Science.gov

Sample records for low-aspect-ratio airplane wings

  1. Flutter analysis of low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  2. The Vortices Trapped above Low-aspect-ratio Wings

    NASA Astrophysics Data System (ADS)

    Tang, Jian

    2007-11-01

    A stationary vortex trapped above the nondelta, low-aspect-ratio wings was first obtained in 3D unsteady numerical simulation. Flow visualization was conducted in water-channel using hydrogen bubble. The results verify that there is a vortex trapped above the low-aspect-ratio wings and the stationary vortex is consisted of two semi-ball, anti-rotation vortices which are different from the leading edge vortices on the delta wing. This stationary vortex trapped above the nondelta, low-aspect-ratio wings is a new phenomenon, which is different from the leading edge vortex on the delta wing. The numerical results show that lift coefficient increase to 0.8 when incidence increases form 0^o to 30^o, the lift coefficient keeps this value up to 45^o--a very high stall angle. The numerical results indicate that the trapped vortex might be the source of the high stall angle of attack and nonlinear lift at high incidence. Accompanied with the low-aspect-ratio wing, the existence of the stationary vortex is thought to be related to the strong effects of tip vortices. Further experimental and numerical works have been undertaken, the results show that trapped vortices have variant shapes and different critical angels of attack.

  3. Vortex Interaction on Low Aspect Ratio Membrane Wings

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Breuer, Kenneth S.

    2013-11-01

    Inspired by the flight of bats and by recent interest in Micro Air Vehicles, we present measurements on the steady and unsteady behavior of low aspect ratio membrane wings. We conduct wind tunnel experiments with coupled force, kinematic, and flow field measurements, both on the wing and in the near wake. Membrane wings interact strongly with the vortices shed from the leading- and trailing-edges and the wing tips, and the details of the membrane support play an important role in the fluid-structure interaction. Membranes that are supported at the wing tip exhibit less membrane flutter, more coherent tip vortices, and enhanced lift. The interior wake can exhibit organized spanwise vortex shedding, and shows little influence from the tip vortex. In contrast, membranes with an unsupported wing tip show exaggerated static deformation, significant membrane fluttering and a diffuse, unsteady tip vortex. The unsteady tip vortex modifies the behavior of the interior wake, disrupting the wake coherence.

  4. Influence of Ground Effect on Low Aspect Ratio Membrane Wings

    NASA Astrophysics Data System (ADS)

    Bleischwitz, Robert; de Kat, Roeland; Ganapathisubramani, Bharathram

    2014-11-01

    Inspired by the current interest of membrane wings for Micro Air Vehicles (MAVs) and hard limits in aerodynamic performance for wings in moderate Reynolds number regimes, an experimental wind tunnel study is conducted at a Reynolds number of approximately 65,000 to determine the aeromechanics of flexible, low aspect ratio (AR) membrane wings (AR <= 2) in the vicinity of the ground. Pitch angle α and height over ground h / c is varied with a traverse system. Flexible membrane wings are compared with rigid flat plates. A rolling road is used to impose the ground effect and the boundary layer leading up to the road is removed using a suction system. Time-averaged lift, drag and pitch moment changes are captured with a 6-axis force transducer and its effects are interpreted in terms of the membrane motions obtained using Direct-Image-Correlation (DIC) technique. Flow-structure-ground interactions are examined and the membrane dynamics are compared to results obtained outside of ground effect. Ultimately, understanding the ground effect on flexible membrane wings at moderate Reynolds numbers could help to design Wing-in-Ground MAVs with extended range and reduced energy consumption.

  5. Unsteady transonic flow analysis for low aspect ratio, pointed wings.

    NASA Technical Reports Server (NTRS)

    Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.

    1973-01-01

    Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.

  6. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low-aspect-ratio wing has been computed using an implicit, three-dimensional, 'thin-layer' Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. The geometry chosen for this study is a low-aspect-ratio wing with large sweep, twist, taper, and camber. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. Using this grid, the flow around the wing was computed for a free-stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three-dimensional flow separation off the wing surface are observed. Particle path lines indicate that the three-dimensional flow separation on the wing surface is part of the roots of the tip-vortex formation. The lifting of the tip vortex before the wing trailing edge is clearly observed by following the trajectory of particles released around the wing tip.

  7. Characteristics of Low-Aspect-Ratio Wings at Supercritical Mach Numbers

    NASA Technical Reports Server (NTRS)

    Stack, John; Lindsey, W F

    1949-01-01

    The separation of the flow over wings precipitated by the compression shock that forms as speeds are increased into the supercritical Mach number range has imposed serious difficulties in the improvement of aircraft performance. Three difficulties rise principally as a consequence of the rapid drag rise and the loss of lift that causes serious stability changes when the wing shock-stalls. Favorable relieving effects due to the three-dimensional flow around the tips were obtained and these effects were of such magnitude that it is indicated that low-aspect-ratio wings offer a possible solution of the problems encountered.

  8. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.

  9. Effects of fluid behavior around low aspect ratio, low Reynolds number wings on aerodynamic stability

    NASA Astrophysics Data System (ADS)

    Shields, Matthew; Mohseni, Kamran

    2011-11-01

    The innovation of micro aerial vehicles (MAVs) has brought to attention the unique flow regime associated with low aspect ratio (LAR), low Reynolds number fliers. The dominant effects of developing tip vortices and leading edge vortices create a fundamentally different flow regime than that of conventional aircraft. An improved knowledge of low aspect ratio, low Reynolds number aerodynamics can be greatly beneficial for future MAV design. A little investigated but vital aspect of LAR aerodynamics is the behavior of the fluid as the wing yaws. Flow visualization experiments undertaken in the group for the canonical case of varying AR flat plates indicate that the propagation of the tip vortex keeps the flow attached over the upstream portion of the wing, while the downstream vortex is convected away from the wing. This induces asymmetric, destabilizing loading on the wing which has been observed to adversely affect MAV flight. In addition, experimental load measurements indicate significant nonlinearities in forces and moments which can be attributed to the development and propagation of these vortical structures. A non-dimensional analysis of the rigid body equations of motion indicates that these nonlinearities create dependencies which dramatically change the conventional linearization process. These flow phenomena are investigated with intent to apply to future MAV design.

  10. Effects of ground proximity on a low aspect ratio propulsive wing/canard configuration

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.; Kemmerly, G. T.

    1987-01-01

    The effect of near proximity to the ground are investigated on a low aspect ratio propulsive wing/canard concept at STOL conditions. Data were obtained on a wing/body and wing/body/canard configuration at various heights above the ground, ranging from free air to approximately 1/4 of the mean aerodynamic chord (MAC) above the ground. The data presented and discussed include force and moment coefficients, surface pressure distributions, and downwash angles measured one MAC behind the wing. The test technique, model requirements, and special considerations required for testing these configurations are also discussed. Special model requirements included evenly distributed exit nozzle pressures along four separate nozzles of lengths of one and two feet with only one air supply to the model. Test techniques must recognize and deal with the ground boundary layer as well as the air supply pressure measurement and management.

  11. Boundary-layer measurements on a transonic low-aspect ratio wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1985-01-01

    Tabulations and plots are presented of boundary-layer velocity and flow-direction surveys from wind-tunnel tests of a large-scale (0.90 m semi-span) model of the NASA/Lockheed Wing C. This wing is a generic, transonic, supercritical, highly three-dimensional, low-aspect-ratio configuration designed with the use of a three-dimensional, transonic full-potential-flow wing code (FLO22). Tests were conducted at the design angle of attack of 5 deg over a Mach number range from 0.25 to 0.96 and a Reynolds number range of 3.4x10 to the 6th power. Wing pressures were measured at five span stations, and boundary-layer surveys were measured at the midspan station. The data are presented without analysis.

  12. Lift due to thickness for low aspect ratio wings in incompressible flow

    NASA Technical Reports Server (NTRS)

    Dodbele, S. S.; Plotkin, A.

    1985-01-01

    The problem under consideration is a numerical study of the effects of thickness on lift for low aspect ratio wings in steady incompressible inviscid flow at moderate angles of attack. At these angles of attack the flow separates along the leading edge giving rise to a lift substantially higher than that computed by classical attached flow potential theory. The problem is treated as a perturbation expansion in a small thickness parameter. The lifting elements of the flow are modeled using a nonlinear vortex lattice method which replaces the leading and trailing edge vortex sheets by segmented straight vortex filaments. The thickness elements of the flow are modeled with a mean plane source distribution and a modification to the wing boundary conditions. Results are obtained for wings with biconvex and NACA 0012 sections which compare well with available experimental data. The important observation that the effect of thickness is to decrease the lift is made.

  13. Effects of spoiler surfaces on the aeroelastic behavior of a low-aspect-ratio rectangular wing

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.

    1990-01-01

    An experimental research study to determine the effectiveness of spoiler surfaces in suppressing flutter onset for a low-aspect-ratio, rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The wing model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible beam was connected to the wing root and cantilever mounted to the wind-tunnel wall. The wing had a 1.5 aspect ratio based on wing semispan and a NACA 64A010 airfoil shape. The spoiler surfaces consisted of thin, rectangular aluminum plates that were vertically mounted to the wing surface. The spoiler surface geometry and location on the wing surface were varied to determine the effects of these parameters on the classical flutter of the wing model. Subsonically, the experiment showed that spoiler surfaces increased the flutter dynamic pressure with each successive increase in spoiler height or width. This subsonic increase in flutter dynamic pressure was approximately 15 percent for the maximum height spoiler configuration and for the maximum width spoiler configuration. At transonic Mach numbers, the flutter dynamic pressure conditions were increased even more substantially than at subsonic Mach numbers for some of the smaller spoiler surfaces. But greater than a certain spoiler size (in terms of either height or width) the spoilers forced a torsional instability in the transonic regime that was highly Mach number dependent. This detrimental torsional instability was found at dynamic pressures well below the expected flutter conditions. Variations in the spanwise location of the spoiler surfaces on the wing showed little effect on flutter. Flutter analysis was conducted for the basic configuration (clean wing with all spoiler surface mass properties included). The analysis correlated well with the clean wing experimental flutter results.

  14. Some Divergence Characteristics of Low-Aspect-Ratio Wings at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Woolston, Donald S.; Gibson, Frederick W.; Cunningham, Herbert J.

    1960-01-01

    The problem of chordwise, or camber, divergence at transonic and supersonic speeds is treated with primary emphasis on slender delta wings having a cantilever support at the trailing edge. Experimental and analytical results are presented for four wing models having apex half-angles of 5 deg, 10 deg, 15 deg, and 20 deg. A Mach number range from 0.8 to 7.3 is covered. The analytical results include calculations based on small-aspect-ratio theory, lifting-surface theory, and strip theory. A closed-form solution of the equilibrium equation is given, which is based on low-aspect-ratio theory but which applies only to certain stiffness distributions. Also presented is an iterative procedure for use with other aerodynamic theories and with arbitrary stiffness distribution.

  15. Pressure-distribution measurements on a transonic low-aspect ratio wing

    NASA Technical Reports Server (NTRS)

    Keener, E. R.

    1985-01-01

    Experimental surface pressure distributions and oil flow photographs are presented for a 0.90 m semispan model of NASA/Lockheed Wing C, a generic transonic, supercritical, low aspect ratio, highly 3-dimensional configuration. This wing was tested at the design angle of attack of 5 deg over a Mach number range from 0.25 to 0.96, and a Reynolds number range from 3.4 x 1,000,000 to 10 x 1,000,000. Pressures were measured with both the tunnel floor and ceiling suction slots open for most of the tests but taped closed for some tests to simulate solid walls. A comparison is made with the measured pressures from a small model in high Reynolds number facility and with predicted pressures using two three dimesional, transonic full potential flow wing codes: design code FLO22 (nonconservative) and TWING code (conservative). At the given design condition, a small region of flow separation occurred. At a Mach number of 0.82 the flow was unseparated and the surface flow angles were less than 10 deg, indicating that the boundary layer flow was not 3-D. Evidence indicate that wings that are optimized for mild shock waves and mild pressure recovery gradients generally have small 3-D boundary layer flow at design conditions for unseparated flow.

  16. Volumetric measurements and simulations of the vortex structures generated by low aspect ratio plunging wings

    NASA Astrophysics Data System (ADS)

    Calderon, D. E.; Wang, Z.; Gursul, I.; Visbal, M. R.

    2013-06-01

    Volumetric three-component velocimetry measurements have been performed on low aspect ratio wings undergoing a small amplitude pure plunging motion. This study focuses on the vortex flows generated by rectangular and elliptical wings set to a fixed geometric angle of attack of α = 20°. An investigation into the effect of Strouhal number illustrates the highly three-dimensional nature of the leading edge vortex as well as its inherent ability to improve lift performance. Computational simulations show good agreement with experimental results, both demonstrating the complex interaction between leading, trailing, and tip vortices generated in each cycle. The leading edge vortex, in particular, may deform significantly throughout the cycle, in some cases developing strong spanwise undulations. These are at least both Strouhal number and planform dependent. One or two arch-type vortical structures may develop, depending on the aspect ratio and Strouhal number. At sufficiently high Strouhal numbers, a tip vortex ring may also develop, propelling itself away from the wing in the spanwise direction due to self-induced velocity.

  17. Low-Speed Wind-Tunnel Investigation of Blowing Boundary-Layer Control on Leading- and Trailing-Edge Flaps of a Large-Scale, Low-Aspect-Ratio, 45 Swept-wing Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Maki, Ralph L.

    1959-01-01

    Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.

  18. Strain-gage bridge calibration and flight loads measurements on a low-aspect-ratio thin wing

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Eckstrom, C. V.

    1975-01-01

    Strain-gage bridges were used to make in-flight measurements of bending moment, shear, and torque loads on a low-aspect-ratio, thin, swept wing having a full depth honeycomb sandwich type structure. Standard regression analysis techniques were employed in the calibration of the strain bridges. Comparison of the measured loads with theoretical loads are included.

  19. The immersed boundary projection method and its application to simulation and control of flows around low-aspect-ratio wings

    NASA Astrophysics Data System (ADS)

    Taira, Kunihiko

    First, we present a new formulation of the immersed boundary method that is algebraically identical to the traditional fractional step algorithm. This method, called the immersed boundary projection method, allows for the simulations of incompressible flows over arbitrarily shaped bodies under motion and/or deformation in both two and three dimensions. The no-slip condition along the immersed boundary is enforced simultaneously with the incompressibility constraint through a single projection. The boundary force is determined implicitly without any constitutive relations for the rigid body formulation, which in turn allows the use of high CFL numbers in our simulations compared to past methods. Next, the above immersed boundary projection method is used to analyze three-dimensional separated flows around low-aspect-ratio flat-plate wings. A number of simulations highlighting the unsteady nature of the separated flows are performed for Re=300 and 500 with various aspect ratios, angles of attack, and planform geometries. The aspect ratio and angle of attack are found to have a large influence on the stability of the wake profile and the force experienced by the low-aspect-ratio wing. At early times, following an impulsive start, topologies of the wake vortices are found to be the same across different aspect ratios and angles of attack. Behind low-aspect-ratio rectangular plates, leading-edge vortices form and eventually separate as hairpin vortices following the start-up. This phenomenon is found to be similar to dynamic stall observed behind pitching plates. The detached structure would then interact with the tip vortices, reducing the downward velocity induced by the tip vortices acting upon the leading-edge vortex. At large time, depending on the aspect ratio and angles of attack, the wakes reach one of the three states: (i) a steady state, (ii) a periodic unsteady state, or (iii) an aperiodic unsteady state. We have observed that the tip effects in three

  20. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  1. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing. PMID:24434625

  2. An efficient coordinate transformation technique for unsteady, transonic aerodynamic analysis of low aspect-ratio wings

    NASA Technical Reports Server (NTRS)

    Guruswamy, G. P.; Goorjian, P. M.

    1984-01-01

    An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.

  3. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  4. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  5. Flight loads measurements obtained from calibrated strain-gage bridges mounted externally on the skin of a low-aspect-ratio wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1976-01-01

    Flight-test measurements of wingloads (shear, bending moment, and torque) were obtained by means of strain-gage bridges mounted on the exterior surface of a low-aspect-ratio, thin, swept wing which had a structural skin, full-depth honeycomb core, sandwich construction. Details concerning the strain-gage bridges, the calibration procedures used, and the flight-test results are presented along with some pressure measurements and theoretical calculations for comparison purposes.

  6. Flight measurements of lifting pressures for a thin low-aspect-ratio wing at subsonic, transonic, and low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1977-01-01

    Pressure distributions in the form of differential pressure coefficients are presented for several wing chordwise and spanwise stations. Also presented are the results of limited analysis which show aircraft configuration effects, Mach number effects on the local wing loadings, comparisons of selected measured wing pressures with predicted pressures, and comparisons of wing loadings during right-turn and left-turn maneuvers.

  7. Wind-Tunnel Investigation at Subsonic and Supersonic Speeds of a Fighter Model Employing a Low-Aspect-Ratio Unswept Wing and a Horizontal Tail Mounted Well Above the Wing Plane - Longitudinal Stability and Control

    NASA Technical Reports Server (NTRS)

    Smith, Williard G.

    1954-01-01

    Experimental results showing the static longitudinal-stability and control characteristics of a model of a fighter airplane employing a low-aspect-ratio unswept wing and an all-movable horizontal tail are presented. The investigation was made over a Mach number range from 0.60 to 0.90 and from 1.35 to 1.90 at a constant Reynolds number of 2.40 million, based on the wing mean aerodynamic chord. Because of the location of the horizontal tail at the tip of the vertical tail, interference was noted between the vertical tail and the horizontal tail and between the wing and the horizontal tail. This interference produced a positive pitching-moment coefficient at zero lift throughout the Mach number range of the tests, reduced the change in stability with increasing lift coefficient of the wing at moderate lift coefficients in the subsonic speed range, and reduced the stability at low lift coefficients at high supersonic speeds. The lift and pitching-moment effectiveness of the all movable tail was unaffected by the interference effects and was constant throughout the lift-coefficient range of the tests at each Mach number except 1.90.

  8. Ground Effects on the Longitudinal Characteristics of Two Models with Wings Having Low Aspect Ratio and Pointed Tips

    NASA Technical Reports Server (NTRS)

    Buell, Donald A; Tinling, Bruce E

    1957-01-01

    Wind-tunnel tests were conducted to determine the ground effects on a tailless model with a wing of aspect ratio 2 and infinite taper, and on a tailed model with a triangular wing of aspect ratio 3, with flaps. Control-surface hinge moments were measured on the tailless model. The results are compared with the predictions of the theory of Tani, et al.

  9. Space shuttle: Longitudinal aerodynamic characteristics of low aspect ratio wing configurations in ground effect for a moving and stationary ground surface

    NASA Technical Reports Server (NTRS)

    Romere, P. O.; Chambliss, E. B.

    1972-01-01

    A 0.05-scale model of the NASA-MSC Orbiter 040A Configuration was tested. Test duration was approximately 80 hours during which the model was tested in and out of ground effect with a stationary and moving ground belt. Model height from ground plane surface was varied from one and one-half wing span to landing touchdown while angle of attack varied from -4 to 20 degrees. Eleven effectiveness and alternate configuration geometries were tested to insure complete analysis of low aspect ratio wing aircraft in the presence of ground effect. Test Mach number was approximately 0.067 with a corresponding dynamic pressure value of 6.5 psf.

  10. Experimental aerodynamic and static elastic deformation characterization of low aspect ratio flexible fixed wings applied to micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Albertani, Roberto

    The concept of micro aerial vehicles (MAVs) is for a small, inexpensive and sometimes expendable platform, flying by remote pilot, in the field or autonomously. Because of the requirement to be flown either by almost inexperienced pilots or by autonomous control, they need to have very reliable and benevolent flying characteristics drive the design guidelines. A class of vehicles designed by the University of Florida adopts a flexible-wing concept, featuring a carbon fiber skeleton and a thin extensible latex membrane skin. Another typical feature of MAVs is a wingspan to propeller diameter ratio of two or less, generating a substantial influence on the vehicle aerodynamics. The main objectives of this research are to elucidate and document the static elastic flow-structure interactions in terms of measurements of the aerodynamic coefficients and wings' deformation as well as to substantiate the proposed inferences regarding the influence of the wings' structural flexibility on their performance; furthermore the research will provide experimental data to support the validation of CFD and FEA numerical models. A unique facility was developed at the University of Florida to implement a combination of a low speed wind tunnel and a visual image correlation system. The models tested in the wind tunnel were fabricated at the University MAV lab and consisted of a series of ten models with an identical geometry but differing in levels of structural flexibility and deformation characteristics. Results in terms of full-field displacements and aerodynamic coefficients from wind tunnel tests for various wind velocities and angles of attack are presented to demonstrate the deformation of the wing under steady aerodynamic load. The steady state effects of the propeller slipstream on the flexible wing's shape and its performance are also investigated. Analytical models of the aerodynamic and propulsion characteristics are proposed based on a multi dimensional linear regression

  11. Evaluation of a strain-gage load calibration on a low-aspect-ratio wing structure at elevated temperature

    NASA Technical Reports Server (NTRS)

    Reardon, Lawrence F.

    1989-01-01

    The environmental aspect of elevated temperature and its relationship to the science of strain gage calibrations of aircraft structures are addressed. A section of a wing designed for a high-speed aircraft structure was used to study this problem. This structure was instrumented with strain gages calibrated at both elevated and room temperatures. Load equations derived from a high-temperature load calibration were compared with equations derived from an identical load calibration at room temperature. The implications of the high temperature load calibration were studied from the viewpoint of applicability and necessity. Load equations derived from the room temperature load calibration resulted in generally lower equation standard errors than equations derived from the elevated temperature load calibration. A distributed load was applied to the structure at elevated temperature and strain gage outputs were measured. This applied load was then calculated using equations derived from both the room temperature and elevated temperature calibration data. It was found that no significant differences between the two equation systems existed in terms of computing this applied distributed load, as long as the thermal shifts resulting from thermal stresses could be identified. This identification requires a heating of the structure. Therefore, it is concluded that for this structure, a high temperature load calibration is not required. However, a heating of the structure is required to determine thermal shifts.

  12. Aerodynamic Characteristics of Missile Configurations with Wings of Low Aspect Ratio for Various Combinations of Forebodies, Afterbodies, and Nose Shapes for Combined Angles of Attack and Sideslip at a Mach Number of 2.01

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B

    1957-01-01

    An investigation has been made in the Langley 4-by-4-foot supersonic pressure tunnel to determine the aerodynamic characteristics of a series of missile configurations having low-aspect-ratio wings at a Mach number of 2.01. The effects of wing plan form and size, length-diameter ratio, forebody and afterbody length, boattailed and flared afterbodies, and component force and moment data are presented for combined angles of attack and sideslip to about 28 degrees. No analysis of the data was made in this report.

  13. Extreme Low Aspect Ratio Stellarators

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    1997-11-01

    Recently proposed Spherical Stellarator (SS) concept [1] includes the devices with stellarator features and low aspect ratio, A <= 3.5, which is very unusual for stellarators (typical stellarators have A ≈ 7-10 or above). Strong bootstrap current and high-β equilibria are two distinguished elements of the SS concept leading to compact, steady-state, and efficient fusion reactor. Different coil configurations advantageous for the SS have been identified and analyzed [1-6]. In this report, we will present results on novel stellarator configurations which are unusual even for the SS approach. These are the extreme-low-aspect-ratio-stellarators (ELARS), with the aspect ratio A ≈ 1. We succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform (ι ≈ 0.1 - 0.15), large plasma volume, and good particle transport characteristics. [1] P.E. Moroz, Phys. Rev. Lett. 77, 651 (1996); [2] P.E. Moroz, Phys. Plasmas 3, 3055 (1996); [3] P.E. Moroz, D.B. Batchelor et al., Fusion Tech. 30, 1347 (1996); [4] P.E. Moroz, Stellarator News 48, 2 (1996); [5] P.E. Moroz, Plasma Phys. Reports 23, 502 (1997); [6] P.E. Moroz, Nucl. Fusion 37, No. 8 (1997). *Supported by DOE Grant No. DE-FG02-97ER54395.

  14. The effects of winglets on low aspect ratio wings at supersonic Mach numbers. M.S. Thesis Report Feb. 1989 - Apr. 1991

    NASA Technical Reports Server (NTRS)

    Keenan, James A.; Kuhlman, John M.

    1991-01-01

    A computational study was conducted on two wings, of aspect ratios 1.244 and 1.865, each having 65 degree leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A Mach number of 1.62 was selected as the design value. The winglets studied were parametrically varied in alignment, length, sweep, camber, thickness, and dihedral angle to determine which geometry had the best predicted performance. For the computational analysis, an available Euler marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan. The first wing with winglet used NACA 1402 airfoils for the base wing and was shown to have lift-to-pressure drag ratios within 0.136 percent to 0.360 percent of the NACA 1402 wing-alone. The other base wing was a natural flow wing which was previously designed specifically for a Mach number of 1.62. The results obtained showed that the natural wing-alone had a slightly higher lift-to-pressure drag than the natural wing with winglets.

  15. High-Reynolds-Number Test of a 5-Percent-Thick Low-Aspect-Ratio Semispan Wing in the Langley 0.3-Meter Transonic Cryogenic Tunnel: Wing Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lawing, Pierce L.

    1990-01-01

    A high Reynolds number test of a 5 percent thick low aspect ratio semispan wing was conducted in the adaptive wall test section of the Langley 0.3 m Transonic Cryogenic Tunnel. The model tested had a planform and a NACA 64A-105 airfoil section that is similar to that of the pressure instrumented canard on the X-29 experimental aircraft. Chordwise pressure data for Mach numbers of 0.3, 0.7, and 0.9 were measured for an angle-of-attack range of -4 to 15 deg. The associated Reynolds numbers, based on the geometric mean chord, encompass most of the flight regime of the canard. This test was a free transition investigation. A summary of the wing pressures are presented without analysis as well as adapted test section top and bottom wall pressure signatures. However, the presented graphical data indicate Reynolds number dependent complex leading edge separation phenomena. This data set supplements the existing high Reynolds number database and are useful for computational codes comparison.

  16. Wind-Tunnel Investigation at Subsonic and Supersonic Speeds of a Fighter Model Employing a Low-aspect-ratio Unswept Wing and a Horizontal Tail Mounted Well above the Wing Plane - Lateral and Directional Stability

    NASA Technical Reports Server (NTRS)

    Wetzel, Benton E.

    1954-01-01

    The static lateral- and directional-stability characteristics of a high-speed fighter-type airplane, obtained from wind-tunnel tests of a model, are presented. The model consisted of a thin, unswept wing of aspect ratio 2.3 and taper ratio 0.385, a body, and a horizontal tail mounted in a high position on a vertical tail. Rolling-moment, yawing moment, and cross-wind-force coefficients are presented for a range of sideslip angles of -5 deg. to +5 deg, for Mach numbers of 0.90, 1.45, and 1.90. Data are presented which show the effects on the lateral and directional stability of: (1) component parts of the complete model, (2) modification of the empennage so as to provide different heights of the horizontal tail above the wing plane, (3) angle of attack, and (4) dihedral of the wing.

  17. Effects of Sweep and Thickness on the Static Longitudinal Aerodynamic Characteristics of a Series of Thin, Low-aspect-ratio, Highly Tapered Wings at Transonic Speeds : Transonic-bump Method

    NASA Technical Reports Server (NTRS)

    Fournier, Paul G; Few, Albert G , Jr

    1954-01-01

    An investigation by the transonic-bump technique of the static longitudinal aerodynamic characteristics of a series of thin, low-aspect-ratio, highly tapered wings has been made in the Langley high-speed 7- by 10-foot tunnel. The Mach number range extended from about 0.60 to 1.18, with corresponding Reynolds numbers ranging from about 0.75 x 10(6) to 0.95 x 10(6). The angle of attack range was from -10 degrees to approximately 32 degrees.The effects on drag and lift-drag ratio of a variation in sweep angle from -14.03 degrees to 45 degrees with respect to the quarter-chord line for wings of 3-percent-chord thickness was found to be small in comparison to the effects of a variation in thickness from 2 percent chord to 4.5 percent chord for wings with 14.03 degree sweepback. For the range of variables considered, variations in plan form were considerably more important with regard to longitudinal stability characteristics than the variations in thickness. For the series of basic wings having an aspect ratio of 4, the most hearly linear pitching-moment characteristics were obtained with 26.57 degree of sweepback of the quarter-chord line. However, for the modified series of wings (obtained by clipping the tips of the original wings parallel to the plane of symmetry to give an aspect ratio of 3 and a taper ratio of 0.143), the most nearly linear pitching-moment characteristics were obtained with 36.87 degrees of sweepback. By decreasing the thickness-to-chord ratios from 0.03 to 0.02, a large increase in lift-curve slope was obtained for both the basic and modified wings. All of the wings of both series had fairly large inward shifts of the lateral center-of-pressure location (indicative of tip stalling) with increasing lift coefficient, except those wings having minimum sweepback angles.

  18. Busbar for the low aspect ratio device

    SciTech Connect

    Bromberg, L.; Sidorov, M.

    1996-12-31

    The high current required to drive the toroidal field coil of Low Aspect Ratio reactor-size devices (due to the single turn design) results in difficult choices for the electrical bus. In this paper, the implications of both superconducting and resistive busbar are investigated. Special attention is given to the possibility of using a high-Tc busbar. 14 refs., 5 figs.

  19. A low aspect ratio tokamak transmutation system

    NASA Astrophysics Data System (ADS)

    Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.

    2000-03-01

    A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.

  20. On virial analysis at low aspect ratio

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Fonck, R. J.; Reusch, J. A.; Thome, K. E.

    2016-07-01

    The validity of virial analysis to infer global MHD equilibrium poloidal beta βp and internal inductance ℓi from external magnetics measurements is examined for low aspect ratio configurations with A <2 . Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high- A approximations to low- A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2-10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low- A . Highly paramagnetic configurations are found to be inadequately represented through the virial mean radius parameter RT . Alternate formulations for inferring βp and ℓi that are independent of RT to avoid this difficulty are presented for the static isotropic limit. These formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.

  1. On virial analysis at low aspect ratio

    DOE PAGESBeta

    Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; Reusch, Joshua A.; Thome, Kathreen E.

    2016-07-28

    The validity of virial analysis to infer global MHD equilibrium poloidal beta βp and internal inductance ℓi from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately represented through themore » virial mean radius parameter RT. Alternate formulations for inferring βp and ℓi that are independent of RT to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less

  2. Lift, Drag, and Pitching Moment of Low-Aspect-Ratio Wings at Subsonic and Supersonic Speeds: Triangular Wing of Aspect Ratio 2 with NACA 0005-63 Thickness Distribution, Cambered and Twisted for a Trapezoidal Span Load Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Willard G.; Phelps, E. Ray

    1951-01-01

    A wing-body combination having a plane triangular wing of aspect ratio 2 with NACA 0005-63 thickness distribution in streamwise planes, and twisted and cambered for a trapezoidal span load distribution has been investigated at both subsonic and supersonic Mach numbers. The lift, drag, and pitching moment of the model are presented for Mach numbers from 0.60 to 0.90 and 1.30 to 1.70 at a Reynolds number of 3.0 million. The variations of the characteristics with Reynolds number are also shown for several Mach numbers.

  3. Lift, Drag, and Pitching Moment of Low-aspect-ratio Wings at Subsonic and Supersonic Speeds : Twisted and Cambered Triangular Wing of Aspect Ratio 2 with NACA 0003-63 Thickness Distribution

    NASA Technical Reports Server (NTRS)

    Hall, Charles F; Heitmeyer, John C

    1951-01-01

    This report presents the results of an investigation to ascertain the lift, drag, and pitching moment of a wing-body combination having a triangular wing of aspect ratio 2 with NACA 0003-63 thickness distribution in streamwise planes and twisted and cambered for a nearly elliptical span load distribution. Results are shown for Mach numbers from 0.60 to 0.90 and from 1.30 to 1.70 at Reynolds numbers of 3.0 million and 7.5 million.

  4. Omniclassical Diffusion in Low Aspect Ratio Tokamaks

    SciTech Connect

    H.E. Mynick; R.B. White; D.A. Gates

    2004-03-19

    Recently reported numerical results for axisymmetric devices with low aspect ratio A found radial transport enhanced over the expected neoclassical value by a factor of 2 to 3. In this paper, we provide an explanation for this enhancement. Transport theory in toroidal devices usually assumes large A, and that the ratio B{sub p}/B{sub t} of the poloidal to the toroidal magnetic field is small. These assumptions result in transport which, in the low collision limit, is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial flux surface. However in a small aspect ratio device one may have B{sub p}/B{sub t} {approx} 1, and the gyroradius may be larger than the banana excursion. Here, we develop an approximate analytic transport theory valid for devices with arbitrary A. For low A, we find that the enhanced transport, referred to as omniclassical, is a combination of neoclassical and properly generalized classical effects, which become dominant in the low-A, B{sub p}/B{sub t} {approx} 1 regime. Good agreement of the analytic theory with numerical simulations is obtained.

  5. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix D: Procedures used to determine the mass distribution for idealized low aspect ratio two spar fighter wings

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Hamler, F. R.; Reynolds, D.

    1972-01-01

    The procedures used to establish the mass matrices characteristics for the fighter type wings studied are given. A description of the procedure used to find the mass associated with a specific aerodynamic panel is presented and some examples of the application of the procedure are included.

  6. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q-stability derivatives. Appendix E: Procedures used to determine the structural representation for idealized low aspect ratio two spar fighter wings

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Smith, H.; Gibson, G.

    1972-01-01

    An explanation is presented of the method used to locate the elastic axis and the method to determine the EI and GJ distributions along the elastic axes of wings with a 2-spar (front and rear) construction or a single torque-box construction.

  7. An Airplane Design having a Wing with Fuselage Attached to Each Tip

    NASA Technical Reports Server (NTRS)

    Spearman, Leroy M.

    2001-01-01

    This paper describes the conceptual design of an airplane having a low aspect ratio wing with fuselages that are attached to each wing tip. The concept is proposed for a high-capacity transport as an alternate to progressively increasing the size of a conventional transport design having a single fuselage with cantilevered wing panels attached to the sides and tail surfaces attached at the rear. Progressively increasing the size of conventional single body designs may lead to problems in some area's such as manufacturing, ground-handling and aerodynamic behavior. A limited review will be presented of some past work related to means of relieving some size constraints through the use of multiple bodies. Recent low-speed wind-tunnel tests have been made of models representative of the inboard-wing concept. These models have a low aspect ratio wing with a fuselage attached to each tip. Results from these tests, which included force measurements, surface pressure measurements, and wake surveys, will be presented herein.

  8. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  9. Averaged equilibrium and stability in low-aspect-ratio stellarators

    SciTech Connect

    Garcia, L.; Carreras, B.A.; Dominguez, N.

    1989-01-01

    The MHD equilibrium and stability calculations or stellarators are complex because of the intrinsic three-dimensional (3-D) character of these configurations. The stellarators expansion simplifies the equilibrium calculation by reducing it to a two-dimensional (2-D) problem. The classical stellarator expansion includes terms up to order epsilon/sup 2/, and the vacuum magnetic field is also included up to this order. For large-aspect-ratio configurations, the results of the stellarator expansion agree well with 3-D numerical equilibrium results. But for low-aspect-ratio configurations, these are significant discrepancies with 3-D equilibrium calculations. The main reason for these discrepancies is the approximation in the vacuum field contributions. This problem can be avoided by applying the average method in a vacuum flux coordinate system. In this way, the exact vacuum magnetic field contribution is included and the results agree well with 3-D equilibrium calculations even for low-aspect-ratio configurations. Using the average method in a vacuum flux coordinate system also permit the accurate calculation of local stability properties with the Mercier criterion. The main improvement is in the accurate calculation of the geodesic curvature term. In this paper, we discuss the application of the average method in flux coordinates to the calculation of the Mercier criterion for low-aspect-ratio stellarator configurations. 12 refs., 3 figs.

  10. Evolution of turbulent jets in low aspect ratio containers

    NASA Astrophysics Data System (ADS)

    Pol, S.; Nath, C.; Gest, D.; Voropayev, S.; Fernando, H. J. S.; Webb, S.

    2009-11-01

    The evolution of homogeneous and buoyant turbulent jets released into a low aspect ratio (width/height) container was investigated experimentally using PIV, MSCT probing and digital imaging. The motivation was to understand mixing process occurring in U.S. Strategic Petroleum Reserves (SPR), where crude oil is stored in salt caverns of low aspect ratio. During maintenance or filling, oil is introduced as a jet from the top of the caverns. This study is focussed on mean and turbulent flow characteristics as well as global flow instability and periodic oscillations intrinsic to jets in low aspect ratio containers. Scaling arguments were advanced for salient flow parameters, which included the characteristic length (container width D) and velocity (for homogeneous jets, J^1/2D, where J is the momentum flux at the jet exit) scales. For buoyant jets, the buoyancy flux B needs to be introduced as an additional parameter. Such jet flows do not reach a steady state, but bifurcate periodically with a frequency scale J^1/2/ D^2 while enhancing global mixing.

  11. Compressional Alfvin Eigenmode Dispersion in Low Aspect Ratio Plasmas

    SciTech Connect

    N.N. Gorelenkov; C.Z. Cheng; E. Fredrickson

    2002-01-29

    Recent observations of new fast ion beam driven instabilities in MHz frequency range in National Spherical Torus experiments (NSTX) are suggested to be Compressional Alfvin Eigenmodes (CAEs). A new theory of CAEs applicable to low aspect ratio toroidal plasmas is developed based on the ballooning representation for the poloidal dependence of the perturbed quantities. In agreement with observations, the analytical theory predicts that CAEs are discrete modes with frequencies correlated with the characteristic Alfvin velocity of the plasma. Plasma equilibrium structure is essential to determine accurately the dispersion of CAEs. The mode structure is localized in both the minor radius and the poloidal directions on the low magnetic field side.

  12. All Metal Iron Core For A Low Aspect Ratio Tokamak

    SciTech Connect

    D.A. Gates, C. Jun, I. Zatz, A. Zolfaghari

    2010-06-02

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  13. Prospects and status of low-aspect-ratio tokamaks

    SciTech Connect

    Peng, Y.K.M.

    1994-12-31

    The prospects for the low-aspect-ratio (A) tokamak to fulfill the requirements of viable fusion power plants are considered relative to the present status in data and modeling. Desirable physics and design features for an attractive Blanket Test Facility and power reactors are estimated for low-A tokamaks based on calculations improved with the latest data from small pioneering experiments. While these experiments have confirmed some of the recent predictions for low-A, they also identify the remaining issues that require verification before reliable projections can be made for these deuterium-tritium applications. The results show that the low-A regime of small size, modest field, and high current offers a path complementary to the standard and high A tokamaks in developing the full potential of fusion power.

  14. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  15. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  16. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  17. Development of tailless and all-wing gliders and airplanes

    NASA Technical Reports Server (NTRS)

    Lademann, Robert W E

    1932-01-01

    Tailless airplanes are characterized by having all their control surfaces, especially the elevator, incorporated in the wings. This paper provides a discussion of the history of their development and current state of development.

  18. Vortex formation and drag on low aspect ratio, normal flat plates

    NASA Astrophysics Data System (ADS)

    Ringuette, Matthew James

    Experiments were done to investigate the role of vortex formation in the drag force generation of low aspect ratio, normal flat plates starting from rest. This very simplified case is a first, fundamental step toward understanding the more complicated flow of hovering flight, which relies primarily on drag for propulsion. The relative importance of the plate's free end, or tip, with varying aspect ratio was also studied. Identifying the relationship among aspect ratio, vortex formation, and drag force can provide insight into the wing aspect ratios and kinematics found nature, with the eventual goal of designing man-made flapping wing micro air vehicles. The experiments were carried out using flat plate models in a towing tank at a moderate Reynolds number of 3000. Two aspect ratios, 6 and 2, were considered, the latter in order to have a highly tip-dominated case. A force balance measured the time-varying drag, and multiple, perpendicular sections of the flow velocity were measured quantitatively using digital particle image velocimetry. Vorticity fields were calculated from the velocity data, and features in the drag force for different aspect ratios were related to the vortex dynamics. Finally, since the flow is highly three-dimensional, dye flow visualization was done to characterize its structure and to augment the two-dimensional digital particle image velocimetry data.

  19. Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism

    SciTech Connect

    D.A. Gates; R.B. White

    2004-01-28

    Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.

  20. Effects of Large Wing-Tip Masses on Oscillatory Stability of Wing Bending Coupled with Airplane Pitch

    NASA Technical Reports Server (NTRS)

    Higdon, Donald T.

    1959-01-01

    An examination of oscillatory stability for a straight-winged airplane with large concentrated wing-tip masses was made using wing-bending and airplane-pitching degrees of freedom and considering only quasi-steady aerodynamic forces. It was found that instability caused by coupling of airplane pitching and wing bending occurred for large ratios of effective wing-tip mass to total airplane mass and for coupled wing-bending frequencies near or below the uncoupled pitching frequency. Boundaries for this instability are given in terms of two quantities: (1) the ratio of effective tip mass to airplane mass, which can be estimated, and (2) the ratio of the coupled bending frequency to the uncoupled pitch frequency, which can be measured in flight. These boundaries are presented for various values of several airplane parameters.

  1. A possible method for preventing the autorotation of airplane wings

    NASA Technical Reports Server (NTRS)

    Schrenk, Oskar

    1930-01-01

    At the suggestion of Professor Betz, the following device was tested with the object of reducing the autorotational speed of airplane wings. The model of a normal wing with the Gottigen profile 420, 1 meter span and 0.2 meter chord was provided with a pair of symmetrical slots on the suction side, connected with each other inside the wing. The arrangement of the testing equipment and models are given and the effect of the slots can be seen in the experimental curves that are included.

  2. Theory and Observations of High Frequency Alfven Eigenmodes in Low Aspect Ratio Plasma

    SciTech Connect

    N.N. Gorelenkov; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; S. Kaye; R. White

    2003-06-27

    New observations of sub-cyclotron frequency instability in low aspect ratio plasma in National Spherical Torus Experiments (NSTX) are reported. The frequencies of observed instabilities correlate with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAE's, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instabilities ions are presented.

  3. Stresses Produced in Airplane Wings by Gusts

    NASA Technical Reports Server (NTRS)

    Kussner, Hans Georg

    1932-01-01

    Accurate prediction of gust stress being out of the question because of the multiplicity of the free air movements, the exploration of gust stress is restricted to static method which must be based upon: 1) stress measurements in free flight; 2) check of design specifications of approved type airplanes. With these empirical data the stress must be compared which can be computed for a gust of known intensity and structure. This "maximum gust" then must be so defined as to cover the whole ambit of empiricism and thus serve as prediction for new airplane designs.

  4. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    SciTech Connect

    R.D. Woolley

    2009-05-29

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress.

  5. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    SciTech Connect

    Robert D. Woolley

    2009-06-11

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress.

  6. The Design of Airplane Wing Ribs

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, George W

    1931-01-01

    The purpose of this investigation was to obtain information for use in the design of truss and plywood forms, particularly with reference to wing ribs. Tests were made on many designs of wing ribs, comparing different types in various sizes. Many tests were also made on parallel-chord specimens of truss and plywood forms in place of the actual ribs and on parts of wing ribs, such as truss diagonals and sections of cap strips. It was found that for ribs of any size or proportions, when they were designed to obtain a well-balanced construction and were carefully manufactured, distinct types are of various efficiencies; the efficiency is based on the strength per unit of weight. In all types of ribs the heavier are the stronger per unit of weight. Reductions in the weight of wing ribs are accompanied even in efficient designs by a much greater proportional reduction in strength.

  7. Geometry effects on aerodynamics performance of a low aspect ratio turbine nozzle

    NASA Astrophysics Data System (ADS)

    Chen, Naixing; Zhang, Hongwu; Xu, Yanji; Huang, Weiguang

    2004-11-01

    This paper describes the influence of some geometric parameters on aerodynamics performance of a low-aspect-ratio turbine blading designed by a novel method developed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences. This is a part of the study on aerodynamics optimization of turbomachinery. It follows the development of the basic ideas in the turbomachinery aerodynamics research project at the institute. The present paper concentrates mainly on the effects of geometry, such as stagger angle, leading and trailing edge thickness, maximum thickness and its location on adiabatic efficiency, total pressure ratio and mass flow rate. The study was performed and assessed for a low-aspect ratio turbine nozzle using 3D steady Reynolds-averaged N.S. solver. Using the knowledge of the flow physics analysis an optimized turbine nozzle was obtained.

  8. Effects of airplane flexibility on wing strains in rough air at 35,000 feet as determined by a flight investigation of a large swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Rhyne, Richard H

    1958-01-01

    A flight investigation was made on a large sweptback-wing bomber airplane and the results are compared with data previously obtained at low altitude (5,000 feet). The effects of wing flexibility on the wing strains were, on the average, about 20 percent larger at the higher altitude.

  9. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  10. Performance of two-stage fan having low-aspect-ratio first-stage rotor blading

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.; Gorrell, W. T.; Cunnan, W. S.

    1979-01-01

    The NASA two stage fan was tested with a low aspect ratio first stage rotor having no midspan dampers. At design speed the fan achieved an adiabatic design efficiency of 0.846, and peak efficiencies for the first stage and rotor of 0.870 and 0.906, respectively. Peak efficiency occurred very close to the stall line. In an attempt to improve stall margin, the fan was retested with circumferentially grooved casing treatment and with a series of stator blade resets. Results showed no improvement in stall margin with casing treatment but increased to 8 percent with stator blade reset.

  11. The right wing of the LEFT airplane

    NASA Technical Reports Server (NTRS)

    Powell, Arthur G.

    1987-01-01

    The NASA Leading-Edge Flight Test (LEFT) program addressed the environmental issues which were potential problems in the application of Laminar Flow Control (LFC) to transport aircraft. These included contamination of the LFC surface due to dirt, rain, insect remains, snow, and ice, in the critical leading-edge region. Douglas Aircraft Company designed and built a test article which was mounted on the right wing of the C-140 JetStar aircraft. The test article featured a retractable leading-edge high-lift shield for contamination protection and suction through perforations on the upper surface for LFC. Following a period of developmental flight testing, the aircraft entered simulated airline service, which included exposure to airborne insects, heavy rain, snow, and icing conditions both in the air and on the ground. During the roughly 3 years of flight testing, the test article has consistently demonstrated laminar flow in cruising flight. The experience with the LEFT experiment was summarized with emphasis on significant test findings. The following items were discussed: test article design and features; suction distribution; instrumentation and transition point reckoning; problems and fixes; system performance and maintenance requirements.

  12. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  13. Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates

    NASA Astrophysics Data System (ADS)

    Li, Chengyu; Dong, Haibo

    2016-07-01

    The wake topology and propulsive performance of low-aspect-ratio plates undergoing a pitching-rolling motion in a uniform stream were numerically investigated by an in-house immersed-boundary-method-based incompressible Navier-Stokes equation solver. A detailed analysis of the vortical structures indicated that the pitching-rolling plate produced double-loop vortices with alternating signs from its trailing edge every half period. These vortices then shed and further evolved into interconnected "double-C"-shaped vortex rings, which eventually formed a bifurcating wake pattern in the downstream. As the wake convected downstream, there was a slight deflection in the spanwise direction to the plate tip, and the contained vortex ring size gradually increased. In addition, the analysis of the propulsive performance indicated that the shedding process of the double-loop vortices led to two peaks in the lift and thrust force production per half cycle. The observation of the double peaks in the force production is in agreement with previous flapping wing studies. Simulations were also used to examine the variations in the wake structures and propulsive performance of the plates over a range of major parameters. The aforementioned vortex structures were found to be quite robust over a range of Strouhal numbers, Reynolds numbers, and plate aspect ratios.

  14. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Flow visualization is used to interrogate the wake structure produced by a rigid flat panel of aspect ratio (span/chord) 0.54 pitching in a free stream at a Strouhal number of 0.23. At such a low aspect ratio, the streamwise vorticity generated by the plate tends to dominate the formation of the wake. Nevertheless, the wake has the appearance of a three-dimensional von Kármán vortex street, as observed in a wide range of other experiments, and consists of horseshoe vortices of alternating sign shed twice per flapping cycle. The legs of each horseshoe interact with the two subsequent horseshoes in an opposite-sign, then like-sign interaction in which they become entrained. A detailed vortex skeleton model is proposed for the wake formation. PMID:19746198

  15. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  16. Transmutation of nuclear waste with a low-aspect-ratio tokamak neutron source

    NASA Astrophysics Data System (ADS)

    Hong, Bong Guen; Moon, Se Youn

    2014-10-01

    The transmutation characteristics of transuranics (TRUs) in a transmutation reactor based on a LAR (Low-aspect-ratio) tokamak as a neutron source are investigated. The optimum radial build of a transmutation reactor is found by using a coupled analysis of the tokamak systems and the neutron transport. The dependences of the transmutation characteristics on the aspect ratio A in the range of 1.5 to 2.5 and on the fusion power in the range of 150 to 500 MW are investigated. An equilibrium fuel cycle is developed for effective transmutation, and show that with one unit of the transmutation reactor based on the LAR tokamak producing fusion power in the range of a few hundred MWs, up to 3 PWRs (1.0 GWe capacity) can be supported with a burn-up fraction larger than 50%.

  17. On the symmetry of proper orthogonal decomposition modes of a low-aspect-ratio plate

    NASA Astrophysics Data System (ADS)

    Liang, Zongxian; Dong, Haibo

    2015-06-01

    In this paper, the symmetry property and corresponding virtual force contribution of the proper orthogonal decomposition (POD) modes are numerically investigated for the low-Reynolds number flows passing over a low-aspect-ratio pitching-plunging plate. It is found that the flow and its POD modes have the same reflectional symmetry about the spanwise central plane. However, about the crossflow central plane, the spatio-temporal flow symmetry results in a change of symmetry pattern every two POD modes, which corresponds to odd or even multiples of the vortex shedding frequency. Based on a wake survey method for virtual forces, the POD modes are further classified into two groups, thrust- and lift-producing modes, respectively. Results have also shown that the distinct symmetry properties of these modes can be used to identify the correlation between the wake structure and the hydrodynamic force production.

  18. Implications of in-vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials

    PubMed Central

    Pal, Anoop K.; Bello, Dhimiter; Cohen, Joel; Demokritou, Philip

    2016-01-01

    In-vitro high throughput screening platforms based on mechanistic injury pathways are been used for hazard assessment of engineered nanomaterials (ENM). Toxicity screening and other in vitro nanotoxicology assessment efforts in essence compare and rank nanomaterials relative to each other. We hypothesize that this ranking of ENM is susceptible to dispersion and dosimetry protocols, which continue to be poorly standardized. Our objective was to quantitate the impact of dosimetry on toxicity ranking of ENM. A set of eight well-characterized and diverse low aspect ratio ENMs, were utilized. The recently developed at Harvard in-vitro dosimetry platform, which includes preparation of fairly monodispersed suspensions, measurement of the effective density of formed agglomerates in culture media and fate and transport modeling was used for calculating the effective dose delivered to cells as a function of time. Changes in the dose-response relationships between the administered and delivered dose were investigated with two representative endpoints, cell viability and IL-8 production, in the human monocytic THP-1 cells. The slopes of administered/delivered dose-response relationships changed 1:4.94 times and were ENM-dependent. The overall relative ranking of ENM intrinsic toxicity also changed considerably, matching notably better the in vivo inflammation data (R2 0.97 vs. 0.64). This standardized dispersion and dosimetry methodology presented here is generalizable to low aspect ratio ENMs. Our findings further reinforce the need to reanalyze and reinterpret in-vitro ENM hazard ranking data published in the nanotoxicology literature in the light of dispersion and dosimetry considerations (or lack thereof) and to adopt these protocols in future in vitro nanotoxicology testing. PMID:25672815

  19. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  20. An Investigation of the Aerodynamic Characteristics of an Airplane Equipped with Several Different Sets of Wings

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Green, M W

    1929-01-01

    This investigation was conducted by the National Advisory Committee for Aeronautics at Langley Field, Va., at the request of the Army Air Corps, for the purpose of comparing the full scale lift and drag characteristics of an airplane equipped with several sets of wings of commonly used airfoil sections. A Sperry Messenger Airplane with wings of R.A.F.-15, U.S.A.-5, U.S.A.-27, and Gottingen 387 airfoil sections was flown and the lift and drag characteristics of the airplane with each set of wings were determined by means of glide tests. The results are presented in tabular and curve form. (author)

  1. A helium-cooled blanket design of the low aspect ratio reactor

    SciTech Connect

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh.

  2. Effects of airplane flexibility on wing bending strains in rough air

    NASA Technical Reports Server (NTRS)

    Coleman, Thomas L; Press, Harry; Shufflebarger, C C

    1957-01-01

    Some results on the effects of wing flexibility on wing bending strains as determined from flight tests of a Boeing B-29 and a Boeing B-47A airplane in rough air are presented. Results from an analytical study of the flexibility effects on the B-29 wing strains are compared with the experimental results. Both the experimental and calculated results are presented as frequency-response functions of the bending strains at various spanwise wing stations to gust disturbances. In addition, some indirect evidence of the effect of spanwise variations in turbulence on the response of the B-47A airplane is presented.

  3. Physics Basis for High-Beta, Low-Aspect-Ratio Stellarator Experiments

    SciTech Connect

    A. Brooks; A.H. Reiman; G.H. Neilson; M.C. Zarnstorff; et al

    1999-11-01

    High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.

  4. Self-consistent Equilibrium Model of Low-aspect-ratio Toroidal Plasma with Energetic Beam Ions

    SciTech Connect

    E.V. Belova; N.N. Gorelenkov; C.Z. Cheng

    2003-04-09

    A theoretical model is developed which allows the self-consistent inclusion of the effects of energetic beam ions in equilibrium calculations of low-aspect-ratio toroidal devices. A two-component plasma is considered, where the energetic ions are treated using a kinetic Vlasov description, while a one-fluid magnetohydrodynamic description is used to represent the thermal plasma. The model allows for an anisotropic distribution function and a large Larmor radius of the beam ions. Numerical results are obtained for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Self-consistent equilibria with an anisotropic fast-ion distribution have been calculated for NSTX. It is shown for typical experimental parameters that the contribution of the energetic neutral-beam ions to the total current can be comparable to that of the background plasma, and that the kinetic modifications of the equilibrium can be significant. The range of validity of the finite-Larmor-radius expansion and of the reduced kinetic descriptions for the beam ions in NSTX is discussed. The calculated kinetic equilibria can be used for self-consistent numerical studies of beam-ion-driven instabilities in NSTX.

  5. Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kaye, S. M.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; LeBlanc, B. P.; Lee, K. C.; Lynch, S.; Sabbagh, S. A.

    2006-10-01

    Statistical and systematic studies have been conducted in order to develop an understanding of the parametric dependences of both the global and thermal energy confinement times at low aspect ratio in high power National Spherical Torus Experiment (NSTX) discharges. The global and thermal confinement times of both L- and H-mode discharges can exceed values given by H-mode scalings developed for conventional aspect ratio. Results of systematic scans in the H-mode indicate that the confinement times exhibit a nearly linear dependence on plasma current and a power degradation weaker than that observed at conventional aspect ratio. In addition, the dependence on the toroidal magnetic field is stronger than that seen in conventional aspect ratio tokamaks. Also, this latter trend is evident in statistical analyses of the available dataset. These statistical studies also indicate a weaker parametric dependence on plasma current than found in the systematic scans, due to correlations among the predictor variables. Regressions based on engineering variables, when transformed to dimensionless physics variables, indicate that the dependence of BτE on βt can range from being negative to null. Regressions based directly on the dimensionless physics variables are inexact because of large correlations among these variables. Scatter in the confinement data, at otherwise fixed operating parameters, is found to be due to variations in ELM activity, low frequency density fluctuations and plasma shaping.

  6. Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties.

    PubMed

    Oosterwijk, Mattheus T T; Feber, Maaike Le; Burello, Enrico

    2016-08-01

    We present a conceptual framework that can be used to assign risk bands to inhaled low aspect ratio nanoparticles starting from exposure bands assigned to a specific exposure situation. The framework mimics a basic physiological scheme that captures the essential mechanisms of fate and toxicity of inhaled nanoparticles and is composed of several models and rules that estimate the result of the following processes: the deposition of particles in the respiratory tract, their (de-)agglomeration, lung burden and clearance, their diffusion through the lung mucus layer, translocation and cellular uptake and local and systemic toxicity. Each model is based on a set of particle's physicochemical properties, including the size and size distribution(s), the zeta potential (or net charge at a specific pH), the surface hydrophobicity or hydrophilicity, the conduction band energy (for metals, metal oxides, quantum dots, etc.) and the solubility at a specific pH. The framework takes the exposure bands as input and predicts, using the above-mentioned models, an internal dose band (module 1). Module 2 assigns a relative hazard ranking depending on the region of particle deposition in the respiratory tract, the likelihood of uptake and whether the toxicological effects are assumed to be local and/or systemic. By combining the results of Module 1 and 2, the framework provides a relative risk ranking. PMID:26763369

  7. Evaluation of a low aspect ratio small axial compressor stage, volume 1

    NASA Technical Reports Server (NTRS)

    Sawyer, C. W., III

    1977-01-01

    A program was conducted to evaluate the effects of scaling, tip clearance, and IGV reset on the performance of a low aspect ratio compressor stage. Stage design was obtained by scaling an existing single stage compressor by a linear factor of 0.304. The design objective was to maintain the meanline velocity field of the base machine in the smaller size. Adjustments were made to account for predicted blockage differences and to chord lengths and airfoil edge radii to obtain reasonable blade geometries. Meanline velocity diagrams of the base stage were not maintained at the scaled size. At design speed and flowrate the scaled stage achieved a pressure ratio of 1.423, adiabatic efficiency of 0.822, and surge margin of 18.5%. The corresponding performance parameters for the base stage were 1.480, 0.872, and 25.2%, respectively. The base stage demonstrated a peak efficiency at design speed of 0.872; the scaled stage achieved a level of 0.838. When the scaled stage rotor and stator tip clearances were doubled, the stage achieved a pressure ratio of 1.413, efficiency of 0.799, and surge margin of 16.0% at the design flowrate. The peak stage efficiency at design speed was 0.825 with the increased clearance. Increased prewhirl lowered the stage pressure ratio as expected. Stage efficiency was maintained with ten degrees of increased prewhirl and then decreased substantially with ten additional degrees of reset.

  8. Design of a Low Aspect Ratio Transonic Compressor Stage Using CFD Techniques

    NASA Technical Reports Server (NTRS)

    Sanger, Nelson L.

    1994-01-01

    A transonic compressor stage has been designed for the Naval Postgraduate School Turbopropulsion Laboratory. The design relied heavily on CFD techniques while minimizing conventional empirical design methods. The low aspect ratio (1.2) rotor has been designed for a specific head ratio of .25 and a tip relative inlet Mach number of 1.3. Overall stage pressure ratio is 1.56. The rotor was designed using an Euler code augmented by a distributed body force model to account for viscous effects. This provided a relatively quick-running design tool, and was used for both rotor and stator calculations. The initial stator sections were sized using a compressible, cascade panel code. In addition to being used as a case study for teaching purposes, the compressor stage will be used as a research stage. Detailed measurements, including non-intrusive LDV, will be compared with the design computations, and with the results of other CFD codes, as a means of assessing and improving the computational codes as design tools.

  9. Development of a low-aspect ratio fin for flight research experiments

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Delfrate, John H.

    1994-01-01

    A second-generation flight test fixture, developed at NASA Dryden Flight Research Center, offers a generic testbed for aerodynamic and fluid mechanics research. The new fixture, a low-aspect ratio vertical fin shape mounted on the centerline of an F-15B aircraft lower fuselage, is designed for flight research at Mach numbers up to 2.0. The new fixture is a composite structure with a modular configuration and removable components for functional flexibility. This report describes the multidisciplinary design and analysis approach used to develop the fixture. The approach integrates conservative assumptions with simple analysis techniques to minimize the time and cost associated with its development. Presented are the principal disciplines required for this effort, which include aerodynamics, structures, stability, and operational considerations. In addition, preliminary results from the first phase of flight testing are presented. Acceptable directional stability and flow quality are documented and show agreement with predictions. Future envelope expansion activities will minimize current limitations so that the fixture can be used for a wide variety of high-speed aerodynamic and fluid mechanics research experiments.

  10. Inlet distortion generated forced response of a low-aspect-ratio transonic fan

    SciTech Connect

    Manwaring, S.R.; Lorence, C.B.; Wadia, A.R.; Rabe, D.C.

    1997-10-01

    This paper describes a portion of an experimental and computational program (ADLARF), which incorporates, for the first time, measurements of all aspects of the forced response of an airfoil row, i.e., the flow defect, the unsteady pressure loadings, and the vibratory response. The purpose of this portion was to extend the knowledge of the unsteady aerodynamics associated with a low-aspect-ratio transonic fan where the flow defects were generated by inlet distortions. Measurements of screen distortion patterns were obtained with total pressure rakes and casing static pressures. The unsteady pressure loadings on the blade were determined from high response pressure transducers. The resulting blade vibrations were measured with strain gages. The steady flow was analyzed using a three-dimensional Navier-Stokes solver while the unsteady flow was determined with a quasi-three-dimensional linearized Euler solver. Experimental results showed that the distortions had strong vortical, moderate entropic, and weak acoustic parts. The three-dimensional Navier-Stokes analyses showed that the steady flow is predominantly two-dimensional, with radially outward flow existing only in the blade surface boundary layers downstream of shocks and in the aft part of the suction surface. At near resonance conditions, the strain gage data showed blade-to-blade motion variations and thus, linearized unsteady Euler solutions showed poorer agreement with the unsteady loading data than comparisons at off-resonance speeds. Data analysis showed that entropic waves generated unsteady loadings comparable to vortical waves in the blade regions where shocks existed.

  11. Design of a low aspect ratio transonic compressor stage using CFD techniques

    SciTech Connect

    Sanger, N.L.

    1996-07-01

    A transonic compressor stage has been designed for the Naval Postgraduate School Turbopropulsion Laboratory. The design relied heavily on CFD techniques while minimizing conventional empirical design methods. The low aspect ratio (1.2) rotor has been designed for a specific head ratio of 0.25 and a tip relative inlet Mach number of 1.3. Overall stage pressure ratio is 1.56. The rotor was designed using a Euler code augmented by a distributed body force model to account for viscous effects. This provided a relatively quick-running design tool, and was used for both rotor and stator calculations. The initial stator sections were sized using a compressible, cascade panel code. In addition to being used as a case study for teaching purposes, the compressor stage will be used as a research stage. Detailed measurements, including nonintrusive LDV, will be compared with the design computations, and with the results of other CFD codes, as a means of assessing and improving the computational codes as design tools.

  12. Determination of the Profile Drag of an Airplane Wing in Flight at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Bicknell, Joseph

    1939-01-01

    Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.

  13. Flight comparison of the transonic agility of the F-111A airplane and the F-111 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sakamoto, G. M.

    1978-01-01

    A flight research program was conducted to investigate the improvements in maneuverability of an F-111A airplane equipped with a supercritical wing. In this configuration the aircraft is known as the F-111 TACT (transonic aircraft technology) airplane. The variable-wing-sweep feature permitted an evaluation of the supercritical wing in many configurations. The primary emphasis was placed on the transonic Mach number region, which is considered to be the principal air combat arena for fighter aircraft. An agility study was undertaken to assess the maneuverability of the F-111A aircraft with a supercritical wing at both design and off-design conditions. The evaluation included an assessment of aerodynamic and maneuver performance in conjunction with an evaluation of precision controllability during tailchase gunsight tracking tasks.

  14. On the flow generated by rotating flat plates of low aspect ratio

    NASA Astrophysics Data System (ADS)

    DeVoria, Adam C.

    Low-aspect-ratio propulsors typically allow for high maneuverability at low-to-moderate speeds. This has made them the subject of much recent research aimed at employing such appendages on autonomous vehicles which are required to navigate tumultuous environments. This experimental investigation focuses on the fluid dynamic aspects associated with overly-simplified versions of such biologically-inspired propulsors. In doing so, fundamental contributions are made to the research area. The unsteady, three-dimensional flow of a low-aspect-ratio, trapezoidal flat plate undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103) is investigated experimentally. The objectives are to develop a straightforward protocol for vortex saturation, and to understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a glass-walled tank, and digital particle image velocimetry is used to obtain planar velocity measurements. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. The flow in the region near the tip is relatively insensitive to Reynolds number over the range studied. The component normal to the plate is unaffected by total rotational amplitude while the tangential component has dependence on this angle. Also, an estimate of the first tip-vortex pinch-off time is obtained from the near-tip velocity data and agrees very well with values estimated using circulation. The angle of incidence of the bulk root-to-tip flow relative to the plate normal becomes more oblique with increasing rotational amplitude. Accordingly, the peak magnitude of the tangential velocity is also increased and as a result advects fluid momentum away from the plate at a higher rate. The more oblique impingement of the root-to-tip flow for increasing rotational amplitude is shown to have a

  15. Application of a performance modeling technique to an airplane with variable sweep wings

    NASA Technical Reports Server (NTRS)

    Redin, P. C.

    1981-01-01

    A performance modeling concept previously applied to an F-104F G and a YF-12C airplane was applied to an F-111A airplane. This application extended the concept to an airplane with variable sweep wings. The performance model adequately matched flight test data for maneuvers flown at different wing sweep angles at maximum afterburning and intermediate power settings. For maneuvers flown at less than intermediate power, including dynamic maneuvers, the performance model was not validated because the method used to correlate model and in-flight power setting was not adequate. Individual dynamic maneuvers were matched sucessfully by using adjustments unique to each maneuver.

  16. Leading-edge vortex burst on a low-aspect-ratio rotating flat plate

    NASA Astrophysics Data System (ADS)

    Medina, Albert; Jones, Anya R.

    2016-08-01

    This study experimentally investigates the phenomenon of leading-edge-vortex burst on rotating flat plate wings. An aspect-ratio-2 wing was driven in pure rotation at a Reynolds number of Re=2500 . Of primary interest is the evolution of the leading-edge vortex along the wing span over a single-revolution wing stroke. Direct force measurements of the lift produced by the wing revealed a single global lift maximum relatively early in the wing stroke. Stereoscopic particle image velocimetry was applied to several chordwise planes to quantify the structure and strength of the leading-edge vortex and its effect on lift production. This analysis revealed opposite-sign vorticity entrainment into the core of the leading-edge vortex, originating from a layer of secondary vorticity along the wing surface. Coincident with the lift peak, there emerged both a concentration of opposite vorticity in the leading-edge-vortex core, as well as axial flow stagnation within the leading-edge-vortex core. Planar control volume analysis was performed at the midspan to quantify the contributions of vorticity transport mechanisms to the leading-edge-vortex circulation. The rate of circulation annihilation by opposite-signed vorticity entrainment was found to be minimal during peak lift production, where convection balanced the flux of vorticity resulting in stagnation and eventually reversal of axial flow. Finally, vortex burst was found to be correlated with swirl number, where bursting occurs at a swirl threshold of Sw<0.6 .

  17. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  18. Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.; Roskam, J.

    1983-01-01

    Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.

  19. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-08-05

    This public data set contains openly-documented, machine readable digital research data accompanying 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment' by K.E. Thome et al., accepted for publication in Nuclear Fusion.

  20. Approximations for column effect in airplane wing spars

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Short, Mac

    1927-01-01

    The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.

  1. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on a Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.

  2. Incipient- and Developed-Spin and Recovery Characteristics of a Modern High-Speed Fighter Design with Low Aspect Ratio as Determined from Dynamic-Model Tests

    NASA Technical Reports Server (NTRS)

    Lee, Henry A.; Libbey, Charles E.

    1961-01-01

    Incipient- and developed-spin and recovery characteristics of a modern high-speed fighter design with low aspect ratio have been investigated by means of dynamic model tests. A 1/7-scale radio-controlled model was tested by means of drop tests from a helicopter. Several 1/25-scale models with various configuration changes were tested in the Langley 20-foot free-spinning tunnel. Model results indicated that generally it would be difficult to obtain a developed spin with a corresponding airplane and that either the airplane would recover of its own accord from any poststall motion or the poststall motion could be readily terminated by proper control technique. On occasion, however, the results indicated that if a post-stall motion were allowed to continue, a fully developed spin might be obtainable from which recovery could range from rapid to no recovery at all, even when optimum control technique was used. Satisfactory recoveries could be obtained with a proper-size tail parachute or strake, application of pitching-, rolling-, or yawing-moment rockets, or sufficient differential deflection of the horizontal tail.

  3. Transition-flight Tests of a Model of a Low-wing Transport Vertical-take-off Airplane with Tilting Wing and Propellers

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M , Jr; Parlett, Lysle P

    1956-01-01

    An investigation of the stability and control of a low-wing four-engine transport vertical-take-off airplane during the transition from hovering to normal forward flight has been conducted with a remotely controlled free-flight model. The model had four propellers distributed along the wing with the thrust axes in the wing-chord plane. The wing could be rotated to 90 degrees incidence so that the propeller thrust axes were vertical for hovering flight.

  4. An analysis of life expectancy of airplane wings in normal cruising flight

    NASA Technical Reports Server (NTRS)

    Putnam, Abbott A

    1945-01-01

    In order to provide a basis for judging the relative importance of wing failure by fatigue and by single intense gusts, an analysis of wing life for normal cruising flight was made based on data on the frequency of atmospheric gusts. The independent variables considered in the analysis included stress-concentration factor, stress-load relation, wing loading, design and cruising speeds, design gust velocity, and airplane size. Several methods for estimating fatigue life from gust frequencies are discussed. The procedure selected for the analysis is believed to be simple and reasonably accurate, though slightly conservative.

  5. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  6. Exploration of low-aspect-ratio tokamak regimes in the CDX-U and TS-3 devices

    SciTech Connect

    Hwang, Y.S.; Yamada, M.; Jones, T.G.

    1994-12-31

    In the low-aspect-ratio tokamak regime, a lower q(a) regime (i.e. q(a) {le} 5, A = R/a {approx} 1.5) has been explored in CDX-U, and the ultra-low-aspect-ratio tokamak regime (1.05 {le} A {le} 1.5) has been explored in TS-3. Using a relatively low toroidal magnetic field, plasma discharges with I{sub p} {le} 53 kA, and q(a) {ge} 4 [q{sub cyl}(a) {ge}1] have been obtained in CDX-U. Low q(a), Ohmic plasmas in CDX-U show increasing MHD activity as the edge safety factor is lowered. These modes appear to reduce the current ramp-up rate and, at present, limit the access to even lower q(a) regimes. An experiment carried out in the ULART regime (A {approx} 1.05 {minus} 1.5) on the TS-3 device identifies a threshold of q(a) {ge} 3 with q{sub cyl}(a) < 1 for stability of global tilt/shift modes.

  7. Analysis of Effect of Rolling Pull-Outs on Wing and Aileron Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A.; Aiken, William S.

    1946-01-01

    An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.

  8. Measurement and Analysis of Wing and Tail Buffeting Loads on a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Huston, Wilber B; Skopinski, T H

    1955-01-01

    The buffeting loads measured on the wing and tail of a fighter airplane during 194 maneuvers are given in tabular form, along with the associated flight conditions. Measurements were made at altitudes of 30,000 to 10,000 feet and at speeds up to a Mach number of 0.8. Least-squares methods have been used for a preliminary analysis of the data. The agreement between the results of this analysis and the loads measured in stalls is sufficiently good to suggest the examination of the buffeting of other airplanes on the same basis.

  9. Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails V : Effect of Airplane Relative Density

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Neihouse, A I

    1940-01-01

    The reported tests are a continuation of an NACA investigation being made in the free-spinning wind tunnel to determine the effects of independent variations in load distribution, wing and tail arrangement, and control disposition on the spin characteristics of airplanes. The standard series of tests was repeated to determine the effect of airplane relative density. Tests were made at values of the relative-density parameter of 6.8, 8.4 (basic), and 12.0; and the results were analyzed. The tested variations in the relative-density parameter may be considered either as variations in the wing loading of an airplane spun at a given altitude, with the radii of gyration kept constant, or as a variation of the altitude at which the spin takes place for a given airplane. The lower values of the relative-density parameter correspond to the lower wing loadings or to the lower altitudes of the spin.

  10. Crash tests of four identical high-wing single-engine airplanes

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Hayduk, R. J.

    1980-01-01

    Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.

  11. Influence of elliptical distribution of lift on strength of airplane wings

    NASA Technical Reports Server (NTRS)

    DORAND

    1922-01-01

    Hitherto it has been generally assumed, in calculating the fall of an airplane, that the forces withstood by the latter were distributed uniformly throughout the whole length of the wing. In reality this is not the case and German engineers in particular are now assuming an elliptical distribution of the forces. The latter hypothesis has made it possible to carry out a certain number of calculations which have been verified by experiment.

  12. High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

    NASA Technical Reports Server (NTRS)

    Becker, John V; LEONARD LLOYD H

    1942-01-01

    Report presents the results of force tests made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed tunnel to investigate compressibility and interference effects of speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model, tests were made with several modifications designed to reduce the drag and to increase the critical speed.

  13. Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert

    2005-01-01

    The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.

  14. Dynamic Ground Effect for a Cranked Arrow Wing Airplane

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    1997-01-01

    Flight-determined ground effect characteristics for an F-16XL airplane are presented and correlated with wind tunnel predictions and similar flight results from other aircraft. Maneuvers were conducted at a variety of flightpath angles. Conventional ground effect flight test methods were used, with the exception that space positioning data were obtained using the differential global positioning system (DGPS). Accuracy of the DGPS was similar to that of optical tracking methods, but it was operationally more attractive. The dynamic flight determined lift and drag coefficient increments were measurably lower than steady-state wind-tunnel predictions. This relationship is consistent with the results of other aircraft for which similar data are available. Trends in the flight measured lift increments caused by ground effect as a function of flightpath angle were evident but weakly correlated. An engineering model of dynamic ground effect was developed based on linear aerodynamic theory and super-positioning of flows. This model was applied to the F-16XL data set and to previously published data for an F-15 airplane. In both cases, the model provided an engineering estimate of the ratio between the steady-state and dynamic data sets.

  15. On vortex evolution in the wake of axisymmetric and non-axisymmetric low-aspect-ratio accelerating plates

    NASA Astrophysics Data System (ADS)

    Fernando, John N.; Rival, David E.

    2016-01-01

    Impulsively started, low-aspect-ratio elliptical and rectangular flat plates were investigated to determine the role of geometric asymmetries on vortex evolution. Dye visualizations, force measurements, and particle image velocimetry were used throughout to characterize the variation between shapes. For all the shapes studied, aspect ratio was observed to have the largest influence on force production and vortex evolution. Non-uniform curvature and edge discontinuities characteristic of ellipses (with aspect ratios other than one) and rectangles, respectively, play a secondary role. Furthermore, it was shown that stably attached vortex rings form behind the circular and square flat plates, which reduce the instantaneous drag force of each plate until the vortex rings break down. In contrast, all flat plates with aspect ratios other than one are subjected to fast-modulating elliptical vortex rings in the wake. These vortex rings increase the drag force of each plate until pinch-off occurs. Finally, pinch-off was identified with the streamwise pressure-gradient field and compared with formation numbers calculated using the circulation-based methodology, yielding good agreement for all plates with aspect ratios greater than one.

  16. The Effect of Relative Submergence and Shape on the Wake of a Low-Aspect-Ratio Wall-Mounted body

    NASA Astrophysics Data System (ADS)

    Hajimirzaie, Seyed Mohammad; Wojcik, Craig; Buchholz, James

    2010-11-01

    Wall-mounted bodies in boundary layer flows are ubiquitous in nature and engineering applications and significantly enhance momentum and scalar transport in their vicinity. In this experimental study we evaluate the role of relative submergence (the ratio of flow depth to obstacle height) and shape on the wakes around four different wall-mounted obstacles. We consider four obstacle geometries: semi-ellipsoids with the major and minor axes of the base ellipses aligned in the streamwise and transverse directions, and two cylinders with matching aspect ratios D/H (where D is the maximum transverse dimension and H is the obstacle height). The aspect ratios considered are 0.67 and 0.89. DPIV was used to interrogate the flow. Streamwise structures observed in the mean wake include tip, base, and horseshoe vortex pairs as well as additional structures apparently not previously observed. The presence of a base vortex for such low-aspect-ratio obstacles is unexpected, and its strength increases with decreasing relative submergence. We will discuss hypotheses on the mechanisms of generation of the base and tertiary structures and their interconnection with the rest of the vortex skeleton.

  17. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    PubMed Central

    Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  18. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    PubMed

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  19. Flight measurements of buffet characteristics of the F-104 airplane for selected wing-flap deflections

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sefic, W. J.

    1972-01-01

    A flight program was conducted on the F-104 airplane to investigate the effects of moderate deflections of wing leading- and trailing-edge flaps on the buffet characteristics at subsonic and transonic Mach numbers. Selected deflections of the wing leading and trailing-edge flaps, individually and in combination, were used to assess buffet onset, intensity, and frequency; lift curves; and wing-rock characteristics for each configuration. Increased deflection of the trailing-edge flap delayed the buffet onset and buffet intensity rise to a significantly higher airplane normal-force coefficient. Deflection of the leading-edge flap produced some delay in buffet onset and the resulting intensity rise at low subsonic speeds. Increased deflection of the trailing-edge flap provided appreciable lift increments in the angle-of-attack range covered, whereas the leading-edge flap provided lift increments only at high angles-of-attack. The pilots appreciated the increased maneuvering envelope provided by the flaps because of the improved turn capability.

  20. Crash tests of three identical low-wing single-engine airplane

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1983-01-01

    Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.

  1. The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard

    1931-01-01

    This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.

  2. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  3. Low aspect ratio transonic rotors: Part 2. Influence of location of maximum thickness on transonic compressor performance

    SciTech Connect

    Wadia, A.R. ); Law, C.H. )

    1993-04-01

    Transonic compressor rotor performance is sensitive to variations in several known design parameters. One such parameter is the chordwise location of maximum thickness. This article reports on the design and experimental evaluation of two versions of a low aspect ratio transonic rotor that had the location of the tip blade section maximum thickness moved forward in two increments from the nominal 70% to 55 and 40% chord length, respectively. The original hub characteristics were preserved and the maximum thickness location was adjusted proportionately along the span. Although designed to satisfy identical design speed requirements, the experimental results reveal significant variation in the performance of the rotors. At design speed, the rotor with its maximum thickness located at 55% chord length attains the highest peak efficiency among the three rotors but has lowest flow rollback relative to the other two versions. To focus on current ruggedization issues for transonic blading (e.g., bird and ice ingestion), detailed comparison of test data and analysis to characterize the aerodynamic flow details responsible for the measured performance differences were confined to the two rotors with the most forward location of maximum thickness. A three-dimensional viscous flow analysis was used to identify the performance-enhancing features of the higher efficiency rotor and to provide guidance in the interpretation of the experimental measurements. The computational results of the viscous analysis show that the difference in performance between the two rotors can be attributed to the higher shock losses that result from the increased leading edge wedge angle as the maximum thickness is moved closer to the leading edge.

  4. Summary of Results Obtained in Full-Scale Tunnel Investigation of the Ryan Flex-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Hassell, James L., Jr.

    1962-01-01

    The performance and static stability and control characteristics of the Ryan Flex-Wing airplane were determined in an investigation conducted in the Langley full-scale tunnel through an angle-of-attack range of the keel from about 14 to 44 deg. for power-on and -off conditions. Comparisons of the wind-tunnel data with flight-test data obtained with the same airplane by the Ryan Aeronautical Company were made in a number of cases.

  5. A simple method for increasing the lift of airplane wings by means of flaps

    NASA Technical Reports Server (NTRS)

    Gruschwitz, Eugen; Schrenk, Oskar

    1933-01-01

    Aerodynamic considerations led us, not long ago, to investigate a device which seemed to promise a contribution to the problem of reducing the landing speed of an airplane. We have subsequently learned that similar devices had already been proposed and investigated by others, but it seems advisable, nevertheless, to report our results. The problem is to create, in landing, a region of turbulence on the lower side of the wing near the trailing edge by some obstacle to the air flow. The devices tested by us consisted of flaps of varying chord and position, the chord s being equal to the distance of the pivot from the trailing edge.

  6. The Strength of One-Piece Solid, Build-Up and Laminated Wood Airplane Wing Beams

    NASA Technical Reports Server (NTRS)

    Nelson, John H

    1920-01-01

    The purpose of this report is to summarize the results of all wood airplane wing beams tested to date in the Bureau of Standards Laboratory in order that the various kinds of wood and methods of construction may be compared. All beams tested were of an I section and the majority were somewhat similar in size and cross section to the front wing beam of the Curtiss JN-4 machine. Construction methods may be classed as (1) solid beams cut from solid stock; (2) three-piece beams, built up of three pieces, web and flanges glued together by a tongue-and-groove joint and (3) laminated beams built up of thin laminations of wood glued together.

  7. Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1972-01-01

    Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane. Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2.50 deg to 2.50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis.

  8. Pressure distribution for the wing of the YAV-8B airplane; with and without pylons

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Delfrate, John H.; Sabsay, Catherine M.; Yarger, Jill M.

    1992-01-01

    Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B airplane. Data obtained for the supercritical profiled wing, with and without pylons installed, ranged from Mach 0.46 to 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the mean aerodynamic chord. Pressure distribution data and flow visualization results show that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation for some important transonic flight conditions. This condition is aggravated when local shocks occur on the lower surface of the wing (mostly between 20 and 35 percent chord) when the pylons are installed for Mach 0.8 and above. There is evidence that convex fairings, which cover the pylon attachment flanges, cause these local shocks. Pressure coefficients significantly more negative than those for sonic flow also occur farther aft on the lower surface (near 60 percent chord) whether or not the pylons are installed for Mach numbers greater than or equal to 0.8. These negative pressure coefficient peaks and associated local shocks would be expected to cause increasing wave and separation drag at transonic Mach number increases.

  9. Preliminary study of a large span-distributed-load flying-wing cargo airplane concept

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1978-01-01

    An aircraft capable of transporting containerized cargo over intercontinental distances is analyzed. The specifications for payload weight, density, and dimensions in essence configure the wing and establish unusually low values of wing loading and aspect ratio. The structural weight comprises only about 18 percent of the design maximum gross weight. Although the geometric aspect ratio is 4.53, the winglet effect of the wing-tip-mounted vertical tails, increase the effective aspect ratio to approximately 7.9. Sufficient control power to handle the large rolling moment of inertia dictates a relatively high minimum approach velocity of 315 km/hr (170 knots). The airplane has acceptable spiral, Dutch roll, and roll-damping modes. A hardened stability augmentation system is required. The most significant noise source is that of the airframe. However, for both take-off and approach, the levels are below the FAR-36 limit of 108 db. The design mission fuel efficiency is approximately 50 percent greater than that of the most advanced, currently operational, large freighter aircraft. The direct operating cost is significantly lower than that of current freighters, the advantage increasing as fuel price increases.

  10. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    NASA Technical Reports Server (NTRS)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  11. The Effect of Various Wing-Gun Installations on the Aerodynamic Characteristics of an Airplane Model Equipped with an NACA Low-Drag Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Muse, Thomas C.

    1941-01-01

    An investigation was made in the NACA 19-foot pressure wind tunnel to determine the effect of various win-gun installation on the aerodynamic characteristics of a model with an NACA low-drag wing. Measurements were made of lift and drag over an angle-of-attack range and for several values of dynamic pressure on a four-tenths scale model of a high-speed airplane equipped with the low-drag wing and with various wing-gun installations. Two installations were tested: one in which the blast tube and part of the gun barrel protrude ahead of the wing and another in which the guns is mounted wholly within the wing. Two types of openings for the latter installation were tested. For each installation three simulated guns were mounted in each wing. The results are given in the form of nondimensional coefficients. The installations tested appear to have little effect on the maximum-lift coefficient of the model. However, the drag coefficient shows a definite change. The least adverse effect was obtained with the completely internal mounting and small nose entrance. The results indicate that a properly designed wing-gun installation will have very little adverse effect on the aerodynamic characteristics of the low-drag wing.

  12. Measurements in Flight of the Pressure Distribution on the Right Wing of a Pursuit-Type Airplane at Several Values of Mach Number

    NASA Technical Reports Server (NTRS)

    Clousing, Lawrence A; Turner, William N; Rolls, L Stewart

    1946-01-01

    Pressure-distribution measurements were made on the right wing of a pursuit-type airplane at values of Mach number up to 0.80. The results showed that a considerable portion of the lift was carried by components of the airplane other than the wings, and that the proportion of lift carried by the wings may vary considerably with Mach number, thus changing the bending moment at the wing root whether or not there is a shift in the lateral position of the center of pressure. It was also shown that the center of pressure does not necessarily move outward at high Mach numbers, even though the wing-thickness ratio decreases toward the wing tip. The wing pitching-moment coefficient increased sharply in a negative direction at a Mach lift-curve slope increased with Mach number up to values of above the critical value. Pressures inside the wing were small and negative.

  13. Tests of Aluminum-alloy Stiffened-sheet Specimens Cut from an Airplane Wing

    NASA Technical Reports Server (NTRS)

    Holt, Marshall

    1943-01-01

    The specimens used in the present tests were cut from an actual airplane wing of the stressed-skin type. The specimens thus obtained were not representative of the usual type of laboratory specimens because the stiffeners were not exactly parallel nor evenly spaced and, in one case, the skin consisted of pieces of sheet of different thicknesses. The test data obtained indicate that the buckling strain of stiffened curved sheet can be computed with reasonable accuracy by the equation given by Wenzek. The ultimate loads of the specimens when tested as flat sheet were within +/-11 percent of the product of the compressive yield strength and the cross-sectional area of the stiffeners. A rivet spacing equal to 98 times the sheet thickness was a source of weakness, and rivet spacings up to 36 times the sheet thickness appeared satisfactory.

  14. An in-flight investigation of ground effect on a forward-swept wing airplane

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Moulton, Bryan J.; Kresse, John

    1989-01-01

    A limited flight experiment was conducted to document the ground-effect characteristics of the X-29A research airplane. This vehicle has an aerodynamic platform which includes a forward-swept wing and close-coupled, variable incidence canard. The flight-test program obtained results for errors in the airdata measurement and for incremental normal force and pitching moment caused by ground effect. Correlations with wind-tunnel and computational analyses were made. The results are discussed with respect to the dynamic nature of the flight measurements, similar data from other configurations, and pilot comments. The ground-effect results are necessary to obtain an accurate interpretation of the vehicle's landing characteristics. The flight data can also be used in the development of many modern aircraft systems such as autoland and piloted simulations.

  15. Upper-surface blowing nacelle design study for a swept wing airplane at cruise conditions

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Mohn, L. W.; Ridley, H. G.; Nark, T. C.

    1974-01-01

    A study was made to design two types of overwing nacelles for an existing wing-body at a design condition of Mach = 0.8 and C sub L = 0.2. Internal and external surface contours were developed for nacelles having either a D-shaped nozzle or a high-aspect-ratio nozzle for upper-surface blowing in the powered-lift mode of operation. The goal of the design was the development of external nacelle lines that would minimize high-speed aerodynamic interference effects. Each nacelle type was designed for both two- and four-engine airplanes using an iterative process of aerodynamic potential flow analysis. Incremental nacelle drag estimates were made for flow-through wind tunnel models of each configuration.

  16. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  17. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  18. Whirling Arm Tests on the Effect of Ground Proximity to an Airplane Wing

    NASA Technical Reports Server (NTRS)

    Long, M. E.

    1944-01-01

    This report gives the results of tests on a rectangular wing model with a 20% full spun split flap, conducted on the whirling arm at the Daniel Guggenheim Airship Institute in Akron, Ohio. The effect of a ground board on the lift and pitching moment was measured. The ground board consisted of an inclined ramp rising up in the test channel to a level floor extending for some distance parallel to the model path. The path of the wing model with respect to the ground board accordingly represented with comparative exactness an airplane coming in for a landing. The ground clearances over the level portion of the board varied from 0 6 to 1,6 chord lengths. Results are given in the standard dimensionless coefficients plotted versus angle of attack for a particular ground clearance. The effect of the ground board is to increase the lift coefficient for a given angle of attack all the way up the stall. The magnitude of the increase varies both with the ground clearance and the angle of attack. The effect on the pitching moment coefficient is not so readily apparent due to experimental difficulties but, in general, the diving moment increases over the ground board. This effect is apparent principally at the high angles of attack. An exception to this effect occurs with flaps deflected at the lowest ground clearance (0.6 chords). Here the diving moment decreases over the ground board.

  19. Effect of underwing aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.

  20. Pressure distribution on wing ribs of the VE-7 and TS airplanes in flight Part II : pull-ups

    NASA Technical Reports Server (NTRS)

    Rhode, R V

    1928-01-01

    This paper is the second of a series of notes, each of which presents the complete results of pressure distribution tests made at Langley Field by the National Advisory Committee for Aeronautics, on wing and tail ribs of the VE-7 and TS airplanes for a particular maneuver of flight. The results for pull-ups are presented in the form of curves which show the variation of pressure distribution, total loads, normal acceleration and center of pressure with respect to time.

  1. Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.

    1996-01-01

    A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.

  2. Effects of discontinuous drooped wing leading-edge modifications on the spinning characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.; Stough, H. P., III; Patton, J. M., Jr.

    1980-01-01

    Wind tunnel and flight tests were conducted to determine the effects of several discontinuous drooped wing leading-edge configurations on the spinning characteristics of a light, single-engine, low-wing research airplane. Particular emphasis was placed on the identification of modifications which would improve the spinning characteristics. The spanwise length of a discontinuous outboard droop was varied and several additional inboard segments were added to determine the influence of such leading-edge configurations on the spin behavior. Results of the study indicated that the use of only the discontinuous outboard droop, over a specific spanwise area, was most effective towards improving spin and spin recovery characteristics, whereas the segmented configurations having both inboard and outboard droop exhibited a tendency to enter a flat spin.

  3. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  4. Emplacement of energetic density currents over topographic barriers: constraints from a chemically-zoned, topography-draping, low aspect-ratio ignimbrite on Pantelleria, Italy.

    NASA Astrophysics Data System (ADS)

    Williams, Rebecca; Branney, Michael; Barry, Tiffany; Norry, Mike

    2010-05-01

    Low aspect-ratio ignimbrites are thought to be emplaced by particularly hazardous, radial, high-velocity pyroclastic density currents from caldera-forming eruptions. Their circular distribution has been inferred to record simultaneous flow in all directions from source, overtopping hills, rather than passively flowing down valleys. As part of a study into how such currents behave and evolve with time, we have been testing the inference of simultaneous, radial (i.e. rather than sectoral) flow by mapping out the internal chemical-architecture of a zoned, low-aspect ratio ignimbrite sheet on the island of Pantelleria, Italy. This pristine, welded ignimbrite (aspect ratio ≤ 1:5,000) was deposited during a phase of the most recent (~45,000 ka) caldera-forming explosive eruption on the island. One extensive flow-unit is zoned from pantellerite to trachyte, and records that the composition of the erupting magma changed with time. Detailed logging with very close-spaced sampling for chemical and petrographic analysis has distinguished an internal chemical stratigraphy. The chemical variations allow us to divide the brief history of the sustained current into successive time-periods. The compositional zones have been mapped internally through the deposit, both (1) regionally (longitudinally from source and laterally around the broadly circular sheet), and (2) around topographic barriers draped by the ignimbrite. The study takes advantage of superlative exposure and topographic control. We have reconstructed how the footprint of the sustained current shifted as the current waxed then waned, and as it encountered and then overtopped barriers. Our data reveal that even this sheet-like low-aspect ratio ignimbrite was not emplaced entirely radially: rather, it flowed into certain sectors before others. Deposition was diachronous, and previously proposed lithofacies correlations within the ignimbrite are demonstrated to be incorrect. We are now investigating how the current

  5. Experimental and analytical study on the flutter and gust response characteristics of a torsion-free-wing airplane model. [in the Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, A. C.

    1981-01-01

    Experimental data and correlative analytical results on the flutter and gust response characteristics of a torsion-free-wing (TFW) fighter airplane model are presented. TFW consists of a combined wing/boom/canard surface and was tested with the TFW free to pivot in pitch and with the TFW locked to the fuselage. Flutter and gust response characteristics were measured in the Langley Transonic Dynamics Tunnel with the complete airplane model mounted on a cable mount system that provided a near free flying condition. Although the lowest flutter dynamic pressure was measured for the wing free configuration, it was only about 20 deg less than that for the wing locked configuration. However, no appreciable alleviation of the gust response was measured by freeing the wing.

  6. Distribution of Pressure Over Model of the Upper Wing and Aileron of a Fokker D-VII Airplane

    NASA Technical Reports Server (NTRS)

    Fairbanks, A J

    1927-01-01

    This report describes tests made for the purpose of determining the distribution of pressure over a model of the tapered portion of the upper wing and the aileron of a Fokker D-VII Airplane. Normal pressures were measured simultaneously at 74 points distributed over the wing and aileron. Tests were made throughout the useful range of angles of attack with aileron setting ranging from -20 degrees to +20 degrees. The results are presented graphically. It was found that the pressure distribution along the chord is in general similar to that of thick tapered airfoils previously tested. The maximum resultant pressure recorded was five times the dynamic pressure. The distribution of the air load along the span may be assumed to be uniform for design purposes. Aileron displacements affect the pressures forward to the leading edge of the wing and may increase the air load on the outer portion of the wing by a considerable amount. With the wing at large angles of attack, the overhanging portion of the aileron creates usually a burble flow and therefore a large drag. The balance reduces the control stick forces at small angles of attack for all aileron displacements. At large angles of attack it does this for small displacements only. With the airplane at its maximum speed, an angle of attack of 18 degrees, and a down aileron displacement of 20 degrees, the bending moment tending to break off the overhanging portion of the aileron will be greater than that caused by a uniform static load of 35 pounds per square foot.

  7. Pressure Distribution over a Wing and Tail Rib of a VE-7 and of a TS Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1928-01-01

    This investigation was made to determine the pressure distribution over a rib of the wing and over a rib of the horizontal tail surface of an airplane in flight and to obtain information as to the time correlation of the loads occurring on these ribs. Two airplanes, VE-7 and TS, were selected in order to obtain the information for a thin and a thick wing section. In each case the pressure distribution was recorded for the full range of angle of attack in level flight and throughout violent maneuvers. The results show: (a) that the present rib load specifications in use by the Army Air Corps and the Bureau of Aeronautics, Navy Department, are in fair agreement with the loads actually occurring in flight, but could be slightly improved; (b) that there appears to be no definite sequence in which wing and tail surface ribs reach their respective maximum loads in different maneuvers; (c) that in accelerated flight, at air speeds less than or equal to 60 per cent of the maximum speed, the accelerations measured agree very closely with the theoretically possible maximum accelerations. In maneuvers at higher air speeds the observed accelerations were smaller than those theoretically possible. (author)

  8. A Wind-Tunnel Investigation of the Application of the NASA Supercritical Airfoil to a Variable-Wing-Sweep Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.

    1973-01-01

    An investigation was conducted in the Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel to evaluate the effectiveness of three variations of the NASA supercritical airfoil as applied to a model of a variable wing sweep fighter airplane. Wing panels incorporating conventional NACA 64A series airfoil with 0.20 and 0.40 camber were used as bases of reference for this evaluation. Static force and moment measurements were obtained for wing leading edge sweep angles of 26, 33, 39, and 72.5 degrees. Fluctuating wing root bending moment data were obtained at subsonic speeds to determine buffet characteristics. Subsonic data were also obtained for determining the effects of wing transition location and spoiler deflection. Limited lateral directional data are included for the conventional 0.20 cambered wing and the supercritical wing.

  9. Flight Tests of a Model of a High-wing Transport Vertical-take-off Airplane with Tilting Wing and Propellers and with Jet Controls at the Rear of the Fuselage for Pitch and Yaw Control

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M , Jr; Parlett, Lysle P

    1957-01-01

    An investigation of the stability and control of a high-wing transport vertical-take-off airplane with four engines during constant-altitude transitions from hovering to normal forward flight was conducted with a remotely controlled free-flight model. The model had four propellers distributed along the wing with the thrust axes in the wing chord plane. The wing could be rotated to 90 degrees incidence so that the propeller thrust axes were vertical for hovering flight. An air jet at the rear of the fuselage provided pitch and yaw control for hovering and low-speed flight.

  10. Effect of location of aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.

    1990-01-01

    As part of a propulsion/airframe integration program at Langley Research Center, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of locating flow-through mixed flow engine nacelles in several aft underwing positions on the longitudinal aerodynamics of a high wing transport airplane. D-shaped inlet nacelles were used in the test. Some configurations with antishock bodies and with nacelle toe-in were also tested. Data were obtained for a free stream Mach number range of 0.70 to 0.85 and a model angle-of-attack range from -2.5 to 4.0 degrees.

  11. Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Pyle, J. S.; Steers, L. L.

    1975-01-01

    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable.

  12. Wind-tunnel investigation of a full-scale general aviation airplane equipped with an advanced natural laminar flow wing

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jordan, Frank L., Jr.

    1987-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance, stability, and control characteristics of a full-scale general aviation airplane equipped with an advanced laminar flow wing. The study focused on the effects of natural laminar flow and advanced boundary layer transition on performance, stability, and control, and also on the effects of several wing leading edge modifications on the stall/departure resistance of the configuration. Data were measured over an angle-of-attack range from -6 to 40 deg and an angle-of-sideslip range from -6 to 20 deg. The Reynolds number was varied from 1.4 to 2.4 x 10 to the 6th power based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stall characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance cruise performance. Also, because of the characteristics of the airfoil section, artificially tripping the wing boundary layer to a turbulent condition did not significantly effect the lift, stability, and control characteristics. The addition of a leading-edge droop arrangement was found to increase the stall angle of attack at the wingtips and, therefore, was considered to be effective in improving the stall/departure resistance of the configuration. Also the addition of the droop arrangement resulted in only minor increases in drag.

  13. Time-resolved stereo PIV measurements of the horseshoe vortex system at multiple locations in a low-aspect-ratio pin-fin array

    NASA Astrophysics Data System (ADS)

    Anderson, Corey D.; Lynch, Stephen P.

    2016-01-01

    Pin-fin arrays are a type of cooling feature found in heat exchangers, with elements (generally cylindrical or square) that span between two endwalls. Flow around the pin-fins generates highly turbulent mixing that increases convective heat transfer from the pins to the cooling flow. At the junction of a pin-fin and the endwall, a complex flow known as the horseshoe vortex (HSV) system is present. Although the HSV is a well-studied phenomenon, its behavior is not understood in the highly turbulent flow of a pin-fin array. Furthermore, the presence of close confining endwalls for low-aspect-ratio (short) pin-fins may have an impact on HSV dynamics. The present study utilized time-resolved stereo particle image velocimetry to examine the fluid dynamics of the HSV system in rows 1, 3, and 5 of a low-aspect-ratio pin-fin array, for a range of Reynolds numbers. In the first row, instantaneous flowfields indicated a clearly defined HSV at the leading edge, with dynamics similar to previous studies of bluff-body junction flows. The time-averaged HSV system moved closer to the pin with increasing Reynolds number, with more concentrated vorticity and turbulent kinetic energy (TKE). For downstream rows, there was a significant increase in the amount of mid-channel vorticity, with levels on the same order as the value in the core of the HSV. The time-averaged HSV system in downstream rows showed minimal variation with respect to either Reynolds number or row location. Regions of maximum streamwise and wall-normal turbulent fluctuations around the HSV were a result of its quasiperiodic oscillation between so-called backflow and zero-flow modes, which were present even in downstream rows despite the extremely high mid-channel turbulence. In the downstream rows, normalized TKE across the entire field of view decreased with increased Reynolds number, likely due to dissipation rates proportionally outpacing increases in mean channel velocity and Reynolds number. The flowfield

  14. Single-stage experimental evaluation of low aspect ratio, highly loaded blading for compressors. Part 9: Stage F and stage G, volume 1

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Smith, J. D.; Wright, D. L.

    1976-01-01

    Two single-stage, 0.77 hub/tip ratio axial-flow compressors were tested to evaluate the effectiveness of low aspect ratio blading as a means of obtaining higher stage loadings. One compressor, designated Stage F, was comprised of circular arc blading with an aspect ratio of 0.9 for both the rotor and stator. This compressor was tested with uniform inlet flow, hub radial, tip radial, and 180 deg arc circumferential inlet distortion. The second compressor, designated Stage G, was comprised of multiple circular arc blading with an aspect ratio of 1.0 for both the rotor and stator. This compressor was tested with uniform inlet flow only. Design rotor tip speeds for Rotor F and Rotor G were 285 m/sec (934 ft/sec) and 327 m/sec (1,074 ft/sec) respectively. Both stages operated at high loading levels with adequate efficiency and operating range. The peak efficiencies and corresponding average stage diffusion factors for Stages F and G at design rotor speed were 86.4% and 84.1% and 0.59 and 0.55 respectively. The surge margin at peak efficiency for Stage F was 12.6% and the corresponding value for Stage G was 16.5%. Both stages experienced a loss in efficiency with increasing rotor speed; however, the multiple circular arc rotor delayed the characteristic loss in efficiency within increasing Mach number to higher Mach number.

  15. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  16. Simulator study of the stall departure characteristics of a light general aviation airplane with and without a wing-leading-edge modification

    NASA Technical Reports Server (NTRS)

    Riley, D. R.

    1985-01-01

    A six-degree-of-freedom nonlinear simulation was developed for a two-place, single-engine, low-wing general aviation airplane for the stall and initial departure regions of flight. Two configurations, one with and one without an outboard wing-leading-edge modification, were modeled. The math models developed are presented simulation predictions and flight-test data for validation purposes and simulation results for the two configurations for various maneuvers and power settings are compared to show the beneficial influence of adding the wing-leading-edge modification.

  17. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  18. An analytical comparison of two wing structures for Mach 5 cruise airplanes

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Cerro, J. A.; Scotti, S. J.

    1983-01-01

    Mach 5 cruise research conducted by NASA is related to aerodynamics, propulsion, and structures. The study of structures includes the propulsion system, fuselage, and wings. Various studies have shown that the achievement of adequate range is largely dependent on a low structural mass fraction. The present investigation is concerned with a study of two wing structure configurations for Mach 5 aircraft. An uprated version (Ti-6242 replacing B-120 titanium) of the YF-12/SR-71 wing structure is considered. The B-120 titanium structure represents the current art of high speed aircraft wing structures. The YF-12 wing structure was designed about 20 years ago when the analytical methods for calculating thermal stresses were limited. The second wing structural configuration studied in the present investigation also used Ti-6242 materials but replaced the corrugated-beaded panels with diffusion bonded honeycomb-core sandwich panels, and replaced the z-stiffened shear webs with sine-wave stiffened shear webs.

  19. Design of a Large Span-Distributed Load Flying-Wing Cargo Airplane

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.; Quartero, C. B.

    1977-01-01

    The design and operation of very large, long-range, subsonic cargo aircraft are considered. A design concept which distributes the payload along the wingspan to counterbalance the aerodynamic loads, with a resultant decrease in the in-flight wing bending moments and shear forces, is described. The decreased loading of the wing structure, coupled with the very thick wing housing the cargo, results in a relatively low overall structural weight in comparison to that of conventional aircraft.

  20. Study of belly-flaps to enhance lift and pitching moment coefficient of a Blended-Wing-Body airplane in landing and takeoff configuration

    NASA Astrophysics Data System (ADS)

    Staelens, Yann Daniel

    During the first century of flight few major changes have been made to the configuration of subsonic airplanes. A distinct fuselage with wings, a tail, engines and a landing gear persists as the dominant arrangement. During WWII some companies developed tailless all-wing airplanes. However the concept failed to advance till the late 80's when the B-2, the only flying wing to enter production to date, illustrated its benefits at least for a stealth platform. The advent of the Blended-Wing-Body (BWB) addresses the historical shortcomings of all-wing designs, specifically poor volume utility and excess wetted area as a result. The BWB is now poised to become the new standard for large subsonic airplanes. Major aerospace companies are studying the concept for next generation of passenger airplanes. But there are still challenges. One is the BWB's short control lever-arm pitch. This affects rotation and go-around performances. This study presents a possible solution by using a novel type of control surface, a belly-flap, on the under side of the wing to enhance its lift and pitching moment coefficient during landing, go-around and takeoff. Increases of up to 30% in lift-off CL and 8% in positive pitching moment have been achieved during wind tunnel tests on a generic BWB-model with a belly-flap. These aerodynamic improvements when used in a mathematical simulation of landing, go-around and takeoff procedure were showing reduction in landing-field-length by up to 22%, in takeoff-field-length by up to 8% and in loss in altitude between initiation of rotation and actual rotation during go-around by up to 21.5%.

  1. A study of the problem of designing airplanes with satisfactory inherent damping of the dutch roll oscillation

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O , Jr

    1954-01-01

    Considerable interest has recently been shown in means of obtaining satisfactory stability of the dutch roll oscillation for modern high-performance airplanes without resort to complicated artificial stabilizing devices. One approach to this problem is to lay out the airplane in the earliest stages of design so that it will have the greatest practicable inherent stability of the lateral oscillation. The present report presents some preliminary results of a theoretical analysis to determine the design features that appear most promising in providing adequate inherent stability. These preliminary results cover the case of fighter airplanes at subsonic speeds. The investigation indicated that it is possible to design fighter airplanes to have substantially better inherent stability than most current designs. Since the use of low-aspect-ratio swept-back wings is largely responsible for poor dutch roll stability, it is important to design the airplane with the maximum aspect ratio and minimum sweep that will permit attainment of the desired performance. The radius of gyration in roll should be kept as low as possible and the nose-up inclination of the principal longitudinal axis of inertia should be made as great as practicable. (author)

  2. Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Fasanella, E. L.

    1982-01-01

    Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.

  3. General problem of the airplane

    NASA Technical Reports Server (NTRS)

    Richard, Maurice; Richard, Paul

    1922-01-01

    A series of equations relating to airplanes are given and examples listed. Some of the equations listed include: the speed, altitude and carrying capacity of various airplanes; weight of an airplane; weight of various parts of an airplane; the polars of the wings; speeds of airplanes; radius of action.

  4. An Estimation of the Flying Qualities of the Kaiser Fleetwing All-Wing Airplane from Tests of a 1/7-Scale Model, TED No. NACA 2340

    NASA Technical Reports Server (NTRS)

    Brewer, Gerald W.

    1946-01-01

    An investigation of a 1/7-scale powered model of the Kaiser Fleetwing all-wing airplane was made in the Langley full-scale tunnel to provide data for an estimation of the flying qualities of the airplane. The analysis of the stability and control characteristics of the airplane has been made as closely as possible in accordance with the requirements of the Bureau of Aeronautics, Navy Department's specifications, and a summary of the more significant conclusions is presented as follows. With the normal center of gravity located at 20 percent of the mean aerodynamic chord, the airplane will have adequate static longitudinal stability, elevator fixed, for all flight conditions except for low-power operation at low speeds where the stability will be about neutral. There will not be sufficient down-elevator deflection available for trim above speeds of about 130 miles per hour. It is probable that the reduction in the up-elevator deflections required for trim will be accompanied by reduced elevator hinge moments for low-power operation at low flight speeds. The static directional stability for this airplane will be low for all rudder-fixed or rudder-free flight conditions. The maximum rudder deflection of 30 deg will trim only about 15 deg yaw for most flight conditions and only 10 deg yaw for the condition with low power at low speeds. Also, at low powers and low speeds, it is estimated that the rudders will not trim the total adverse yaw resulting from an abrupt aileron roll using maximum aileron deflection. The airplane will meet the requirements for stability and control for asymmetric power operation with one outboard engine inoperative. The airplane would have no tendency for directional divergence but would probably be spirally unstable, with rudders fixed. The static lateral stability of the airplane will probably be about neutral for the high-speed flight conditions and will be only slightly increased for the low-power operation in low-speed flight. The

  5. Development and First Results of a new Airplane Based Fixed Wing Electromagnetic Induction Sea Ice Thickness Sounder

    NASA Astrophysics Data System (ADS)

    Rabenstein, L.; Lobach, J.; Haas, C.

    2007-12-01

    Regular observation of Arctic and Antarctic sea ice thickness is of high importance for a better understanding of processes of climate change in polar regions. For regular and accurate observations of polar sea ice thickness a long range airborne device is necessary. Airborne electromagnetic induction (AEM) sounding was found to be an ideal method for accurate and wide area sea ice thickness measurements. As a consequence of five years of successful helicopter electromagnetic (HEM) sea ice thickness measurements and to overcome helicopter range restrictions, the Alfred Wegener Institute (AWI) constructed a new airplane based fixed wing EM system. The first test flights were carried out in 2006 over the North Sea and in April 2007 in Svalbard, where the system's performance was proven under arctic conditions. The system operates in frequency domain with 1990 Hz and a vertical coplanar coil configuration. Thus the system produces a horizontal dipole. The coils are mounted beneath the wings with a separation of 11.6 meters. The airplane, a Dornier 228, is also equipped with a laser altimeter to determine the altitude of the instrument with an accuracy of 2cm. The compensation of the transmitter signal at the receiver coil is done electronically. Flights over open sea are used for the calibration of the system, because the ocean functions as a homogeneous half space with well known conductivity. A data acquisition computer records four voltages with a sample rate of 10 Hz. These are the reference voltage of the transmitter, the compensated and raw receiver voltages and the compensation signal. The laser height is recorded with a sample rate of 100 Hz to account for surface roughness. EM instruments for sea ice thickness sounding should have a vertical resolution of 10cm but due to the electrical noise caused by the airplane engines this was not easy to achieve. To account for the noise a time average filter is used. Alternatively, in order to keep the original

  6. Flight tests of a radio-controlled airplane mode with a free-wing, free-canard configuration

    NASA Technical Reports Server (NTRS)

    Gee, S. W.

    1978-01-01

    Flight characteristics, controllability, and potential operating problems were investigated in a radio-controlled airplane model in which the wing is so attached to the fuselage that it is free to pivot about a spanwise axis forward of its aerodynamic center and is subject only to aerodynamic pitching moments imposed by lift and drag forces and a control surface. A simple technique of flying the test vehicle in formation with a pickup truck was used to obtain trim data. The test vehicle was flown through a series of maneuvers designed to permit evaluation of certain characteristics by observation. The free-wing free-canard concept was determined to be workable. Stall/spin characteristics were considered to be excellent, and no effect on longitudinal stability was observed when center of gravity changes were made. Several problems were encountered during the early stages of flight testing, such as aerodynamic lockup of the free canard and excessive control sensitivity. Lack of onboard instrumentation precluded any conclusions about gust alleviation or ride qualities.

  7. An Investigation of the Wing and the Wing-Fuselage Combination of a Full-Scale Model of the Republic XP-91 Airplane in the Ames 40-by 80-Foot Wing Tunnel

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.

    1948-01-01

    Wind-tunnel tests of a full-scale model of the Republic XP-91 airplane were conducted to determine the longitudinal and lateral characteristics of the wing alone and the wing-fuselage combination, the characteristics of the aileron, and the damping in roll af the wing alone. Various high-lift devices were investigated including trailing-edge split flaps and partial- and full-span leading-edge slats and Krueger-type nose flaps. Results of this investigation showed that a very significant gain in maximum lift could be achieved through use of the proper leading-edge device, The maximum lift coefficient of the model with split flaps and the original partial-span straight slats was only 1.2; whereas a value of approximately 1.8 was obtained by drooping the slat and extending it full span, Improvement in maximum lift of approximately the same amount resulted when a full-span nose flap was substituted for the original partial-span slat.

  8. Wind-tunnel investigation of aerodynamic load distribution on a variable-wing-sweep fighter airplane with a NASA supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Hallissy, J. B.; Harris, C. D.

    1974-01-01

    Wind-tunnel tests have been conducted at Mach numbers of 0.85, 0.88, and 0.90 to determine the aerodynamic load distribution for the 39 deg swept-wing configuration of a variable-wing-sweep fighter airplane with a NASA supercritical airfoil. Chordwise pressure distributions were measured at two wing stations. Also measured were the overall longitudinal aerodynamic force and moment characteristics and the buffet characteristics. The analysis indicates that localized regions of shock-induced flow separation may exist on the rearward portions of the supercritical wing at high subsonic speeds, and caution must be exercised in the prediction of buffet onset when using variations in trailing-edge pressure coefficients at isolated locations.

  9. Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust

    NASA Technical Reports Server (NTRS)

    Kramer, Max

    1932-01-01

    Wind-tunnel tests are described, in which the angle of attack of a wing model was suddenly increased (producing the effect of a vertical gust) and the resulting forces were measured. It was found that the maximum lift coefficient increases in proportion to the rate of increase in the angle of attack. This fact is important for the determination of the gust stresses of airplanes with low wing loading. The results of the calculation of the corrective factor are given for a high-performance glider and a light sport plane of conventional type.

  10. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  11. Dynamic stability characteristics in pitch, yaw, and roll of a supercritical-wing research airplane model. [langley 8-foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Boyden, R. P.

    1974-01-01

    The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.

  12. Transonic flutter and gust-response tests and analyses of a wind-tunnel model of a torsion free wing airplane

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Murphy, A. C.

    1981-01-01

    An exploratory study of a 1/5.5 size, complete airplane version of a torsion free wing (TFW) fighter aircraft was conducted. The TFW consisted of a wing/boom/canard assembly on each fuselage side that was interconnected by a common pivot shaft so that the TFW could rotate freely in pitch. The effect of the TFW was evaluated by comparing data obtained with the TFW free and the TFW locked to the fuselage. With the model mounted on cables to simulate an airplane free flying condition, flutter boundaries were measured at Mach number (M) from 0.85 to 1.0 and gust responses at M = 0.65 and 0.90. The critical flutter mode for the TFW free configuration was found experimentally to occur at M = 0.95 and had the rigid TFW pitch mode as its apparent aerodynamic driver.

  13. Flight investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Patton, James M., Jr.; Sliwa, Steven M.

    1987-01-01

    Flight tests were performed to investigate the stall, spin, and recovery characteristics of a low-wing, single-engine, light airplane with four interchangeable tail configurations. The four tail configurations were evaluated for effects of varying mass distribution, center-of-gravity position, and control inputs. The airplane tended to roll-off at the stall. Variations in tail configuration produced spins ranging from 40 deg to 60 deg angle of attack and turn rates of about 145 to 208 deg/sec. Some unrecoverable flat spins were encountered which required use of the airplane spin chute for recovery. For recoverable spins, antispin rudder followed by forward wheel with ailerons centered provided the quickest spin recovery. The moderate spin modes agreed very well with those predicted from spin-tunnel model tests, however, the flat spin was at a lower angle of attack and a slower rotation rate than indicated by the model tests.

  14. Blowing-Type Boundary-Layer Control as Applied to the Trailing-Edge Flaps of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Kelly, Mark W; Anderson, Seth B; Innis, Robert C

    1958-01-01

    A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying blowing-type boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effects of boundary-layer control on the handling qualities and operation of the airplane, particularly during landing and take-off. The wind-tunnel and flight tests indicated that blowing over the flaps produced large increases in flap lift increment, and significant increases in maximum lift. The use of blowing permitted reductions in the landing approach speeds of as much as 12 knots.

  15. Piloted-simulation study of effects of vortex flaps on low-speed handling qualities of a Delta-wing airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Brown, Philip W.; Wunschel, Alfred J.

    1987-01-01

    A piloted-simulation study was conducted to investigate the effects of vortex flaps on low-speed handling qualities of a delta-wing airplane. The simulation math model was developed from wind tunnel tests of a 0.15 scale model of the F-106B airplane. Pilot evaluations were conducted using a six-degree-of-freedom motion base simulator. The results of the investigation showed that the reduced static longitudinal stability caused by the vortex flaps significantly degraded handling qualities in the approach-to-landing task. Acceptable handling qualities could be achieved by limiting the aft center-of-gravity location, consequently reducing the operational envelope of the airplane. Further improvement were possible by modifying the flight control force-feel system to reduce pitch-control sensitivity.

  16. Area-Suction Boundary-Layer Control as Applied to the Trailing-Edge Flaps of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L; Anderson, Seth B; Cooper, George E

    1958-01-01

    A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying area-suction boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effect of boundary-layer control in the handling qualities and operation of the airplane, particularly during landing. The wind-tunnel and flight tests indicated that area suction applied to the trailing-edge flaps produced significant increases in flap lift increment. Although the flap boundary-layer control reduced the stall speed only slightly, a reduction in minimum comfortable approach speed of about 12 knots was obtained.

  17. Experimental and Predicted Longitudinal and Lateral-Directional Response Characteristics of a Large Flexible 35 Degree Swept-Wing Airplane at an Altitude of 35,000 Feet

    NASA Technical Reports Server (NTRS)

    Cole, Henry A , Jr; Brown, Stuart C; Holleman, Euclid C

    1957-01-01

    Measured and predicted dynamic response characteristics of a large flexible swept-wing airplane to control surface inputs are presented for flight conditions of 0.6 to 0.85 Mach number at an altitude of 35,000 feet. The report is divided into two parts. The first part deals with the response of the airplane to elevator control inputs with principal responses contained in a band of frequencies including the longitudinal short-period mode and several symmetrical structural modes. The second part deals with the response of the airplane to aileron and rudder control inputs with principal responses contained in a band of frequencies including the dutch roll mode, the rolling mode, and three antisymmetrical structural modes.

  18. High-Speed Load Distribution on the Wing of a 3/16-Scale Model of a Scout-Bomber Airplane with Flaps Deflected

    NASA Technical Reports Server (NTRS)

    Barnes, Robert H.

    1947-01-01

    The tests reported herein were made for the purpose of determining the high-speed load distribution on the wing of a 3/16 scale model of a scout-bomber airplane. Comparisons are made between the root bending-moment and section torsional-moment coefficients as obtained experimentally and derived analytically. The results show good correlation for the bending-moment coefficients but considerable disagreement for the torsional-moment coefficients.

  19. The Effect of Blunt-Trailing-Edge Modifications on the High-Speed Stability and Control Characteristics of a Swept-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; Matteson, Frederick H.; Van Dyke, Rudolph D., Jr.

    1954-01-01

    An investigation was conducted on a 35 deg swept-wing fighter airplane to determine the effects of several blunt-trailing-edge modifications to the wing and tail on the high-speed stability and control characteristics and tracking performance. The results indicated significant improvement in the pitch-up characteristics for the blunt-aileron configuration at Mach numbers around 0.90. As a result of increased effectiveness of the blunt-trailing-edge aileron, the roll-off, customarily experienced with the unmodified airplane in wings-level flight between Mach numbers of about 0.9 and 1.0 was eliminated, The results also indicated that the increased effectiveness of the blunt aileron more than offset the large associated aileron hinge moment, resulting in significant improvement in the rolling performance at Mach numbers between 0.85 and 1.0. It appeared from these results that the tracking performance with the blunt-aileron configuration in the pitch-up and buffeting flight region at high Mach numbers was considerably improved over that of the unmodified airplane; however, the tracking errors of 8 to 15 mils were definitely unsatisfactory. A drag increment of about O.OOl5 due to the blunt ailerons was noted at Mach numbers to about 0.85. The drag increment was 0 at Mach numbers above 0.90.

  20. Free-spinning-tunnel Investigation of a 1/30 Scale Model of a Twin-jet-swept-wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1960-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel to determine the erect and inverted spin and recovery characteristics of a 1/30-scale dynamic model of a twin-jet swept-wing fighter airplane. The model results indicate that the optimum erect spin recovery technique determined (simultaneous rudder reversal to full against the spin and aileron deflection to full with the spin) will provide satisfactory recovery from steep-type spins obtained on the airplane. It is considered that the air-plane will not readily enter flat-type spins, also indicated as possible by the model tests, but developed-spin conditions should be avoided in as much as the optimum recovery procedure may not provide satisfactory recovery if the airplane encounters a flat-type developed spin. Satisfactory recovery from inverted spins will be obtained on the airplane by neutralization of all controls. A 30-foot- diameter (laid-out-flat) stable tail parachute having a drag coefficient of 0.67 and a towline length of 27.5 feet will be satisfactory for emergency spin recovery.

  1. The Static-Pressure Error of a Wing Airspeed Installation of the McDonnell XF-88 Airplane in Dives to Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Goodman, Harold R.

    1949-01-01

    Measurements were made, in dives to transonic speeds, of the static-pressure position error at a distance of one chord ahead of the McDonnell XF-88 airplane. The airplane incorporates a wing which is swept back 35 deg along the 0.22 chord line and utilizes a 65-series airfoil with a 9-percent-thick section perpendicular to the 0.25-chord line. The section in the stream direction is approximately 8-percent thick. Data up to a Mach number of about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Data at Mach numbers above about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Results of the measurements indicate that the static-pressure error, within the accuracy of measurement, is negligible from a Mach number of 0.65 to a Mach number of about 0.97. With a further increase in Mach number, the static-pressure error increases rapidly; at the highest Mach number attained in these tests (about M = 1.038), the error increases to about 8 percent of the impact pressure. Above a Mach number of about 0.975, the recorded Mach number remains substantially constant with increasing true Mach number; the installation is of no value between a Mach number of about 0.975 and at least 1.038, as the true Mach number cannot be obtained from the recorded Mach number in this range. Previously published data have shown that at 0.96 chord ahead of the wing tip of the straight-wing X-l airplanes, a rapid rise of position error started at a Mach number of about 0.8. In the case of the XF-88 airplane, this rise of position error was delayed, presumably by the sweep of the wing, to a Mach number of about 0.97.

  2. Measurements of the Buffeting Loads on the Wing and Horizontal Tail of a 1/4-scale Model of the X-1E Airplane

    NASA Technical Reports Server (NTRS)

    Rainey, A Gerald; Igoe, William B

    1958-01-01

    The buffeting loads acting on the wing and horizontal tail of a 1/4-scale model of the X-1E airplane have been measured in the Langley 16-foot transonic tunnel in the Mach number range from 0.40 to 0.90. When the buffeting loads were reduced to a nondimensional aerodynamic coefficient of buffeting intensity, it was found that the maximum buffeting intensity of the horizontal tail was about twice as large as that of the wing. Comparison of power spectra of buffeting loads acting on the horizontal tail of the airplaneand of the model indicated that the model horizontal tail, which was of conventional force-test-model design, responded in an entirely different mode than did the airplane.This result implied that if quantitative extrapolation of model data to flight conditions were desired a dynamically scaled model of the rearward portion of the fuselage and empennage would be required. A study of the sources of horizontal-tail buffeting of the model indicated that the wing wake contributed a large part of the total buffeting load. At one condition it was found that removal of the wing wake would reduce the buffeting loads on the horizontal tail to about one-third of the original value.

  3. Wind-Tunnel Investigation of Some Effects of Wing Sweep and Horizontal-Tail Height on the Static Stability of an Airplane Model at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Fisher, Lewis R.; Williams, James L.

    1958-01-01

    A research model of an airplane with a configuration suitable for supersonic flight was tested at transonic speeds in order to establish the effects on longitudinal and lateral stability of certain changes in both wing sweep and height of the horizontal tail. Two wings of aspect ratio 3 and taper ratio 0.15, one having the quarter-chord line swept back 30 deg and the other 45 deg, were each tested with the horizontal tail of the model in a low and in a high position. One configuration was also tested with fuselage strakes. The tests were made at Mach numbers from 0.60 to 1.17 and Reynolds numbers from 1.9 x 10(exp 6) to 2.6 x 10(exp 6). The results indicated that a low horizontal-tail position (below the wing-chord plane) gave positive longitudinal stability for the model for all angles of attack used (angles of attack up to 24 deg); whereas, a higher tail position (above the wing-chord plane) resulted in a large reduction in stability at moderate angles of attack. With the higher horizontal tail, the 30 deg-swept-wing model had somewhat more stability than the 45 deg-swept-wing model at subsonic Mach numbers. With the lower tail, the 45 deg-swept-wing model had slightly more stability at all Mach numbers. The model with the 30 deg swept wing had greater directional stability with the tail in the higher rather than the lower position, but the opposite was true for the 45 deg-swept-wing model. The directional stability decreased sharply at high angles of attack; this characteristic was alleviated by the use of fuselage strakes which, however, proved to be detrimental to the longitudinal stability of the model tested.

  4. A study of the effects of aeroelastic divergence on the wing structure of an oblique-wing supersonic transport configuration

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The aerodynamic characteristics of transport aircraft with oblique wing flying at supersonic speeds are discussed. Aeroelastic divergence of the forward swept portion of the wing is analyzed. The effect of aspect ratio as a method for avoiding aeroelastic divergence is examined. A relatively low aspect ratio appears necessary for an oblique wing when constructed of conventional aluminum alloy materials. The aspect ratio may be increased by increasing the wing thickness ratio and by utilizing materials with higher moduli of elasticity and rigidity.

  5. Wave formation on a liquid layer for de-icing airplane wings

    NASA Technical Reports Server (NTRS)

    Yih, Chia-Shun

    1990-01-01

    Wave formation on a thin liquid layer used for deicing aircraft wings is investigated by studying the stability of airflow over a liquid-coated flat plate at zero angle of incidence. The ratio of the viscosity of the liquid to that of air is very high (over 500,000), and the Reynolds number based on liquid depth and air viscosity is of the order of a few thousand. Under these circumstances the analysis gives two formulas, in closed form, for the growth rate and phase velocity of the waves in terms of the wavenumber and other relevant parameters. The expected wavenumber is that for which the growth rate is the maximum. The instability is one in which the viscosity difference between the two fluids (air and liquid) plays the dominant role, and is of the kind found by Yih (1967).

  6. Flight Calibration of four airspeed systems on a swept-wing airplane at Mach numbers up to 1.04 by the NACA radar-phototheodolite method

    NASA Technical Reports Server (NTRS)

    Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E

    1950-01-01

    The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.

  7. An Analysis of the Tracking Performances of Two Straight-wing and Two Swept-wing Fighter Airplanes with Fixed Sights in a Standardized Test Maneuver

    NASA Technical Reports Server (NTRS)

    Ziff, Howard L; Rathert, George A; Gadeberg, Burnett L

    1953-01-01

    Standard air-to-air-gunnery tracking runs were conducted with F-51H, F8F-1, F-86A, and F-86E airplanes equipped with fixed gunsights. The tracking performances were documented over the normal operating range of altitude, Mach number, and normal acceleration factor for each airplane. The sources of error were studied by statistical analyses of the aim wander.

  8. Wind-tunnel measurements of the chordwise pressure distribution and profile drag of a research airplane model incorporating a 17-percent-thick supercritical wing

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1973-01-01

    The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.

  9. Full-scale wind-tunnel investigation of the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Johnson, J. L., Jr.; Newsom, W. A.; Satran, D. R.

    1980-01-01

    The paper presents the results of a recent investigation to determine the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane in the Langley Full-Scale Wind Tunnel. The investigation was conducted to provide aerodynamic information for correlation and analysis of flight-test results obtained for the configuration. The wind-tunnel investigation consisted of force and moment measurements, wing pressure measurements, flow surveys, and flow visualization studies utilizing a tuft grid, smoke and nonintrusive mini-tufts which were illuminated by ultra-violet light. In addition to the tunnel scale system which measured overall forces and moments, the model was equipped with an auxiliary strain-gage balance within the left wing panel to measure lift and drag forces on the outer wing panel independent of the tunnel scale system. The leading-edge modifications studied included partial- and full-span leading-edge droop arrangements as well as leading-edge slats.

  10. Semiempirical Procedure for Estimating Lift and Drag Characteristics of Propeller-Wing-Flap Configurations for Vertical-and Short-Take-Off-and-Landing Airplanes

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1959-01-01

    The analysis presented uses the momentum theory as a starting point in developing semiempirical expressions for calculating the effect of propeller thrust and slipstream on the lift and drag characteristics of wing-flap configurations that would be suitable for vertical-take-off-and-landing (VTOL) and short-take-off-and-landing (STOL) airplanes. The method uses power-off forward-speed information and measured slipstream deflection data at zero forward speed to provide a basis for estimating the lift and drag at combined forward speed and power-on conditions. A correlation of slipstream deflection data is also included. The procedure is applicable only in the unstalled flight regime; nevertheless, it should be useful in preliminary design estimates of the performance that may be expected of VTOL and STOL airplanes.

  11. Study of the Mutual Interaction Between a Wing Wake and an Encountering Airplane

    NASA Technical Reports Server (NTRS)

    Walden, A. B.; vanDam, C. P.

    1996-01-01

    In an effort to increase airport productivity, several wind-tunnel and flight-test programs are currently underway to determine safe reductions in separation standards between aircraft. These programs are designed to study numerous concepts from the characteristics and detection of wake vortices to the wake-vortex encounter phenomenon. As part of this latter effort, computational tools are being developed and utilized as a means of modeling and verifying wake-vortex hazard encounters. The objective of this study is to assess the ability of PMARC, a low-order potential-flow panel method, to predict the forces and moments imposed on a following business-jet configuration by a vortex interaction. Other issues addressed include the investigation of several wake models and their ability to predict wake shape and trajectory, the validity of the velocity field imposed on the following configuration, modeling techniques and the effect of the high-lift system and the empennage. Comparisons with wind-tunnel data reveal that PMARC predicts the characteristics for the clean wing-body following configuration fairly well. Non-linear effects produced by the addition of the high-lift system and empennage, however, are not so well predicted.

  12. A study of the use of experimental stability derivatives in the calculation of the lateral disturbed motions of a swept-wing airplane and comparison with flight results

    NASA Technical Reports Server (NTRS)

    Bird, John D; Jaquet, Byron M

    1951-01-01

    An investigation was made to determine the accuracy with which the lateral flight motions of a swept-wing airplane could be predicted from experimental stability derivatives, determined in the 6-foot-diameter rolling-flow test section and 6 by 6-foot curved-flow test section of the Langley stability tunnel. In addition, determination of the significance of including the nonlinear aerodynamic effects of sideslip in the calculations of the motions was desired. All experimental aerodynamic data necessary for prediction of the lateral flight motions are presented along with a number of comparisons between flight and calculated motions caused by rudder and aileron disturbances.

  13. Wind-Tunnel Investigation at Subsonic and Supersonic Speeds of the Static and Dynamic Stability Derivatives of an Airplane Model with an Unswept Wing and a High Horizontal Tail

    NASA Technical Reports Server (NTRS)

    Lessing, Henry C.; Butler, James K.

    1959-01-01

    Results are presented of a wind-tunnel investigation to evaluate the static and dynamic stability derivatives of a model with a low-aspect-ratio unswept wing and a high horizontal tail. In addition to results for the complete model, results were also obtained of the body alone, body and wing, and body and tail. Data were obtained in the Mach number range from 0.65 to 2.2, at a Reynolds number of 2 million based on the wing mean aerodynamic chord. The angle-of-attack range for most of the data was -11.5 deg to 18 deg. A limited amount of data was obtained with fixed transition. A correspondence between the damping in pitch and the static stability, previously noted in other investigations, was also observed in the present results. The effect observed was that a decrease (or increase) in the static stability was accompanied by an increase (or decrease) in the damping in pitch. A similar correspondence was observed between the damping in yaw and the static-directional stability. Results from similar tests of the same model configuration in two other facilities over different speed ranges are presented for comparison. It was found that most of the results from the three investigations correlated reasonably well. Estimates of the rotary derivatives were made using available procedures. Comparison with the experimental results indicates the need for development of more precise estimation procedures.

  14. Wind-tunnel investigation of aerodynamic characteristics and wing pressure distributions of an airplane with variable-sweep wings modified for laminar flow

    NASA Technical Reports Server (NTRS)

    Hallissy, James B.; Phillips, Pamela S.

    1989-01-01

    A wind tunnel test was conducted to evaluate the aerodynamic characteristics and wing pressure distributions of a variable wing sweep aircraft having wing panels that are modified to promote laminar flow. The modified wing section shapes were incorporated over most of the exposed outer wing panel span and were obtained by extending the leading edge and adding thickness to the existing wing upper surface forward of 60 percent chord. Two different wing configurations, one each for Mach numbers 0.7 and 0.8, were tested on the model simultaneously, with one wing configuration on the left side and the other on the right. The tests were conducted at Mach numbers 0.20 to 0.90 for wing sweep angles of 20, 25, 30, and 35 degrees. Longitudinal, lateral and directional aerodynamic characteristics of the modified and baseline configurations, and selected pressure distributions for the modified configurations, are presented in graphical form without analysis. A tabulation of the pressure data for the modified configuration is available as microfiche.

  15. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the Grumman XF9F-2 Airplane with Wing-Tip Tanks Installed

    NASA Technical Reports Server (NTRS)

    Berman, Theodore; Wilson, Jack H.

    1948-01-01

    An investigation of the spin and recovery characteristics of a 1/24-scale model of the Grumman XF9F-2 airplane with wing-tip tanks installed has been conducted-in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect spin and recovery characteristics of the model for a range of possible loadings of the tip tanks were determined. Spin and recovery characteristics without tanks were determined in a previous investigation. The model results indicated that the airplane spins will generally be oscillatory and that recoveries will be satisfactory for all loadings by normal recovery technique (full rudder reversal followed approximately one-half turn later by moving the elevator down). The rudder force necessary for recovery should be within the physical capability of the pilot but the elevator force may be excessive so that some type of balance or booster might be necessary, or it might be necessary to jettison the wing-tip tanks.

  16. The Effect of the Wings of Single Engine Airplanes on Propulsive Efficiency as Shown by Full Scale Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wood, Donald H

    1929-01-01

    An investigation was conducted to determine the effect of the wings on propulsive efficiency. The wings are shown to cause a reduction of 1 percent to 3 percent in propulsive efficiency, which is about the same for monoplane as well as biplane wings.

  17. Wind-tunnel and Flight Investigations of the Use of Leading-Edge Area Suction for the Purpose of Increasing the Maximum Lift Coefficient of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Bray, Richard S

    1956-01-01

    An investigation was undertaken to determine the increase in maximum lift coefficient that could be obtained by applying area suction near the leading edge of a wing. This investigation was performed first with a 35 degree swept-wing model in the wind tunnel, and then with an operational 35 degree swept-wing airplane which was modified in accord with the wind-tunnel results. The wind-tunnel and flight tests indicated that the maximum lift coefficient was increased more than 50 percent by the use of area suction. Good agreement was obtained in the comparison of the wind-tunnel results with those measured in flight.

  18. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  19. Flight Investigation of the Lift and Drag Characteristics of a Swept-Wing, Multijet, Transport-Type Airplane

    NASA Technical Reports Server (NTRS)

    Tambor, Ronald

    1960-01-01

    The lift and drag characteristics of a Boeing KC-135 airplane were determined during maneuvering flight over the Mach number range from 0.70 to 0.85 for the airplane in the clean configuration at an altitude of 26,000 feet. Data were also obtained over the speed range of 130 knots to 160 knots at 9,000 feet for various flap deflections with gear down.

  20. Stability Characteristics of Two Missiles of Fineness Ratios 12 and 18 with Six Rectangular Fins of Very Low Aspect Ratio Over a Mach Number Range of 1.4 to 3.2

    NASA Technical Reports Server (NTRS)

    Henning, Allen B.

    1959-01-01

    Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.

  1. Aerodynamic characteristics at Mach 6 of a hypersonic research airplane concept having a 70 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Clark, L. E.; Richie, C. B.

    1977-01-01

    The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.

  2. An Analysis of Flight-Test Measurements of the Wing Structural Deformations in Rough Air of a Large Flexible Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Murrow, Harold N.

    1959-01-01

    An analysis is made of wing deflection and streamwise twist measurements in rough-air flight of a large flexible swept-wing bomber. Random-process techniques are employed in analyzing the data in order to describe the magnitude and characteristics of the wing deflection and twist responses to rough air. Power spectra and frequency-response functions for the wing deflection and twist responses at several spanwise stations are presented. The frequency-response functions describe direct and absolute response characteristics to turbulence and provide a convenient basis for assessing analytic calculation techniques. The wing deformations in rough air are compared with the expected deformations for quasi-static loadings of the same magnitude, and the amplifications are determined. The results obtained indicate that generally the deflections are amplified by a small amount, while the streamwise twists are amplified by factors of the order of 2.0. The magnitudes of both the deflection velocities and the twist angles are shown to have significant effects on the local angles of attack at the various stations and provide the main source of aerodynamic loading, particularly at frequencies in the vicinity of the first wing-vibration mode.

  3. The Airplane Experiment.

    ERIC Educational Resources Information Center

    Larson, Lee; Grant, Roderick

    1991-01-01

    Presents an experiment to investigate centripetal force and acceleration that utilizes an airplane suspended on a string from a spring balance. Investigates the possibility that lift on the wings of the airplane accounts for the differences between calculated tension and measured tension on the string. (MDH)

  4. Exhaust-nozzle characterisitcs for a twin-jet variable-wing-sweep fighter airplane model at Mach numbers to 2.2

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Mercer, C. E.

    1974-01-01

    A wind-tunnel investigation has been conducted to determine the exhaust-nozzle aerodynamic and propulsive characteristics for a twin-jet variable-wing-sweep fighter airplane model. The powered model was tested in the Langley 16-foot transonic tunnel and in the Langley 4-foot supersonic pressure tunnel at Mach numbers to 2.2 and at angles of attack from about minus 2 to 6 deg. Compressed air was used to simulate the nozzle exhaust flow at values of jet total-pressure ratio from approximately 1 (jet off) to about 21. Effects of configuration variables such as speed-brake deflection, store installation, and boundary-layer thickness on the the nozzle characteristics were also investigated.

  5. Transonic flutter and gust-response tests and analyses of a wind-tunnel model of a torsion-free-wing fighter airplane

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Murphy, A. C.

    1981-01-01

    The paper reports the results of analytical and exploratory wind-tunnel studies of the transonic flutter and gust response characteristics of a 1/5.5-size complete-airplane version of a torsion-free-wing (TFW) fighter aircraft. The critical flutter mode for the TFW-free configuration was found to occur at M = 0.95 and had the rigid-TFW pitch mode as its apparent aerodynamic driver. However, the minimum dynamic flutter for the TFW-free case was only about 20% lower than for the TFW-locked; therefore the present TFW is a viable design concept with respect to flutter. The present TFW was not effective as a gust alleviator.

  6. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  7. Wind-tunnel investigation of the effect of power and flaps on the static lateral characteristics of a single-engine low-wing airplane model

    NASA Technical Reports Server (NTRS)

    Tamburello, Vito; Weil, Joseph

    1947-01-01

    Tests were made in the Langley 7- by 10-foot tunnel to determine the lateral-stability characteristics with and without power of a model of a typical low-wing single-engine airplane with flaps neutral, with a full-span single slotted flap, and with a full-span double slotted flap. Power decreased the dihedral effect regardless of flap condition, and the double-slotted flap configuration showed the most marked decrease. The usual effect of power in increasing the directional stability was also shown. Deflection of the single slotted flap produced negative dihedral effect, but increased the directional stability. The effects of deflecting the double slotted flap were erratic and marked changes in both effective dihedral and directional stability occurred. The addition of the tail surfaces always contributed directional stability and generally produced positive dihedral effect.

  8. Investigation at High Subsonic Speeds of the Static Longitudinal and Lateral Stability Characteristics of Two Canard Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Sleeman, William C., Jr.

    1957-01-01

    The present investigation was conducted in the Langley high-speed 7-by 10-foot tunnel to determine the static longitudinal and lateral stability characteristics at high subsonic speeds of two canard airplane configurations previously tested at supersonic speeds. The Mach number range of this investigation extended from 0.60 to 0.94 and a maximum angle-of-attack range of -2dewg to 24deg was obtained at the lowest test Mach number. Two wing plan forms of equal area were studied in the present tests; one was a 60deg delta wing and the other was a trapezoid wing having an aspect ratio of 3, taper ratio of 0.143, and an unswept 80-percent-chord line. The canard control had a trapezoidal plan form and its area was approximately 11.5 percent of the wing area. The model also had a low-aspect-ratio highly swept vertical tail and twin ventral fins. The longitudinal control characteristics of the models were consistent with past experience at low speed on canard configurations in that stalling of the canard surface occurred at moderate and high control deflections for moderate values of angle of attack. This stalling could impose appreciable limitations on the maximum trim-lift coefficient attainable. The control effectiveness and maximum value of trim-lift was significantly increased by addition of a body flap having a conical shape and located slightly behind the canard surface on the bottom of the body. Addition of the canard surface at 0deg deflection had relatively little effect on overall directional stability of the delta-wing configuration; however, deflection of the canard surface from 0deg to 10deg had a large favorable effect on directional stability at high angles of attack for both the trapezoid- and delta-wing configurations.

  9. Reliable formulae for estimating airplane performance and the effects of changes in weight, wing area, or power

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains the derivation and the verification of formulae for predicting the speed range ratio, the initial rate of climb, and the absolute ceiling of an airplane. Curves used in the computation are given in NACA-TR-171. Standard formulae for service ceiling, time of climb, cruising range, and endurance are also given in the conventional forms.

  10. Structural response to discrete and continuous gusts of an airplane having wing bending flexibility and a correlation of calculated and flight results

    NASA Technical Reports Server (NTRS)

    Houbolt, John C; Kordes, Eldon E

    1954-01-01

    An analysis is made of the structural response to gusts of an airplane having the degrees of freedom of vertical motion and wing bending flexibility and basic parameters are established. A convenient and accurate numerical solution of the response equations is developed for the case of discrete-gust encounter, an exact solution is made for the simpler case of continuous-sinusoidal-gust encounter, and the procedure is outlined for treating the more realistic condition of continuous random atmospheric turbulence, based on the methods of generalized harmonic analysis. Correlation studies between flight and calculated results are then given to evaluate the influence of wing bending flexibility on the structural response to gusts of two twin-engine transports and one four-engine bomber. It is shown that calculated results obtained by means of a discrete-gust approach reveal the general nature of the flexibility effects and lead to qualitative correlation with flight results. In contrast, calculations by means of the continuous-turbulence approach show good quantitative correlation with flight results and indicate a much greater degree of resolution of the flexibility effects.

  11. On the influence of magnetic field processing on the texture, phase assemblage and properties of low aspect ratio Bi2 Sr2 CaCu2 Ox /AgMg wire

    NASA Astrophysics Data System (ADS)

    Liu, Xiaotao; Schwartz, Justin

    2009-01-01

    Bi2 Sr2 CaCu2 Ox /AgMg conductors are potentially important for many applications up to 20 K, including magnets for cryogen-free magnetic resonance imaging and high field nuclear magnetic resonance research. One promising approach to increased critical current density is partial-melt processing in the presence of a magnetic field which has been shown to enhance c-axis texturing of wide, thin tape conductors. Here, we report on low aspect ratio rectangular conductors processed in an 8 T magnetic field. The magnetic field is applied during different stages of the heat treatment process. The conductors are electrically characterized using four-point critical current measurements as a function of magnetic field and magnetic field orientation relative to the conductor. The superconductive transition and magnetization hysteresis are measured using a SQUID magnetometer. The microstructures are characterized using scanning electron microscopy and energy dispersive spectroscopy and analyzed using digital image processing. It is found that the presence of a magnetic field during split melt processing enhances the electrical transport and magnetic behavior, but that the anisotropy is not consistently affected. The magnetic field also affects development of interfilamentary Bi2212 bridges, and that this depends on the initial shape of the Bi2212 filament. At least two behaviors are identified; one impacts the oxide phase assemblage and the other impacts textured growth.

  12. A Transonic Wind-Tunnel Investigation of the Longitudinal Aerodynamic Characteristics of a Model of the Lockheed XF-104 Airplane

    NASA Technical Reports Server (NTRS)

    Hieser, Gerald; Reid, Charles F.

    1954-01-01

    The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.

  13. Summary and Analysis of Horizontal-Tail Contribution to Longitudinal Stability of Swept-Wing Airplanes at Low Speeds

    NASA Technical Reports Server (NTRS)

    Neely, Robert H.; Griner, Roland F.

    1959-01-01

    Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.

  14. The Aerodynamic Forces on Slender Plane- and Cruciform-Wing and Body Combinations

    NASA Technical Reports Server (NTRS)

    Spreiter, John R

    1950-01-01

    The load distribution, forces, and moments are calculated theoretically for inclined slender wing-body combinations consisting of a slender body of revolution and either a plane or cruciform arrangement of low-aspect-ratio pointed wings. The results are applicable at subsonic and transonic speeds, and at supersonic speeds, provided the entire wing-body combination lies near the center of the Mach cone.

  15. The development of an augmentor wing jet STOL research airplane (modified C-8A). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Ashleman, R. H.; Kavdahl, H.

    1972-01-01

    A project to develop an experimental aircraft for use as an inflight demonstrator of the augmentor wing, short takeoff concept is discussed. The required modifications were made on a de Havilland C-8A aircraft. The modifications to the aircraft are explained and the performance of the modified aircraft is reported.

  16. Free-Flight Tests of 0.11-Scale North American F-100 Airplane Wings to Investigate the Possibility of Flutter in Transonic Speed Range at Varying Angles of Attack

    NASA Technical Reports Server (NTRS)

    O'Kelly, Burke R.

    1954-01-01

    Free-flight tests in the transonic speed range utilizing rocketpropelled models have been made on three pairs of 0.11-scale North American F-100 airplane wings having an aspect ratio of 3.47, a taper ratio of 0.308, 45 degree sweepback at the quarter-chord line, and thickness ratios of 31 and 5 percent to investigate the possibility of flutte r. Data from tests of two other rocket-propelled models which accidentally fluttered during a drag investigation of the North American F-100 airplane are also presented. The first set of wings (5 percent thick) was tested on a model which was disturbed in pitch by a moving tail and reached a maximum Mach number of 0.85. The wings encountered mild oscillations near the first - bending frequency at high lift coefficients. The second set of wings 9 percent thick was tested up to a maximum Mach number of 0.95 at (2) angles of attack provided by small rocket motors installed in the nose of the model. No oscillations resembling flutter were encountered during the coasting flight between separation from the booster and sustainer firing (Mach numbers from 0.86 to 0.82) or during the sustainer firing at accelerations of about 8g up to the maximum Mach number of the test (0.95). The third set of wings was similar to the first set and was tested up to a maximum Mach number of 1.24. A mild flutter at frequencies near the first-bending frequency of the wings was encountered between a Mach number of 1.15 and a Mach number of 1.06 during both accelerating and coasting flight. The two drag models, which were 0.ll-scale models of the North American F-100 airplane configuration, reached a maximum Mach number of 1.77. The wings of these models had bending and torsional frequencies which were 40 and 89 percent, respectively, of the calculated scaled frequencies of the full-scale 7-percent-thick wing. Both models experienced flutter of the same type as that experienced-by the third set of wings.

  17. Full-scale-wind-tunnel Tests of a 35 Degree Sweptback Wing Airplane with High-velocity Blowing over the Training-edge Flaps

    NASA Technical Reports Server (NTRS)

    Kelley, Mark W; Tolhurst, William H JR

    1955-01-01

    A wind-tunnel investigation was made to determine the effects of ejecting high-velocity air near the leading edge of plain trailing-edge flaps on a 35 degree sweptback wing. The tests were made with flap deflections from 45 degrees to 85 degrees and with pressure ratios across the flap nozzles from sub-critical up to 2.9. A limited study of the effects of nozzle location and configuration on the efficiency of the flap was made. Measurements of the lift, drag, and pitching moment were made for Reynolds numbers from 5.8 to 10.1x10(6). Measurements were also made of the weight rate of flow, pressure, and temperature of the air supplied to the flap nozzles.The results show that blowing on the deflected flap produced large flap lift increments. The amount of air required to prevent flow separation on the flap was significantly less than that estimated from published two-dimensional data. When the amount of air ejected over the flap was just sufficient to prevent flow separation, the lift increment obtained agreed well with linear inviscid fluid theory up to flap deflections of 60 degrees. The flap lift increment at 85 degrees flap deflection was about 80 percent of that predicted theoretically.With larger amounts of air blown over the flap, these lift increments could be significantly increased. It was found that the performance of the flap was relatively insensitive to the location of the flap nozzle, to spacers in the nozzle, and to flow disturbances such as those caused by leading-edge slats or discontinuities on the wing or flap surfaces. Analysis of the results indicated that installation of this system on an F-86 airplane is feasible.

  18. Investigation in the 7-by-10 Foot Wind Tunnel of Ducts for Cooling Radiators within an Airplane Wing

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A; Recant, Isidore G

    1942-01-01

    Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional-flow setup with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included.

  19. Investigation in the 7-By-10 Foot Wind Tunnel of Ducts for Cooling Radiators Within an Airplane Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A.; Recant, Isidore G.

    1938-01-01

    An investigation was made in the NACA 7- by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional flow set-up with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included. It was found that radiators could be mounted in the wing and efficiently pass enough air for cooling with duct outlets located at any point from 0.25c to 0.70c from the wing leading edge on the upper surface. The duct-inlet position was found to be critical and, for maximum efficiency, had to be at the stagnation point of the airfoil and to change with flight attitude. The flow could be efficiently throttled only by a simultaneous variation of duct inlet and outlet sizes and of inlet position. It was desirable to round both inlet and outlet lips. With certain arrangements of duct, the power required for cooling at high speed was a very low percentage of the engine power.

  20. Effect of Wing Height and Dihedral on the Lateral Stability Characteristics at Low Lift of a 45 Deg Swept-Wing Airplane Configuration as Obtained from Time-Vector Analyses of Rocket-Propelled-Model Flights at Mach Numbers from 0.7 to 1.3

    NASA Technical Reports Server (NTRS)

    Gillis, Clarence L.; Chapman, Rowe, Jr.

    1956-01-01

    Lateral-stability flight tests were made over the Mach number range from 0.7 to 1.3 of models of three airplane configurations having 45deg sweptback wings. One model had a high wing; one, a low wing; and one, a high wing with cathedral. The models were otherwise identical. The lateral oscillations of the models resulting from intermittent yawing disturbances were interpreted in terms of full-scale airplane flying qualities and were further analyzed by the time-vector method to obtain values of the lateral stability derivatives. The effects of changes i n wing height on the static sideslip derivatives were fairly constant in the speed range investigated and agreed well with estimated values based on subsonic wind-tunnel tests. Effects of geometric dihedral on the rolling moment due to sideslip agreed well with theoretical and other experimental results and with a theoretical relation involving the damping in roll. The damping in roll, when compared with theoretical and other experimental results, shared good agreement at supersonic speeds but was somewhat higher at a Mach number of 1.0 and at subsonic speeds. The damping in yaw shared no large changes in the transonic region.

  1. Effect of Slot-Entry Skirt Extensions on Aerodynamic Characteristics of a Wing Section of the XB-36 Airplane Equipped with a Double Slotted Flap

    NASA Technical Reports Server (NTRS)

    Cahill, Jones F.

    1947-01-01

    An investigation was made in the Langley two-dimensional low-turbulence tunnel on a wing section for the XB-36 airplane equipped with a double slotted flap to determine the effect on lift and drag of various slot-entry skirt extension. A skirt extension of 0.787 deg. was found to provide the best combination of high maximum lift with flap deflected and law drag with flap retracted. The data showed that the maximum lift at intermediate (20 deg. to 45 deg.) flap deflections was lowered considerably by the slot-entry extension; but at high flap deflections the effect was small. An increase in Reynolds number from 2.4 million to 6.0 million increased the maximum.lift coefficient at a flap deflection of 55 deg. from 3.12 to 3.30 and from 1.18 to 1.40 for the flap retracted condition, but did not greatly affect the maximum lift coefficient for intermediate flap deflections. The flap and fore flap load data indicated that the maximum lift coefficients at high flap deflections are limited by a breakdown in the flow over the .flaps.

  2. Preliminary study of propulsion systems and airplane wing parameters for a US Navy subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Zola, C. L.; Fishbach, L. H.; Allen, J. L.

    1978-01-01

    Two V/STOL propulsion concepts were evaluated in a common aircraft configuration. One propulsion system consists of cross coupled turboshaft engines driving variable pitch fans. The other system is a gas coupled combination of turbojet gas generators and tip turbine fixed pitch fans. Evaluations were made of endurance at low altitude, low speed loiter with equal takeoff fuel loads. Effects of propulsion system sizing, bypass ratio, and aircraft wing planform parameters were investigated and compared. Shaft driven propulsion systems appear to result in better overall performance, although at higher installed weight, than gas systems.

  3. Subsonic Aerodynamic Characteristics of an Airplane Configuration with a 63 deg Sweptback Wing and Twin-Boom Tails

    NASA Technical Reports Server (NTRS)

    Savage, Howard F.; Edwards, George G.

    1959-01-01

    A wind-tunnel investigation has been conducted to determine the effects of an unconventional tail arrangement on the subsonic static longitudinal and lateral stability characteristics of a model having a 63 deg sweptback wing of aspect ratio 3.5 and a fuselage. Tail booms, extending rearward from approximately the midsemispan of each wing panel, supported independent tail assemblies well outboard of the usual position at the rear of the fuselage. The horizontal-tail surfaces had the leading edge swept back 45 deg and an aspect ratio of 2.4. The vertical tail surfaces were geometrically similar to one panel of the horizontal tail. For comparative purposes, the wing-body combination was also tested with conventional fuselage-mounted tail surfaces. The wind-tunnel tests were conducted at Mach numbers from 0.25 to 0.95 with a Reynolds number of 2,000,000, at a Mach number of 0.46 with a Reynolds number of 3,500,000, and at a Mach number of 0.20 with a Reynolds number of 7,000,000. The results of the investigation indicate that longitudinal stability existed to considerably higher lift coefficients for the outboard tail configuration than for the configuration with conventional tail. Wing fences were necessary with both configurations for the elimination of sudden changes in longitudinal stability at lift coefficients between 0.3 and 0.5. Sideslip angles up to 15 deg had only small effects upon the pitching-moment characteristics of the outboard tail configuration. There was an increase in the directional stability for the outboard tail configuration at the higher angles of attack as opposed to a decrease for the conventional tail configuration at most of the Mach numbers and Reynolds numbers of this investigation. The dihedral effect increased rapidly with increasing angle of attack for both the outboard and the conventional tail configurations but the increase was greater for the outboard tail configuration. The data indicate that the outboard tail is an effective

  4. Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: Implication from near-vent eruptive deposits

    NASA Astrophysics Data System (ADS)

    Maeno, F.; Taniguchi, H.

    2007-11-01

    2 displays welded stratified facies, which consist of lithic-rich layers and pumice-rich layers. These two subunits occur only in topographic lows in Satsuma Iwo-jima. Unit C3 is thickest and poorly-sorted non-welded massive deposit, which includes fragments of welded tuff from underlying units in proximal regions. These facts indicate that multiple pyroclastic density currents produced Units C1 and C2 in the near-vent area, and were followed by the main sustained current producing Unit C3, a low-aspect ratio ignimbrite, distributed over a wide area of southern Kyushu across the sea. Varying extents of magma-water interactions started during Phase 2, continuing during the early stages of Phase 3, and diminished during the climactic C3 ignimbrite stage. In addition, collapse of the caldera may have started before Unit C deposition, based on the evidence of a fault overlain by Unit C on the caldera rim. The collapse may have initiated water access to the magma. The source appears to have been biased toward the western side of the caldera. The Holocene evolution of the Kikai volcano records the existence of a large silicic magma system at depths of about 7 km that coexisted with or was regularly recharged with mafic magma.

  5. Summary of the Aerodynamic Characteristics and Flying Qualities Obtained from Flights of Rocket-Propelled Models of an Airplane Configuration Incorporating a Sweptback Inversely Tapered Wing at Transonic and Low-Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Blanchard, Willard S., Jr.

    1950-01-01

    Flight tests have been conducted on rocket-propelled models of an airplane configuration incorporating a sweptback wing with inverse taper to investigate the drag, stability, and control characteristics at transonic and supersonic speeds. The models were tested with a conventional tail arrangement in the Mach number range from 0.55 to 1.2. In addition to the various aerodynamic parameters obtained, the flying qualities were computed for a full-scale airplane with the center-of-gravity location at 18 percent of the mean aerodynamic chord. Also, included in this investigation are drag measurements made on relatively simple fixed-control models tested with both conventional and V-tail arrangements.

  6. Spin-tunnel investigation of the spinning characteristics of typical single-engine general aviation airplane designs. 2: Low-wing model A; tail parachute diameter and canopy distance for emergency spin recovery

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Bowman, J. S., Jr.; White, W. L.

    1977-01-01

    A spin tunnel study is reported on a scale model of a research airplane typical of low-wing, single-engine, light general aviation airplanes to determine the tail parachute diameter and canopy distance (riser length plus suspension-line length) required for energency spin recovery. Nine tail configurations were tested, resulting in a wide range of developed spin conditions, including steep spins and flat spins. The results indicate that the full-scale parachute diameter required for satisfactory recovery from the most critical conditions investigated is about 3.2 m and that the canopy distance, which was found to be critical for flat spins, should be between 4.6 and 6.1 m.

  7. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  8. Aerodynamic Characteristics in Pitch and Sideslip at High Subsonic Speeds of a 1/14-Scale Model of the Grumman XF104 Airplane with Wing Sweepback of 42.5 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Draper, John W.

    1953-01-01

    An investigation has been made at high subsonic speeds of the aerodynamic'characteristics in pitch and sideslip of a l/l4-scale model of the Grumman XF10F airplane with a wing sweepback angle of 42.5. The longitudinal stability characteristics (with the horizontal tail fixed) indicate a pitch-up near the stall; however, this was somewhat alleviated by the addition of fins to the side of the fuselage below the horizontal tail. The original model configuration became directionally unstable for small sideslip angles at Mach numbers above 0.8; however, the instability was eliminated by several different modifications.

  9. Testing a Windmill Airplane ("autogiro")

    NASA Technical Reports Server (NTRS)

    Seiferth, R

    1927-01-01

    In order to clear up the matter ( In the Spanish report it was stated that the reference surface for the calculation of the coefficients c(sub a) and c(sub w) was the area of all four wings, instead of a single wing), the model of a windwill airplane was tested in the Gottingen wind tunnel.

  10. 14 CFR 23.201 - Wings level stall.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.201 Wings level... airplane stalls. (b) The wings level stall characteristics must be demonstrated in flight as...

  11. 14 CFR 23.201 - Wings level stall.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wings level stall. 23.201 Section 23.201... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.201 Wings level... airplane stalls. (b) The wings level stall characteristics must be demonstrated in flight as...

  12. 14 CFR 23.201 - Wings level stall.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wings level stall. 23.201 Section 23.201... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.201 Wings level... airplane stalls. (b) The wings level stall characteristics must be demonstrated in flight as...

  13. Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1975-01-01

    The leading-edge-suction analogy of Polhamus, which has been successful in the prediction of vortex lift characteristics on wings with pointed tips at subsonic and supersonic speeds, has recently been extended to account for the vortex flow characteristics for wings with side edges. Comparisons of experimental data and other currently used methods with the extended method are made for wings having side edges at subsonic and supersonic speeds. Recent data obtained for a low-aspect-ratio cropped-delta wing with various amounts of asymmetrical tip rake, simulating a roll control device, are also presented.

  14. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Genç, Mustafa Serdar; Hakan Açikel, Halil; Demir, Hacımurat; Özden, Mustafa; Çağdaş, Mücahit; Isabekov, Iliasbek

    2016-03-01

    In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3) is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC) is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  15. An Investigation of the Free-Spinning and Recovery Characteristics of a 1/24-Scale Model of the Grumman F11F-1 Airplane with Alternate Nose Configurations with and without Wing Fuel Tanks, TED No. NACA AD 395

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.

    1958-01-01

    A supplementary investigation has been conducted in the langley 20-foot free-spinning tunnel on a l/24-scale model of the Grumman F11F-1 airplane to determine the spin and recovery characteristics with alternate nose configurations, the production version and the elongated APS-67 version, with and without empty and full wing tanks. When spins were obtained with either alternate nose configuration, they were oscillatory and recovery characteristics were considered unsatisfactory on the basis of the fact that very slow recoveries were indicated to be possible. The simultaneous extension of canards near the nose of the model with rudder reversal was effective in rapidly terminating the spin. The addition of empty wing tanks had little effect on the developed spin and recovery characteristics. The model did not spin erect with full wing tanks. For optimum recovery from inverted spins, the rudder should be reversed to 22O against the spin and simultaneously the flaperons should be moved with the developed spin; the stick should be held at or moved to full forward longitudinally. The minimum size parachute required to insure satisfactory recoveries in an emergency was found to be 12 feet in diameter (laid out flat) with a drag coefficient of 0.64 (based on the laid-out-flat diameter) and a towline length of 32 feet.

  16. Lateral Stability and Control Measurements of a 0.0858-Scale Model of the Lockheed XF-104 Airplane at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Arabian, Donald D.; Schmeer, James W.

    1955-01-01

    An investigation of the lateral stability and control effectiveness of a 0.0858-scale model of the Lockheed XF-104 airplane has been conducted in the Langley 16-foot transonic tunnel. The model has a low aspect ratio, 3.4-percent-thick wing with negative dihedral. The horizontal tail is located on top of the vertical tail. The investigation was made through a Mach number range of 0.80 to 1.06 at sideslip angles of -5 deg. to 5 deg. and angles of attack from 0 deg. to 16 deg. The control effectiveness of the aileron, rudder, and yaw damper were determined through the Mach number and angle-of-attack range. The results of the investigation indicated that the directional stability derivative was stable and that positive effective dihedral existed throughout the lift-coefficient range and Mach number range tested. The total aileron effectiveness, which in general produced favorable yaw with rolling moment, remained fairly constant for lift coefficients up to about 0.8 for the Mach number range tested. Yawing-moment effectiveness of the rudder changed little through the Mach number range. However, the yaw damper effectiveness decreased about 30 percent at the intermediate test Mach numbers.

  17. Wind-Tunnel Investigation at Low Speed of the Effects of Chordwise Wing Fences and Horizontal-Tail Position on the Static Longitudinal Stability Characteristics of an Airplane Model with a 35 Degree Sweptback Wing

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Jaquet, Byron M; Wolhart, Walter D

    1954-01-01

    Low-speed tests of a model with a wing swept back 35 degrees at the 0.33-chord line and a horizontal tail located well above the extended wing-chord plane indicated static longitudinal instability at moderate angles of attack for all configurations tested. An investigation therefore was made to determine whether the longitudinal stability could be improved by the use of chordwise wing fences, by lowering the horizontal tail, or by a combination of both. The results of the investigation showed that the longitudinal stability characteristics of the model with slats retracted could be improved at moderate angles of attack by placing chordwise wing fences at a spanwise station of about 73 percent of the wing semispan from the plane of symmetry provided the nose of the fence extended slightly beyond or around the wing leading edge.

  18. An experimental study of separated flow on a finite wing

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1981-01-01

    The flow field associated with the formation of a mushroom shaped trailing edge stall cell on a low-aspect-ratio (AR = 4.0) wing was investigated in a series of low speed wind tunnel tests (Reynolds number based on 15.2 cm chord = 480,000). Flow field surveys of the separation bubble and wake of a partially stalled and fully stalled wing were completed using a hot-wire probe, a split-film probe, and a directional sensitive pressure probe. A new color video display technique was developed to display the flow field survey data. Photographs were obtained of surface oil flow patterns and smoke flow visualization

  19. Active Flow Control on a Low Reynolds Number Wing

    NASA Astrophysics Data System (ADS)

    Munson, Matthew; Gharib, Morteza

    2010-11-01

    Control of vortex formation has been shown to be a critical mechanism in some forms of animal flight. Flapping motions create advantageous flow structures which play a role in enhancing lift and increasing maneuverability. Active flow control may be capable of providing similar influence over vortex formation processes in fixed wing flight at small Reynolds numbers. Steady and pulsed mass injection strategies through simple slot actuators are used to explore the open-loop response of the flow around a simple low-aspect ratio wing. Flow dynamics and vortex formation will be quantitatively visualized with DPIV and flow forces will be simultaneously measured with a six-component balance.

  20. New Albatross commercial airplane "L 58"

    NASA Technical Reports Server (NTRS)

    Meyer, G

    1923-01-01

    The "L 58" is a monoplane with cantilever wings joined directly to the fuselage. It accordingly belongs to the new school of airplane construction, as founded and developed in Germany. A list of performance characteristics is included.

  1. 77 FR 29863 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska...-referenced airplanes with cantilever metal wings. We are issuing this AD to correct the unsafe condition on..., T210M, 210N, T210N, P210N, 210R, T210R, and P210R airplanes with cantilever metal wings. The...

  2. Measurement of the handling characteristics of two light airplanes

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A flight investigation of the handling characteristics of two single engine general aviation airplanes, one a high wing and the other a low wing, included a variety of measurements of different characteristics of the airplanes. The characteristics included those of the control systems, performance, longitudinal and lateral responses, and stall motions.

  3. On the take-off of heavily loaded airplanes

    NASA Technical Reports Server (NTRS)

    Breguet, Louis

    1928-01-01

    This report examines the take-off conditions of airplanes equipped with tractive propellers, and particularly the more difficult take-off of airplanes heavily loaded per unit of wing area (wing loading) or per unit of engine power (power loading).

  4. 77 FR 54793 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... features proposed by the NPRM (76 FR 70377, November 14, 2011). American indicated that additional time is... features--for 50 work-hours x $85 per $35,000 $39,250 $10,322,750 airplanes with center wing and hour = $4...-87 (MD-87), MD-88, and MD-90-30 airplanes; equipped with center wing fuel tank and Boeing...

  5. Effects of Horizontal-Control Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1981-01-01

    An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.

  6. 78 FR 29666 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...We propose to adopt a new airworthiness directive (AD) for certain Airbus Model A330-200 and -300 series airplanes; Model A340-200 and -300 series airplanes; and Model A340-541 and -642 airplanes. This proposed AD was prompted by reports of wing tip brakes (WTBs) losing their braking function in service due to heavy wear on the brake discs. WTBs are designed to stop and hold the mechanical......

  7. Aerodynamic Characteristics over a Mach Number Range of 1.40 to 2.78 of a Rocket-Propelled Airplane Configuration having a Low 52.50 Delta Wing and an Unswept Horizontal Tail

    NASA Technical Reports Server (NTRS)

    Kehlet, Alan B.

    1961-01-01

    A free-flight investigation of an airplane configuration having a low 52.5 deg. delta wing and an unswept horizontal tail has been conducted over a Mach number range of 1.40 to 2.78. At a fixed tail setting of -3.0 deg., the trim lift coefficient and angle of attack varied from about 0.12 to 0.04 and 3.8 deg. to 2.0 deg., respectively. The base drag was approximately 5 percent of the total drag at trim lift. Lift-curve slope, static longitudinal stability, and damping in pitch were obtained only at Mach numbers of 2.59 t o 2.74. Theoretical calculations of lift-curve slope and aerodynamic-center location were in good agreement with experimental results.

  8. A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2010-01-01

    A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.

  9. Automated airplane surface generation

    SciTech Connect

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.

  10. A Flight Evaluation of the Longitudinal Stability Characteristics Associated with the Pitch-up of a Swept-Wing Airplane in Maneuvering Flight at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B; Bray, Richard S

    1955-01-01

    This report presents the results of flight measurements of longitudinal stability and control characteristics made on a swept-wing jet aircraft to determine the origin of the pitch-up encountered in maneuvering flight at transonic speeds. For this purpose measurements were made of elevator angle, tail angle of attack, and wing-fuselage pitching moments (obtained from measurements of the balancing tail loads).