities for fuel cell transit bus evaluations currently planned from FY10 through FY12.

  2. Feasibility of Electron Cooling for Low-Energy RHIC Operation

    SciTech Connect

    Fedotov,A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.; Pozdeyev, E.; Satogata, T.

    2008-04-01

    A concrete interest in running RHIC at low energies in a range of 2.5-25 GeV/nucleon total energy of a single beam has recently emerged. Providing collisions in this energy range, which in the RHIC case is termed 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with electron cooling applied directly in RHIC at low energies. This report summarizes the expected luminosity improvement with electron cooling, possible technical approaches and various limitations.

  3. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    SciTech Connect

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  4. Universal empirical formula for optical transition energies of semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jamal, G. R. Ahmed; Mominuzzaman, S. M.

    2016-01-01

    A general empirical relation for calculating first seven optical transition energies of semiconducting single wall carbon nanotubes (SWCNTs) is proposed here for the first time. The proposed formula effectively relates first seven optical transition energies of semiconducting SWCNTs with their chiral indices (n, m) through exponential form containing two specific terms (n+2m) and (2n-m). Both mod 1 and mod 2 types of semiconducting tubes are considered here over a wide diameter range from 0.4 nm to 4.75 nm. It was observed that the proposed empirical relations can predict the recent experimental data of those optical transitions with high accuracy.

  5. Low-Tech Energy Conservation for Schools.

    ERIC Educational Resources Information Center

    Stein, Benjamin

    The American Institute of Architects National Committee on Architecture for Education presents this guide which addresses methods of energy conservation in school buildings with simple design, construction, and equipment-control technology so that trained and creative people can take over functions normally done by machinery and automated…

  6. Resonance behavior of internal conversion coefficients at low γ-ray energy

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Kibédi, T.; Nikulin, V. K.

    2010-02-01

    A resonance-like structure of internal conversion coefficients (ICCs) at low γ-ray energy (≲100 keV) is studied. Our calculations revealed new, previously unknown resonance minima in the energy dependence of ICCs for the ns shells at E2-E5 transitions. The resonances are the most defined for ICCs in light and medium elements with Z≲ 50. It is shown that ICCs may have up to four resonances for outer shells while it has been assumed so far that only one resonance exists. Well-pronounced resonances in ICCs at E1 transition were discovered for the ns shells with n⩾2 as well as for the np shells with n⩾3 and the nd shells with n⩾4 of all elements up to superheavy ones. Simple expressions for approximate values of the E1 resonance energy were obtained which are of importance for determination of the resonance energy range where the interpolation of ICCs taken from tables or databases may give significant errors. The occurrence of resonances in ICCs is explained by vanishing conversion matrix elements under changes of sign. The peculiarities of the behavior of the matrix elements and electron wave functions at the resonance energy are considered. Available experimental ICCs for electric transitions with energies near the expected position of resonances satisfactory agree with our calculations.

  7. Eccentricity from Transit Photometry: Small Planets in Kepler Multi-planet Systems Have Low Eccentricities

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Albrecht, Simon

    2015-08-01

    Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely elusive. Knowing the eccentricity distribution in systems of small planets would be important as it holds information about the planet's formation and evolution, and influences its habitability. We make these measurements using photometry from the Kepler satellite and utilizing a method relying on Kepler's second law, which relates the duration of a planetary transit to its orbital eccentricity, if the stellar density is known. Our sample consists of 28 bright stars with precise asteroseismic density measurements. These stars host 74 planets with an average radius of 2.6 R⊕. We find that the eccentricity of planets in Kepler multi-planet systems is low and can be described by a Rayleigh distribution with σ = 0.049 ± 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which planets are habitable because the location of the habitable zone depends on eccentricity, and to determine occurrence rates inferred for these planets because planets on circular orbits are less likely to transit. For measuring eccentricity it is crucial to detect and remove Transit Timing Variations (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets.

  8. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    PubMed

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV. PMID:26726473

  9. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  10. The transition to high school for academically promising, urban, low-income African American youth.

    PubMed

    Newman, B M; Myers, M C; Newman, P R; Lohman, B J; Smith, V L

    2000-01-01

    In nine urban Ohio school systems, low-income minority students identified as academically promising in sixth grade are eligible to participate in an intervention program. In the present study, twenty-two African American students in the program were asked to provide their perceptions of the transition to ninth grade. Specifically, the role of motivating factors, peers, school, teachers, parents, and neighborhood were examined. These students faced similar stressors, yet some were more able to achieve academic success. Results highlight the salience of mothers, the challenges of the ninth-grade curriculum, and adjustment to a bigger, more complex school environment for high and low performers. The implications for improving cooperation between school and family are discussed. PMID:10841296

  11. Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro

    2016-03-01

    In the Japan subduction zone, a locally depressed 660 discontinuity has been observed beneath northeast Asia, suggesting downwelling of materials from the mantle transition zone (MTZ). Vertical transport of water-rich MTZ materials across the major mineral phase changes could lead to water release and to partial melting in surrounding mantle regions, causing seismic low-velocity anomalies. Melt layers implied by low-velocity zones (LVZs) above the 410 discontinuity have been detected in many regions, but seismic evidence for partial melting below the 660 discontinuity has been limited. High-frequency migrated Ps receiver functions indicate LVZs below the depressed 660 discontinuity and above the 410 discontinuity in the deep Japan subduction zone, suggesting dehydration melting induced by water transport out of the MTZ. Our results provide insights into water circulation associated with dynamic interactions between the subducted slab and surrounding mantle.

  12. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    SciTech Connect

    Zhang, Wen; Zhou, Zhaofeng Zhong, Yuan; Zhang, Ting; Huang, Yongli; Sun, Changqing

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numerical match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.

  13. Band structure effects in the energy loss of low-energy protons and deuterons in thin films of Pt

    NASA Astrophysics Data System (ADS)

    Celedón, C. E.; Sánchez, E. A.; Salazar Alarcón, L.; Guimpel, J.; Cortés, A.; Vargas, P.; Arista, N. R.

    2015-10-01

    We have investigated experimentally and by computer simulations the energy-loss and angular distribution of low energy (E < 10 keV) protons and deuterons transmitted through thin polycrystalline platinum films. The experimental results show significant deviations from the expected velocity dependence of the stopping power in the range of very low energies with respect to the predictions of the Density Functional Theory for a jellium model. This behavior is similar to those observed in other transition metals such as Cu, Ag and Au, but different from the linear dependence recently observed in another transition metal, Pd, which belongs to the same Group of Pt in the Periodic Table. These differences are analyzed in term of the properties of the electronic bands corresponding to Pt and Pd, represented in terms of the corresponding density of states. The present experiments include also a detailed study of the angular dependence of the energy loss and the angular distributions of transmitted protons and deuterons. The results are compared with computer simulations based on the Monte Carlo method and with a theoretical model that evaluates the contributions of elastic collisions, path length effects in the inelastic energy losses, and the effects of the foil roughness. The results of the analysis obtained from these various approaches provide a consistent and comprehensive description of the experimental findings.

  14. Energy Transition Initiative: Island Energy Snapshot - Puerto Rico (Fact Sheet); NREL(National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of Puerto Rico - a U.S. territory located about 60 miles east of the Dominican Republic and directly west of the U.S. Virgin Islands.

  15. Low-Energy Theory of Disordered Graphene

    NASA Astrophysics Data System (ADS)

    Altland, Alexander

    2006-12-01

    At low values of external doping, graphene displays a wealth of unconventional transport properties. Perhaps most strikingly, it supports a robust “metallic” regime, with universal conductance of the order of the conductance quantum. We here apply a combination of mean-field and bosonization methods to explore the large scale transport properties of the system. We find that, irrespective of the doping level, disordered graphene is subject to the common mechanisms of Anderson localization. However, at low doping a number of renormalization mechanisms conspire to protect the conductivity of the system, to an extend that strong localization may not be seen even at temperatures much smaller than those underlying present experimental work.

  16. Measurements of low energy auroral ions

    NASA Astrophysics Data System (ADS)

    Urban, A.

    1981-12-01

    Ion measurements in the energy range 0.1-30 keV observed during the 'Substorm Phenomena' and 'Porcupine' campaigns are summarized. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field is identified and found to be accompanied by intense electron precipitation. On the other hand, deceleration of the ions is observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations suggest energy dispersion and a location of the source region at 9 earth radii. What is more, ion fluxes higher than those of the electrons are measured at pitch angles parallel to the magnetic field. It is noted that each of the examples was observed during different flights.

  17. Walkability, Transit Access, and Traffic Exposure for Low-Income Residents With Subsidized Housing

    PubMed Central

    Basolo, Victoria; Yang, Dongwoo

    2013-01-01

    Objectives. We assessed the spatial distribution of subsidized housing units provided through 2 federally supported, low-income housing programs in Orange County, California, in relation to neighborhood walkability, transit access, and traffic exposure. Methods. We used data from multiple sources to examine land-use and health-related built environment factors near housing subsidized through the Housing Choice Voucher Program and the Low Income Housing Tax Credit (LIHTC) program, and to determine these patterns’ associations with traffic exposure. Results. Subsidized projects or units in walkable, poorer neighborhoods were associated with lower traffic exposure; higher traffic exposure was associated with more transit service, a Hispanic majority, and mixed-use areas. Voucher units are more likely than LIHTC projects to be located in high-traffic areas. Conclusions. Housing program design may affect the location of subsidized units, resulting in differential traffic exposure for households by program type. Further research is needed to better understand the relationships among subsidized housing locations, characteristics of the built environment, and health concerns such as traffic exposure, as well as which populations are most affected by these relationships. PMID:22897555

  18. A high pressure low temperature study on rare earth compounds: Semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Neuenschwander, J.; Wachter, P.

    1990-01-01

    This work studies the pressure induced semiconductor to metal transition (SMT) in several rare earth compounds. This SMT is accompanied by a valence instability. Single crystalline semiconducting TmSe 1- xTe x, Tm 1- xEu xSe and SmS 1- xSe x alloys are investigated under high pressure at low temperatures. Measurements of electrical resistivity, magnetic susceptibility, neutron diffraction, volume and optical properties are presented and discussed. A very unusual peak structure in the resistivity-pressure relation of TmSe 1- xTe x at low temperatures is observed. A discussion of the novel feature involves the concept of the excitonic insulator and f-d hybridization. The magnetic behavior of the Tm and Eu based compounds is significantly influenced by the SMT. This is thought to be mainly due to the additional coupling between the rare earth moments via free carriers which are present in the metallic state. In SmS 1- xSe x a considerable softening of the lattice is observed before the valence transition occurs. It is speculated that Poisson's ratio might become negative already in the semiconducting state.

  19. A high pressure low temperature study on rare earth compounds: Semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Neuenschwander, J.; Wachter, P.

    1989-12-01

    This work studies the pressure induced semiconductor to metal transition (SMT) in several rare earth compounds. This SMT is accompanied by a valence instability. Single crystalline semiconducting TmSe1-xTex, Tm1-xEuxSe and SmS1-xSex alloys are investigated under high pressure at low temperatures. Measurements of electrical resistivity, magnetic susceptibility, neutron diffraction, volume and optical properties are presented and discussed. A very unusual peak structure in the resistivity-pressure relation of TmSe1-xTex at low temperatures is observed. A discussion of the novel feature involves the concept of the excitonic insulator and f-d hybridization. The magnetic behavior of the Tm and Eu based compounds is significantly influenced by the SMT. This is thought to be mainly due to the additional coupling between the rare earth moments via free carriers which are present in the metallic state. In SmS1-xSex a considerable softening of the lattice is observed before the valence transition occurs. It is speculated that Poisson's ratio might become negative already in the semiconducting state.

  20. Low-temperature thermal conductances of amorphous dielectric microbridges in the diffusive to ballistic transition

    NASA Astrophysics Data System (ADS)

    Withington, S.; Goldie, D. J.; Velichko, A. V.

    2011-05-01

    Through a lossy acoustic-wave model we explore the effect of inelastic scattering on the low-temperature thermal conductances of amorphous dielectric microbridges in the diffusive to ballistic transition. The model gives not only the thermal flux as a function of geometry and temperature, but also the temperature distribution of the internal degrees of freedom that constitute the loss, which in turn can be used for calculating noise. The approach leads to powerful conceptual insights and provides a numerical framework for analyzing experimental data. SixNy tends to behave ballistically at low frequencies and diffusively at high frequencies, and when integrated over all frequency, the diffusive to ballistic transition becomes apparent at lengths of around a few hundred microns. It is possible to include flux-dependent acoustic loss, which leads to counterintuitive thermal behavior. A sample can behave diffusively when measured using a small temperature difference, but ballistically when measured using a large temperature difference. There is compelling circumstantial evidence that the effects of acoustic saturation have been seen, but not explicitly recognized, on many occasions.

  1. Low Energy Dissipation Nano Device Research

    NASA Astrophysics Data System (ADS)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  2. The Role of Grain Boundary Energy on Grain Boundary Complexion Transitions

    SciTech Connect

    Bojarski, Stephanie A.; Rohrer, Gregory S.

    2014-09-01

    Grain boundary complexions are distinct equilibrium structures and compositions of a grain boundary and complexion transformations are transition from a metastable to an equilibrium complexion at a specific thermodynamic and geometric conditions. Previous work indicates that, in the case of doped alumina, a complexion transition that increased the mobility of transformed boundaries and resulted in abnormal grain growth also caused a decrease in the mean relative grain boundary energy as well as an increase in the anisotropy of the grain boundary character distribution (GBCD). The current work will investigate the hypothesis that the rates of complexion transitions that result in abnormal grain growth (AGG) depend on grain boundary character and energy. Furthermore, the current work expands upon this understanding and tests the hypothesis that it is possible to control when and where a complexion transition occurs by controlling the local grain boundary energy distribution.

  3. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  4. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  5. Glass transition and random walks on complex energy landscapes.

    PubMed

    Baronchelli, Andrea; Barrat, Alain; Pastor-Satorras, Romualdo

    2009-08-01

    We present a simple mathematical model of glassy dynamics seen as a random walk in a directed weighted network of minima taken as a representation of the energy landscape. Our approach gives a broader perspective to previous studies focusing on particular examples of energy landscapes obtained by sampling energy minima and saddles of small systems. We point out how the relation between the energies of the minima and their number of neighbors should be studied in connection with the network's global topology and show how the tools developed in complex network theory can be put to use in this context. PMID:19792062

  6. Transition report, United States Department of Energy: A report to the President-Elect. Volume 2

    SciTech Connect

    Not Available

    1988-11-01

    This report is a description of the Department of Energy transition issues. The topics of the report include: Congressional, Intergovernmental and Public Affairs; Conservation and Renewable Energy; Defense Programs; New Production Reactors; Economic Regulatory Administration; Energy Information Administration; energy research; environment, safety and health; fossil energy; General Counsel; hearings and appeals, Inspector General, international affairs and energy emergencies; management and administration, minority economic impact; nuclear energy; policy, planning and analysis, radioactive waste management; and power marketing administrations: Bonneville Power Administration, Western Area Power Administration, Alaska Power Administration, Southeastern Power Administration, and Southwestern Power Administration.

  7. Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Lou, Qi-Wei; Chen, Xue-Feng; Zhang, Hong-Ling; Dong, Xian-Lin; Wang, Gen-Shui

    2015-11-01

    The phase transitions, dielectric properties, and polarization versus electric field (P-E) hysteresis loops of Pb0.97La0.02(Zr0.42Sn0.58-xTix)O3 (0.13≤ x ≤0.18) (PLZST) bulk ceramics were systematically investigated. This study exhibited a sequence of phase transitions by analyzing the change of the P-E hysteresis loops with increasing temperature. The antiferroelectric (AFE) to ferroelectric (FE) phase boundary of PLZST with the Zr content of 0.42 was found to locate at the Ti content between 0.14 and 0.15. This work is aimed to improve the ternary phase diagram of lanthanum-doped PZST with the Zr content of 0.42 and will be a good reference for seeking high energy storage density in the PLZST system with low-Zr content. Project supported by the National Natural Science Foundation of China (Grant Nos. 51202273, 11204304, and 11304334) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2261000).

  8. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  9. Past, present and future low energy antiproton facilities at CERN

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.

    2014-05-01

    Low energy antiprotons are available for physics experiments at CERN since the 1980s and have been used by a large variety of experiments. The Low Energy Antiproton Ring LEAR has been constructed as a complementary use of antiprotons available at that time for high energy physics and delivered beam to experiments mainly using slow extraction. After completion of LEAR exploitation, the Antiproton Decelerator (AD) was constructed (adaptation of the existing Antiproton Collector, AC) to allow for a simpler low energy antiproton scheme (only one accelerator operated with Antiprotons) with fast extraction well suited for trap experiments. The Extra Low ENergy Antiproton ring ELENA is a small synchrotron presently constructed to further decelerate antiprotons from the AD in a controlled manner, and to reduce emittances with the help of an electron cooler to improve the capture efficiencies of existing experiments and allow for additional ones.

  10. A Framework For Characterizing The Atmospheres Of GJ 1214b-type Low-mass Low-density Transiting Planets

    NASA Astrophysics Data System (ADS)

    Fortney, Jonathan J.; Nettelmann, N.; Kempton, E.; Mordasini, C.; Zahnle, K.; Lopez, E.; Morley, C. V.; Marley, M. S.

    2012-10-01

    The atmosphere of the low-mass low-density transiting planet GJ 1214b has been extensively characterized via transmission spectroscopy. Observations include spectra and photometric points from blue to mid-infrared wavelengths. The transmission spectrum appears relatively featureless, indicating an atmosphere that does not show strong molecular absorption features. It has been suggested that this ``flat" spectrum could be due to an obscuring grey cloud/haze layer, or due to a high mean molecular weight (MMW) atmosphere. If the planet is similar to a scaled down version of Uranus or Neptune, as suggested by Nettelmann et al. (2011), both explanations could well be viable. To lift the degeneracy of these explanations, one can imagine characterizing a range of similar planets, which are now being found. Here we examine the structure and atmospheres of volatile-rich planets from 5-20 Earth masses and T_eq from 100 - 1500 K. Based on population synthesis models of core-accretion planet formation, we examine the expected Z_atmosphere and MMW these low mass planets. We examine how atmospheric escape of the outermost layers of such planets may expose deeper atmospheric layers with less hydrogen and a higher Z_atmosphere and MMW. We note that the hottest variants of these planets should feature atmospheres rich in CO, rather than CH4, potentially eliminating a pathway to photochemical haze formation. We provide a synthesis of these physical effects over a range of mass, temperature, and metallicity parameters. We highlight where in parameter space these GJ 1214b and Neptune-like planets are likely to have atmospheres that are most amenable to characterization from transmission spectroscopy.

  11. Low energy--bridging the Great Divide.

    PubMed

    Bacon, Mathew

    2015-02-01

    Professor Mathew Bacon, MD of The Conclude Consultancy, argues that with healthcare facilities required to play a considerable part in helping the UK meet tough carbon reduction targets, a new approach to designing large acute hospitals is required that takes significantly greater account of such facilities' 'In-use' energy consumption. Equally, he believes, designing hospitals that meet lower carbon consumption goals requires greater dialogue between clinicians and engineers so that the resulting clearer perspective on clinical processes can be leveraged to inform the engineering design, and achieve 'a close coupling' between the engineering design strategy and the working practice needs of users. PMID:26268016

  12. Low protein diets produce divergent effects on energy balance.

    PubMed

    Pezeshki, Adel; Zapata, Rizaldy C; Singh, Arashdeep; Yee, Nicholas J; Chelikani, Prasanth K

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  13. Low protein diets produce divergent effects on energy balance

    PubMed Central

    Pezeshki, Adel; Zapata, Rizaldy C.; Singh, Arashdeep; Yee, Nicholas J.; Chelikani, Prasanth K.

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  14. Surface free energy of alkali and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-09-01

    This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data.

  15. Influence of manufacturing factors on physical stability and solubility of solid dispersions containing a low glass transition temperature drug.

    PubMed

    Sakurai, Atsushi; Sako, Kazuhiro; Maitani, Yoshie

    2012-01-01

    In this study, we investigated the effect of manufacturing factors such as particle size, water content and manufacturing method on the physical stability and solubility of solid dispersion formulations of a low-glass-transition-temperature (T(g)) drug. Solid dispersions were prepared from polyvinylpyrrolidone (PVP) and hydroxypropylmethylcellulose (HPMC) by hot melt extrusion or spray drying. Water content of solid dispersions prepared by hot melt extrusion determined by dynamic moisture sorption measurement was increased drastically with relative humidity below a certain level of particle size. The blends with a lower water content (0.8%) prepared by hot melt extrusion during storage were more stable than those with a higher water content (3.5%) prepared by spray drying, which caused rapid recrystallization. Physical stability in the hot melt blends may be attributed to reduced molecular mobility due to a higher T(g). Dissolution study revealed that solid dispersions prepared by hot melt extrusion with the smallest particle size showed decreased solubility, attributed to reduced wetting properties (surface energy), which is not predictable by the Noyes-Whitney equation. Taken together, these results indicate that the control of particle size concerned in water content or wetting properties is critical to ensuring the physical stability or enhancing solubility of low-T(g) drugs. Further, hot melt extrusion, which can reduce water content, is a suitable manufacturing method for solid dispersions of low-T(g) drugs. PMID:23124559

  16. High energy, low frequency, ultrasonic transducer

    DOEpatents

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  17. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  18. Propagation of low energy solar electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.

    1981-01-01

    Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.

  19. Parity violation in low-energy neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-01-15

    Parity-violating effects for low-energy elastic neutron deuteron scattering are calculated for Desplanques, Donoghue, and Holstein (DDH) and effective field theory types of weak potentials in a distorted-wave Born approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The resulting relation between physical observables and low-energy constants can be used to fix low-energy constants from experiments. Potential model dependencies of parity-violating effects are discussed.

  20. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  1. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  2. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  3. Institutions and the transition to adulthood: Implications for fertility tempo in low-fertility settings

    PubMed Central

    Brauner-Otto, Sarah R.

    2010-01-01

    The number of countries experiencing very low fertility has been rising in recent years, garnering increasing academic, political and media attention. There is now widespread academic agreement that the postponement of fertility is a major contributing factor in the very low levels of fertility that have occurred, and yet most policy discussions have been devoted to increasing the numbers of children women have. We discuss factors in three institutions—the educational system, the labour market and the housing market—that may inadvertently have led to childbearing postponement. We highlight important components of the timing of childbearing, including its changing place within the transition to adulthood across countries and the significance of the demands of childbearing versus childrearing. Using illustrations from Europe, North America, Japan, Australia and New Zealand, we argue that the following all lead to younger childbearing: 1) an open education system whereby it is relatively easy to return to school after having dropped out for a while; 2) a shorter, smoother, easier school-to-work transition; 3) easier re-entry into the labour market after having taken time out for childrearing or any other reason; 4) greater capability of integrating childrearing into a career; 5) easier ability to obtain a mortgage with a moderately small down payment, moderately low interest rate and a long time period over which to repay the loan; and 6) easier ability to rent a dwelling unit at an affordable price. Conversely, reversing any or all of these factors would lead, other things being equal, to postponement of childbearing. PMID:20622992

  4. Institutions and the transition to adulthood: Implications for fertility tempo in low-fertility settings.

    PubMed

    Rindfuss, Ronald R; Brauner-Otto, Sarah R

    2008-01-01

    The number of countries experiencing very low fertility has been rising in recent years, garnering increasing academic, political and media attention. There is now widespread academic agreement that the postponement of fertility is a major contributing factor in the very low levels of fertility that have occurred, and yet most policy discussions have been devoted to increasing the numbers of children women have. We discuss factors in three institutions-the educational system, the labour market and the housing market-that may inadvertently have led to childbearing postponement. We highlight important components of the timing of childbearing, including its changing place within the transition to adulthood across countries and the significance of the demands of childbearing versus childrearing. Using illustrations from Europe, North America, Japan, Australia and New Zealand, we argue that the following all lead to younger childbearing: 1) an open education system whereby it is relatively easy to return to school after having dropped out for a while; 2) a shorter, smoother, easier school-to-work transition; 3) easier re-entry into the labour market after having taken time out for childrearing or any other reason; 4) greater capability of integrating childrearing into a career; 5) easier ability to obtain a mortgage with a moderately small down payment, moderately low interest rate and a long time period over which to repay the loan; and 6) easier ability to rent a dwelling unit at an affordable price. Conversely, reversing any or all of these factors would lead, other things being equal, to postponement of childbearing. PMID:20622992

  5. Low Energy Accelerators for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang

    Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.

  6. Energy Independence for North America - Transition to the Hydrogen Economy

    SciTech Connect

    Eberhardt, J.

    2003-08-24

    The U.S. transportation sector is almost totally dependent on liquid hydrocarbon fuels, primarily gasoline and diesel fuel from conventional oil. In 2002, the transportation sector accounted for 69 percent of the U.S. oil use; highway vehicles accounted for 54 percent of the U.S. oil use. Of the total energy consumed in the U.S., more than 40 percent came from oil. More significantly, more than half of this oil is imported and is projected by the Energy Information Agency (EIA) to increase to 68 percent by 2025 [1]. The supply and price of oil have been dictated by the Organization of Petroleum Exporting Countries (OPEC). In 2002, OPEC accounted for 39 percent of world oil production and this is projected by the EIA to increase to 50 percent in 2025. Of the world's oil reserves, about 80 percent is owned by OPEC members. Major oil price shocks have disrupted world energy markets four times in the past 30 years (1973-74, 1979-80, 1990-1991, and 1999- 2000) and with each came either a recession or slowdown in the GDP (Gross Domestic Product) of the United States. In addition, these market upheavals have cost the U.S. approximately $7 trillion (in 1998 dollars) in total economic costs [2]. Finally, it is estimated that military expenditures for defending oil supplies in the Middle East range from $6 billion to $60 billion per year [3] and do not take into account the costs of recent military operations in Iraq (i.e., Operation Iraqi Freedom, 2003). At the outset of his administration in 2001, President George W. Bush established the National Energy Policy Development (NEPD) Group to develop a national energy policy to promote dependable, affordable, and environmentally sound energy for the future in order to avert potential energy crises. In the National Energy Policy report [4], the NEPD Group urges action by the President to meet five specific national goals that America must meet--''modernize conservation, modernize our energy infrastructure, increase energy

  7. Low energy positron interactions with biological molecules

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika L.

    Calculations of the positron density distribution which can be used for positrons bound to midsize and larger molecules have been tested for smaller molecules and subsequently applied to investigate the most likely e +e-- annihilation sites for positrons interacting with biological molecules containing C, H, O, and N. In order to allow consideration of positrons bound to extended molecules with regions of different character and no particular symmetry, atom-centered positron basis sets of Gaussian-type functions were developed for positrons bound to molecules containing O, N, C, H, Li, Na, and Be. Testing shows that there is no need to scale the positron basis functions to take into account different effective charges on the atoms in different molecules. Even at the HF level of theory the calculated positron and the contact density of e+LiH system is in qualitative agreement with the most accurate calculation was done in ECG method. Also it has been found that for larger biological molecules such as derivation of formaldehyde can leave out positron basis sets centered on H atoms and still get qualitatively acceptable contact density distribution. According to our results, the electronic and positronic wavefunctions have the most overlap in the regions of most negative electrostatic potential in the parent molecule, and we can expect that a positron bound to the molecule will be more likely to annihilate with one of the electrons in these regions. Also we find that the highest energy occupied electronic orbital often does not make the largest contribution to e+e -- annihilation, and that the energy liberated by subsequent electronic relaxation is sufficient to break the backbone in several places in di-peptides and other organic molecules.

  8. Low energy antiprotons from supernova exploding in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Mauger, B. G.

    1984-01-01

    The antiproton spectrum resulting from a supernova, which exploded inside a dense cloud, is calculated by taking into account all energy loss processes including adiabatic deceleration during the expansion phase. The influence of various energy loss processes on the evolution of the spectrum as the supernova expands is investigated. It is shown that if about 25 percent of the cosmic ray nucleons are from such sources, the observed low energy antiprotons can be explained, provided the effect of solar modulation is not very large. The possibility of obtaining enhanced low energy spectrum by this process is also examined.

  9. Evidence for the dipole nature of the low-energy γ enhancement in Fe56

    DOE PAGESBeta

    Larsen, A. C.; Blasi, N.; Bracco, A.; Camera, F.; Eriksen, T. K.; Gorgen, A.; Guttormsen, M.; Hagen, T. W.; Leoni, S.; Million, B.; et al

    2013-12-11

    Here, the γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  10. Evidence for the dipole nature of the low-energy γ enhancement in 56Fe.

    PubMed

    Larsen, A C; Blasi, N; Bracco, A; Camera, F; Eriksen, T K; Görgen, A; Guttormsen, M; Hagen, T W; Leoni, S; Million, B; Nyhus, H T; Renstrøm, T; Rose, S J; Ruud, I E; Siem, S; Tornyi, T; Tveten, G M; Voinov, A V; Wiedeking, M

    2013-12-13

    The γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11  MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions. PMID:24483649

  11. Evidence for the Dipole Nature of the Low-Energy γ Enhancement in 56Fe

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Blasi, N.; Bracco, A.; Camera, F.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Leoni, S.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; Ruud, I. E.; Siem, S.; Tornyi, T.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.

    2013-12-01

    The γ-ray strength function of Fe56 has been measured from proton-γ coincidences for excitation energies up to ≈11MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (He3,αγ)Fe56 reaction, is confirmed with the (p,p'γ)Fe56 experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  12. Systemic aspects of the transition to sustainable energy

    NASA Astrophysics Data System (ADS)

    Schlögl, R.

    2015-08-01

    The supply of free energy to our societies is today an intricate system comprising the regimes of technologies, regulatory frameworks, socio-economic impacts and techno-ecological interactions. As a consequence it is challenging to define clear directions or even device a master plan for the transformation of a single national energy system into a sustainable future. Even the term "sustainable" needs extensive discussion in this context that should not be defined solely in technological or ecological senses. The contribution illustrates some of the elements of the energy system and their interdependencies. It will become clear that multiple reasons exist to change the traditional generation and use of energy even when climate protection is not a sufficiently strong argument for a change.

  13. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    PubMed

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates. PMID:25554878

  14. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  15. Energy-microfinance intervention for low income households in India

    NASA Astrophysics Data System (ADS)

    Rao, P. Sharath Chandra

    In India, limited energy access and energy inequity hamper the lives of low income households. Traditional fuels such as firewood and dung cake account for 84 percent and 32 percent of the rural and urban household cooking energy (NSSO, 2007). With 412 million people without access to electricity in 2005, India hosts the world's largest such population (IEA, 2007). But, low income households still spend 9 - 11.7 percent1 of their incomes on inefficient forms of energy while wealthy households spend less than 5 percent on better energy products (Saghir, 2005). Renewable energy technologies coupled with innovative financial products can address the energy access problem facing the low income households in India (MacLean & Siegel, 2007; REEEP, 2009). Nevertheless, the low income households continue to face low access to mainstream finance for purchasing renewable energy technology at terms that meet their monthly energy related expenditure (ESMAP, 2004a; SEEP, 2008a) and low or no access to energy services (Ailawadi & Bhattacharyya, 2006; Modi et. al., 2006). The lack of energy-finance options has left the marginalized population with little means to break the dependence on traditional fuels. This dissertation proposes an energy microfinance intervention to address the present situation. It designed a loan product dedicated to the purchase of renewable energy technologies while taking into account the low and irregular cash flows of the low income households. The arguments presented in this dissertation are based on a six-month pilot project using this product designed and developed by the author in conjunction with a microfinance institution and its low income clients and Energy Service Companies in the state of Karnataka. Finding the right stakeholders and establishing a joint agreement, obtaining grant money for conducting the technology dissemination workshops and forming a clear procedure for commissioning the project, are the key lessons learnt from this study

  16. Low-energy positron scattering by pyrimidine

    NASA Astrophysics Data System (ADS)

    Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F.

    2015-12-01

    This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We also compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.

  17. Low-energy positron scattering by pyrimidine

    SciTech Connect

    Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F.

    2015-12-28

    This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We also compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.

  18. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    PubMed

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions. PMID:25892453

  19. The Effects of Dislocations on the Verwey Transition as Observed by Transmission Electron Microscopy and Low Temperature Magnetic Measurements

    NASA Astrophysics Data System (ADS)

    Lindquist, A. K.; Feinberg, J. M.; Harrison, R. J.; Loudon, J.; Newell, A. J.

    2014-12-01

    Pure magnetite experiences a first order phase transition, called the Verwey transition, at ~120K whereby the mineral's crystal structure changes from cubic to monoclinic. This transformation has a profound effect on the magnetic properties of magnetite. Internal and external stresses have been shown to affect the onset of the Verwey transition, but the processes by which this occurs have not been observed. To further investigate this behavior, we used transmission electron microscopy on deformed magnetite samples to simultaneously image dislocations, magnetic domain walls, and low-temperature twins while cooling through the Verwey transition. To relate the observed changes to more readily-measurable bulk sample magnetic behavior, we made low-temperature magnetic measurements using SQUID magnetometry. According to these low temperature measurements, the temperature of the phase transition is depressed by as much as 6°C in the deformed samples. Combining these two techniques allows us, for the first time, to observe the Verwey transition in a defect-rich area and to observe the manner in which dislocations, and their associated stress fields, influence and impede the growth of twin structures as magnetite is cooled through the Verwey transition.

  20. Turbulence kinetic energy budget during the afternoon transition - Part 2: A simple TKE model

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Pardyjak, Eric; Hartogensis, Oscar; Darbieu, Clara

    2016-07-01

    A simple model for turbulence kinetic energy (TKE) and the TKE budget is presented for sheared convective atmospheric conditions based on observations from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. It is based on an idealized mixed-layer approximation and a simplified near-surface TKE budget. In this model, the TKE is dependent on four budget terms (turbulent dissipation rate, buoyancy production, shear production and vertical transport of TKE) and only requires measurements of three available inputs (near-surface buoyancy flux, boundary layer depth and wind speed at one height in the surface layer) to predict vertical profiles of TKE and TKE budget terms.This simple model is shown to reproduce some of the observed variations between the different studied days in terms of near-surface TKE and its decay during the afternoon transition reasonably well. It is subsequently used to systematically study the effects of buoyancy and shear on TKE evolution using idealized constant and time-varying winds during the afternoon transition. From this, we conclude that many different TKE decay rates are possible under time-varying winds and that generalizing the decay with simple scaling laws for near-surface TKE of the form tα may be questionable.The model's errors result from the exclusion of processes such as elevated shear production and horizontal advection. The model also produces an overly rapid decay of shear production with height. However, the most influential budget terms governing near-surface TKE in the observed sheared convective boundary layers are included, while only second-order factors are neglected. Comparison between modeled and averaged observed estimates of dissipation rate illustrates that the overall behavior of the model is often quite reasonable. Therefore, we use the model to discuss the low-turbulence conditions that form first in the upper parts of the boundary layer during the afternoon transition and are only

  1. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  2. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  3. Bag-model quantum chromodynamics for hyperons at low energy

    NASA Astrophysics Data System (ADS)

    Weber, H. J.; Maslow, J. N.

    1980-09-01

    In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy.

  4. Transitions in low Re pumping by oscillating plate arrays of mayfly nymphs

    NASA Astrophysics Data System (ADS)

    Kiger, Ken; Sensenig, Andrew; Shultz, Jeffrey

    2008-11-01

    Mayfly nymphs are aquatic insects which alter behavior and metabolism to accommodate changes in ambient dissolved oxygen. Many species can generate a ventilation current to compensate for low oxygen levels by beating two linear arrays of plate-like gills that line the lateral edge of the abdomen. The oscillation Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontological changes in pumping mechanisms associated with transitions from a viscous- to inertia-dominated flow. Observation of the detailed 3-D kinematics of the gill motion of the species Centroptilum triangulifer reveal that the mayfly makes a marked transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Results of the time-resolved flow within the inter-gill space shows that for Re>12 the plate motion generates a complex array of bound and shed vortices, which interact to produce an intermittent dorsally directed jet. For the Re<5, distinct bound vortices are still observed, but increased diffusive effects creates vortices which simultaneously envelope several gills, forcing a new flow pattern to emerge. Details of the flow mechanism and its implications will be discussed. This work is supported by NSF under grant CBET-0730907.

  5. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  6. Engaging schools in the science of low-energy buildings.

    PubMed

    Charnley, Fiona; Fleming, Paul; Dowsett, Tony; Fleming, Margaret; Cook, Malcolm; Mill, Greig

    2012-10-01

    This article explores the relationship between the previous UK government's initiative to rebuild and renew secondary schools, and the requirement for improved education for sustainable development in the UK. The documented research utilized a number of mechanisms to engage with pupils in Leicester city schools to increase their awareness, knowledge and understanding of the science and engineering associated with the design and operation of low-energy school buildings. Workshops, discussions with energy and sustainable development experts and inspirational visits to existing low-energy buildings were employed to develop an appreciation for the importance of energy efficiency and best design practice. The results demonstrate an increase in pupils' knowledge and understanding of low-energy school design and additionally a rise in those pupils who are interested in science and would consider it as a career option. PMID:23832564

  7. Power conditioning for low-voltage piezoelectric stack energy harvesters

    NASA Astrophysics Data System (ADS)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  8. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  9. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  10. Low energy cosmic ray studies from a lunar base

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Studies of cosmic ray nuclei with energies less than about 7 GeV/nucleon in low earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  11. Utility investments in low-income energy-efficiency programs

    SciTech Connect

    Brown, M.A.

    1995-06-01

    In the increasingly competitive utility industry, it is imperative that equity programs be as cost-effective as possible. In some cases, this is accomplished by working in partnership with government programs such as the US Department of Energy`s low-income Weatherization Assistance Program. This paper provides an overview of the DSM and conservation programs being operated by utilities for low-income customers and describes the types of utility-government partnerships that exist.

  12. Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Yuan, Ye; Zhang, Yikun; Namiki, Takahiro; Nishimura, Katsuhiko; Pöttgen, Rainer; Zhou, Shengqiang

    2015-09-01

    The magnetic properties and the magnetocaloric effect (MCE) in TmZn have been studied by magnetization and heat capacity measurements. The TmZn compound exhibits a ferromagnetic state below a Curie temperature of TC = 8.4 K and processes a field-induced metamagnetic phase transition around and above TC. A giant reversible MCE was observed in TmZn. For a field change of 0-5 T, the maximum values of magnetic entropy change (-ΔSMmax) and adiabatic temperature change (ΔTadmax) are 26.9 J/kg K and 8.6 K, the corresponding values of relative cooling power and refrigerant capacity are 269 and 214 J/kg, respectively. Particularly, the values of -ΔSMmax reach 11.8 and 19.6 J/kg K for a low field change of 0-1 and 0-2 T, respectively. The present results indicate that TmZn could be a promising candidate for low temperature and low field magnetic refrigeration.

  13. A new US energy agenda: US leadership in transition

    SciTech Connect

    Not Available

    1992-11-20

    For the first time since the Carter Administration at the end of 1980, the US is embarked upon energy management beyond laissez faire' free market determination. The election of Bill Clinton to the Presidency could mean the release of years-old pressures to greatly increase efficiency, dramatically reduce hydrocarbon dependency, and curtail pollution to unheard of degrees. Doubtlessly, it will also unleash debates about how to do this without imposing protectionism or further slowing the domestic economy. In this issue a veteran energy analyst, J. Lange Winckler, assesses the changes to be expected. ED supplements the text with graphics that illustrate four scenarios of energy growth and utilization over the next 40 years. This issue also includes the following: (1) the ED Refining Netback Data for the US Gulf and West Coasts, Rotterdam and Singapore as of November 6, 1992; and (2) the ED Fuel Price/Tax Series for countries of the Western Hemisphere, November 1992 Edition.

  14. On the facet-skeletal transition of snow crystals - Experiments in high and low gravity

    NASA Technical Reports Server (NTRS)

    Alena, T.; Hallett, J.; Saunders, C. P. R.

    1990-01-01

    A laboratory investigation of the influence of air velocity on the growth of columnar ice crystals from the vapor over the range -3 to -5 C shows that the linear growth velocity increases and that columns transform to sheath crystals or needles as air velocity increases from a few cm/s to 40 cm/s. Comparison with a similar transition of plates to dendrites shows that, macroscopically, in both cases the facets sprout rounded tips at a critical velocity which is lower for higher ambient supersaturation. Studies in low gravity show that chamber scale convection under normal gravity may have significant influence on growth even in the absence of an imposed air velocity. Falling snow crystals become more skeletal in shape as they grow and fall with increasing velocity. This development depends critically on temperature (+ or - 0.5 C) and demonstrates that the snow crystal shape is even more dependent on environmental growth conditions that previously thought.

  15. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification.

    PubMed

    Yiin, Chung Loong; Quitain, Armando T; Yusup, Suzana; Sasaki, Mitsuru; Uemura, Yoshimitsu; Kida, Tetsuya

    2016-01-01

    The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants. PMID:26253419

  16. A ubiquitous low-velocity layer at the base of the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Yuan, Xiaohui; Li, Xueqing

    2014-02-01

    Global stacks of receiver functions clearly exhibit the upper mantle stratification. Besides the most prominent seismic discontinuities, such as the Moho and the 410 and 660 km discontinuities, a negative discontinuity is detected at a depth of ~600 km, indicating a low-velocity layer at the base of the mantle transition zone. The slant-slack technique helps to identify the primary conversions from the multiple reverberations. Presence of the negative 600 km discontinuity underneath both continent and ocean island stations, where the crustal thickness significantly differs, also precludes the possible cause of crustal reverberations. We conclude that the negative 600 km discontinuity could be a global feature, possibly resulted from accumulation of ancient subducted oceanic crust. The X-discontinuity at ~300 km depth is also observed in our global stacks, which can be explained by the coesite-stishovite phase transformation.

  17. Substructural phase transitions during intense plastic deformation of low-carbon ferrite-perlite steel

    NASA Astrophysics Data System (ADS)

    Kozlov, É. V.; Zakirov, D. M.; Popova, N. A.; Ivanov, Yu. F.; Gromov, V. E.; Ignatenko, L. N.; Tsellermaer, V. Y.

    1998-03-01

    We have studied the evolution of the defect structure and phase composition of low-carbon ferrite-perlite steel subjected to intense plastic deformation using diffraction electron microscopy. It has been shown that a high degree of deformation is accompanied by disruption of the perlite columns. We have found and described two perlite decay mechanisms: decay of the carbide plates by a path of their granulation due to dislocation slip and dissolution of cementite arising from the outflow of carbon atoms from the carbide phase into ferrite crystal lattice defects. We have described the phenomenon of morphological reconstruction of the cementite-phase particles (a transition from layers to spheres) under plastic deformation conditions.

  18. Magnetic and structural phase transitions in erbium at low temperatures and high pressures

    SciTech Connect

    Thomas, Sarah A.; Tsoi, Georgiy M.; Wenger, Lowell E.; Vohra, Yogesh K.

    2012-02-07

    Electrical resistance and crystal structure measurements have been carried out on polycrystalline erbium (Er) at temperatures down to 10 K and pressures up to 20 GPa. An abrupt change in the slope of the resistance is observed with decreasing temperature below 84 K, which is associated with the c-axis modulated (CAM) antiferromagnetic (AFM) ordering of the Er moments. With increasing pressure the temperature of the resistance slope change and the corresponding AFM ordering temperature decrease until vanishing above 10.6 GPa. The disappearance of the slope change in the resistance occurs at similar pressures where the hcp structural phase of Er is transformed to a nine-layer {alpha}-Sm structural phase, as confirmed by our high-pressure synchrotron x-ray diffraction studies. These results suggest that the disappearance in the AFM ordering of Er moments is strongly correlated to the structural phase transition at high pressures and low temperatures.

  19. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    SciTech Connect

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  20. Free energy and phase transition of the matrix model on a plane wave

    SciTech Connect

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.; Young, Donovan

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedorn temperature to order two loops.

  1. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    NASA Astrophysics Data System (ADS)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  2. The low-energy ion range in DNA.

    PubMed

    Yu, L D; Kamwanna, T; Brown, I G

    2009-08-21

    In fundamental studies of low-energy ion irradiation effects on DNA, calculation of the low-energy ion range, an important basic physical parameter, is often necessary. However, up to now a unified model and approach for range calculation is still lacking, and reported data are quite divergent and thus unreliable. Here we describe an approach for calculation of the ion range, using a simplified mean-pseudoatom model of the DNA target. Based on ion stopping theory, for the case of low-energy (< or = a few keV) ion implantation into DNA, the stopping falls in the low reduced energy regime, which gives a cube-root energy dependence of the stopping (E(1/3)). Calculation formulas of the ion range in DNA are obtained and presented to unify the relevant calculations. The upper limits of the ion energy as a function of the atomic number of the bombarding ion species are proposed for the low-energy case to hold. Comparison of the results of this approach with the results of some widely used computer simulation codes and with results reported by other groups indicates that the approach described here provides convincing and dependable results. PMID:19652287

  3. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  4. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  5. Low molecular weight compounds with transition metals as free radical scavengers and novel therapeutic agents.

    PubMed

    Bencini, Andrea; Failli, Paola; Valtancoli, Barbara; Bani, Daniele

    2010-07-01

    Molecules able to modulate the levels of endogenous free radicals, such as reactive oxygen species (ROS) and nitric oxide (NO), are of pivotal interest for pharmacological and pharmaceutical sciences because of their potential therapeutic relevance. In fact, ROS and NO, which are normal products of cell metabolism, may play a dual beneficial/deleterious role, depending on local concentration and mode of generation. As such, they have been identified as key pathogenic factors for many inflammatory, vascular dysfunctional and degenerative disorders, including atherosclerosis, hypertension, cardiovascular and neurodegenerative diseases, cancer, diabetes mellitus, and ageing. Therefore, the identification and characterization of novel antioxidant/free radical scavenger molecules may expand the current therapeutic implements for the treatment and prevention of the above diseases. In this perspective, low molecular weight complexes of transition metals with organic scaffolds are viewed and investigated as promising pharmaceutical agents. These complexes take advantage of the known principles of inorganic chemistry, i.e. the ability of transition metals, Fe(II), Co(II), Mn(II) and Ru(II), to bind to and react with NO and/or ROS, to counterbalance excessive endogenous free radical generation in biological systems. Among NO scavengers, representative examples are iron complexes with dithiocarbamates or ruthenium compounds with polyamine-polycarboxylate scaffolds; on the other hand, manganese-based molecules appear effective as ROS scavengers. Of note, Mn(II)-containing molecules, currently under study as ROS scavengers, have major functional similarities to Mn-superoxide dismutase (SOD), a Mn-containing enzyme acting as potent endogenous anti-oxidant. In this article, we briefly summarize the state-of-the-art concerning the chemical and biological properties of transition metal ion complexes with low molecular weight synthetic ligands as ROS/NO scavengers provided with

  6. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat. PMID:23949247

  7. Procuring low-energy design and consulting services

    SciTech Connect

    1997-07-01

    This report presents information which aids in the design of low energy building elements. The proven strategies can dramatically reduce a building`s energy consumption for little or no added cost while improving it`s comfort, economy, and environmental performance.

  8. Properties of nuclei and elementary particles at low and intermediate energies. Progress report, July 1992--August 1993

    SciTech Connect

    Boehm, F.

    1993-12-31

    Work reported relate to: a 12 ton low energy neutrino detector for neutrino oscillation studies at the San Onofre Reactor Station; new limits on the 17 keV neutrino; time reversal and parity tests for hindered nuclear gamma transitions; and theory of nuclear structure and its application.

  9. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the

  10. Observation of a Low-Temperature, Dynamically Driven, Structural Transition in a Polypeptide by Solid State NMR Spectroscopy

    PubMed Central

    Bajaj, Vikram S.; van der Wel, Patrick C.A.; Griffin, Robert G.

    2009-01-01

    At reduced temperatures, proteins and other biomolecules are generally found to exhibit dynamic as well as structural transitions. This includes a so-called protein glass transition that is universally observed in systems cooled between 200–230K, and which is generally attributed to interactions between hydrating solvent molecules and protein side chains. However, there is also experimental and theoretical evidence for a low-temperature transition in the intrinsic dynamics of the protein itself, absent any solvent. Here, we use low-temperature solid state NMR to examine site specific fluctuations in atomic structure and dynamics in the absence of solvents. In particular, we employ magic angle spinning NMR to examine a structural phase transition associated with dynamic processes in a solvent-free polypeptide, N-f-MLF-OH, lattice at temperatures as low as 90K. This transition is characterized by the appearance of an extra set of lines in 1D 15N spectra as well as additional cross peaks in 2D 13C-13C and 13C-15N spectra. Interestingly, the gradual, temperature-dependent appearance of the new spectral component is not accompanied by the line broadening typical of dynamic transitions. A direct comparison between the spectra of N-f-MLF-OH and the analog N-f-MLF-OMe, which does not display this transition, indicates a correlation of the structural transition to the temperature dependent motion of the aromatic phenylalanine side chain. Several quantitative solid state NMR experiments were employed to provide site-specific measurements of structural and motional features of the observed transition. PMID:19067520

  11. Minimal cooling speed for glass transition in a simple solvable energy landscape model

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Castillo, Isaac Pérez; Naumis, Gerardo G.

    2016-06-01

    The minimal cooling speed required to form a glass is obtained for a simple solvable energy landscape model. The model, made from a two-level system modified to include the topology of the energy landscape, is able to capture either a glass transition or a crystallization depending on the cooling rate. In this setup, the minimal cooling speed to achieve glass formation is then found to be related with the crystallization relaxation time, energy barrier and with the thermal history. In particular, we obtain that the thermal history encodes small fluctuations around the equilibrium population which are exponentially amplified near the glass transition, which mathematically corresponds to the boundary layer of the master equation. The change in the glass transition temperature is also found as a function of the cooling rate. Finally, to verify our analytical results, a kinetic Monte Carlo simulation was implemented.

  12. Energy and environmental policy in a period of transition

    SciTech Connect

    Stalon, C.G.

    1995-12-31

    This paper discusses governance aspects of electric industry restructuring. The creation and preservation of a governance system to ensure reliable and efficient trades within interconnected and independent trading areas is the main topic. The closely related issue of defining and imposing responsibilities on non-utility generators is also discussed in detail. It is recommended that the Federal Energy Regulatory Commission promote private governance of interconnections. 1 tab.

  13. Nozzle wall roughness effects on free-stream noise and transition in the pilot low-disturbance tunnel

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F. J.

    1985-01-01

    An investigation at Mach 3.5 into the effects of nozzle wall roughness on free stream pressure fluctuations and cone transition Reynolds numbers was conducted in the pilot low disturbance tunnel at the Langley Research Center. Nozzle wall roughness caused by either particle deposits or imperfections in surface finish increased free stream noise levels and reduced the transition Reynolds numbers on a cone mounted in the test rhombus.

  14. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed. PMID:22540588

  15. Modelling low energy electron and positron tracks for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanz, A. G.; Fuss, M. C.; Roldán, A. M.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Brunger, M. J.; Buckman, S. J.; García, G.

    2012-11-01

    In order to incorporate the effect of low energy electrons and positron in radiation damage models, the simulation method proposed here is based on experimental and theoretical cross section data and energy loss spectra we have previously derived. After a summary of the main techniques used to obtain reliable input data, the basis of a Low Energy Particle Track Simulation (LEPTS) procedure is established. Single electron and positron tracks in liquid water are presented and the possibility of using these results to develop tools for nanodosimetry is discussed.

  16. Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: A comparative study

    NASA Astrophysics Data System (ADS)

    Rotstein, Horacio G.

    2013-12-01

    Hyperexcitability of neuronal networks is one of the hallmarks of epileptic brain seizure generation, and results from a net imbalance between excitation and inhibition that promotes excessive abnormal firing frequencies. The transition between low and high firing frequencies as the levels of recurrent AMPA excitation change can occur either gradually or abruptly. We used modeling, numerical simulations, and dynamical systems tools to investigate the biophysical and dynamic mechanisms that underlie these two identified modes of transition in recurrently connected neurons via AMPA excitation. We compare our results and demonstrate that these two modes of transition are qualitatively different and can be linked to different intrinsic properties of the participating neurons.

  17. The problem of low energy particle measurements in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1978-01-01

    The accurate measurement of low energy (less than 100 eV) particle properties in the magnetosphere has been difficult, partly because of the low density of such particles, but more particularly because of spacecraft interference effects. Some early examples of how these phenomena have affected particle measurements on an OGO spacecraft are presented. Data obtained with the UCSD particle detectors on ATS-6 are then presented showing how some of these difficulties have been partially overcome. Future measurements of low energy particles in the magnetosphere can be improved by: (1) improving the low energy resolution of detectors; (2) building electrostatically clean spacecraft; (3) controlling spacecraft potential; and (4) using auxiliary measurements, particularly wave data.

  18. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J. . Physics Dept.); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  19. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ``universality`` of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  20. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  1. Spectroscopy of Light Nuclei with Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Vigilante, M.

    2016-07-01

    We discuss new results concerning the investigation of the 19F(p,α 0)16O and 10B(p,α 0)7Be reactions at low energies. Both reactions are important for the nuclear spectroscopy of the formed compound nucleus, i.e. 20Ne and 11C respectively, and play a role in nuclear astrophysics. For the 10B(p,α 0)7Be case, a comprehensive analysis of our reaction data and other scattering data points out the possible presence of an unreported state in 11C at Ex ≈ 9.36 MeV. For the 19F(p,α 0)16O case, the study of the low energy angular distributions testifies the role played by low energy resonances in the S-factor, leading to an enhanced reaction rate at stellar energies.

  2. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  3. Low energy particle composition. [cosmic rays produced in solar system

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1975-01-01

    A review is given of current knowledge of low-energy cosmic ray particles produced in the solar system. It is argued that the notion that the sun alone can accelerate particles in the solar system must be abandoned in light of evidence that Jupiter and earth may be sources of observed low-energy particles. Measurements of the composition and energy spectra of low-energy particles during quiet times are examined, emphasizing the abundance of protons and helium and of anomalous N, O, and Ne. The abundance of heavy particles (B, C, N, O, Ne, Ca and Fe) of unknown origin in the earth magnetosphere is examined. Reported observations of Jovian electrons are discussed and solar particle events with anomalous compositions (He-3 rich events and Fe rich events) are treated in detail. Nuclear abundances of solar particles, emphasizing their temporal and spatial variations are considered together with the nature of nuclear reaction products in solar flares.

  4. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas.

    PubMed

    Nawrocki, Wojciech J; Santabarbara, Stefano; Mosebach, Laura; Wollman, Francis-André; Rappaport, Fabrice

    2016-01-01

    Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy. PMID:27249564

  5. Intensity transitions in Cyg XR-1 observed at high energies from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1977-01-01

    The observed transitions at energies above 20 keV show that the spectrum of Cyg XR-1 exhibits the pivoting effect during intensity transitions expected from two-temperature accretion disk models of the X-ray emitting region. Cyg XR-1 was observed with the high-energy X-ray spectrometer on board the OSO-8 satellite from November 11-19, 1975 and from October 27 to November 15, 1976 (excluding the period from November 1 to November 7, 1976).

  6. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  7. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  8. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    SciTech Connect

    Culp, Thomas D.; Cort, Katherine A.

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  9. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  10. Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis

    SciTech Connect

    Reinhard, P.-G.; Nazarewicz, Witold

    2013-01-01

    Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual

  11. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    SciTech Connect

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  12. Response of plastic scintillators to low-energy photons

    NASA Astrophysics Data System (ADS)

    Peralta, Luis; Rêgo, Florbela

    2014-08-01

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  13. Low-Energy Monte Carlo and W-Values

    NASA Astrophysics Data System (ADS)

    Grosswendt, B.

    Electrons in the low-energy range of about 1 keV or less play an important role in many fields of radiation research for two reasons: firstly, they are created in large numbers during the passage of all kinds of ionizing radiation through matter, and secondly, they have a linear energy transfer comparable to that of low-energy protons and a-particles, and accordingly they are responsible for the greater part of radiation damage observable in any material. A detailed understanding of the action of low-energy electrons in matter therefore is required in many contexts. In the fields of dosimetry, for example, the determination of the absorbed dose in water or the air kerma is great practical importance, but in most experiments only the amount of ionization produced by secondary electrons within the sensitive volume of a dosimeter can be measured. The results of ionization measurements therefore must converted to quantities based on energy absorption or energy transfer, either by calibration or numerically using an appropriate conversion factor. The most frequently used conversion factor is the so-called W-value, which is the mean energy required to produce an ion pair upon complete slowing down of a charged particle. Its relation to the primary particle kinetic energy T, and to the mean n umber N i of ionizations produced (ionization yield), is given by

  14. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  15. Statistical mechanics model for the transit free energy of monatomic liquids

    NASA Astrophysics Data System (ADS)

    Wallace, Duane C.; Chisolm, Eric D.; Bock, N.; de Lorenzi-Venneri, G.

    2010-04-01

    In applying vibration-transit (V-T) theory of liquid dynamics to the thermodynamic properties of monatomic liquids, the point has been reached where an improved model is needed for the small (˜10%) transit contribution. Toward this goal, an analysis of the available high-temperature experimental entropy data for elemental liquids was recently completed [D. C. Wallace, E. D. Chisolm, and N. Bock, Phys. Rev. E 79, 051201 (2009)]. This analysis yields a common curve of transit entropy vs T/θtr , where T is temperature and θtr is a scaling temperature for each element. In the present paper, a statistical mechanics model is constructed for the transit partition function, and is calibrated to the experimental transit entropy curve. The model has two scalar parameters, and captures the temperature scaling of experiment. The calibrated model fits the experimental liquid entropy to high accuracy at all temperatures. With no additional parameters, the model also agrees with both experiment and molecular dynamics for the internal energy vs. T for Na. With the calibrated transit model, V-T theory provides equations subject to ab initio evaluation for thermodynamic properties of monatomic liquids. This will allow the range of applicability of the theory, and its overall accuracy, to be determined. More generally, the hypothesis of V-T theory, which divides the many-atom potential energy valleys into random and symmetric classes, can also be tested for its application beyond monatomic systems.

  16. Scenario analysis of energy-based low-carbon development in China.

    PubMed

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. PMID:25108719

  17. Low-energy point source searches with IceCube

    NASA Astrophysics Data System (ADS)

    Euler, Sebastian; Altmann, David; Ström, Rickard

    2016-04-01

    Due to the overwhelming background of atmospheric muons, the traditional IceCube point source search in the Southern Hemisphere is mainly sensitive to neutrinos with energies above 100TeV. A new approach focuses on events starting inside the instrumented volume. By utilizing different veto techniques we are able to significantly reduce the energy threshold and can now for the first time explore the entire Southern Hemisphere at neutrino energies as low as 100GeV. We present the results of two analyses targeting slightly different energy ranges. Both use one year of data taken with the completed IceCube detector in 2011/12.

  18. Milagro: A low energy threshold extensive air shower array

    SciTech Connect

    Sinnis, C.

    1994-12-31

    Observations of high-energy gamma rays from astronomical sources have revolutionized our view of the cosmos. Gamma rays with energies up to {approximately}10 GeV can be observed directly with space-based instruments. Above 100 GeV the low flux of gamma rays requires one to utilize ground-based instruments. Milagro is a new type of gamma-ray detector based on water Cerenkov technology. This new design will enable to continuously observe the entire overhead sky, and be sensitive to cosmic rays with energies above {approximately}250 GeV. These attributes make Milagro an ideal detector for the study of high-energy transient phenomenon.

  19. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  20. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.