Sample records for low-cost passive formation-flying

  1. An algorithm for enhanced formation flying of satellites in low earth orbit

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  2. Reducing Formation-Keeping Maneuver Costs for Formation Flying Satellites in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Hamilton, Nicholas

    2001-01-01

    Several techniques are used to synthesize the formation-keeping control law for a three-satellite formation in low-earth orbit. The objective is to minimize maneuver cost and position tracking error. Initial reductions are found for a one-satellite case by tuning the state-weighting matrix within the linear-quadratic-Gaussian framework. Further savings come from adjusting the maneuver interval. Scenarios examined include cases with and without process noise. These results are then applied to a three-satellite formation. For both the one-satellite and three-satellite cases, increasing the maneuver interval yields a decrease in maneuver cost and an increase in position tracking error. A maneuver interval of 8-10 minutes provides a good trade-off between maneuver cost and position tracking error. An analysis of the closed-loop poles with respect to varying maneuver intervals explains the effectiveness of the chosen maneuver interval.

  3. Formation Flying for Satellites and Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    The shrinking size of satellites and unmanned aerial vehicles (UAVs) is enabling lower cost missions. As sensors and electronics continue to downsize, the next step is multiple vehicles providing different perspectives or variations for more precise measurements. While flying a single satellite or UAV autonomously is a challenge, flying multiple vehicles in a precise formation is even more challenging. The goal of this project is to develop a scalable mesh network between vehicles (satellites or UAVs) to share real-time position data and maintain formations autonomously. Newly available low-cost, commercial off-the-shelf credit card size computers will be used as the basis for this network. Mesh networking techniques will be used to provide redundant links and a flexible network. The Small Projects Rapid Integration and Test Environment Lab will be used to simulate formation flying of satellites. UAVs built by the Aero-M team will be used to demonstrate the formation flying in the West Test Area. The ability to test in flight on NASA-owned UAVs allows this technology to achieve a high Technology Readiness Level (TRL) (TRL-4 for satellites and TRL-7 for UAVs). The low cost of small UAVs and the availability of a large test range (West Test Area) dramatically reduces the expense of testing. The end goal is for this technology to be ready to use on any multiple satellite or UAV mission.

  4. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  5. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  6. Low cost passive solar adobe house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-21

    A brief description, photographs, and cost breakdown of a hybrid direct-gain passive solar adobe house constructed in the City of El Paso, Texas. The 3-panel active solar domestic hot water system acts as a back-up to the direct gain passive system.

  7. Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting

    PubMed Central

    Wolfe, Marlene K.; Dentz, Holly N.; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J.

    2017-01-01

    Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement. PMID:27956654

  8. Low-cost passive UHF RFID tags on paper substrates

    NASA Astrophysics Data System (ADS)

    Sajal, Sayeed Zebaul Haque

    To reduce the significant cost in the widespread deployment of UHF radio frequency identification (RFID) systems, an UHF RFID tag design is presented on paper substrates. The design is based on meander-line miniaturization techniques and open complementary split ring resonator (OCSRR) elements that reduce required conducting materials by 30%. Another passive UHF RFID tag is designed to sense the moisture based on the antenna's polarization. An inexpensive paper substrate and copper layer are used for flexibility and low-cost. The key characteristic of this design is the sensitivity of the antenna's polarization on the passive RFID tag to the moisture content in the paper substrate. In simulations, the antenna is circularly-polarized when the substrate is dry and is linearly-polarized when the substrate is wet. It was shown that the expected read-ranges and desired performance could be achieved reducing the over-all cost of the both designs.

  9. J3Gen: A PRNG for Low-Cost Passive RFID

    PubMed Central

    Melià-Seguí, Joan; Garcia-Alfaro, Joaquin; Herrera-Joancomartí, Jordi

    2013-01-01

    Pseudorandom number generation (PRNG) is the main security tool in low-cost passive radio-frequency identification (RFID) technologies, such as EPC Gen2. We present a lightweight PRNG design for low-cost passive RFID tags, named J3Gen. J3Gen is based on a linear feedback shift register (LFSR) configured with multiple feedback polynomials. The polynomials are alternated during the generation of sequences via a physical source of randomness. J3Gen successfully handles the inherent linearity of LFSR based PRNGs and satisfies the statistical requirements imposed by the EPC Gen2 standard. A hardware implementation of J3Gen is presented and evaluated with regard to different design parameters, defining the key-equivalence security and nonlinearity of the design. The results of a SPICE simulation confirm the power-consumption suitability of the proposal. PMID:23519344

  10. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    NASA Astrophysics Data System (ADS)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  11. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  12. Optimum Guidance Law and Information Management for a Large Number of Formation Flying Spacecrafts

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuichi; Nakasuka, Shinichi

    In recent years, formation flying technique is recognized as one of the most important technologies for deep space and orbital missions that involve multiple spacecraft operations. Formation flying mission improves simultaneous observability over a wide area, redundancy and reconfigurability of the system with relatively small and low cost spacecrafts compared with the conventional single spacecraft mission. From the viewpoint of guidance and control, realizing formation flying mission usually requires tight maintenance and control of the relative distances, speeds and orientations between the member satellites. This paper studies a practical architecture for formation flight missions focusing mainly on guidance and control, and describes a new guidance algorithm for changing and keeping the relative positions and speeds of the satellites in formation. The resulting algorithm is suitable for onboard processing and gives the optimum impulsive trajectory for satellites flying closely around a certain reference orbit, that can be elliptic, parabolic or hyperbolic. Based on this guidance algorithm, this study introduces an information management methodology between the member spacecrafts which is suitable for a large formation flight architecture. Routing and multicast communication based on the wireless local area network technology are introduced. Some mathematical analyses and computer simulations will be shown in the presentation to reveal the feasibility of the proposed formation flight architecture, especially when a very large number of satellites join the formation.

  13. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  14. Passive morphing of flying wing aircraft: Z-shaped configuration

    NASA Astrophysics Data System (ADS)

    Mardanpour, Pezhman; Hodges, Dewey H.

    2014-01-01

    High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.

  15. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    DOE PAGES

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; ...

    2016-06-01

    Here, we present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO 2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm -2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nmmore » thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iV oc) values of 730 mV with J o values of 2 fA/cm 2. Samples doped with B 2H 6 gave iV oc values of 690 mV and J o values of 24 fA/cm 2, outperforming BF 3 doping, which gave iV oc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.« less

  16. Flying in a flock comes at a cost in pigeons.

    PubMed

    Usherwood, James R; Stavrou, Marinos; Lowe, John C; Roskilly, Kyle; Wilson, Alan M

    2011-06-22

    Flying birds often form flocks, with social, navigational and anti-predator implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual 'cluster' flock? Here we use data from innovative back-mounted Global Positioning System (GPS) and 6-degrees-of-freedom inertial sensors to show that pigeons (1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; (2) increase flap frequency with increases in all conventional aerodynamic power requirements; and (3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock. Indeed, the increased flap frequency, whether due to direct aerodynamic interactions or requirements for increased stability or control, suggests a considerable energetic cost to flight in a tight cluster flock.

  17. Flying in a flock comes at a cost in pigeons

    PubMed Central

    Usherwood, James R.; Stavrou, Marinos; Lowe, John C.; Roskilly, Kyle; Wilson, Alan M.

    2011-01-01

    Flying birds often form flocks, with social1, navigational2 and anti-predator3 implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements4, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation5. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual ‘cluster’ 6,7 flock? Here, we use data from innovative back-mounted GPS and 6 degree of freedom inertial sensors to show that pigeons 1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; 2) increase flap frequency with increases in all conventional aerodynamic power requirements; and 3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock; indeed, the increased flap frequency – whether due to direct aerodynamic interactions or requirements for increased stability or control – suggests a considerable energetic cost to flight in a tight cluster flock. PMID:21697946

  18. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  19. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  20. Ka-Band Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey; Purcell, George, Jr.; Srinivasan, Jeffrey; Ciminera, Michael; Srinivasan, Meera; Meehan, Thomas; Young, Lawrence; Aung, MiMi; Amaro, Luis; Chong, Yong; hide

    2004-01-01

    Ka-band integrated range and bearing-angle formation sensor called the Autonomous Formation Flying (AFF) Sensor has been developed to enable deep-space formation flying of multiple spacecraft. The AFF Sensor concept is similar to that of the Global Positioning System (GPS), but the AFF Sensor would not use the GPS. The AFF Sensor would reside in radio transceivers and signal-processing subsystems aboard the formation-flying spacecraft. A version of the AFF Sensor has been developed for initial application to the two-spacecraft StarLight optical-interferometry mission, and several design investigations have been performed. From the prototype development, it has been concluded that the AFF Sensor can be expected to measure distances and directions with standard deviations of 2 cm and 1 arc minute, respectively, for spacecraft separations ranging up to about 1 km. It has also been concluded that it is necessary to optimize performance of the overall mission through design trade-offs among the performance of the AFF Sensor, the field of view of the AFF Sensor, the designs of the spacecraft and the scientific instruments that they will carry, the spacecraft maneuvers required for formation flying, and the design of a formation-control system.

  1. Drift Recovery and Station Keeping for the CanX-4 & CanX-5 Nanosatellite Formation Flying Mission

    NASA Astrophysics Data System (ADS)

    Newman, Joshua Zachary

    Canadian Advanced Nanospace eXperiments 4 & 5 (CanX-4&5) are a pair of formation flying nanosatellites that demonstrated autonomous sub-metre formation control at ranges of 1000 to 50 m. To facilitate the autonomous formation flight mission, it is necessary that the two spacecraft be brought within a few kilometres of one another, with a low relative velocity. Therefore, a system to calculate fuel-efficient recovery trajectories and produce the corresponding spacecraft commands was required. This system was also extended to provide station keeping capabilities. In this thesis, the overall drift recovery strategy is outlined, and the design of the controller is detailed. A method of putting the formation into a passively safe state, where the spacecraft cannot collide, is also presented. Monte-Carlo simulations are used to estimate the fuel losses associated with navigational and attitude errors. Finally, on-orbit results are presented, validating both the design and the error expectations.

  2. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  3. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  4. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives.

    PubMed

    Polettini, A; Pomi, R; Trinci, L; Muntoni, A; Lo Mastro, S

    2004-09-01

    An experimental work was carried out to investigate the feasibility of application of a sintering process to mixtures composed of Municipal Solid Waste Incinerator (MSWI) fly ash and low-cost additives (waste from feldspar production and cullet). The proportions of the three constituents were varied to adjust the mixture compositions to within the optimal range for sintering. The material was compacted in cylindrical specimens and treated at 1100 and 1150 degrees C for 30 and 60 min. Engineering and environmental characteristics including weight loss, dimensional changes, density, open porosity, mechanical strength, chemical stability and leaching behavior were determined for the treated material, allowing the relationship between the degree of sintering and both mixture composition and treatment conditions to be singled out. Mineralogical analyses detected the presence of neo-formation minerals from the pyroxene group. Estimation of the extent of metal loss from the samples indicated that the potential for volatilization of species of Pb, Cd and Zn is still a matter of major concern when dealing with thermal treatment of incinerator ash.

  5. Station-Keeping Strategies for Lead-Trail Formation Flying

    NASA Astrophysics Data System (ADS)

    Martinot, V.; Rozanes, P.

    Numerous projects in the Science and Observation domains involve the use of formation flying to ensure the mission performance. The formation flying configurations proposed in some of them are quite complex with several satellites in different planes generating relative differential motions between the satellites like in case of circular projected formation-flying. However, more simple designs consisting of two satellites in a lead-trail formation appear to be sufficient for a wide range of applications (interferometry, geodesy,...). This article concentrates on the station- keeping phase of such formations in Low-Earth Orbits The station-keeping criterion for such formations can be expressed for example in terms of difference in argument of latitude between both satellites and at the altitudes considered, it evolves mainly under the differential effect of the atmospheric drag between the trailing and leading satellites. In the present paper, this differential effect is supposed to originate from the difference in the area-to-mass ratio between the satellites due to their different designs. A preliminary estimation of the navigation performance is first given assuming that on-board GPS receiver are mounted on each satellite of the formation to acquire pseudo-range measurements between the LEO satellites and the MEO GPS constellation. The distance between both satellites of the formation is derived from independent orbit restitution performed for each LEO satellite in a ground master control station processing the GPS measurements. A strategy for controlling the satellite formation disturbed by the differential effect of the drag is then proposed. Simulations are performed to assess the feasibility of the station-keeping with different types of engines. As by-products, the propellant budget and the frequency of the station-keeping manoeuvres are also given. A case study inspired from the ESA project Acechem/Metop is used for the simulations.

  6. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  7. Local Estimators for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Nabi, Marzieh

    2011-01-01

    A formation estimation architecture for formation flying builds upon the local information exchange among multiple local estimators. Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are needed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms should rely on a local information-exchange network, relaxing the assumptions on existing algorithms. In this research, it was shown that only local observability is required to design a formation estimator and control law. The approach relies on breaking up the overall information-exchange network into sequence of local subnetworks, and invoking an agreement-type filter to reach consensus among local estimators within each local network. State estimates were obtained by a set of local measurements that were passed through a set of communicating Kalman filters to reach an overall state estimation for the formation. An optimization approach was also presented by means of which diffused estimates over the network can be incorporated in the local estimates obtained by each estimator via local measurements. This approach compares favorably with that obtained by a centralized Kalman filter, which requires complete knowledge of the raw measurement available to each estimator.

  8. Testing Of An Ultraviolet (UV)-Transparent Polymer-Based Passive Sampler for Rapid, Ultra-Low-Cost EDC Screening Applications

    EPA Science Inventory

    A new passive sampling method with rapid low-cost spectral detection has recently been developed. The method makes use of an ultraviolet (UV)-transparent polymer which serves as both a concentrator for dissolved compounds, and an optical cell for UV spectral detection. Because ...

  9. Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission

    NASA Technical Reports Server (NTRS)

    Tsuda, Yuichi

    2007-01-01

    The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.

  10. Distributed simulation for formation flying applications

    NASA Technical Reports Server (NTRS)

    Sohl, Garett A.; Udomkesmalee, Santi; Kellogg, Jennifer L.

    2005-01-01

    High fidelity engineering simulation plays a key role in the rapidly developing field of space-based formation flying. This paper describes the design and implementation of the Formation Algorithms and Simulation Testbed (FAST).

  11. Formation Flying in Earth, Libration, and Distant Retrograde Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.

    2004-01-01

    This slide presentation examines the current and future state of formation flying, LEO formations, control strategies for flight in the vicinity of the libration points, and distant retrograde orbit formations. This discussion of LEO formations includes background on perturbation theory/accelerations and LEO formation flying. The discussion of strategies for formation flight in the vicinity of the libration points includes libration missions and natural and controlled libration orbit formations. A reference list is included.

  12. Mitigation of the Impact of Sensing Noise on the Precise Formation Flying Control Problem

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    2004-01-01

    The specific objectives of this proposed research were: 1. Further investigation into the impact of CDGPS sensing errors for high Earth orbit missions. 2. Identify augmentation approaches of the CDGPS that will improve the relative state for low and high Earth orbit missions. 3. Integration of the navigation and control concepts into the GSFC Formation Flying Testbed. In addition this was a cooperative effort with Dr. Jonathan How at MIT. Dr. Alfriend was to spend two weeks working with Dr. How and his students. The travel for these two weeks was paid by the Texas Engineering Experiment Station (TEES) as cost sharing.

  13. Hardware-In-The-Loop Testing of Continuous Control Algorithms for a Precision Formation Flying Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Naasz, Bo J.; Burns, Richard D.; Gaylor, David; Higinbotham, John

    2004-01-01

    A sample mission sequence is defined for a low earth orbit demonstration of Precision Formation Flying (PFF). Various guidance navigation and control strategies are discussed for use in the PFF experiment phases. A sample PFF experiment is implemented and tested in a realistic Hardware-in-the-Loop (HWIL) simulation using the Formation Flying Test Bed (FFTB) at NASA's Goddard Space Flight Center.

  14. Protocol for Communication Networking for Formation Flying

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren

    2009-01-01

    An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in

  15. Initialization of Formation Flying Using Primer Vector Theory

    NASA Technical Reports Server (NTRS)

    Mailhe, Laurie; Schiff, Conrad; Folta, David

    2002-01-01

    In this paper, we extend primer vector analysis to formation flying. Optimization of the classical rendezvous or free-time transfer problem between two orbits using primer vector theory has been extensively studied for one spacecraft. However, an increasing number of missions are now considering flying a set of spacecraft in close formation. Missions such as the Magnetospheric MultiScale (MMS) and Leonardo-BRDF (Bidirectional Reflectance Distribution Function) need to determine strategies to transfer each spacecraft from the common launch orbit to their respective operational orbit. In addition, all the spacecraft must synchronize their states so that they achieve the same desired formation geometry over each orbit. This periodicity requirement imposes constraints on the boundary conditions that can be used for the primer vector algorithm. In this work we explore the impact of the periodicity requirement in optimizing each spacecraft transfer trajectory using primer vector theory. We first present our adaptation of primer vector theory to formation flying. Using this method, we then compute the AV budget for each spacecraft subject to different formation endpoint constraints.

  16. Autonomous formation flying sensor for the Star Light Mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.

    2002-01-01

    The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.

  17. Autonomous formation flying based on GPS — PRISMA flight results

    NASA Astrophysics Data System (ADS)

    D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio

    2013-01-01

    This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.

  18. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  19. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  20. Reconfigurable Software for Controlling Formation Flying

    NASA Technical Reports Server (NTRS)

    Mueller, Joseph B.

    2006-01-01

    Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.

  1. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to

  2. Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    McLoughlin, Terence H.; Campbell, Mark

    2004-01-01

    Recent advances in formation keeping for large numbers of spacecraft using the Autonomous Formation Flying are presented. This sensor, currently under development at JPL, has been identified as a key component in future formation flying spacecraft missions. The sensor provides accurate range and bearing measurements between pairs of spacecraft using GPS technology. Previous theoretical work by the authors has focused on developing a decentralized scheduling algorithm to control the tasking of such a sensor between the relative range and bearing measurements to each node in the formation. The resulting algorithm has been modified to include switching constraints in the sensor. This paper also presents a testbed for real time validation of a sixteen-node formation based on the Stellar Imager mission. Key aspects of the simulation include minimum fuel maneuvers based on free-body dynamics and a three body propagator for simulating the formation at L2.

  3. Future geodesy missions: Tethered systems and formation flying

    NASA Astrophysics Data System (ADS)

    Fontdecaba, Jordi; Sanjurjo, Manuel; Pelaez, Jesus; Metris, Gilles; Exertier, Pierre

    Recent gravity field determination missions have shown the possibility of improving our Earth knowledge from space. GRACE has helped to the determination of temporal variations of low and mean degrees of the field while GOCE will improve the precision in the determination of higher degrees. But there is still some needs for geophysics which are not satisfied by these missions. Two areas where improvements must be done are (i) perenniality of the observations, and (ii) determination of temporal variations of higher degrees of the gravity field. These improvements can be achieved thanks to new measurement technologies with higher precision, but also using new observables. Historically, space determination of the gravity field has been done observing the perturbations of the orbit of the satellites. More recently, GRACE has introduced the use of satellite-tosatellite ranging. Goce will use onboard gradiometry. The authors have explored the possibilities of two new technologies for the determination of the gravity field: (i) tethered systems, and (ii) formation flying for all kind of configurations (not just leader-follower). To analyze the possibilities of these technologies, we obtain the covariance matrix of the coefficients of the gravity field for the different observables. This can be done providing some very reasonable hypothesis are accepted. This matrix contains a lot of information concerning the behavior of the observable. In order to obtain the matrix, we use the so-called lumped coefficients approach. We have used this method for three observables (i) tethered systems, (ii) formation flying and (iii) gradiometry (for comparison purposes). Tethers appear as a very long base gradiometers, with very interesting properties, but also very challenging from a technological point of view. One of the major advantages of the tethered systems is their multitask design. Indeed, the same cable can be used for propulsion purposes in some phases of the mission, and for

  4. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  5. Low Cost, Low Power, Passive Muon Telescope for Interrogating Martian Sub-Surface

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Tanaka, Hirukui; Naudet, Charles; Plaut, Jeffrey J.; Jones, Cathleen E.; Webb, Frank H.

    2012-01-01

    It has been demonstrated on Earth that a low power, passive muon detector can penetrate deep into geological structures up to several kilometers in size providing high density images of their interiors. Muon tomography is an entirely new class of planetary instrumentation that is ideally suited to address key areas in Mars Science, such as: the search for life and habitable environments, the distribution and state of water and ice and the level of geologic activity on Mars today.

  6. Cost Avoidance Techniques for RC-135 Program Flying Training

    DTIC Science & Technology

    2013-06-01

    135, age has an even greater impact . Built in the 1960’s, RC-135s have covered tours 8 over Vietnam and Operations Southern/Northern Watch. Over...of one PFT done on a weekly basis, although seemingly insignificant, could have enormous impact over time. Even the smallest regular cost savings...Force Flying Hour Costs Four variables make up the flying hour program. They are supplies (tools used to repair aircraft), impact card (purchases by

  7. Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velundur, Vijay

    This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.

  8. Energetic cost of bot fly parasitism in free-ranging eastern chipmunks.

    PubMed

    Careau, Vincent; Thomas, Donald W; Humphries, Murray M

    2010-02-01

    The energy and nutrient demands of parasites on their hosts are frequently invoked as an explanation for negative impacts of parasitism on host survival and reproductive success. Although cuterebrid bot flies are among the physically largest and most-studied insect parasites of mammals, the only study conducted on metabolic consequences of bot fly parasitism revealed a surprisingly small effect of bot flies on host metabolism. Here we test the prediction that bot fly parasitism increases the resting metabolic rate (RMR) of free-ranging eastern chipmunks (Tamias striatus), particularly in juveniles who have not previously encountered parasites and have to allocate energy to growth. We found no effect of bot fly parasitism on adults. In juveniles, however, we found that RMR strongly increased with the number of bot fly larvae hosted. For a subset of 12 juveniles during a year where parasite prevalence was particularly high, we also compared the RMR before versus during the peak of bot fly prevalence, allowing each individual to act as its own control. Each bot fly larva resulted in a approximately 7.6% increase in the RMR of its host while reducing juvenile growth rates. Finally, bot fly parasitism at the juvenile stage was positively correlated with adult stage RMR, suggesting persistent effects of bot flies on RMR. This study is the first to show an important effect of bot fly parasitism on the metabolism and growth of a wild mammal. Our work highlights the importance of studying cost of parasitism over multiple years in natural settings, as negative effects on hosts are more likely to emerge in periods of high energetic demand (e.g. growing juveniles) and/or in harsh environmental conditions (e.g. low food availability).

  9. Passive Baited Sequential Fly Trap

    USDA-ARS?s Scientific Manuscript database

    Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...

  10. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  11. Formation Flying for Distributed InSAR

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.

    2006-01-01

    We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.

  12. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  13. A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.

    PubMed

    Lorias-Espinoza, Daniel; Carranza, Vicente González; de León, Fernando Chico-Ponce; Escamirosa, Fernando Pérez; Martinez, Arturo Minor

    2016-11-01

    Navigation technology is used for training in various medical specialties, not least image-guided spinal interventions. Navigation practice is an important educational component that allows residents to understand how surgical instruments interact with complex anatomy and to learn basic surgical skills such as the tridimensional mental interpretation of bidimensional data. Inexpensive surgical simulators for spinal surgery, however, are lacking. We therefore designed a low-cost spinal surgery simulator (Spine MovDigSys 01) to allow 3-dimensional navigation via 2-dimensional images without altering or limiting the surgeon's natural movement. A training system was developed with an anatomical lumbar model and 2 webcams to passively digitize surgical instruments under MATLAB software control. A proof-of-concept recognition task (vertebral body cannulation) and a pilot test of the system with 12 neuro- and orthopedic surgeons were performed to obtain feedback on the system. Position, orientation, and kinematic variables were determined and the lateral, posteroanterior, and anteroposterior views obtained. The system was tested with a proof-of-concept experimental task. Operator metrics including time of execution (t), intracorporeal length (d), insertion angle (α), average speed (v¯), and acceleration (a) were obtained accurately. These metrics were converted into assessment metrics such as smoothness of operation and linearity of insertion. Results from initial testing are shown and the system advantages and disadvantages described. This low-cost spinal surgery training system digitized the position and orientation of the instruments and allowed image-guided navigation, the generation of metrics, and graphic recording of the instrumental route. Spine MovDigSys 01 is useful for development of basic, noninnate skills and allows the novice apprentice to quickly and economically move beyond the basics. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Relative Navigation for Formation Flying of Spacecraft

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Du, Ju-Young; Hughes, Declan; Junkins, John L.; Crassidis, John L.

    2001-01-01

    This paper presents a robust and efficient approach for relative navigation and attitude estimation of spacecraft flying in formation. This approach uses measurements from a new optical sensor that provides a line of sight vector from the master spacecraft to the secondary satellite. The overall system provides a novel, reliable, and autonomous relative navigation and attitude determination system, employing relatively simple electronic circuits with modest digital signal processing requirements and is fully independent of any external systems. Experimental calibration results are presented, which are used to achieve accurate line of sight measurements. State estimation for formation flying is achieved through an optimal observer design. Also, because the rotational and translational motions are coupled through the observation vectors, three approaches are suggested to separate both signals just for stability analysis. Simulation and experimental results indicate that the combined sensor/estimator approach provides accurate relative position and attitude estimates.

  15. Relative dynamics and motion control of nanosatellite formation flying

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  16. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  17. Cost of tobacco-related diseases, including passive smoking, in Hong Kong.

    PubMed

    McGhee, S M; Ho, L M; Lapsley, H M; Chau, J; Cheung, W L; Ho, S Y; Pow, M; Lam, T H; Hedley, A J

    2006-04-01

    Costs of tobacco-related disease can be useful evidence to support tobacco control. In Hong Kong we now have locally derived data on the risks of smoking, including passive smoking. To estimate the health-related costs of tobacco from both active and passive smoking. Using local data, we estimated active and passive smoking-attributable mortality, hospital admissions, outpatient, emergency and general practitioner visits for adults and children, use of nursing homes and domestic help, time lost from work due to illness and premature mortality in the productive years. Morbidity risk data were used where possible but otherwise estimates based on mortality risks were used. Utilisation was valued at unit costs or from survey data. Work time lost was valued at the median wage and an additional costing included a value of USD 1.3 million for a life lost. In the Hong Kong population of 6.5 million in 1998, the annual value of direct medical costs, long term care and productivity loss was USD 532 million for active smoking and USD 156 million for passive smoking; passive smoking accounted for 23% of the total costs. Adding the value of attributable lives lost brought the annual cost to USD 9.4 billion. The health costs of tobacco use are high and represent a net loss to society. Passive smoking increases these costs by at least a quarter. This quantification of the costs of tobacco provides strong motivation for legislative action on smoke-free areas in the Asia Pacific Region and elsewhere.

  18. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    NASA Technical Reports Server (NTRS)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  19. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; hide

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  20. Low-Cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, 0.5-1 meter ground apertures are required for near-Earth laser communications. Low-cost ground apertures with equivalent diameters greater than 10 meters are desired for deep-space communications. This presentation focuses on identifying schemes to lower the cost of constructing networks of large apertures while continuing to meet the requirements for laser communications. The primary emphasis here is on the primary mirror. A slumped glass spherical mirror, along with passive secondary mirror corrector and active adaptive optic corrector show promise as a low-cost alternative to large diameter monolithic apertures. To verify the technical performance and cost estimate, development of a 1.5-meter telescope equipped with gimbal and dome is underway.

  1. SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms

    NASA Technical Reports Server (NTRS)

    Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew

    2015-01-01

    The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.

  2. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 < z < 1.0 and stellar mass range 10 < log (Mstar/M⊙) < 12, the D4000 index increases with redshift, while HδA gets lower. This implies that the stellar populations are getting older with increasing stellar mass. Comparison to the spectra of passive red galaxies in the SDSS survey (z 0.2) shows that the shape of the relations of D4000 and HδA with stellar mass has not changed significantly with redshift. Assuming a single burst formation, this implies that high-mass passive red galaxies formed their stars at zform 1.7, while low-mass galaxies formed their main stellar populations

  3. Integration of a Decentralized Linear-Quadratic-Gaussian Control into GSFC's Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Carpenter, J. Russell

    1999-01-01

    A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and

  4. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  5. Formation Flying: The Future of Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2004-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to little or no greater size than that of the Hubble Space Telescope, the largest aperture currently flying in space. Systems under formulation today, such as the James Webb Space Telescope will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by our ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This paper provides some basic definitions in the area of formation flying, describes some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  6. Navigation Algorithms for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Huxel, Paul J.; Bishop, Robert H.

    2004-01-01

    The objective of the investigations is to develop navigation algorithms to support formation flying missions. In particular, we examine the advantages and concerns associated with the use of combinations of inertial and relative measurements, as well as address observability issues. In our analysis we consider the interaction between measurement types, update frequencies, and trajectory geometry and their cumulative impact on observability. Furthermore, we investigate how relative measurements affect inertial navigation in terms of algorithm performance.

  7. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  8. External occulter laboratory demonstrator for the forthcoming formation flying coronagraphs.

    PubMed

    Landini, Federico; Vives, Sébastien; Venet, Mélanie; Romoli, Marco; Guillon, Christophe; Fineschi, Silvano

    2011-12-20

    The design and optimization of the external occulter geometry is one of the most discussed topics among solar coronagraph designers. To improve the performance of future coronagraphs and to stretch their inner fields of view toward the solar limb, the new concept of coronagraphs in formation flight has been introduced in the scientific debate. Solar coronagraphs in formation flight require several mechanical and technological constraints to be met, mainly due to the large dimension of the occulter and to the spacecraft's reciprocal alignment. The occulter edge requires special attention to minimize diffraction while being compatible with the handling and integrating of large delicate space components. Moreover, it is practically impossible to set up a full-scale model for laboratory tests. This article describes the design and laboratory tests on a demonstrator for a coronagraph to be operated in formation flight. The demonstrator is based on the principle of the linear edge, thus the presented results cannot be directly extrapolated to the case of the flying circular occulter. Nevertheless, we are able to confirm the results of other authors investigating on smaller coronagraphs and provide further information on the geometry and tolerances of the optimization system. The described work is one of the results of the ESA STARTIGER program on formation flying coronagraphs ["The STARTIGER's demonstrators: toward a new generation of formation flying solar coronagraphs," in 2010 International Conference on Space Optics (ICSO) (2010), paper 39].

  9. DSMS investment in support of satellite constellations and formation flying

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    2003-01-01

    Over the years, NASA has supported unmanned space missions, beyond earth orbit, through a Deep Space Mission System (DSMS) that is developed and operated by the Jet Propulsion Laboratory (JPL) and subcontractors. The DSMS capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered primarily through three Deep Space Communications Complexes (DSCC 's) near Goldstone, California, Madrid, Spain, and Canberra, Australia and from facilities at JPL. Traditionally, mission support (tracking, command, telemetry, etc) is assigned on an individual-mission basis, between each mission and a ground-based asset, independent of other missions. As NASA, and its international partners, move toward flying fullconstellations and precision formations, the DSMS is developing plans and technologies to provide the requisite support. The key activities under way are: (1) integrated communications architecture for Mars exploration, including relays on science orbiters and dedicated relay satellites to provide continuous coverage for orbiters, landers and rovers. JPL is developing an architecture, as well as protocols and equipment, required for the cost-effective operations of such an infrastructure. (2) Internet-type protocols that will allow for efficient operations across the deep-space distances, accounting for and accommodating the long round-trip-light-time. JPL is working with the CCSDS to convert these protocols to an international standard and will deploy such protocol, the CCSDS File Delivery Protocol (CFDP), on the Mars Reconnaissance Orbiter (MRO) and on the Deep Impact (01) missions. (3) Techniques to perform cross-navigation between spacecrafi that fly in a loose formation. Typical cases are cross-navigation between missions that approach Mars and missionsthat are at Mars, or the determination of a baseline for missions that fly in an earth-lead- lag configuration. (4) Techniques and devices that allow the precise metrology and

  10. 'No cost of echolocation for flying bats' revisited.

    PubMed

    Voigt, Christian C; Lewanzik, Daniel

    2012-08-01

    Echolocation is energetically costly for resting bats, but previous experiments suggested echolocation to come at no costs for flying bats. Yet, previous studies did not investigate the relationship between echolocation, flight speed, aerial manoeuvres and metabolism. We re-evaluated the 'no-cost' hypothesis, by quantifying the echolocation pulse rate, the number of aerial manoeuvres (landings and U-turns), and the costs of transport in the 5-g insectivorous bat Rhogeessa io (Vespertilionidae). On average, bats (n = 15) travelled at 1.76 ± 0.36 m s⁻¹ and performed 11.2 ± 6.1 U-turns and 2.8 ± 2.9 ground landings when flying in an octagonal flight cage. Bats made more U-turns with decreasing wing loading (body weight divided by wing area). At flight, bats emitted 19.7 ± 2.7 echolocation pulses s⁻¹ (range 15.3-25.8 pulses s⁻¹), and metabolic rate averaged 2.84 ± 0.95 ml CO₂ min⁻¹, which was more than 16 times higher than at rest. Bats did not echolocate while not engaged in flight. Costs of transport were not related to the rate of echolocation pulse emission or the number of U-turns, but increased with increasing number of landings; probably as a consequence of slower travel speed when staying briefly on ground. Metabolic power of flight was lower than predicted for R. io under the assumption that energetic costs of echolocation call production is additive to the aerodynamic costs of flight. Results of our experiment are consistent with the notion that echolocation does not add large energetic costs to the aerodynamic power requirements of flight in bats.

  11. Network Configuration Analysis for Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.

    2001-01-01

    The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  12. Wing attachment position of fruit fly minimizes flight cost

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.

  13. A Concept for In-space, System-level Validation of Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Carpenter, J. Russell; Naasz, Bo J.; Scharf, Daniel P.; Hadaegh, Fred Y.; Ahmed, Asif

    2007-01-01

    A number of international space agencies and organizations, to include the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Centre National d'Etudes Spatiales (CNES), to name a few, have embraced the concept of spacecraft formation flying to revolutionize the capabilities of astronomy and Earth remote sensing from space. The concept has been around well over a decade and a wide array of technologies and capabilities have been developed to enable multiple spacecraft to collaborate in a highly-coupled manner as would be required for a formation flying mission. Furthermore, many relevant capabilities for formation flying have been demonstrated in the area of rendezvous and docking, loosely-controlled formations, and in missions with collaborating spacecraft with very precise metrology. .However, in considering the case of precision formation flying (PFF), i.e, when the relative geometry of multiple vehicles must be controlled on-board in a continuous and precise manner, there have been several missions proposed, but the realization in space has not yet occurred due to a range of issues. This paper will briefly examine those issues and present a concept for demonstrating a core capability for performing PFF, necessary for virtually any PFF mission concept, that will help to overcome the problems encountered in prior attempts and help to allay the risks to enable future PFF science missions.

  14. Relative Sensor with 4(pi) Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Sirinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA's Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six 'collectors' with IR telescopes, and a 'combiner') flying in precise formation within f 1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  15. Relative Sensor with 4Pi Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Srinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA s Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six "collectors" with IR telescopes, and a "combiner") flying in precise formation within +/-1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  16. HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Martin, Bryan J.; Sohl, Garett A.

    2003-01-01

    This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.

  17. Formation flying benefits based on vortex lattice calculations

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1977-01-01

    A quadrilateral vortex-lattice method was applied to a formation of three wings to calculate force and moment data for use in estimating potential benefits of flying aircraft in formation on extended range missions, and of anticipating the control problems which may exist. The investigation led to two types of formation having virtually the same overall benefits for the formation as a whole, i.e., a V or echelon formation and a double row formation (with two staggered rows of aircraft). These formations have unequal savings on aircraft within the formation, but this allows large longitudinal spacings between aircraft which is preferable to the small spacing required in formations having equal benefits for all aircraft. A reasonable trade-off between a practical formation size and range benefit seems to lie at about three to five aircraft with corresponding maximum potential range increases of about 46 percent to 67 percent. At this time it is not known what fraction of this potential range increase is achievable in practice.

  18. Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Günther, Annika; Dias, Diogo; Mendes, Benilde

    2014-06-15

    The main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb(2+) were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation-flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid - S/L - ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation-flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation-flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Textured digital elevation model formation from low-cost UAV LADAR/digital image data

    NASA Astrophysics Data System (ADS)

    Bybee, Taylor C.; Budge, Scott E.

    2015-05-01

    Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k) UAV system fitted with ladar and electro-optical (EO) sensors. A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image. This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.

  20. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  1. Networks for Autonomous Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  2. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.

  3. Formation Flying of Components of a Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Quadrelli, Marco; Breckenridge, William

    2009-01-01

    A conceptual space telescope having an aperture tens of meters wide and a focal length of hundreds of meters would be implemented as a group of six separate optical modules flying in formation: a primary-membrane-mirror module, a relay-mirror module, a focal-plane-assembly module containing a fast steering mirror and secondary and tertiary optics, a primary-mirror-figure-sensing module, a scanning-electron-beam module for controlling the shape of the primary mirror, and a sunshade module. Formation flying would make it unnecessary to maintain the required precise alignments among the modules by means of an impractically massive rigid structure. Instead, a control system operating in conjunction with a metrology system comprising optical and radio subsystems would control the firing of small thrusters on the separate modules to maintain the formation, thereby acting as a virtual rigid structure. The control system would utilize a combination of centralized- and decentralized-control methods according to a leader-follower approach. The feasibility of the concept was demonstrated in computational simulations that showed that relative positions could be maintained to within a fraction of a millimeter and orientations to within several microradians.

  4. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing.

    PubMed

    Ishihara, D; Yamashita, Y; Horie, T; Yoshida, S; Niho, T

    2009-12-01

    We have studied the passive maintenance of high angle of attack and its lift generation during the crane fly's flapping translation using a dynamically scaled model. Since the wing and the surrounding fluid interact with each other, the dynamic similarity between the model flight and actual insect flight was measured using not only the non-dimensional numbers for the fluid (the Reynolds and Strouhal numbers) but also those for the fluid-structure interaction (the mass and Cauchy numbers). A difference was observed between the mass number of the model and that of the actual insect because of the limitation of available solid materials. However, the dynamic similarity during the flapping translation was not much affected by the mass number since the inertial force during the flapping translation is not dominant because of the small acceleration. In our model flight, a high angle of attack of the wing was maintained passively during the flapping translation and the wing generated sufficient lift force to support the insect weight. The mechanism of the maintenance is the equilibrium between the elastic reaction force resulting from the wing torsion and the fluid dynamic pressure. Our model wing rotated quickly at the stroke reversal in spite of the reduced inertial effect of the wing mass compared with that of the actual insect. This result could be explained by the added mass from the surrounding fluid. Our results suggest that the pitching motion can be passive in the crane fly's flapping flight.

  5. The Influence of Varying Cost Formats on Preferences

    PubMed Central

    Jiang, Charles Changchuan; Fraenkel, Liana

    2016-01-01

    Background Numerous studies have found that cost strongly influences patients’ decision-making. The objective of this study was to explore the impact of varying cost formats on patients’ preferences. Methods Mechanical Turk workers completed a choice based conjoint (CBC) analysis survey. The CBC survey was designed to examine stated preferences for second line agents used to treat diabetes using five attributes: route of administration, efficacy, risk of low blood sugar, frequency of checking blood sugar levels and cost. We developed seven versions of the CBC survey which were identical except for the cost attribute. We described cost in terms of: Affordability, Monthly co-pay, Dollar Sign Rating, How Expensive or How Cheap compared to other medications, Monthly Co-pay, Working Hours Equivalent (per month) and Percent of Monthly Income. The resulting part-worth utilities were used to calculate the relative importance of cost and to estimate treatment preferences for a sulfonylurea, exenatide and insulin. Results The relative impact of cost varied significantly across the seven formats. Cost had the greatest influence on participants’ decisions when framed in terms of Affordability [mean (SD) relative importance = 37.3 (0.9)] and the lowest influence when framed in terms of How Cheap (compared to other drugs) [mean (SD) relative importance= 12.1 (0.9)]. A sulfonylurea was strongly preferred across four of the seven formats. Preference for insulin, the most effective, albeit riskiest option, was low across all cost formats. Conclusions The format used to describe cost influences how this attribute impacts patients’ preferences. Individuals are most cost-sensitive when cost is framed in terms of affordability and least cost-sensitive when cost is described in terms of how cheap the medication is compared to others. PMID:27856826

  6. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    PubMed

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  7. Just How Much Does That Cost, Anyway? An Analysis of the Financial Costs and Benefits of the No-Fly List

    DTIC Science & Technology

    2009-01-01

    easier and more streamlined airport security checkpoint experience. Having outlined the key aspects of the no-fly list, the article will now turn...attempts to fly, he/she is stopped at the airport by local law enforcement and airport security . Having identified how many false positives there are in a...activities: the cost of the passenger being detained at the airport and missing his/her flight; the cost of airport security /personnel detaining the

  8. High volumes fly ash engineered cementitious composites with cost-effective PVA fiber

    NASA Astrophysics Data System (ADS)

    Yu, Dianyou; Xu, Zhichao; Liu, Yingchun

    2018-03-01

    A feasibility study of engineered cementitous composites (ECC) using the cost-effective PVA fiber (CEPVA-ECC) was developed based on the micromechanical design theory in order to reduce the cost of ECC. Different amounts of fly ash replacement (up to 83% replacement of cement) was utilized in CEPVA-ECC. The CEPVA-ECC using much cheaper Chinese domestic PVA fiber (1/4˜1/6 price of the imported fiber) maintained the tensile ductility characteristics (4%˜5%) with a moderate compressive strength (30˜40MPa). Moreover, the crack width was reduced with an increase of the fly ash amount.

  9. Pulsed Thrust Method for Hover Formation Flying

    NASA Technical Reports Server (NTRS)

    Hope, Alan; Trask, Aaron

    2003-01-01

    A non-continuous thrust method for hover type formation flying has been developed. This method differs from a true hover which requires constant range and bearing from a reference vehicle. The new method uses a pulsed loop, or pogo, maneuver sequence that keeps the follower spacecraft within a defined box in a near hover situation. Equations are developed for the hover maintenance maneuvers. The constraints on the hover location, pulse interval, and maximum/minimum ranges are discussed.

  10. H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization.

    PubMed

    Wu, Huanan; Zhu, Yu; Bian, Songwei; Ko, Jae Hac; Li, Sam Fong Yau; Xu, Qiyong

    2018-03-01

    As a byproduct of municipal solid waste incineration (MSWI) plant, fly ash is becoming a challenge for waste management in recent years. In this study, MSWI fly ash (FA) was evaluated for the potential capacity of odorous gas H 2 S removal. Results showed that fly ash demonstrated longer breakthrough time and higher H 2 S capacities than coal fly ash and sandy soil, due to its high content of alkali oxides of metals including heavy metals. H 2 S adsorption capacities of FA1 and FA2 were 15.89 and 12.59 mg H 2 S/g, respectively for 750 ppm H 2 S. The adsorption of H 2 S on fly ash led to formation of elemental sulfur and metal sulfide. More importantly, the formation of metal sulfide significantly reduced the leachability of heavy metals, such as Cr, Cu, Cd and Pb as shown by TCLP tests. The adsorption isotherms fit well with Langmuir model with the correlation coefficient over 0.99. The adsorption of H 2 S on fly ash features simultaneous H 2 S removal and stabilization and heavy metals found in most MSWI fly ash, making fly ash the potential low cost recycled sorbent material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Autonomous Formation Flying from Ground to Flight

    NASA Technical Reports Server (NTRS)

    Chapman, Keith B.; Dell, Gregory T.; Rosenberg, Duane L.; Bristow, John

    1999-01-01

    The cost of on-orbit operations remains a significant and increasingly visible concern in the support of satellite missions. Headway has been made in automating some ground operations; however, increased mission complexity and more precise orbital constraints have compelled continuing human involvement in mission design and maneuver planning operations. AI Solutions, Inc. in cooperation with the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has tackled these more complex problems through the development of AutoCon as a tool for an automated solution. NASA is using AutoCon to automate the maneuver planning for the Earth Orbiter-1 (EO-1) mission. AutoCon was developed originally as a ground system tool. The EO-1 mission will be using a scaled version of AutoCon on-board the EO-1 satellite to command orbit adjustment maneuvers. The flight version of AutoCon plans maneuvers based on formation flying algorithms developed by GSFC, JPL, and other industry partners. In its fully autonomous mode, an AutoCon planned maneuver will be executed on-board the satellite without intervention from the ground. This paper describes how AutoCon automates maneuver planning for the formation flying constraints of the EO-1 mission. AutoCon was modified in a number of ways to automate the maneuver planning on-board the satellite. This paper describes how the interface and functionality of AutoCon were modified to support the on-board system. A significant component of this modification was the implementation of a data smoother, based on a Kalman filter, that ensures that the spacecraft states estimated by an on-board GPS receiver are as accurate as possible for maneuver planning. This paper also presents the methodology use to scale the AutoCon functionality to fit and execute on the flight hardware. This paper also presents the modes built that allow the incremental phasing in of autonomy. New technologies for autonomous operations are usually

  12. Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Hart, Roger; Hunt, Chris; Burns, Rich D.

    2003-01-01

    Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.

  13. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  14. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  15. Integration of Libration Point Orbit Dynamics into a Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.

  16. A network architecture for precision formation flying using the IEEE 802.11 MAC Protocol

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Gao, Jay L.; Jennings, Esther H.; Okino, Clayton

    2005-01-01

    Precision Formation Flying missions involve the tracking and maintenance of spacecraft in a desired geometric formation. The strong coupling of spacecraft in formation flying control requires inter-spacecraft communication to exchange information. In this paper, we present a network architecture that supports PFF control, from the initial random deployment phase to the final formation. We show that a suitable MAC layer for the application protocol is IEEE's 802.11 MAC protocol. IEEE 802.11 MAC has two modes of operations: DCF and PCF. We show that DCF is suitable for the initial deployment phase while switching to PCF when the spacecraft are in formation improves jitter and throughput. We also consider the effect of routing on protocol performance and suggest when it is profitable to turn off route discovery to achieve better network performance.

  17. SPHERES: Design of a Formation Flying Testbed for ISS

    NASA Astrophysics Data System (ADS)

    Sell, S. W.; Chen, S. E.

    2002-01-01

    The SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) payload is an innovative formation-flying spacecraft testbed currently being developed for use internally aboard the International Space Station (ISS). The purpose of the testbed is to provide a cost-effective, long duration, replenishable, and easily reconfigurable platform with representative dynamics for the development and validation of metrology, formation flying, and autonomy algorithms. The testbed components consist of three 8-inch diameter free-flying "satellites," five ultrasound beacons, and an ISS laptop workstation. Each satellite is self-contained with on-board battery power, cold-gas propulsion (CO2), and processing systems. Satellites use two packs of eight standard AA batteries for approximately 90 minutes of lifetime while beacons last the duration of the mission powered by a single AA battery. The propulsion system uses pressurized carbon dioxide gas, stored in replaceable tanks, distributed through an adjustable regulator and associated tubing to twelve thrusters located on the faces of the satellites. A Texas Instruments C6701 DSP handles control algorithm data while an FPGA manages all sensor data, timing, and communication processes on the satellite. All three satellites communicate with each other and with the controlling laptop via a wireless RF link. Five ultrasound beacons, located around a predetermined work area, transmit ultrasound signals that are received by each satellite. The system effectively acts as a pseudo-GPS system, allowing the satellites to determine position and attitude and to navigate within the test arena. The payload hardware are predominantly Commercial Off The Shelf (COTS) products with the exception of custom electronics boards, selected propulsion system adaptors, and beacon and satellite structural elements. Operationally, SPHERES will run in short duration test sessions with approximately two weeks between each session. During

  18. Looking Back and Looking Forward: Reprising the Promise and Predicting the Future of Formation Flying and Spaceborne GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Dennehy, Neil

    2015-01-01

    A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade.

  19. Exploiting Formation Flying for Fuel Saving Supersonic Oblique Wing Aircraft

    DTIC Science & Technology

    2007-07-01

    used and developed during recent wing / winglet / morphing design programmes (Refs.13-14). By exploiting this method, we have assessed the aerodynamics...with winglets ”, AIAA-2006-3460. 25th Applied Aero Conference, San Francisco, June 2006. 15. NANGIA, R.K., PALMER, M.E., “Formation Flying of Commercial

  20. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  1. FliO Regulation of FliP in the Formation of the Salmonella enterica Flagellum

    PubMed Central

    Barker, Clive S.; Meshcheryakova, Irina V.; Kostyukova, Alla S.; Samatey, Fadel A.

    2010-01-01

    The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO43–125 or FliO1–95 was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO43–125, should contain beta-structure and alpha-helices. FliO43–125-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners. PMID:20941389

  2. Passive detection of subpixel obstacles for flight safety

    NASA Astrophysics Data System (ADS)

    Nixon, Matthew D.; Loveland, Rohan C.

    2001-12-01

    Military aircraft fly below 100 ft. above ground level in support of their missions. These aircraft include fixed and rotary wing and may be manned or unmanned. Flying at these low altitudes presents a safety hazard to the aircrew and aircraft, due to the occurrences of obstacles within the aircraft's flight path. The pilot must rely on eyesight and in some cases, infrared sensors to see obstacles. Many conditions can exacerbate visibility creating a situation in which obstacles are essentially invisible, creating a safety hazard, even to an alerted aircrew. Numerous catastrophic accidents have occurred in which aircraft have collided with undetected obstacles. Accidents of this type continue to be a problem for low flying military and commercial aircraft. Unmanned Aerial Vehicles (UAVs) have the same problem, whether operating autonomously or under control of a ground operator. Boeing-SVS has designed a passive, small, low- cost (under $100k) gimbaled, infrared imaging based system with advanced obstacle detection algorithms. Obstacles are detected in the infrared band, and linear features are analyzed by innovative cellular automata based software. These algorithms perform detection and location of sub-pixel linear features. The detection of the obstacles is performed on a frame by frame basis, in real time. Processed images are presented to the aircrew on their display as color enhanced features. The system has been designed such that the detected obstacles are displayed to the aircrew in sufficient time to react and maneuver the aircraft to safety. A patent for this system is on file with the US patent office, and all material herein should be treated accordingly.

  3. Distributed control topologies for deep space formation flying spacecraft

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Smith, R. S.

    2002-01-01

    A formation of satellites flying in deep space can be specified in terms of the relative satellite positions and absolute satellite orientations. The redundancy in the relative position specification generates a family of control topologies with equivalent stability and reference tracking performance, one of which can be implemented without requiring communication between the spacecraft. A relative position design formulation is inherently unobservable, and a methodology for circumventing this problem is presented. Additional redundancy in the control actuation space can be exploited for feed-forward control of the formation centroid's location in space, or for minimization of total fuel consumption.

  4. Flight demonstration of formation flying capabilities for future missions (NEAT pathfinder)

    NASA Astrophysics Data System (ADS)

    Delpech, M.; Malbet, F.; Karlsson, T.; Larsson, R.; Léger, A.; Jorgensen, J.

    2014-12-01

    PRISMA is a demonstration mission for formation-flying and on-orbit-servicing critical technologies that involves two spacecraft launched in low Earth orbit in June 2010 and still in operation. Funded by the Swedish National Space Board, PRISMA mission has been developed by OHB-Sweden (formerly Swedish Space Corporation) with important contributions from the German Aerospace Centre (DLR/GSOC), the French Space Agency (CNES), and the Technical University of Denmark (DTU). The paper focuses on the last CNES experiment achieved in September 2012 that was devoted to the preparation of future astrometry missions illustrated by the NEAT and μ-NEAT mission concepts. The experiment consisted of performing the type of formation maneuvers required to point the two-satellite axis to a celestial target and maintain it fixed during the observation period. Achieving inertial pointing for a LEO formation represented a new challenge given the numerous constraints from propellant usage to star tracker blinding. The paper presents the experiment objectives in relation with the NEAT/μ-NEAT mission concept, describes its main design features along with the guidance and control algorithms evolutions and discusses the results in terms of performances achieved during the two rehearsals.

  5. Cost-effective parallel optical interconnection module based on fully passive-alignment process

    NASA Astrophysics Data System (ADS)

    Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

    2017-11-01

    In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

  6. Autonomous Formation Flying from the Ground to Flight

    NASA Technical Reports Server (NTRS)

    Chapman, Keith B.; Dell, Gregory T.; Rosenberg, Duane L.; Bristow, John

    1999-01-01

    The cost of on-orbit operations remains a significant and increasingly visible concern in the support of satellite missions. Headway has been made in automating some ground operations; however, increased mission complexity and more precise orbital constraints have compelled continuing human involvement in mission design and maneuver planning operations. AI Solutions, Inc. in cooperation with the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has tackled these more complex problems through the development of AutoCon(TM) as a tool for an automated solution. NASA is using AutoCon(TM) to automate the maneuver planning for the Earth Orbiter-1 (EO-1) mission. AutoCon(TM) was developed originally as a ground system tool. The EO-1 mission will be using a scaled version of AutoCon(TM) on-board the EO-1 satellite to command orbit adjustment maneuvers. The flight version of AutoCon(TM) plans maneuvers based on formation flying algorithms developed by GSFC, JPL, and other industry partners. In its fully autonomous mode, an AutoCon(TM) planned maneuver will be executed on-board the satellite without intervention from the ground. This paper describes how AutoCon(TM) automates maneuver planning for the formation flying constraints of the EO-1 mission. AutoCon(TM) was modified in a number of ways to automate the maneuver planning on-board the satellite. This paper describes how the interface and functionality of AutoCon(TM) were modified to support the on-board system. A significant component of this modification was the implementation of a data smoother, based on a Kalman filter, that ensures that the spacecraft states estimated by an on-board GPS receiver are as accurate as possible for maneuver planning. This paper also presents the methodology used to scale the AutoCon(TM) functionality to fit and execute on the flight hardware. This paper also presents the modes built into the system that allow the incremental phasing in of autonomy

  7. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    PubMed

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH < 2.5 V), which show more than a 30% improvement over the simple DUV-treated a-IGZO TFTs.

  8. Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission

    NASA Technical Reports Server (NTRS)

    Cayeux, P.; Raballand, F.; Borde, J.; Berges, J.-C.; Meyssignac, B.

    2007-01-01

    Within the framework of a partnership agreement, EADS ASTRIUM has worked since June 2006 for the CNES formation flying experiment on the PRISMA mission. EADS ASTRIUM is responsible for the anti-collision function. This responsibility covers the design and the development of the function as a Matlab/Simulink library, as well as its functional validation and performance assessment. PRISMA is a technology in-orbit testbed mission from the Swedish National Space Board, mainly devoted to formation flying demonstration. PRISMA is made of two micro-satellites that will be launched in 2009 on a quasi-circular SSO at about 700 km of altitude. The CNES FFIORD experiment embedded on PRISMA aims at flight validating an FFRF sensor designed for formation control, and assessing its performances, in preparation to future formation flying missions such as Simbol X; FFIORD aims as well at validating various typical autonomous rendezvous and formation guidance and control algorithms. This paper presents the principles of the collision avoidance function developed by EADS ASTRIUM for FFIORD; three kinds of maneuvers were implemented and are presented in this paper with their performances.

  9. Understanding the Sun-Earth Libration Point Orbit Formation Flying Challenges For WFIRST and Starshade

    NASA Technical Reports Server (NTRS)

    Webster, Cassandra M.; Folta, David C.

    2017-01-01

    In order to fly an occulter in formation with a telescope at the Sun-Earth L2 (SEL2) Libration Point, one must have a detailed understanding of the dy-namics that govern the restricted three body system. For initial purposes, a linear approximation is satisfactory, but operations will require a high-fidelity modeling tool along with strategic targeting methods in order to be successful. This paper focuses on the challenging dynamics of the transfer trajectories to achieve the relative positioning of two spacecraft to fly in formation at SEL2, in our case, the Wide-Field Infrared Survey Telescope (WFIRST) and a proposed Starshade. By modeling the formation transfers using a high fidelity tool, an accurate V approximation can be made to as-sist with the development of the subsystem design required for a WFIRST and Starshade formation flight mission.

  10. Trends in Nonfatal Agricultural Injury in Maine and New Hampshire: Results From a Low-Cost Passive Surveillance System.

    PubMed

    Scott, Erika; Bell, Erin; Hirabayashi, Liane; Krupa, Nicole; Jenkins, Paul

    2017-01-01

    Agriculture is a dangerous industry, and although data on fatal injuries exist, less is known about nonfatal injuries. The purpose of this study is to describe trends in agricultural morbidity in Maine and New Hampshire from 2008 to 2010 using a newly established passive surveillance system. This passive system is supplied by injury cases gathered from prehospital care reports and hospital data. Demographics and specifics of the event were recorded for each incident case. The average age of injured people in Maine and New Hampshire was 41.7. Women constituted 43.8% of all agricultural injuries. Machinery- (n = 303) and animal- (n = 523) related injuries accounted for most agricultural incidents. Of all injured women, over 60% sustained injuries due to animal-related causes. Agricultural injuries were spread across the two states, with clustering in southern New Hampshire and south central Maine, with additional injuries in the Aroostook County area, which is located in the northeast part of the state. Seasonal variation in agricultural injuries was evident with peaks in the summer months. There was some overlap between the agricultural and logging industry for tree-related work. Our methods are able to capture traumatic injury in agriculture in sufficient detail to prioritize interventions and to evaluate outcomes. The system is low-cost and has the potential to be sustained over a long period. Differences in rates of animal- and machinery-related injuries suggest the need for state-specific safety prioritization.

  11. Time-Varying Expression of the Formation Flying along Circular Trajectories

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Jun'ichiro

    2007-01-01

    Usually, the formation flying associated with circular orbits is discussed through the well-known Hill s or C-W equations of motion. This paper dares to present and discuss the coordinates that may contain time-varying coefficients. The discussion presents how the controller s performance is affected by the selection of coordinates, and also looks at the special coordinate suitable for designating a target bin to which each spacecraft in the formation has only to be guided. It is revealed that the latter strategy may incorporate the J2 disturbance automatically.

  12. Low Cost and Flexible UAV Deployment of Sensors

    PubMed Central

    Sørensen, Lars Yndal; Jacobsen, Lars Toft; Hansen, John Paulin

    2017-01-01

    This paper presents a platform for airborne sensor applications using low-cost, open-source components carried by an easy-to-fly unmanned aircraft vehicle (UAV). The system, available in open-source , is designed for researchers, students and makers for a broad range of exploration and data-collection needs. The main contribution is the extensible architecture for modularized airborne sensor deployment and real-time data visualisation. Our open-source Android application provides data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The flexibility of the system is illustrated by mapping the location of Bluetooth beacons (iBeacons) on a ground field and by measuring water temperature in a lake. PMID:28098819

  13. Low Cost and Flexible UAV Deployment of Sensors.

    PubMed

    Sørensen, Lars Yndal; Jacobsen, Lars Toft; Hansen, John Paulin

    2017-01-14

    This paper presents a platform for airborne sensor applications using low-cost, open-source components carried by an easy-to-fly unmanned aircraft vehicle (UAV). The system, available in open-source , is designed for researchers, students and makers for a broad range of exploration and data-collection needs. The main contribution is the extensible architecture for modularized airborne sensor deployment and real-time data visualisation. Our open-source Android application provides data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The flexibility of the system is illustrated by mapping the location of Bluetooth beacons (iBeacons) on a ground field and by measuring water temperature in a lake.

  14. A Novel Approach for a Low-Cost Deployable Antenna

    NASA Technical Reports Server (NTRS)

    Amend, Chris; Nurnberger, Michael; Oppenheimer, Paul; Koss, Steve; Purdy, Bill

    2010-01-01

    The Naval Research Laboratory (NRL) has designed, built, and fully qualified a low cost, low Passive Intermodulation (PIM) 12-foot (3.66-m) diameter deployable ultra high frequency (UHF) antenna for the Tacsat-4 program. The design utilized novel approaches in reflector material and capacitive coupling techniques. This paper discusses major design trades, unique design characteristics, and lessons learned from the development of the Tacsat 4 deployable antenna. This antenna development was sponsored by the Office of Naval Research.

  15. Multiple mechanisms quench passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  16. Passivation layer breakdown during laser-fired contact formation for photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, A.; DebRoy, T.; Palmer, T. A.

    2014-07-14

    Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less

  17. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal; Wette, Matthew R.

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near the second Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality needed for the TPF-I formation and that will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of FACS and discuss in detail its formation estimation, guidance and control architectures and algorithms. Since FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  18. An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Hadaegh, Fred Y.; Rahman, Zahidul H.; Shields, Joel F.; Singh, Gurkipal

    2004-01-01

    The Terrestrial Planet Finder formation flying Interferometer (TPF-I) will be a five-spacecraft, precision formation operating near a Sun-Earth Lagrange point. As part of technology development for TPF-I, a formation and attitude control system (FACS) is being developed that achieves the precision and functionality associated with the TPF-I formation. This FACS will be demonstrated in a distributed, real-time simulation environment. In this paper we present an overview of the FACS and discuss in detail its constituent formation estimation, guidance and control architectures and algorithms. Since the FACS is currently being integrated into a high-fidelity simulation environment, component simulations demonstrating algorithm performance are presented.

  19. Compact handheld low-cost biosensor platform for remote health monitoring

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Gailly, P.; Jans, H.; Huang, C.; Lagae, L.; Kokkinos, D.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab. The microfluidic path of the biochip operates in passive capillary pumping mode. In the proof-of-concept prototype, we address specifically the sensing format involving Surface Plasmon Resonance phenomenon. The biochip is plugged in the readout device without the use of an index matching fluid. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications.

  20. Flying an Autonomous Formation Flight mission, two F/A-18s from the NASA Dryden Flight Research Cent

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flying an Autonomous Formation Flight mission, two F/A-18's from the NASA Dryden Flight Research Center, Edwards, California, gain altitude near Rogers Dry Lake. The Systems Research Aircraft (tail number 845) and F/A-18 tail number 847 are flying the second phase of a project that is demonstrating a 15-percent fuel savings of the trailing aircraft during cruise flight. Project goal was a 10-percent savings. The drag-reduction study mimics the formation of migrating birds. Scientists have known for years that the trailing birds require less energy than flying solo.

  1. A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.

  2. DIOXIN AND FURAN FORMATION ON FLY ASH FROM A MIXTURE OF CHLOROPHENOLS

    EPA Science Inventory

    To establish the relationship between specific chlorophenol (CP) congener distributions and polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) products this work investigated the formation of PCDDs/Fs from different CP mixtures passed over fly ash under selected reaction ...

  3. Design and implementation of satellite formations and constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(TM) and FreeFlyer(TM) with various fidelity levels of modeling and algorithms are presented.

  4. Design and Implementation of Satellite Formations and Constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(Trademark) and FreeFlyer(Trademark) with various fidelity levels of modeling and algorithms are presented.

  5. Passive Gust Alleviation for a Flying Wing Aircraft

    DTIC Science & Technology

    2013-01-10

    250 Poisson ratio - 0.3 Density g/cm 3 ρ 1.57 Ply thickness mm t 0.131 Fibre volume % Vf 57.7 Once the material was chosen, the initial...high aspect ratio in flying wing configuration. It is aimed at minimizing the gust response of the aircraft by using the PGAD integrated at the wing... ratio in flying wing configuration. It is aimed at minimizing the gust response of the aircraft by using the PGAD integrated at the wing tip. The

  6. Deep influence of passive low energy consumption multi-storey residential building in cold region

    NASA Astrophysics Data System (ADS)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  7. Low cost Earth attitude sensor

    NASA Astrophysics Data System (ADS)

    Liberati, Fabrizio; Perrotta, Giorgio; Verzegnassi, Fulvia

    2017-11-01

    A patent-pending, low-cost, moderate performance, Earth Attitude Sensor for LEO satellites is described in this paper. The paper deals with the system concepts, the technology adopted and the simulation results. The sensor comprises three or four narrow field of view mini telescopes pointed towards the Earth edge to detect and measure the variation of the off-nadir angle of the Earth-to-black sky transition using thermopile detectors suitably placed in the foci of the optical min telescopes. The system's innovation consists in the opto-mechanical configuration adopted that is sturdy and has no moving parts being , thus, inherently reliable. In addition, with a view to reducing production costs, the sensor does without hi-rel and is instead mainly based on COTS parts suitably chosen. Besides it is flexible and can be adapted to perform attitude measurement onboard spacecraft flying in orbits other than LEO with a minimum of modifications to the basic design. At present the sensor is under development by IMT and OptoService.

  8. Gehlenite and anorthite formation from fluid fly ash

    NASA Astrophysics Data System (ADS)

    Perná, Ivana; Šupová, Monika; Hanzlíček, Tomáš

    2018-04-01

    Fluid fly ash could be considered a waste, but, when well treated, it may also become a useful secondary source material. Its rather high content of calcium-containing phases along with thermally treated alumino-silicate residues resulting from coal combustion can lead to the formation of a stable system with newly formatted phases. The high temperature destroys the clay lattice and activates a new configuration of aluminum ions, changing their coordination to oxygen. The effect is accompanied by changes in charge in the surroundings, which are compensated for by calcium ions. The higher the temperature of the fluid ash treatment, the more pronounced the appearance of gehlenite and anorthite in the final mass. Both are natural materials and, together with mullite and anhydrite, they could ensure safety and protection even if exposed to open fire of up to 1150 °C.

  9. Technology for low-cost PIR security sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2008-03-01

    Current passive infrared (PIR) security sensors employing pyroelectric detectors are simple, cheap and reliable, but have several deficiencies. These sensors, developed two decades ago, are essentially short-range moving-target hotspot detectors. They cannot detect slow temperature changes, and thus are unable to respond to radiation stimuli indicating potential danger such as overheating electrical appliances and developing fires. They have a poor optical resolution and limited ability to recognize detected targets. Modern uncooled thermal infrared technology has vastly superior performance but as yet is too costly to challenge the PIR security sensor market. In this paper microbolometer technology will be discussed which can provide enhanced performance at acceptable cost. In addition to security sensing the technology has numerous applications in the military, industrial and domestic markets where target range is short and low cost is paramount.

  10. Cost-benefit analysis of passive fire protections in road LPG transportation.

    PubMed

    Paltrinieri, Nicola; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio

    2012-02-01

    The cost-benefit evaluation of passive fire protection adoption in the road transport of liquefied petroleum gas (LPG) was investigated. In a previous study, mathematical simulations of real scale fire scenarios proved the effectiveness of passive fire protections in preventing the "fired" boiling liquid expanding vapor explosion (BLEVE), thus providing a significant risk reduction. In the present study the economical aspects of the adoption of fire protections are analyzed and an approach to cost-benefit analysis (CBA) is proposed. The CBA model is based on the comparison of the risk reduction due to fire protections (expressed in monetary terms by the value of a statistical life) and the cost of the application of fire protections to a fleet of tankers. Different types of fire protections were considered, as well as the possibility to apply protections to the entire fleet or only to a part of it. The application of the proposed model to a real-life case study is presented and discussed. Results demonstrate that the adoption of passive fire protections on road tankers, though not compulsory in Europe, can be economically feasible, thus representing a concrete measure to achieve control of the "major hazard accidents" cited by the European legislation. © 2011 Society for Risk Analysis.

  11. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.

    PubMed

    Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang; Vyssotski, Alexei L; Bonadonna, Francesco

    2012-01-01

    Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.

  12. The impact of including passive benefits in cost-effectiveness analysis: the case of automated external defibrillators on commercial aircraft.

    PubMed

    Cram, Peter; Vijan, Sandeep; Wolbrink, Alex; Fendrick, A Mark

    2003-01-01

    Traditional cost-utility analysis assumes that all benefits from health-related interventions are captured by the quality-adjusted life-years (QALYs) gained by the few individuals whose outcome is improved by the intervention. However, it is possible that many individuals who do not directly benefit from an intervention receive utility, and therefore QALYs, because of the passive benefit (aka sense of security) provided by the existence of the intervention. The objective of this study was to evaluate the impact that varying quantities of passive benefit have on the cost-effectiveness of airline defibrillator programs. A decision analytic model with Markov processes was constructed to evaluate the cost-effectiveness of defibrillator deployment on domestic commercial passenger aircraft over 1 year. Airline passengers were assigned small incremental utility gains (.001-.01) during an estimated 3-hour flight to evaluate the impact of passive benefit on overall cost-effectiveness. In the base case analysis with no allowance for passive benefit, the cost-effectiveness of airline automated external defibrillator deployment was US dollars 34000 per QALY gained. If 1% of all passengers received utility gain of.01, the cost-effectiveness declined to US dollars 30000. Cost-effectiveness was enhanced when the quantity of passive benefit was raised or the percentage of individuals receiving passive benefit increased. Automated external defibrillator deployment on passenger aircraft is likely to be cost-effective. If a small percentage of airline passengers receive incremental utility gains from passive benefit of automated external defibrillator availability, the impact on overall cost-effectiveness may be substantial. Further research should attempt to clarify the magnitude and percentage of patients who receive passive benefit.

  13. Designing a Low-Cost Multifunctional Infant Incubator.

    PubMed

    Tran, Kevin; Gibson, Aaron; Wong, Don; Tilahun, Dagmawi; Selock, Nicholas; Good, Theresa; Ram, Geetha; Tolosa, Leah; Tolosa, Michael; Kostov, Yordan; Woo, Hyung Chul; Frizzell, Michael; Fulda, Victor; Gopinath, Ramya; Prasad, J Shashidhara; Sudarshan, Hanumappa; Venkatesan, Arunkumar; Kumar, V Sashi; Shylaja, N; Rao, Govind

    2014-06-01

    Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India. © 2014 Society for Laboratory Automation and Screening.

  14. Sexual harassment induces a temporary fitness cost but does not constrain the acquisition of environmental information in fruit flies.

    PubMed

    Teseo, Serafino; Veerus, Liisa; Moreno, Céline; Mery, Frédéric

    2016-01-01

    Across animals, sexual harassment induces fitness costs for females and males. However, little is known about the cognitive costs involved, i.e. whether it constrains learning processes, which could ultimately affect an individual's fitness. Here we evaluate the acquisition of environmental information in groups of fruit flies challenged with various levels of male sexual harassment. We show that, although high sexual harassment induces a temporary fitness cost for females, all fly groups of both sexes exhibit similar levels of learning. This suggests that, in fruit flies, the fitness benefits of acquiring environmental information are not affected by the fitness costs of sexual harassment, and that selection may favour cognition even in unfavourable social contexts. Our study provides novel insights into the relationship between sexual conflicts and cognition and the evolution of female counterstrategies against male sexual harassment. © 2016 The Author(s).

  15. A novel passivation process of silicon nanowires by a low-cost PECVD technique for deposition of hydrogenated silicon nitride using SiH4 and N2 as precursor gases

    NASA Astrophysics Data System (ADS)

    Bouaziz, Lamia; Dridi, Donia; Karyaoui, Mokhtar; Angelova, Todora; Sanchez Plaza, Guillermo; Chtourou, Radhouane

    2017-03-01

    In this work, a different SiNx passivation process of silicon nanowires has been opted for the deposition of a hydrogenated silicon nitride (SiNx:H) by a low-cost plasma enhanced chemical vapor deposition (PECVD) using silane ( SiH4 and nitrogen ( N2 as reactive gases. This study is focused on the effect of the gas flow ratio on chemical composition, morphological, optical and optoelectronic properties of silicon nanowires. The existence of Si-N and Si-H bonds was proven by the Fourier transmission infrared (FTIR) spectrum. Morphological structures were shown by scanning electron microscopy (SEM), and the roughness was investigated by atomic force microscopy (AFM). A low reflectivity less than 6% in the wavelength range 250-1200nm has been shown by UV-visible spectroscopy. Furthermore, the thickness and the refractive index of the passivation layer is determined by ellipsometry measurements. As a result, an improvement in minority carrier lifetime has been obtained by reducing surface recombination of silicon nanowires.

  16. Low Cost Large Core Vehicle Structures Assessment

    NASA Technical Reports Server (NTRS)

    Hahn, Steven E.

    1998-01-01

    Boeing Information, Space, and Defense Systems executed a Low Cost Large Core Vehicle Structures Assessment (LCLCVSA) under contract to NASA Marshall Space Flight Center (MSFC) between November 1997 and March 1998. NASA is interested in a low-cost launch vehicle, code named Magnum, to place heavy payloads into low earth orbit for missions such as a manned mission to Mars, a Next Generation Space Telescope, a lunar-based telescope, the Air Force's proposed space based laser, and large commercial satellites. In this study, structural concepts with the potential to reduce fabrication costs were evaluated in application to the Magnum Launch Vehicle (MLV) and the Liquid Fly Back Booster (LFBB) shuttle upgrade program. Seventeen concepts were qualitatively evaluated to select four concepts for more in-depth study. The four structural concepts selected were: an aluminum-lithium monocoque structure, an aluminum-lithium machined isogrid structure, a unitized composite sandwich structure, and a unitized composite grid structure. These were compared against a baseline concept based on the Space Shuttle External Tank (ET) construction. It was found that unitized composite structures offer significant cost and weight benefits to MLV structures. The limited study of application to LFBB structures indicated lower, but still significant benefits. Technology and facilities development roadmaps to prepare the approaches studied for application to MLV and LFBB were constructed. It was found that the cost and schedule to develop these approaches were in line with both MLV and LFBB development schedules. Current Government and Boeing programs which address elements of the development of the technologies identified are underway. It is recommended that NASA devote resources in a timely fashion to address the specific elements related to MLV and LFBB structures.

  17. SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe

    NASA Technical Reports Server (NTRS)

    Gamet, Philippe; Epenoy, R.; Salcedo, C.

    2007-01-01

    SIMBOL-X is a high energy new generation telescope covering by a single instrument a continuous energy range starting at classical X-rays and extending to hard X-rays, i.e. from 0.5 to 80 keV. It is using in this field a focalizing payload which until now was used for energy below 10 keV only, via the construction of a telescope distributed on two satellites flying in formation. SIMBOL-X permits a gain of two orders of magnitude in sensibility and spatial resolution in comparison to state of the art hard X-rays instruments. The mirror satellite will be in free flight on a high elliptical orbit and will target the object to observe very precisely, thus focusing the hard X-ray emission thanks to this mirror module. At the focal point area which is situated 20 meters behind the mirror satellite, the detector satellite maintains its position on a forced orbit thanks to a radio link with the mirror satellite and a lateral displacement sensor using a beam emitted onboard the mirror satellite. This configuration is said "formation flying". The location of the detector satellite shall be very finely tuned as it carries the focal plane of this distributed telescope. To provide science measurements, the Simbol-X orbit has been chosen High elliptic (HEO), which means elliptical orbit with a high perigee altitude. Preliminary studies where made with an orbit with an altitude of the perigee of 44000km and altitude of the apogee of 253000km. The orbit was seven days ground track repeated in order to maintain a perigee pass over the Malindi ground station to download scientific telemetry. But as studies went on, difficulties in mass budget, link budget, perigee maintenance and formation flying maintenance were raised. This was mainly due to the vicinity of the Moon and its disturbing effect on the satellites orbits. Alternative orbits have been proposed in order to demonstrate the feasibility of the mission. The problematic of bringing the two satellites from their injection

  18. Investigation of Low Cost Sensor-Based Leak Detection System for Fence Line Applications

    EPA Science Inventory

    With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source ...

  19. Flying at No Mechanical Energy Cost: Disclosing the Secret of Wandering Albatrosses

    PubMed Central

    Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P.; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang

    2012-01-01

    Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion. PMID:22957014

  20. Formation Flying With Decentralized Control in Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David; Carpenter, J. Russell; Wagner, Christoph

    2000-01-01

    A decentralized control framework is investigated for applicability of formation flying control in libration orbits. The decentralized approach, being non-hierarchical, processes only direct measurement data, in parallel with the other spacecraft. Control is accomplished via linearization about a reference libration orbit with standard control using a Linear Quadratic Regulator (LQR) or the GSFC control algorithm. Both are linearized about the current state estimate as with the extended Kalman filter. Based on this preliminary work, the decentralized approach appears to be feasible for upcoming libration missions using distributed spacecraft.

  1. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  2. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    NASA Astrophysics Data System (ADS)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  3. Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)

    2003-01-01

    Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).

  4. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  5. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  6. Passive range estimation using dual baseline triangulation

    NASA Astrophysics Data System (ADS)

    Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.

    1996-03-01

    Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.

  7. Investigation of a Low Cost Sensor-Based Leak Detection System for Fence Line Applications

    EPA Science Inventory

    With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source P...

  8. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  9. Algorithms for spacecraft formation flying navigation based on wireless positioning system measurements

    NASA Astrophysics Data System (ADS)

    Goh, Shu Ting

    Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better

  10. Automated Surveillance of Fruit Flies

    PubMed Central

    Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros

    2017-01-01

    Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346

  11. A Low-Cost, Passive Approach for Bacterial Growth and Distribution for Large-Scale Implementation of Bioaugmentation

    DTIC Science & Technology

    2012-07-01

    technologies with significant capital costs, secondary waste streams, the involvement of hazardous materials, and the potential for additional worker...or environmental exposure. A more ideal technology would involve lower capital costs, would not generate secondary waste streams, would be...of bioaugmentation technology in general include low risk to human health and the environment during implementation, low secondary waste generation

  12. Releases of Psyttalia fletcheri (Hymenoptera: Braconidae) and sterile flies to suppress melon fly (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Long, Jay; Miller, Neil W; Delate, Kathleen; Jackson, Charles G; Uchida, Grant K; Bautista, Renato C; Harris, Ernie J

    2004-10-01

    Ivy gourd, Coccinia grandis (L.) Voigt, patches throughout Kailua-Kona, Hawaii Island, HI, were identified as persistent sources of melon fly, Bactrocera cucurbitae (Coquillett). These patches had a low incidence of Psyttalia fletcheri (Silvestri), its major braconid parasitoid natural enemy in Hawaii, and were used to evaluate augmentative releases of P. fletcheri against melon fly. In field cage studies of releases, numbers of melon flies emerging from ivy gourd fruit placed inside treatment cages were reduced up to 21-fold, and numbers of parasitoids were increased 11-fold. In open field releases of P. fletcheri into ivy gourd patches, parasitization rates were increased 4.7 times in release plots compared with those in control plots. However, there was no significant reduction in emergence of melon flies from fruit. In subsequent cage tests with sterile melon flies and P. fletcheri, combinations of sterile flies and P. fletcheri produced the greatest reduction (9-fold) in melon fly emergence from zucchini, Cucurbita pepo L. Reductions obtained with sterile flies alone or in combination with parasitoids were significantly greater than those in the control, whereas those for parasitoids alone were not. Although these results suggest that the effects of sterile flies were greater than those for parasitoids, from a multitactic melon fly management strategy, sterile flies would complement the effects of P. fletcheri. Cost and sustainability of these nonchemical approaches will be examined further in an ongoing areawide pest management program for melon fly in Hawaii.

  13. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  14. Drag-n-fly: a Proposal in Response to a Low Reynolds Number Station Keeping Mission

    NASA Technical Reports Server (NTRS)

    Foohey, Mark; Niehaus, John; Neumann, Jenny; Deviny, Pat; Zurovchak, Jerry; Brenner, Joey; Gendron, Peter

    1990-01-01

    The Drag-n-Fly is a remotely piloted, low Reynolds number vehicle. It was designed to maintain level controlled flight and fly a closed course at flight speeds corresponding to Reynolds numbers of less than 2 x 10(exp 5) and as close to 1 x 10(exp 5) as possible. The success of the mission will be associated with achieving the lowest mean chord Reynolds number possible and maximizing loiter time on the course. The flight plan for the Drag-n-Fly calls for the vehicle to ascent to a cruise altitude of 25 ft. The airfoil selected for the Drag-n-Fly is a Spica chosen for its high lift coefficient at low Reynolds number. The propulsion system for the Drag-n-Fly consists of a 10 inch diameter propeller mounted on the front of the vehicle. Structural support for the Drag-n-Fly comes from four box beams running the length of the fuselage. The tail and horizontal stabilizers are located far aft of the lifting surface in order to assure proper static stability. The present design for the Drag-n-Fly will meet the criteria for the present mission.

  15. Affordable passive solar homes - low-cost, compact designs. [Glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.

    1984-01-01

    The designs and plans of this book present total, integrative, energy design. They carefully integrate site, architecture, and interior for various population segments that meet a frugal budget. The book is divided into two sections. The first part gives data concerning design, construction, site, climatic factors, materials, interiors, financing, and other home ownership factors that enhance affordability. Basic information on the design assumptions and considerations incorporate into the homes is presented, along with passive solar systems descriptions. The second part presents designs and plans with a brief review of considerations that serve defined human living needs, as well single-family, attached,more » or multiple residential configurations. The plans are based on a dimensional grid using 4-foot and 2-foot (1.2 meter and .61 meter) increments compatible with economic standard lumber and materials sizes.« less

  16. 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties.

    PubMed

    Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang

    2011-10-01

    This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Monte Carlo Simulations of the Formation Flying Dynamics for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Schiff, Conrad; Dove, Edwin

    2011-01-01

    The MMS mission is an ambitious space physics mission that will fly 4 spacecraft in a tetrahedron formation in a series of highly elliptical orbits in order to study magnetic reconnection in the Earth's magnetosphere. The mission design is comprised of a combination of deterministic orbit adjust and random maintenance maneuvers distributed over the 2.5 year mission life. Formal verification of the requirements is achieved by analysis through the use of the End-to-End (ETE) code, which is a modular simulation of the maneuver operations over the entire mission duration. Error models for navigation accuracy (knowledge) and maneuver execution (control) are incorporated to realistically simulate the possible maneuver scenarios that might be realized These error models, coupled with the complex formation flying physics, lead to non-trivial effects that must be taken into account by the ETE automation. Using the ETE code, the MMS Flight Dynamics team was able to demonstrate that the current mission design satisfies the mission requirements.

  18. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents.

    PubMed

    Wang, Yuru; Tsang, Daniel C W

    2013-11-01

    Natural and anthropogenic arsenic (As) contamination of water sources pose serious health concerns, especially for small communities in rural areas. This study assessed the applicability of three industrial byproducts (coal fly ash, lignite, and green waste compost) as the low-cost adsorbents for As(V) removal under various field-relevant conditions (dissolved oxygen, As(V)/Fe ratio, solution pH, and presence of competing species). The physico-chemical properties of the adsorbents were characterized by XRD, XRF, FT-IR, and NMR analysis. Batch experiments demonstrated that coal fly ash could provide effective As(V) removal (82.1%-95%) because it contained high content of amorphous iron/aluminium hydroxides for As(V) adsorption and dissolvable calcium minerals for calcium arsenate precipitation. However, the addition of lignite and green waste compost was found unfavourable since they hindered the As(V) removal by 10%-42% possibly due to dissolution of organic matter and ternary arsenate-iron-organic matter complexes. On the other hand, higher concentrations of dissolved iron (comparing As(V)/Fe ratios of 1:1 and 1:10) and dissolved oxygen (comparing 0.2 and 6 mg/L) only marginally enhanced the As(V) removal at pH 6 and 8. Thus, addition of dissolved iron, water aeration, or pH adjustment became unnecessary because coal fly ash was able to provide effective As(V) removal under the natural range of geochemical conditions. Moreover, the presence of low levels of background competing (0.8 or 8 mg/L of humic acid, phosphate, and silicate) imposed little influence on As(V) removal, possibly because the high adsorption capacity of coal fly ash was far from exhaustion. These results suggested that coal fly ash was a potentially promising adsorbent that warranted further investigation.

  19. Formation Flying: The Future of Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2004-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to accommodate only slightly more performance capability than is achievable today, such as by the Hubble Space Telescope. Systems under formulation today, such as the James Webb Space Telescope will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by ow ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This presentation describes some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  20. Spacecraft Formation Flying: An Overview of Missions and Technologies

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2007-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to accommodate only slightly more performance capability than is achievable today, such as by the Hubble Space Telescope. Systems under formulation today, such as the James Webb Space Telescope, will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by our ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This presentation highlights some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  1. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required DeltaV to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated DeltaV's are calculated to maintain the formation in the presence of perturbations.

  2. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  3. Field Evaluation of Outdoor Ultra-Low Volume (ULV) Applications against Phlebotomine Sand Flies (Diptera: Psychodidae) in Al Rabta, North-West of Libya

    PubMed Central

    Dokhan, Mostafa Ramahdan; Kenawy, Mohamed Amin; Shaibi, Taher; Annajar, Badereddin Bashir

    2017-01-01

    Background: Al Rabta is a rural area in the North-West of Libya that represents an important focus of zoonotic cutaneous leishmaniasis. This study aimed to evaluate the effect of Ultra Low Volume (ULV) applications in controlling sand flies and its impact on leishmaniasis transmission in this area. Methods: Two neighboring villages were selected: Al Rabta West (RW) as cypermethrin treated village and Al Rabta East (RE) as check one. The ULV was evaluated through 3 spraying cycles during Apr, Jun and Sep 2013. In the two villages, a number of outdoor sites were selected for sampling of sand flies (twice a month) using the CDC light traps. The cases of CL reported in the two villages during the study period were obtained from Al Rabta health center. Results: The two villages were similar where 9 species of sand flies (6 of Phlebotomu and 3 of Sergentomyia) were collected of which S. minuta and P. papatasi were the abundant species. As compared to the pre- ULV spraying, during the post- spraying periods: i) the reduction in abundance of the different species ranged from 20.85 to 77.52% with 46.69% as an overall reduction for all species altogether and, ii) in significantly (P> 0.05) higher mean ratio of males: females for all species altogether (1:2.41). Moreover, ULV spraying resulted in the absence of CL (Leishmania major) cases (Passive Case Detection) Conclusion: The efficiency of ULV spraying in reducing sand fly population, CL cases and consequently limits the disease transmission. PMID:29322056

  4. Parallel Estimation and Control Architectures for Deep-Space Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Smith, Roy S.

    2006-01-01

    The formation flying of precisely controlled spacecraft in deep space can be used to implement optical instruments capable of imaging planets in other solar systems. The distance of the formation from Earth necessitates a significant level of autonomy and each spacecraft must base its actions on its estimates of the location and velocity of the other spacecraft. Precise coordination and control is the key requirement in such missions and the flow of information between spacecraft must be carefully designed. Doing this in an efficient and optimal manner requires novel techniques for the design of the on-board estimators. The use of standard Kalman filter-based designs can lead to unanticipated dynamics--which we refer to as disagreement dynamics--in the estimators' errors. We show how communication amongst the spacecraft can be designed in order to control all of the dynamics within the formation. We present several results relating the topology of the communication network to the resulting closed-loop control dynamics of the formation. The consequences for the design of the control, communication and coordination are discussed.

  5. Formation Flying Control of Multiple Spacecraft

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Lau, Kenneth; Wang, P. K. C.

    1997-01-01

    The problem of coordination and control of multiple spacecraft (MS) moving in formation is considered. Here, each MS is modeled by a rigid body with fixed center of mass. First, various schemes for generating the desired formation patterns are discussed, Then, explicit control laws for formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived. The necessary data which must be communicated between the MS to achieve effective control are examined. The time-domain behavior of the feedback-controlled MS formation for typical low-Earth orbits is studied both analytically and via computer simulation. The paper concludes with a discussion of the implementation of the derived control laws, and the integration of the MS formation coordination and control system with a proposed inter-spacecraft communication/computing network.

  6. A cost of cryptic female choice in the yellow dung fly.

    PubMed

    Ward, Paul I; Wilson, Alastair J; Reim, Constanze

    2008-09-01

    Female dung flies Scathophaga stercoraria (L.) store sperm from several males in three or four spermathecae. Selection on the number of spermathecae was successful and the morphological intermediate stages in the evolution from three to four spermathecae are illustrated. The genetic quality of a male from a female's perspective depends on an interaction between their genotypes and the microhabitat in which the offspring will grow. Females influence the paternity pattern of their offspring, and do this differently in different microhabitats. Females with four spermathecae are better able to influence paternity than are those with three spermathecae. However, there must be a cost to building and maintaining an extra spermatheca. We estimate, using the animal model on pedigree data, that this cost is approximately five eggs per clutch, i.e. around 8% of the mean clutch size. This is a substantial cost and such costs should not be ignored in discussions of the benefits to females of assessing the genetic qualities of their mating partners. We suggest that the number of spermathecae in the study population is stable because the relative benefits in quality of offspring through cryptic female choice is balanced by the costs in total numbers of offspring.

  7. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.

    PubMed

    Bhattacharyya, Mayukh; Gruenwald, Waldemar; Jansen, Dirk; Reindl, Leonhard; Aghassi-Hagmann, Jasmin

    2018-05-07

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.

  8. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    PubMed Central

    Gruenwald, Waldemar; Jansen, Dirk; Aghassi-Hagmann, Jasmin

    2018-01-01

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches. PMID:29735939

  9. Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster.

    PubMed

    Gao, Na; Aono, Hikaru; Liu, Hao

    2011-02-07

    Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Closest Multi-Spacecraft Flying Formation on This Week @NASA – September 23, 2016

    NASA Image and Video Library

    2016-09-23

    The four spacecraft orbiting Earth in formation as part of NASA’s Magnetospheric Multiscale, or MMS, mission achieved a new record recently when the space between them was decreased from just over six miles to only four-and-a-half miles. This is the closest separation ever of any multi-spacecraft formation. The team of spacecraft fly in a pyramid shape, called a tetrahedron, which enables MMS to capture three-dimensional observations of magnetic reconnection – a mysterious phenomenon, during which magnetic fields experience explosive interactions. The closer formation will allow the spacecraft to measure magnetic reconnection at smaller scales, helping scientists to better understand it. Also, Destination Mars Exhibit, Orbital ATK Targets Launch Window, NASA-developed Technology Saves Pilot’s Life, and Combined Federal Campaign Underway!

  11. Thermochemical formation of polychlorinated dibenzo-p-dioxins and dibenzofurans on the fly ash matrix from metal smelting sources.

    PubMed

    Wu, Xiaolin; Zheng, Minghui; Zhao, Yuyang; Yang, Hongbo; Yang, Lili; Jin, Rong; Xu, Yang; Xiao, Ke; Liu, Wenbin; Liu, Guorui

    2018-01-01

    Metal smelting processes are important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The present work aims to clarify the formation characteristics of PCDD/Fs by heterogeneous mechanisms on fly ash from typical multiple secondary aluminum (SAl), secondary lead (SPb) smelting, and iron ore sintering (SNT) sources in China. The formation characteristics of PCDD/Fs on fly ash were studied in the temperature range 250-450 °C for 10-150 min. Substantial thermochemical formation of PCDD/Fs on SAl and SNT ash was observed. The maximum increase of PCDD/F concentrations under 350 °C for 30 min was 604 times greater than the initial concentration in SAl ash. The concentration of PCDD/Fs was 77 times greater than that of SNT fly ash under 350 °C for 30 min. However, the maximum increase of PCDD/F concentrations was less than 8 times that in raw SPb ash under 350 °C. Contents of total organic carbon (TOC), Cu, Al, Zn and Cl, which are widely recognized as important elements for promoting PCDD/F formation, were obviously higher in SAl and SNT ash than in SPb ash. This may explain the greater observed formation times of PCDD/Fs on SAl and SNT ash than that on SPb ash. It was found that several congeners tended to form at higher temperatures than those for SAl ash. Activation energy calculation according to the Arrhenius equations could explain the dominant formation of those congeners at much higher temperatures on SAl ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV

    NASA Astrophysics Data System (ADS)

    Khatiwada, Bikalpa; Budge, Scott E.

    2017-05-01

    Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.

  13. Decentralized formation flying control in a multiple-team hierarchy.

    PubMed

    Mueller, Joseph B; Thomas, Stephanie J

    2005-12-01

    In recent years, formation flying has been recognized as an enabling technology for a variety of mission concepts in both the scientific and defense arenas. Examples of developing missions at NASA include magnetospheric multiscale (MMS), solar imaging radio array (SIRA), and terrestrial planet finder (TPF). For each of these missions, a multiple satellite approach is required in order to accomplish the large-scale geometries imposed by the science objectives. In addition, the paradigm shift of using a multiple satellite cluster rather than a large, monolithic spacecraft has also been motivated by the expected benefits of increased robustness, greater flexibility, and reduced cost. However, the operational costs of monitoring and commanding a fleet of close-orbiting satellites is likely to be unreasonable unless the onboard software is sufficiently autonomous, robust, and scalable to large clusters. This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple team framework. The objective is to divide large clusters into teams of "manageable" size, so that the communication and computation demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using a messaging architecture for networking and threaded applications (MANTA). In this architecture, tasks may be remotely added, removed, or replaced post launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The

  14. Hydrogen passivation of silicon(100) used as templates for low-temperature epitaxy and oxidation

    NASA Astrophysics Data System (ADS)

    Atluri, Vasudeva Prasad

    recoil detection of hydrogen on sample surfaces. The results obtained in this study provide a quantitative optimization of passivation of Si(100) surfaces and their use as templates for low temperature epitaxy and rapid thermal oxidation. Ion beam analysis shows that the total coverage of H increases during passivation of Si(100) via HF in alcohol, while Fourier transform infrared spectroscopy indicates that more complex termination than the formation of simple silicon hydrides occurs.

  15. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    PubMed

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  16. First aircraft test results of a compact, low cost hyperspectral imager for earth observation from space

    NASA Astrophysics Data System (ADS)

    de Goeij, B. T. G.; Otter, G. C. J.; van Wakeren, J. M. O.; Veefkind, J. P.; Vlemmix, T.; Ge, X.; Levelt, P. F.; Dirks, B. P. F.; Toet, P. M.; van der Wal, L. F.; Jansen, R.

    2017-09-01

    In recent years TNO has investigated and developed different innovative opto-mechanical designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform or as add-on on a larger platform; a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. multiple overpasses per day to study diurnal processes); in this way a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); a small, lightweight spectrometer can easily be mounted on a small aircraft or high-altitude UAV (offering high spatial resolution).

  17. Fly ash particles spheroidization using low temperature plasma energy

    NASA Astrophysics Data System (ADS)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  18. Cost Modeling for low-cost planetary missions

    NASA Technical Reports Server (NTRS)

    Kwan, Eric; Habib-Agahi, Hamid; Rosenberg, Leigh

    2005-01-01

    This presentation will provide an overview of the JPL parametric cost models used to estimate flight science spacecrafts and instruments. This material will emphasize the cost model approaches to estimate low-cost flight hardware, sensors, and instrumentation, and to perform cost-risk assessments. This presentation will also discuss JPL approaches to perform cost modeling and the methodologies and analyses used to capture low-cost vs. key cost drivers.

  19. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  20. Innovative approach for low-cost quick-access small payload missions

    NASA Astrophysics Data System (ADS)

    Friis, Jan W., Jr.

    2000-11-01

    accommodated on up to thirty-eight separate satellites. Since the secondary payloads will fly on satellites designed for global wireless data services, each user can utilize low cost communication system already in place for sending and retrieving digital information from its payload.

  1. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less

  2. Low-cost sustainable wall construction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit wasmore » $3.76 per square foot ($$40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $$275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.« less

  3. Parallel Processing Systems for Passive Ranging During Helicopter Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.

  4. Inquiry-Based Environmental Science Investigations with the Fantastic Fruit Fly

    ERIC Educational Resources Information Center

    Beals, Ashlie M.; Krall, Rebecca M.

    2010-01-01

    The use of inquiry in life science can be particularly daunting because of the additional management and care living systems require. However, there are some low-maintenance organisms that work well in the classroom. One of these is the common fruit fly, "Drosophila melanogaster." Its small size, low cost, easy availability and maintenance, and…

  5. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    NASA Astrophysics Data System (ADS)

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy - but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical, and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive Solar Design Strategies: Remodeling Guidelines For Conserving Energy At Home is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: the guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; the worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; and the worked example demonstrates how to complete the worksheets for a typical residence.

  6. Susceptibility of low-chill blueberry cultivars to oriental fruit fly, mediterranean fruit fly, and melon fly (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Forced infestation studies were conducted to determine if fruits of southern highbush blueberries (Vaccinium corymbosum L. hybrids) are hosts for three invasive tephritid fruit flies. Fruits of 17 blueberry cultivars were exposed to gravid female flies of Bactrocera dorsalis (Hendel) (oriental frui...

  7. Costly Nutritious Diets do not Necessarily Translate into Better Performance of Artificially Reared Fruit Flies (Diptera: Tephritidae)

    PubMed Central

    Pascacio-Villafán, C.; Williams, T.; Sivinski, J.; Birke, A.; Aluja, M.

    2015-01-01

    Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. PMID:26470103

  8. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  9. Robust distributed control of spacecraft formation flying with adaptive network topology

    NASA Astrophysics Data System (ADS)

    Shasti, Behrouz; Alasty, Aria; Assadian, Nima

    2017-07-01

    In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.

  10. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  11. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  12. Relative position coordinated control for spacecraft formation flying with communication delays

    NASA Astrophysics Data System (ADS)

    Ran, Dechao; Chen, Xiaoqian; Misra, Arun K.; Xiao, Bing

    2017-08-01

    This study addresses a relative position coordinated control problem for spacecraft formation flying subject to directed communication topology. Two different kinds of communication delay cases, including time-varying delays and arbitrarily bounded delays are investigated. Using the backstepping control technique, two virtual velocity control inputs are firstly designed to achieve coordinated position tracking for the kinematic subsystem. Furthermore, a hyperbolic tangent function is introduced to guarantee the boundedness of the virtual controller. Then, a finite-time control algorithm is designed for the dynamic subsystem. It can guarantee that the virtual velocity can be followed by the real velocity after finite time. It is theoretically proved that the proposed control scheme can asymptotically stabilize the closed-loop system. Numerical simulations are further presented that not only highlight closed-loop performance benefiting from the proposed control scheme, but also illustrate its superiority in comparison with conventional formation control schemes.

  13. Formation Flying for Satellites and UAVs

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick; Becker, Chris

    2015-01-01

    A formation monitoring and control system was developed utilizing mesh networking and decentralized control. Highlights of this system include low latency, seamless addition and removal of vehicles, network relay functionality, and the ability to run on a variety of hardware.

  14. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and

  15. 10 CFR 436.15 - Formatting cost data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.15 Formatting cost data. In establishing cost data under §§ 436... software referenced in the Life Cycle Cost Manual for the Federal Energy Management Program. ...

  16. 10 CFR 436.15 - Formatting cost data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.15 Formatting cost data. In establishing cost data under §§ 436... software referenced in the Life Cycle Cost Manual for the Federal Energy Management Program. ...

  17. 10 CFR 436.15 - Formatting cost data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.15 Formatting cost data. In establishing cost data under §§ 436... software referenced in the Life Cycle Cost Manual for the Federal Energy Management Program. ...

  18. 10 CFR 436.15 - Formatting cost data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.15 Formatting cost data. In establishing cost data under §§ 436... software referenced in the Life Cycle Cost Manual for the Federal Energy Management Program. ...

  19. Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion

    NASA Technical Reports Server (NTRS)

    Lane, Christopher; Axelrad, Penina

    2004-01-01

    Geometrical methods for formation flying design based on the analytical solution to Hill's equations have been previously developed and used to specify desired relative motions in near circular orbits. By generating relationships between the vehicles that are intuitive, these approaches offer valuable insight into the relative motion and allow for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separation, or a specific geometrical shape. Furthermore, the results obtained using geometrical approaches can be used to better constrain numerical optimization methods; allowing those methods to converge to optimal satellite configurations faster. This paper presents a set of geometrical relationships for formations in eccentric orbits, where Hill.s equations are not valid, and shows how these relationships can be used to investigate formation designs and how they evolve with time.

  20. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  1. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    PubMed

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  2. Spacecraft Formation Flying Maneuvers Using Linear-Quadratic Regulation with No Radial Axis Inputs

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame ' propulsion system simplifications and weight reduction may be accomplished. Several linear-quadratic regulators (LQR) are explored and compared based on performance measures likely to be important to many missions, but not directly optimized in the LQR designs. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. This work focusses on formations in which the controlled satellite has a relative trajectory which projects onto the local horizon of the uncontrolled satellite as a circle. This formation has potential uses for distributed remote sensing systems.

  3. Costly Nutritious Diets do not Necessarily Translate into Better Performance of Artificially Reared Fruit Flies (Diptera: Tephritidae).

    PubMed

    Pascacio-Villafán, C; Williams, T; Sivinski, J; Birke, A; Aluja, M

    2015-02-01

    Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  4. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  5. Material and structural characterization of alkali activated low-calcium brown coal fly ash.

    PubMed

    Skvára, Frantisek; Kopecký, Lubomír; Smilauer, Vít; Bittnar, Zdenek

    2009-09-15

    The waste low-calcium Czech brown coal fly ash represents a considerable environmental burden due to the quantities produced and the potentially high content of leachable heavy metals. The heterogeneous microstucture of the geopolymer M(n) [-(Si-O)(z)-Al-O](n).wH(2)O, that forms during the alkaline activation, was examined by means of microcalorimetry, XRD, TGA, DSC, MIP, FTIR, NMR MAS ((29)Si, (27)Al, (23)Na), ESEM, EDS, and EBSD. The leaching of heavy metals and the evolution of compressive strength were also monitored. The analysis of raw fly ash identified a number of different morphologies, unequal distribution of elements, Fe-rich rim, high internal porosity, and minor crystalline phases of mullite and quartz. Microcalorimetry revealed exothermic reactions with dependence on the activator alkalinity. The activation energy of the geopolymerization process was determined as 86.2kJ/mol. The X-ray diffraction analysis revealed no additional crystalline phases associated with geopolymer formation. Over several weeks, the (29)Si NMR spectrum testified a high degree of polymerization and Al penetration into the SiO(4) tetrahedra. The (23)Na NMR MAS spectrum hypothesized that sodium is bound in the form of Na(H(2)O)(n) rather than Na(+), thus causing efflorescence in a moisture-gradient environment. As and Cr(6+) are weakly bonded in the geopolymer matrix, while excellent immobilization of Zn(2+), Cu(2+), Cd(2+), and Cr(3+) are reported.

  6. Low Cost Space Demonstration for a Single-Person Spacecraft

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Dischinger, Charles

    2011-01-01

    This paper introduces a concept for a single-person spacecraft and presents plans for flying a low-cost, robotic demonstration mission. Called FlexCraft, the vehicle integrates propulsion and robotics into a small spacecraft that enables rapid, shirt-sleeve access to space. It can be flown by astronauts or tele-operated and is equipped with interchangeable manipulators used for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. Most FlexCraft systems are verified using ground facilities; however, a test in the weightless environment is needed to assess propulsion and manipulator performance. For this, a simplified, unmanned, version of FlexCraft is flown on a low-cost launch vehicle to a 350 km circular orbit. After separation from the upper stage, the vehicle returns to a target box mounted on the stage testing the propulsion and control capability. The box is equipped with manipulator test items that are representative of tasks performed on ISS, asteroid missions, or for satellites servicing. Nominal and off-nominal operations are conducted over 3 days then the vehicle re-enters the atmosphere without becoming a debris hazard. From concept to management to operations, the FlexCraft demonstration is designed to be low cost project that is launched within three years. This is possible using a simplified test configuration that eliminates nine systems unique to the operational version and by designing-to-availability. For example, the propulsion system is the same as the Manned Maneuvering Unit because it capable, simple, human-rated and all components or equivalent parts are available. A description of the launch vehicle options, mission operations, configuration, and demonstrator subsystems is presented.

  7. WHITE BOX: LOW COST BOX FOR LAPAROSCOPIC TRAINING

    PubMed Central

    MARTINS, João Maximiliano Pedron; RIBEIRO, Roberto Vanin Pinto; CAVAZZOLA, Leandro Totti

    2015-01-01

    Background: Laparoscopic surgery is a reality in almost all surgical centers. Although with initial greater technical difficulty for surgeons, the rapid return to activities, less postoperative pain and higher quality aesthetic stimulates surgeons to evolve technically in this area. However, unlike open surgery where learning opportunities are more accessible, the laparoscopic training represents a challenge in surgeon formation. Aim: To present a low cost model for laparoscopic training box. Methods: This model is based in easily accessible materials; the equipment can be easily found based on chrome mini jet and passes rubber thread and a webcam attached to an aluminum handle. Results: It can be finalized in two days costing R$ 280,00 (US$ 90). Conclusion: It is possible to stimulate a larger number of surgeons to have self training in laparoscopy at low cost seeking to improve their surgical skills outside the operating room. PMID:26537148

  8. Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua

    2017-11-01

    A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.

  9. Comparison and characterization of different tunnel layers, suitable for passivated contact formation

    NASA Astrophysics Data System (ADS)

    Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf

    2017-08-01

    Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.

  10. Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI.

    PubMed

    Ma, Lixia; Wei, Qi; Chen, Yueqin; Song, Qiuyang; Sun, Conghui; Wang, Zhiqiang; Wu, Guanghong

    2018-02-01

    Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5-100 mg l -1 ). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost.

  11. Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI

    PubMed Central

    Ma, Lixia; Wei, Qi; Chen, Yueqin; Song, Qiuyang; Sun, Conghui; Wang, Zhiqiang

    2018-01-01

    Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5–100 mg l−1). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost. PMID:29515830

  12. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  13. 10 CFR 436.15 - Formatting cost data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.15 Formatting cost data. In establishing cost data under §§ 436.16 and 436.17 and measuring cost effectiveness by the modes of analysis described by § 436.19 through... software referenced in the Life Cycle Cost Manual for the Federal Energy Management Program. ...

  14. SCOPE : Future Formation-Flying Magnetospheric Satellite Mission

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi

    and quantitative wave field measurements at electron scales; (2) The need for full coverage over the energy range of interests with mass spectroscopy; (3) The need for coordinated space plasma observations by intercommunicated formation flying satellites; and (4) The need to resolve more than one-scale simultaneously. In order to cover the multiple (more than two) scales simultaneously, SCOPE and esa's Cross-Scale have started detailed discussion for the future collaboration. By this collaboration, SCOPE can reduce the number of the daughter satellites that can stay within 100 km throughout the mission life.

  15. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berland, Brian; Hollingsworth, Russell

    of silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN’s coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.« less

  16. Discriminating fever behavior in house flies.

    PubMed

    Anderson, Robert D; Blanford, Simon; Jenkins, Nina E; Thomas, Matthew B

    2013-01-01

    Fever has generally been shown to benefit infected hosts. However, fever temperatures also carry costs. While endotherms are able to limit fever costs physiologically, the means by which behavioral thermoregulators constrain these costs are less understood. Here we investigated the behavioral fever response of house flies (Musca domestica L.) challenged with different doses of the fungal entomopathogen, Beauveria bassiana. Infected flies invoked a behavioral fever selecting the hottest temperature early in the day and then moving to cooler temperatures as the day progressed. In addition, flies infected with a higher dose of fungus exhibited more intense fever responses. These variable patterns of fever are consistent with the observation that higher fever temperatures had greater impact on fungal growth. The results demonstrate the capacity of insects to modulate the degree and duration of the fever response depending on the severity of the pathogen challenge and in so doing, balance the costs and benefits of fever.

  17. Low-cost solar array project progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    The considered project is part of the DOE Photovoltaic Technology and Market Development Program. This program is concerned with the development and the utilization of cost-competitive photovoltaic systems. The project has the objective to develop, by 1986, the national capability to manufacture low-cost, long-life photovoltaic arrays at production rates that will realize economies of scale, and at a price of less than $0.70/watt. The array performance objectives include an efficiency greater than 10% and an operating lifetime longer than 20 years. The objective of the silicon material task is to establish the practicality of processes for producing silicon suitable for terrestrial photovoltaic applications at a price of $14/kg. The large-area sheet task is concerned with the development of process technology for sheet formation. Low-cost encapsulation material systems are being developed in connection with the encapsulation task. Another project goal is related to the development of economical process sequences.

  18. Addition of Passive Dynamics to a Flapping Airfoil to Improve Performance

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2017-11-01

    Animals which fly or swim typically employ flapping motions of their wings and fins in order to produce thrust and to maneuver. Small, unmanned vehicles might also exploit such motions and are of considerable interest for the purposes of surveillance, environmental monitoring, and search and rescue. Flapping refers to a combination of pitch and heave and has been shown to provide good thrust and efficiency (Read, et al. 2003) when both axes are independently controlled (an Active-Active system). In this study, we examine the performance of an airfoil actuated only in the heave direction but allowed to pitch passively under the control of a torsion spring (an Active-Passive system). The presence of the spring is simulated in software using a force-feedback control system called Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, 2016). Adding passive pitch to active heave provides significantly improved thrust and efficiency compared with heaving alone, especially when the torsion spring stiffness is selected so that the system operates near resonance (in an Active-Passive system). In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom. By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  19. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  20. Quantifying the thermal evolution of early passive margins formation and its consequences on the structure of passive margins

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry

    2017-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the

  1. A Low-Cost "Stationary Eye" in the Sky

    NASA Astrophysics Data System (ADS)

    Koch, R.; Lande, K.; Mitchell, R.; Wildenhain, P.; Hoang, N.; Langford, J.

    1997-12-01

    We are developing a stationary, near the top of the atmosphere, astronomical observing system. The platform is a high altitude robotic aircraft (THESEUS) flying in anti-sense to Earth's rotation at a latitude where the plane's speed closely matches the local ground spin velocity. Thus, either an extended day or night viewing program of a given object can be achieved. Our intention here concentrates on astronomical targets. The system consists of the following components. (1) A low cost robotic aircraft that can fly at an altitude of about 25 km. for 30 to 40 hours with differential GPS navigation. Real time control of the aircraft and the observing instruments is either by on-board computer or from the ground via low altitude, commercial satellite communications systems (Iridium, Teledesic, etc.). (2) A siderostat-fed telescope of small f-ratio is attached to the aircraft via critically damped mechanical isolators. An electronic camera at the prime focus looks at a chosen astronomical target. (3) Image smear due to aircraft engine vibration will be eliminated by a combination of critically damped mechanical isolators and electronic CCD pixel jogging. Very precise piezo- electric driven transverse translation of the CCD camera will be used to compensate for wind induced drift of the image on the focal plane. Bright field stars will be used to drive the stabilizing system. (4) Data are stored on high capacity ruggedized hard drives similar to that used by the Mars Lander. The Aurora THESEUS aircraft, whose design is based upon earlier models, is under development. The image stabilizing system components have been identified. An off-the-shelf data-storage device has been chosen. A first prototype telescope has been built and tested. Other optical configurations are possible and collaborators will be welcomed.

  2. Responses of Mexican spotted owls to low-flying military jet aircraft

    Treesearch

    Charles L. Johnson; Richard T. Reynolds

    2002-01-01

    To investigate the effects of military fixed-wing aircraft training on the behavior of the endangered Mexican spotted owl (Strix occidentalis lucida), we subjected four adults and one juvenile owl to low-altitude, fixed-wing, jet aircraft overflight trials in Colorado in 1996 and 1997. Trials consisted of three sequential fly-bys, each at a greater aircraft speed and...

  3. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  4. Flying Lessons: Learning from Ryanair's Cost Reduction Culture

    NASA Technical Reports Server (NTRS)

    Lawton, Thomas C.

    2000-01-01

    Through radically improving the value equation for airline customers, Ryanair has served to shake-up established norms and practices in European aviation. Underpinning its price leadership and market success is a vigorous and relentless cost reduction ethos and resultant low break-even load factor. Ryanair has lowered European airline cost structures considerably, shattering existing cost floors. Few competitors are able to follow, either because they do not know how or they are unable due to social settlement obligations or service commitments. At the same time, the company has maintained high average load factors on its flights. Taken in conjunction with its low break-even load factor, this results in consistently high overall profit margins. On this basis, Ryanair is likely to remain a significant competitor and increase its market presence and success across Europe.

  5. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1992-01-01

    A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.

  6. Using low-cost drones to map malaria vector habitats.

    PubMed

    Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi

    2017-01-14

    There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.

  7. Formation of Polychlorinated Biphenyls on Secondary Copper Production Fly Ash: Mechanistic Aspects and Correlation to Other Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoxu; Liu, Guorui; Wang, Mei; Zheng, Minghui

    2015-09-01

    Emission of unintentionally formed polychlorinated biphenyls (PCBs) from industrial thermal processes is a global issue. Because the production and use of technical PCB mixtures has been banned, industrial thermal processes have become increasingly important sources of PCBs. Among these processes, secondary copper smelting is an important PCB source in China. In the present study, the potential for fly ash-mediated formation of PCBs in the secondary copper industry, and the mechanisms involved, were studied in laboratory thermochemical experiments. The total PCB concentrations were 37-70 times higher than the initial concentrations. Thermochemical reactions on the fly ash amplified the potential toxic equivalents of PCBs. The formation of PCBs over time and the effect of temperature were investigated. Based on analyses of PCB homologue profiles with different reaction conditions, a chlorination mechanism was proposed for forming PCBs in addition to a de novo synthesis mechanism. The chlorination pathway was supported by close correlations between each pair of adjacent homologue groups. Formation of PCBs and multiple persistent organic pollutants, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated naphthalenes, occurred during the tests, indicating that these compounds may share similar formation mechanisms.

  8. Multi-sensor field trials for detection and tracking of multiple small unmanned aerial vehicles flying at low altitude

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank

    2017-05-01

    Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.

  9. Alternative to Nitric Acid Passivation Project Overview

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.

    2013-01-01

    The standard practice for protection of stainless steel is a process called passivation. This procedure results in the formation of a metal oxide layer to prevent corrosion. Typical passivation procedures call for the use of nitric acid which exhibits excellent corrosion performance; however, there are a number of environmental, worker safety, and operational issues associated with its use. The longtime military specification for the passivation of stainless steel was cancelled in favor of newer specifications which allow for the use of citric acid in place of nitric acid. Citric acid offers a variety of benefits that include increased safety for personnel, reduced environmental impact, and reduced operational costs. There have been few studies, however, to determine whether citric acid is an acceptable alternative for NASA and DoD. This paper details activities to date including development of the joint test plan, on-going and planned testing, and preliminary results.

  10. Flying qualities - A costly lapse in flight-control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1982-01-01

    Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.

  11. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  12. Ocean Color Inferred from Radiometers on Low-Flying Aircraft

    PubMed Central

    Churnside, James H.; Wilson, James J.

    2008-01-01

    The color of sunlight reflected from the ocean to orbiting visible radiometers has provided a great deal of information about the global ocean, after suitable corrections are made for atmospheric effects. Similar ocean-color measurements can be made from a low-flying aircraft to get higher spatial resolution and to obtain measurements under clouds. A different set of corrections is required in this case, and we describe algorithms to correct for clouds and sea-surface effects. An example is presented and errors in the corrections discussed. PMID:27879739

  13. Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.

    PubMed

    Na, Junhong; Joo, Min-Kyu; Shin, Minju; Huh, Junghwan; Kim, Jae-Sung; Piao, Mingxing; Jin, Jun-Eon; Jang, Ho-Kyun; Choi, Hyung Jong; Shim, Joon Hyung; Kim, Gyu-Tae

    2014-01-07

    Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.

  14. Formation Flying and the Stellar Imager Mission Concept

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.

    2003-01-01

    The Stellar Imager (SI) is envisioned as a space-based, W-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we briefly describe the scientific goals of the mission, the performance requirements needed to address these goals, and the "enabling technology" development efforts required, with specific attention for this meeting to the formation-flying aspects. It is designed to

  15. Evaluation of the Cost-Effectiveness of Pyramidal, Modified Pyramidal and Monoscreen Traps for the Control of the Tsetse Fly, Glossina fuscipes fuscipes, in Uganda

    PubMed Central

    Abila, P.P.; Okello-Onen, J.; Okoth, J.O.; Matete, G.O.; Wamwiri, F.; Politzar, H.

    2007-01-01

    Several trap designs have been used for sampling and control of the tsetse fly, Glossina fuscipes fuscipes, Newstead (Diptera: Glossinidae) based on preferences of individual researchers and program managers with little understanding of the comparative efficiency and cost-effectiveness of trap designs. This study was carried out to evaluate the cost-effectiveness of four commonly used trap designs: monoscreen, modified pyramidal and pyramidal, relative to the standard biconical trap. The study was performed under high tsetse challenge on Buvuma Island, Lake Victoria, Uganda, using a 4 × 4 Latin square design replicated 3 times, so as to separate the trap positions and day effects from the treatment effect. A total of 12 trap positions were tested over 4 days. The monoscreen trap caught significantly higher numbers of G. f. fuscipes (P<0.05) followed by biconical, modified pyramidal and pyramidal traps. Analysis of variance showed that treatment factor was a highly significant source of variation in the data. The index of increase in trap catches relative biconical were O.60 (pyramidal), 0.68 (modified pyramidal) and 1.25 (monoscreen). The monoscreen trap was cheaper (US$ 2.61) and required less material to construct than pyramidal trap (US$ 3.48), biconical and the modified pyramidal traps (US$ 4.06 each). Based on the number of flies caught per meter of material, the monoscreen trap proved to be the most cost-effective (232 flies/m) followed by the biconical trap (185 flies/m). The modified pyramidal and the pyramidal traps caught 112 and 125 flies/m, respectively. PMID:20345292

  16. 10 CFR 440.20 - Low-cost/no-cost weatherization activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Low-cost/no-cost weatherization activities. 440.20 Section 440.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS § 440.20 Low-cost/no-cost weatherization activities. (a) An eligible dwelling unit may be...

  17. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.

    2016-11-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  18. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  19. Long life, low cost, rechargeable AgZn battery for non-military applications

    NASA Astrophysics Data System (ADS)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  20. Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Chen, Xia; Li, Chao; Tsang, Hon Ki

    2011-04-01

    We propose and demonstrate a bi-wavelength two dimensional (2D) waveguide grating coupler on silicon-on-insulator which has efficient coupling of optical light with two-wavelength bands independently between standard optical single mode fibers and nanophotonic waveguides. The details of design are described and the measurement results as well as system performance are experimentally characterized. The bi-wavelength grating coupler can be used as wavelength-division-multiplexing (WDM) splitter/combiner for monolithically silicon integrated transceivers, potentially meeting the low cost requirements for future WDM passive optical network (PON).

  1. Plasma Immersion Ion Implantation for Interdigitated Back Passivated Contact (IBPC) Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo

    2016-11-21

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam-line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures grown on n-Cz wafers with PH3more » PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by photoluminescence and SIMS depth profiles. Initial IBPC cell results are presented.« less

  2. A simple method to design non-collision relative orbits for close spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  3. Formation Algorithms and Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward

    2004-01-01

    Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.

  4. Scaled-model guidelines for formation-flying solar coronagraph missions.

    PubMed

    Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker

    2016-02-15

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

  5. Model stream channel testing of a UV-transparent polymer-based passive sampler for ultra-low-cost water screening applications

    EPA Science Inventory

    Passive samplers are increasingly being considered for analyses of waters for screening applications, to monitor for the presence of unwanted chemical compounds. Passive samplers typically work by accumulating and concentrating chemicals from the surrounding water over time, all...

  6. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties.

    PubMed

    Roviello, Giuseppina; Ricciotti, Laura; Tarallo, Oreste; Ferone, Claudio; Colangelo, Francesco; Roviello, Valentina; Cioffi, Raffaele

    2016-06-09

    The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

  7. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties

    PubMed Central

    Roviello, Giuseppina; Ricciotti, Laura; Tarallo, Oreste; Ferone, Claudio; Colangelo, Francesco; Roviello, Valentina; Cioffi, Raffaele

    2016-01-01

    The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building. PMID:28773582

  8. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  9. Low-Cost WDM-PON With Colorless Bidirectional Transceivers

    NASA Astrophysics Data System (ADS)

    Shin, Dong Jae; Keh, Y. C.; Kwon, J. W.; Lee, E. H.; Lee, J. K.; Park, M. K.; Park, J. W.; Oh, Y. K.; Kim, S. W.; Yun, I. K.; Shin, H. C.; Heo, D.; Lee, J. S.; Shin, H. S.; Kim, H. S.; Park, S. B.; Jung, D. K.; Hwang, Seongtaek; Oh, Y. J.; Jang, D. H.; Shim, C. S.

    2006-01-01

    This paper presents a low-cost bidirectional (BiDi) wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless uncooled BiDi transceivers (TRxs) and superluminescent diode (SLD)-based broadband light sources (BLSs). The C band is allocated for upstream and the E+ band for downstream in consideration of BiDi packaging, SLD development, and wavelength alignment of dual-window arrayed waveguide gratings (AWGs). The BiDi TRx integrates an uncooled Fabry-Pérot laser diode (FP-LD), a p-i-n photodiode (PD), and a 45°-angled thin-film filter in a small-form-factor (SFF) package. The SLD-based BLSs provide 13-dBm amplified spontaneous emissions (ASEs) with spectral ripples of < 3 dB and polarization dependencies of < 1 dB. Colorless operations over 32 100-GHz-spaced channels are demonstrated from -20 to 80°C in 155-Mb/s BiDi transmissions over 25 km.

  10. Cost of goods sold and total cost of delivery for oral and parenteral vaccine packaging formats.

    PubMed

    Sedita, Jeff; Perrella, Stefanie; Morio, Matt; Berbari, Michael; Hsu, Jui-Shan; Saxon, Eugene; Jarrahian, Courtney; Rein-Weston, Annie; Zehrung, Darin

    2018-03-14

    Despite limitations of glass packaging for vaccines, the industry has been slow to implement alternative formats. Polymer containers may address many of these limitations, such as breakage and delamination. However, the ability of polymer containers to achieve cost of goods sold (COGS) and total cost of delivery (TCOD) competitive with that of glass containers is unclear, especially for cost-sensitive low- and lower-middle-income countries. COGS and TCOD models for oral and parenteral vaccine packaging formats were developed based on information from subject matter experts, published literature, and Kenya's comprehensive multiyear plan for immunization. Rotavirus and inactivated poliovirus vaccines (IPV) were used as representative examples of oral and parenteral vaccines, respectively. Packaging technologies evaluated included glass vials, blow-fill-seal (BFS) containers, preformed polymer containers, and compact prefilled auto-disable (CPAD) devices in both BFS and preformed formats. For oral vaccine packaging, BFS multi-monodose (MMD) ampoules were the least expensive format, with a COGS of $0.12 per dose. In comparison, oral single-dose glass vials had a COGS of $0.40. BFS MMD ampoules had the lowest TCOD of oral vaccine containers at $1.19 per dose delivered, and ten-dose glass vials had a TCOD of $1.61 per dose delivered. For parenteral vaccines, the lowest COGS was achieved with ten-dose glass vials at $0.22 per dose. In contrast, preformed CPAD devices had the highest COGS at $0.60 per dose. Ten-dose glass vials achieved the lowest TCOD of the parenteral vaccine formats at $1.56 per dose delivered. Of the polymer containers for parenteral vaccines, BFS MMD ampoules achieved the lowest TCOD at $1.89 per dose delivered, whereas preformed CPAD devices remained the most expensive format, at $2.25 per dose delivered. Given their potential to address the limitations of glass and reduce COGS and TCOD, polymer containers deserve further consideration as alternative

  11. Evaluating the Passivation of Corrosion of API-X100 Steel with Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2017-10-01

    In this research, cyclic voltammetry, in oxygen-free low bicarbonate-carbonate solutions, was used to study the corrosion reactions of a high-strength steel, API-X100. With cycles of different scan ranges, the effects of cycling, transpassivation, and cathodic reduction on the electrochemistry of the passive films were analyzed. It was found that carbonate in higher concentrations reduces the anodic activity and the cathodic reactions of the surface. Bicarbonate in small concentrations in solutions that contained low carbonate concentrations catalyzed dissolution and disrupted the formation of the passive films, in reference to the measured anodic currents. From the experiments, there was electrochemical evidence that with more cycles, the passive films were growing thicker, the transpassivation deteriorated the passive films, and during the cathodic reduction, the dissolution was occurring at lower potentials to facilitate later the passivation at higher potentials.

  12. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    NASA Astrophysics Data System (ADS)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  13. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  14. Thermal analysis of Malaysian double storey housing - low/medium cost unit

    NASA Astrophysics Data System (ADS)

    Normah, M. G.; Lau, K. Y.; Yusoff, S. Mohd.

    2012-06-01

    Almost half of the total energy used today is consumed in buildings. In the tropical climate, air-conditioning a housing unit takes much of the energy bill. Malaysia is no exception. Malaysian double storey terrace housing is popular among developers and buyers. Surveys have shown that housing occupants are much dissatisfied with the thermal comfort and artificial cooling is often sought. The objective of this study is to assess the thermal comfort of the low and medium-cost double storey housing in the area surrounding Universiti Teknologi Malaysia. A simulation program using the Weighting Factor Method calculates the heat transfer interaction, temperature distribution, and PMV level in three types of housing units in relation to the size. Fanger's PMV model based on ISO Standard 7730 is used here because it accounts for all parameters that affect the thermal sensation of a human within its equation. Results showed that both the low and medium-cost housing units studied are out of the comfortable range described by ASHRAE Standard 55 with the units all complied with the local bylaws. In view of the uncertainties in energy supply, future housing units should consider natural ventilation as part of the passive energy management.

  15. LUNA: low-flying UAV-based forest monitoring system

    NASA Astrophysics Data System (ADS)

    Keizer, Jan Jacob; Pereira, Luísa; Pinto, Glória; Alves, Artur; Barros, Antonio; Boogert, Frans-Joost; Cambra, Sílvia; de Jesus, Cláudia; Frankenbach, Silja; Mesquita, Raquel; Serôdio, João; Martins, José; Almendra, Ricardo

    2015-04-01

    The LUNA project is aiming to develop an information system for precision forestry and, in particular, the monitoring of eucalypt plantations that is first and foremost based on multi-spectral imagery acquired using low-flying uav's. The presentation will focus on the first phase of image acquisition, processing and analysis for a series of pot experiments addressing main threats for early-stage eucalypt plantations in Portugal, i.e. acute , chronic and cyclic hydric stress, nutrient stress, fungal infections and insect plague attacks. The imaging results will be compared with spectroscopic measurements as well as with eco-physiological and plant morphological measurements. Furthermore, the presentation will show initial results of the project's second phase, comprising field tests in existing eucalypt plantations in north-central Portugal.

  16. Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium

    NASA Astrophysics Data System (ADS)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2018-01-01

    The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.

  17. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds

    NASA Astrophysics Data System (ADS)

    Ravi, Sridhar; Kolomenskiy, Dmitry; Engels, Thomas; Schneider, Kai; Wang, Chun; Sesterhenn, Jörn; Liu, Hao

    2016-10-01

    The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows.

  18. Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-05-01

    Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.

  19. The application of waste fly ash and construction-waste in cement filling material in goaf

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  20. Nonlinear Flying Qualities Criteria for Large-Amplitude Maneuvers

    DTIC Science & Technology

    1984-12-01

    theory which are pertinent to the formation of a nonlinear flying qualities methodology. This report surveys nonlinear system theory and describes...the development of an applied flying qualities methodology based on a canonical system theory and using research in relative controllability...The Nonlinear Flying Qualities (NFQ) for Large-Amplitude Maneuvers Program examined promising techniques from nonlinear analysis and nonlinear system

  1. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    NASA Astrophysics Data System (ADS)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  2. Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), Australia.

    PubMed

    McMichael, Lee; Edson, Daniel; Smith, Craig; Mayer, David; Smith, Ina; Kopp, Steven; Meers, Joanne; Field, Hume

    2017-01-01

    Pteropid bats (flying-foxes) are the natural reservoir of Hendra virus, an emergent paramyxovirus responsible for fatal infection in horses and humans in Australia. Pteropus alecto (the Black flying-fox) and the paraphyletic P. conspicillatus (the Spectacled flying-fox) appear to be the primary reservoir hosts. Previous studies have suggested that physiological and ecological factors may underpin infection dynamics in flying-foxes, and subsequent spillover to horses and in turn humans. We sought to examine temporal trends in urinary cortisol concentration in wild Australian flying-fox populations, to elucidate the putative relationship between Hendra virus infection and physiological stress. Pooled and individual urine samples were non-invasively collected from under roosting flying-foxes at two latitudinally disparate regions in the eastern Australian state of Queensland. Hendra virus detection, and (in individual urine samples) sex and species determination were PCR-based. Urinary cortisol measurement used a validated enzyme immunoassay. We found no direct correlation between increased urinary cortisol and Hendra virus excretion, but our findings do suggest a biologically plausible association between low winter temperatures and elevated cortisol levels in P. alecto in the lower latitude Southeast Queensland roosts. We hypothesize an indirect association between low winter temperatures and increased Hendra virus infection and excretion, mediated by the physiological cost of thermoregulation. Our findings and our approach are directly relevant to elaboration of the disease ecology of Nipah virus and other emerging henipaviruses in bats. More broadly, they inform investigation of emerging disease infection dynamics across the wildlife/livestock/human interface.

  3. Automatic Censoring CFAR Detector Based on Ordered Data Difference for Low-Flying Helicopter Safety

    PubMed Central

    Jiang, Wen; Huang, Yulin; Yang, Jianyu

    2016-01-01

    Being equipped with a millimeter-wave radar allows a low-flying helicopter to sense the surroundings in real time, which significantly increases its safety. However, nonhomogeneous clutter environments, such as a multiple target situation and a clutter edge environment, can dramatically affect the radar signal detection performance. In order to improve the radar signal detection performance in nonhomogeneous clutter environments, this paper proposes a new automatic censored cell averaging CFAR detector. The proposed CFAR detector does not require any prior information about the background environment and uses the hypothesis test of the first-order difference (FOD) result of ordered data to reject the unwanted samples in the reference window. After censoring the unwanted ranked cells, the remaining samples are combined to form an estimate of the background power level, thus getting better radar signal detection performance. The simulation results show that the FOD-CFAR detector provides low loss CFAR performance in a homogeneous environment and also performs robustly in nonhomogeneous environments. Furthermore, the measured results of a low-flying helicopter validate the basic performance of the proposed method. PMID:27399714

  4. Optical instrumentation for science and formation flying with a starshade observatory

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  5. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)

    PubMed Central

    Lawyer, Phillip; Killick-Kendrick, Mireille; Rowland, Tobin; Rowton, Edgar; Volf, Petr

    2017-01-01

    Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies. PMID:29139377

  6. Learning to Fly.

    ERIC Educational Resources Information Center

    Weil, Patricia E.

    1983-01-01

    Presents information on where to learn to fly, which aircraft is best for this purpose, and approximate costs. Includes additional information on certificates, licenses, and ratings, and a description of the two phases of the General Aviation Manufacturers Association flight training program. (JN)

  7. Formation flying for electric sails in displaced orbits. Part II: Distributed coordinated control

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We analyze a cooperative control framework for electric sail formation flying around a heliocentric displaced orbit, aiming at observing the polar region of a celestial body. The chief spacecraft is assumed to move along an elliptic displaced orbit, while each deputy spacecraft adjusts its thrust vector (that is, both its sail attitude and characteristic acceleration) in order to track a prescribed relative trajectory. The relative motion of the electric sail formation system is formulated in the chief rotating frame, where the control inputs of each deputy are the relative sail attitude angles and the relative lightness number with respect to those of the chief. The information exchange among the spacecraft, characterized by the communication topology, is represented by a weighted graph. Two typical cases, according to whether the communication graph is directed or undirected, are discussed. For each case, a distributed coordinated control law is designed in such a way that each deputy not only tracks the chief state, but also makes full use of information from its neighbors, thus increasing the redundancy and robustness of the formation system in case of failure among the communication links. Illustrative examples show the effectiveness of the proposed approach.

  8. Kick Detection at the Bit: Early Detection via Low Cost Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tost, Brian; Rose, Kelly; Aminzadeh, Fred

    2016-06-07

    Formation fluid influxes (i.e. kicks) pose persistent challenges and operational costs during drilling operations. Implications of kicks range in scale but cumulatively result in substantial costs that affect drilling safety, environment, schedule, and infrastructure. Early kick detection presents a low-cost, easily adopted solution for avoiding well control challenges associated with kicks near the bit. Borehole geophysical tools used during the drilling process as part of the logging-while-drilling (LWD) and measurement-while-drilling (MWD) provide the advantage of offering real-time downhole data. LWD/MWD collect data on both the annulus and borehole wall. The annular data are normally treated as background, and are filteredmore » out to isolate the formation measurements. Because kicks will change the local physical properties of annular fluids, bottom-hole measurements are among the first indicators that a formation fluid has invaded the wellbore. This report describes and validates a technique for using the annular portion of LWD/MWD data to facilitate early kick detection using first order principles. The detection technique leverages data from standard and cost-effective technologies that are typically implemented during well drilling, such as MWD/LWD data in combination with mud-pulse telemetry for data transmission.« less

  9. Flying Cars

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!

  10. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  11. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash.

    PubMed

    Kuśmierek, Krzysztof; Świątkowski, Andrzej

    2016-03-01

    The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on fly ash was studied. The effects of adsorbent dose, contact time, pH, ionic strength, and temperature on the adsorption were investigated. Adsorption kinetic data were analyzed using pseudo-first and pseudo-second order models, and results showed that adsorption kinetics were better represented by the pseudo-second order model. Adsorption isotherms of 2,4-D on fly ash were analyzed using the Freundlich and Langmuir models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was spontaneous and endothermic. The negative values of ΔG° and the positive value of ΔH° indicate the spontaneous nature of 2,4-D adsorption on fly ash, and that the adsorption process was endothermic. Results showed that fly ash is an efficient, low-cost adsorbent for removal of 2,4-D from water.

  12. Study on microstructure and tensile properties of fly ash AMCs welded by FSW

    NASA Astrophysics Data System (ADS)

    Sachinkumar, Narendranath, S.; Chakradhar, D.

    2018-04-01

    Aluminum matrix composite (AMCs) constitute a new class of light weight and high strength materials which have widespread applications in almost all engineering sectors. But the cost of AMCs is the only barrier to increase their applications still. Hence there is a huge demand for the composites containing low cost reinforcement with less weight, keeping this in mind, in the present work, Friction stir welding (FSW) of AA6061/SiC/fly ash was carried out successfully. Microstructural study on the welded specimens was performed using optical microscopy (OM) and scanning electron microscopy (SEM). Results indicate that fly ash particles were uniformly distributed in the weld nugget area because of the stirring action of the FSW tool also promoted the grain refinement of the matrix material with complete elimination of clusters present in matrix material which resulting in sound welds without any defects for AA6061/SiC/fly ash composites. 82% of joint efficiency is obtained for selected AMCs. Transverse tensile test results showed that all welds fractured in HAZ.

  13. A low-cost FMCW radar for footprint detection from a mobile platform

    NASA Astrophysics Data System (ADS)

    Boutte, David; Taylor, Paul; Hunt, Allan

    2015-05-01

    Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.

  14. Antenna array geometry optimization for a passive coherent localisation system

    NASA Astrophysics Data System (ADS)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  15. Low Cost Airline Service Revolution

    DOT National Transportation Integrated Search

    1996-04-01

    This study concentrates on new entry by airlines with low cost operating : strategies. Low cost strategies have been the most successful in competing : with network carriers whose very size confers certain competitive advantages. : The purposes of th...

  16. Propellant-Less Spacecraft Formation-Flying and Maneuvering with Photonic Laser Thrusters

    NASA Technical Reports Server (NTRS)

    Bae, Young K.

    2015-01-01

    The present NIAC Phase II program explored an amplified photon thruster, Photonic Laser Thruster (PLT), as a means of enabling unprecedented maneuverability of small spacecraft, such as cubesats, and reducing space system SWaP for future NASA missions and other commercial and DoD space endeavors. In addition to its propellantless operation capability, PLT can provide orders of magnitude more precise controls in thrust magnitude and vector than conventional thrusters. Furthermore, PLT promises to enable innovative CONOPS (Concept of Operations) to change how some NASA missions are conceived and to represent a revolutionary departure from the "all-in-one" single-spacecraft approach, where a primary factor that dominates spacecraft design is a heavy and risk-intolerant mission-critical payload. Instead, the PLT CONOPS has evolved from a different path based on interbody dynamics via thrust and power beaming. As interbody atomic dynamics unfolds completely new classes of molecular structures that cannot be formed by solo acting atoms alone, the PLT interbody dynamics is predicted to unfold unprecedented multibody spacecraft structures. Therefore, the revolutionary path of the PLT CONOPS represents a technology push rather than a mission pull, and will enable an entirely new generation of planetary, heliospheric, and Earth-centric missions. The chief accomplishments of the present Phase II program are: 1) achievement of photon thrust up to 3.5 mN (100 times scaling up of Phase I PLT) and amplification factor up to 1,500 (15 times enhancement of Phase I PLT), 2) laboratory demonstration of propelling, slowing and stopping a 1U cubesat on an air track with PLT, 3) proof of feasibility on persistent out-of-plane formation flying with PLT in simulation studies, 4) preliminary SolidWorks designs of 1-mN class PLT, 5) establishment of SWaP for flight-ready PLT, 6) designs for proof-ofconcept missions of precision formation flying with cubesats, 7) definition of PLT-based NASA

  17. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  18. Low-cost high purity production

    NASA Technical Reports Server (NTRS)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  19. Combined disc pelletisation and thermal treatment of MSWI fly ash.

    PubMed

    Huber, Florian; Herzel, Hannes; Adam, Christian; Mallow, Ole; Blasenbauer, Dominik; Fellner, Johann

    2018-03-01

    An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450 °C to 1050 °C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450 °C, thermally treated MSWI fly ash pellets can be classified as non-hazardous waste. However, temperatures of at least 650 °C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850 °C, 950 °C or even 1050 °C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in

  20. Hydrodynamic Characteristics of a Low-drag, Planing-tail Flying-boat Hull

    NASA Technical Reports Server (NTRS)

    Suydam, Henry B

    1948-01-01

    The hydrodynamic characteristics of a flying-boat incorporating a low-drag, planing-tail hull were determined from model tests made in Langley tank number 2 and compared with tests of the same flying boat incorporating a conventional-type hull. The planing-tail model, with which stable take-offs were possible for a large range of elevator positions at all center-of-gravity locations tested, had more take-off stability than the conventional model. No upper-limit porpoising was encountered by the planing-tail model. The maximum changes in rise during landings were lower for the planing-tail model than for the conventional model at most contact trims, an indication of improved landing stability for the planing-tail model. The hydrodynamic resistance of the planing-tail hull was lower than the conventional hull at all speeds, and the load-resistance ratio was higher for the planing-tail hull, being especially high at the hump. The static trim of the planing-tail hull was much higher than the conventional hull, but the variation of trim with speed during take-off was smaller.

  1. Photoinduced Field-Effect Passivation from Negative Carrier Accumulation for High-Efficiency Silicon/Organic Heterojunction Solar Cells.

    PubMed

    Liu, Zhaolang; Yang, Zhenhai; Wu, Sudong; Zhu, Juye; Guo, Wei; Sheng, Jiang; Ye, Jichun; Cui, Yi

    2017-12-26

    Carrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO 2 ) films, due to formation of an accumulation layer of negative carriers (O 2 - species) under UV (sunlight) illumination. This photoinduced field not only suppressed the silicon surface recombination but also enhanced the built-in potential of HSCs with 84 mV increment. In addition, this photoactive ARC also displayed the outstanding light-trapping capability. The front PEDOT:PSS/Si HSC with the saturated O 2 - received a champion PCE of 15.51% under AM 1.5 simulated sunlight illumination. It was clearly demonstrated that the photoinduced electric field was a simple, efficient, and low-cost method for the surface passivation and contributed to achieve a high efficiency when applied in the Si/PEDOT:PSS HSCs.

  2. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  3. The optical communication link outage probability in satellite formation flying

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Gill, Eberhard

    2014-02-01

    In recent years, several space systems consisting of multiple satellites flying in close formation have been proposed for various purposes such as interferometric synthetic aperture radar measurement (TerraSAR-X and the TanDEM-X), detecting extra-solar earth-like planets (Terrestrial Planet Finder-TPF and Darwin), and demonstrating distributed space systems (DARPA F6 project). Another important purpose, which is the concern of this paper, is for improving radio frequency communication to mobile terrestrial and maritime subscribers. In this case, radio frequency signals from several satellites coherently combine such that the received/transmit signal strength is increased proportionally with the number of satellites in the formation. This increase in signal strength allows to enhance the communication data rate and/or to reduce energy consumption and the antenna size of terrestrial mobile users' equipment. However, a coherent combination of signals without aligning the phases of the individual communication signals interrupts the communication and outage link between the satellites and the user. The accuracy of the phase estimation is a function of the inter-satellite laser ranging system performance. This paper derives an outage probability model of a coherent combination communication system as a function of the pointing vibration and jitter statistics of an inter-satellite laser ranging system tool. The coherent combination probability model, which could be used to improve the communication to mobile subscribers in air, sea and ground is the main importance of this work.

  4. Impact of some low-cost interventions on students' performance in a Nigerian medical school.

    PubMed

    Anyaehie, U B; Okeke, T; Nwagha, U; Orizu, I; Iyare, E; Dim, C; Okafor, C

    2014-01-01

    Students' poor performance in physiology examinations has been worrisome to the university community. Reported preference of peer-tutoring to didactic lectures at the University of Nigeria Medical School has not been investigated. The aim of this work is to design/implement low-cost interventions to improve teaching and learning of physiology. This is a postintervention retrospective review of medical Student's performance in 2 nd Bachelor of Medicine and Bachelor of Surgery examinations physiology. Data were collected and analyzed by descriptive and inferential statistics using the MedCalc Statistical software (Turkey). The odds ratio (OR) was used to determine the chances of passing before and after the intervention. The level of significance was set at P < 0.05. A total of 2152 students sat for the professional examination over the study period, and 1485 students passed the examination at first attempt giving an overall pass rate of 69%. The pass rate from 2008 when our interventions started was significantly higher than the pass rate before this reform (OR: 0.53; 95% confidence interval: 0.43-0.64; P < 0.0001). Results support the engagement of teachers with strong translational interests and clinicians to augment existing faculty in basic sciences, innovative alternatives to passive lecture formats and students involvement in program evaluation.

  5. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications

    NASA Astrophysics Data System (ADS)

    Grozea, Cristian; Voinescu, Catalin D.; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  6. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    NASA Astrophysics Data System (ADS)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental

  7. A Low Cost Inflatable CubeSat Drag Brake Utilizing Sublimation

    NASA Astrophysics Data System (ADS)

    Horn, Adam Charles

    The United Nations Inter-Agency Debris Coordination Committee has adopted a 25-year post-mission lifetime requirement for any satellite orbiting below 2000 km in order to mitigate the growing orbital debris threat. Low-cost CubeSats have become important satellite platforms with startling capabilities, but this guideline restricts them to altitudes below 600 km because they remain in orbit too long. In order to enable CubeSat deployments at higher release altitudes, a low-cost, ultra-reliable deorbit device is needed. This thesis reports on efforts to develop a deployable and passively inflatable drag brake that can deorbit from higher orbital altitudes, thereby complying with the 25-year orbital lifetime guideline. On the basis of concepts first implemented during the NASA Echo Satellite Project, this study investigated the design of an inflatable CubeSat drag device that utilizes sublimating benzoic acid powder as the inflation propellant. Testing has focused on demonstrating the functionality of charging a Mylar drag brake bladder with appropriate quantities of benzoic acid powder, and the exposure to a controlled-temperature vacuum chamber causing the bladder to inflate. Although results show a measureable increase in internal pressure when introduced to anticipated orbital temperatures, a significant air-derived expansion prior to sublimation was encountered due to the undetectable volume of ambient residual air in the fabricated membrane bladders. These tests have demonstrated the feasibility of this approach, thereby demonstrating that this concept can create a potentially smaller and less expensive drag device, eliminating inflation gas tanks and valves. In that way, this system can provide a low-cost, miniaturized system that reduces a CubeSat's orbital lifetime to less than 25 years, when placed at higher orbital altitude.

  8. Mitigation of plasma–material interactions via passive Li efflux from the surface of a flowing liquid lithium limiter in EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, G. Z.; Hu, J. S.; Maingi, R.

    Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less

  9. Mitigation of plasma–material interactions via passive Li efflux from the surface of a flowing liquid lithium limiter in EAST

    DOE PAGES

    Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...

    2017-03-02

    Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less

  10. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  11. Flies without centrioles.

    PubMed

    Basto, Renata; Lau, Joyce; Vinogradova, Tatiana; Gardiol, Alejandra; Woods, C Geoffrey; Khodjakov, Alexey; Raff, Jordan W

    2006-06-30

    Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.

  12. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    PubMed

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  13. Low-cost/high-efficiency lasers for medical applications in the 14XX-nm regime

    NASA Astrophysics Data System (ADS)

    Callahan, J. J.; McIntyre, E.; Rafferty, C.; Yanushefski, L.; Bean, D. M.

    2011-03-01

    Laser therapy is becoming an increasingly popular method of treating numerous dermatological conditions. The widespread use of these devices is often limited by the cost and size. Low cost, portable lasers would expand the laser market further into homes, general practitioners, dermatologists, plastic surgeons, and 3rd world countries. There are numerous light devices currently on the market for hair removal and growth, acne reduction, and wrinkles. These devices are varied, from LEDs to intense pulsed light (IPL) to lasers. One particular disease is leishmaniasis, caused by a parasite carried by sand flies, most often occurring in third world countries. While there are drug therapies available, they sometimes require hospitalization for several days and are very expensive. An RF device has been FDA approved for treatment of leishmaniasis, but costs about $20,000 which is too expensive for widespread use. Since the method is heating the lesion, the same affect could be achieved using an infrared laser. Diode lasers have the capability to be produced in mass quantity for low costs, as shown by the ubiquity of diode lasers in the telecom industry and household appliances. Unfortunately, many diode lasers suffer from poor efficiency, particularly in wavelengths for dermatology. Advances are being made to improve wall plug efficiency of lasers to reduce waste heat and increase output power. In this paper, those efforts being made to develop manufacturing partners to lower the cost while increasing the production volume of long wavelength lasers will be discussed along with performance data and clinical results.

  14. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1993-01-01

    A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.

  15. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies.

    PubMed

    Ishihara, D; Horie, T; Niho, T

    2014-11-07

    The relative importance of the wing's inertial and aerodynamic forces is the key to revealing how the kinematical characteristics of the passive pitching motion of insect flapping wings are generated, which is still unclear irrespective of its importance in the design of insect-like micro air vehicles. Therefore, we investigate three species of flies in order to reveal this, using a novel fluid-structure interaction analysis that consists of a dynamically scaled experiment and a three-dimensional finite element analysis. In the experiment, the dynamic similarity between the lumped torsional flexibility model as a first approximation of the dipteran wing and the actual insect is measured by the Reynolds number Re, the Strouhal number St, the mass ratio M, and the Cauchy number Ch. In the computation, the three-dimension is important in order to simulate the stable leading edge vortex and lift force in the present Re regime over 254. The drawback of the present experiment is the difficulty in satisfying the condition of M due to the limitation of available solid materials. The novelty of the present analysis is to complement this drawback using the computation. We analyze the following two cases: (a) The equilibrium between the wing's elastic and fluid forces is dynamically similar to that of the actual insect, while the wing's inertial force can be ignored. (b) All forces are dynamically similar to those of the actual insect. From the comparison between the results of cases (a) and (b), we evaluate the contributions of the equilibrium between the aerodynamic and the wing's elastic forces and the wing's inertial force to the passive pitching motion as 80-90% and 10-20%, respectively. It follows from these results that the dipteran passive pitching motion will be based on the equilibrium between the wing's elastic and aerodynamic forces, while it will be enhanced by the wing's inertial force.

  16. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    NASA Astrophysics Data System (ADS)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  17. Antireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, H. C.; Oh, J.; Zhang, Y.

    2012-06-01

    We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements.more » Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of <10-nm SiO2 on top of the black Si surface in a relatively mild chemical bath at room temperature. We demonstrate black Si solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.« less

  18. Application of a Very-Low-Cost Unmanned Aerial Vehicle (UAV) and Consumer Grade Camera for the Collection of Research Grade Data: Preliminary Findings

    NASA Astrophysics Data System (ADS)

    Christian, P.; Davis, J. D.; Blesius, L.

    2013-12-01

    The use of UAV technology in the field of geoscience research has grown almost exponentially in the last decade. UAVs have been utilized as a sensor platform in many fields including geology, biology, climatology, geomorphology and archaeology. A UAV's ability to fly frequently, at very low altitude, and at relatively little cost makes them a perfect compromise between free, low temporal and spatial resolution satellite data and terrestrial based survey when there are insufficient funds to purchase custom satellite or manned aircraft data. Unfortunately, many available UAVs for research are still relatively expensive and often have predetermined imaging systems. However, the proliferation of hobbyist grade UAVs and consumer point and shoot cameras may provide many research projects with an alternative that is both cost-effective and efficient in data collection. This study therefore seeks to answer the question, can these very low cost, hobby-grade UAVs be used to produce research grade data. To achieve this end, in December of 2012 a small grant was obtained (<$6500) to set up a complete UAV system and to employ it in a diverse range of research. The system is comprised of a 3D Robotics hexacopter, Ardupilot automated flight hardware and software, spare parts and tool kit, two Canon point-and-shoot cameras including one modified for near infrared imagery, and a field laptop. To date, successful research flights have been flown for geomorphic research in degraded and restored montane meadows to study stream channel formation using both visible and near infrared imagery as well as for the creation of digital elevation models of large hillslope gullies using structure from motion (SFM). Other applications for the hexacopter, in progress or planned, include landslide monitoring, vegetation monitoring and mapping using the normalized difference vegetation index, archaeological survey, and bird nest identification on small rock islands. An analysis of the results

  19. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Baochen, E-mail: liaobaochen@nus.edu.sg; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576; A*STAR Institute of Materials Research and Engineering

    2014-06-23

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is foundmore » to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.« less

  20. Passive, Collapsible Contingency Urinal for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Jenson, Ryan

    2015-01-01

    Fluid transport systems for spacecraft face acute challenges because of the persistently unfamiliar and unforgiving low-gravity environment. IRPI, LLC, has developed a contingency wastewater collection and processing device that provides passive liquid collation, containment, bubble separation, and droplet coalescence functions. The lightweight, low-volume, low-cost, and potentially disposable device may be used for subsequent sampling, metering, storage, disposal, and/or reuse. The approach includes a fractal wetting design that incorporates smart capillary fluidics. This work could have a broad impact on capillary-based fluid management on spacecraft and on Earth.

  1. Optimal Path Determination for Flying Vehicle to Search an Object

    NASA Astrophysics Data System (ADS)

    Heru Tjahjana, R.; Heri Soelistyo U, R.; Ratnasari, L.; Irawanto, B.

    2018-01-01

    In this paper, a method to determine optimal path for flying vehicle to search an object is proposed. Background of the paper is controlling air vehicle to search an object. Optimal path determination is one of the most popular problem in optimization. This paper describe model of control design for a flying vehicle to search an object, and focus on the optimal path that used to search an object. In this paper, optimal control model is used to control flying vehicle to make the vehicle move in optimal path. If the vehicle move in optimal path, then the path to reach the searched object also optimal. The cost Functional is one of the most important things in optimal control design, in this paper the cost functional make the air vehicle can move as soon as possible to reach the object. The axis reference of flying vehicle uses N-E-D (North-East-Down) coordinate system. The result of this paper are the theorems which say that the cost functional make the control optimal and make the vehicle move in optimal path are proved analytically. The other result of this paper also shows the cost functional which used is convex. The convexity of the cost functional is use for guarantee the existence of optimal control. This paper also expose some simulations to show an optimal path for flying vehicle to search an object. The optimization method which used to find the optimal control and optimal path vehicle in this paper is Pontryagin Minimum Principle.

  2. HI properties and star formation history of a fly-by pair of blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyub; Chung, Aeree; Wong, O. Ivy; Lee, Bumhyun; Sung, Eon-Chang; Staveley-Smith, Lister

    2017-09-01

    A fly-by interaction has been suggested to be one of the major explanations for enhanced star formation in blue compact dwarf (BCD) galaxies, yet no direct evidence for this scenario has been found to date. In the Hi Parkes all-sky survey (HIPASS), ESO 435-IG 020 and ESO 435-G 016, a BCD pair were found in a common, extended gas envelope of atomic hydrogen, providing an ideal case to test the hypothesis that the starburst in BCDs can be indeed triggered by a fly-by interaction. Using high-resolution data from the Australia Telescope Compact Array (ATCA), we investigated Hi properties and the spectral energy distribution (SED) of the BCD pair to study their interaction and star formation histories. The high-resolution Hi data of both BCDs reveal a number of peculiarities, which are suggestive of tidal perturbation. Meanwhile, 40% of the HIPASS flux is not accounted for in the ATCA observations with no Hi gas bridge found between the two BCDs. Intriguingly, in the residual of the HIPASS and the ATCA data, 10% of the missing flux appears to be located between the two BCDs. While the SED-based age of the most dominant young stellar population is old enough to have originated from the interaction with any neighbors (including the other of the two BCDs), the most recent star formation activity traced by strong Hα emission in ESO 435-IG 020 and the shear motion of gas in ESO 435-G 016, suggest a more recent or current tidal interaction. Based on these and the residual emission between the HIPASS and the ATCA data, we propose an interaction between the two BCDs as the origin of their recently enhanced star formation activity. The shear motion on the gas disk, potentially with re-accretion of the stripped gas, could be responsible for the active star formation in this BCD pair. The reduced datacube (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A54

  3. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  4. Towards low back support with a passive biomimetic exo-spine.

    PubMed

    Naf, Matthias B; De Rijcke, Laura; Guerrero, Carlos Rodriguez; Millard, Matthew; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    Low-Back Pain (LBP) affects a large portion of the working population. Preventive exoskeletons have been proposed to reduce the moments on the lower back, specifically around the lumbosacral (L5/S1) joint. High correlation has been shown, between reducing the moments around the L5/S1 joint and intervertebral compression forces, which in turn have been identified as a risk factor for developing LBP. However, most passive back support exoskeletons use rigid plates or stiff beams to support the spine that limit the range of motion of the wearer. A large range of motion and versatility are especially desirable for industrial applications. To overcome these limitations, a passive biomimetic exo-spine has been designed, modelled and an initial prototype tested. Its potential to allow for a large range of motion, whilst at the same time limiting the most extreme and potentially harmful postures has been shown.

  5. Arsenic and selenium capture by fly ashes at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Antonia Lopez-Anton; Mercedes Diaz-Somoano; D. Alan Spears

    2006-06-15

    Arsenic and selenium compounds may be emitted to the environment during coal conversion processes, although some compounds are retained in the fly ashes, in different proportions depending on the characteristics of the ashes and process conditions. The possibility of optimizing the conditions to achieve better trace element retention appears to be an attractive, economical option for reducing toxic emissions. This approach requires a good knowledge of fly ash characteristics and a thorough understanding of the capture mechanism involved in the retention. In this work the ability of two fly ashes, one produced in pulverized coal combustion and the other inmore » fluidized bed combustion, to retain arsenic and selenium compounds from the gas phase in coal combustion and coal gasification atmospheres was investigated. To explore the possible simultaneous retention of mercury, the influence of the unburned coal particle content was also evaluated. Retention capacities between 2 and 22 mg g{sup -1} were obtained under different conditions. The unburned coal particle content in the fly ash samples does not significantly modify retention capacities. 21 refs., 6 figs., 5 tabs.« less

  6. An economic model for passive solar designs in commercial environments

    NASA Astrophysics Data System (ADS)

    Powell, J. W.

    1980-06-01

    The model incorporates a life cycle costing approach that focuses on the costs of purchase, installation, maintenance, repairs, replacement, and energy. It includes a detailed analysis of tax laws affecting the use of solar energy in commercial buildings. Possible methods of treating difficult to measure benefits and costs, such as effects of the passive solar design on resale value of the building and on lighting costs, rental income from the building, and the use of commercial space, are presented. The model is illustrated in two case examples of prototypical solar design for low rise commercial buildings in an urban setting.

  7. Revisiting atenolol as a low passive permeability marker.

    PubMed

    Chen, Xiaomei; Slättengren, Tim; de Lange, Elizabeth C M; Smith, David E; Hammarlund-Udenaes, Margareta

    2017-10-31

    Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB. To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis. The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., K p,uu,brain ) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (V u, brain ) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (f u,brain ) of 0.88 ± 0.07. It is concluded, based on K p,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.

  8. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  9. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots.

    PubMed

    Ortega Ancel, Alejandro; Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-02-06

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s -1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.

  10. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots

    PubMed Central

    Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko

    2017-01-01

    Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s−1. The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested. PMID:28163879

  11. Passive unmanned sky spectroscopy for remote bird classification

    NASA Astrophysics Data System (ADS)

    Lundin, Patrik; Brydegaard, Mikkel; Cocola, Lorenzo; Runemark, Anna; Åkesson, Susanne; Svanberg, Sune

    2011-11-01

    We present a method based on passive spectroscopy with aim to remotely study flying birds. A compact spectrometer is continuously recording spectra of a small section of the sky, waiting for birds to obscure part of the field-of-view when they pass the field in flight. In such situations the total light intensity received through the telescope, looking straight up, will change very rapidly as compared to the otherwise slowly varying sky light. On passage of a bird, both the total intensity and the spectral shape of the captured light changes notably. A camera aimed in the same direction as the telescope, although with a wider field-of-view, is triggered by the sudden intensity changes in the spectrometer to record additional information, which may be used for studies of migration and orientation. Example results from a trial are presented and discussed. The study is meant to explore the information that could be gathered and extracted with the help of a spectrometer connected to a telescope. Information regarding the color, size and height of flying birds is discussed. Specifically, an application for passive distance determination utilizing the atmospheric oxygen A-band absorption at around 760 nm is discussed.

  12. Integration of quantum cascade lasers and passive waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in themore » mid-infrared (λ ∼ 3–16 μm)« less

  13. Fly ash carbon burn-out at TVA`s Colbert and Shawnee Stations: Site specific application study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.W.; Kirkconnell, S.F.

    1996-04-01

    Many power plants, particularly after conversion to low-NOx burners, produce fly ash that is too high in carbon content to be successfully marketed as a concrete admixture. Fly ash beneficiation using Carbon Burn-Out (CBO) technology offers the opportunity to market fly ash that was previously landfilled. This site application study of beneficiating pulverized coal boiler fly ash at Tennessee Valley Authority`s Colbert and Shawnee Stations indicates this process is a cost effective solution for decreasing solid waste disposal, increasing landfill life, improving boiler heat rate, and generating a positive revenue stream. Results indicate that the Colbert Station has the flymore » ash market, site integration potential, and positive economics to support construction and operation of a CBO plant with an annual production rate of approximately 150,000 tons. As the market for fly ash increases, this capacity may be expanded to handle the majority of fly ash generated at Colbert. Results of the Shawnee Station analysis indicate that site integration constraints combined with the lack of near term local area fly ash market growth do not support construction and operation of a CBO plant. CBO commercial process design work in developing a generic commercial design resulted in a major improvement to the heat recovery portion of the process. This development resulted in the elimination of five major equipment items, with a corresponding reduction in plant complexity and costs. The design change is now considered part of the commercial offering.« less

  14. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Meng

    2015-03-01

    The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7

  15. Stable surface passivation process for compound semiconductors

    DOEpatents

    Ashby, Carol I. H.

    2001-01-01

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  16. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  17. Synthesis and development of low cost, high temperature N-arylene polybenzimidazole foam material

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1975-01-01

    Polymer (and foam) studies followed two basic routes: (1) formation of high molecular weight uncyclized polyamide followed by subsequent fusion and cyclodehydration to yield NABI (foam) and (2) polymer and foam formation by reaction of diphenyl esters (or anhydrides) with the tetramine. The latter route was found much more attractive since considerable versatility in both basic polymer structure and crosslinkability is achievable. Preliminary studies on BAB, phthalic anhydride (PA), and 3, 3 (prime), 4, 4(prime) benzo pheno netetracarboxylic acid dianhydride (BTDA) as crosslinked polymer precursors were conducted. Nonmelting rigid char forming foams with densities as low as 2.7 lb/cubic ft. were achieved. The program was successful in the preparation of a potentially low cost, low density, high char yield, high temperature foam material.

  18. Passivated contact formation using ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Stradins, Pauls; Nemeth, William

    2018-05-29

    Methods for forming passivated contacts include implanting compound-forming ions into a substrate to about a first depth below a surface of the substrate, and implanting dopant ions into the substrate to about a second depth below the surface. The second depth may be shallower than the first depth. The methods also include annealing the substrate.

  19. Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, H. L.; Lyon, Richard G.; Carpenter, Kenneth G.

    2007-01-01

    The long-baseline space interferometer concept involving formation flying of multiple spacecraft holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.

  20. Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, Victor H. L.; Lyon, Richard G.; Carpenter, Kenneth G.

    2007-01-01

    The long-baseline space interferometer concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.

  1. Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films.

    PubMed

    Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K

    2014-10-21

    Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV <10 cm s(-1)). The deduced values are close to the best reported SRV obtained by the high thermal budget process (with annealing time between 10-30 min), conventionally used for improved surface passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.

  2. Reactive granular optics for passive tracking of the sun

    NASA Astrophysics Data System (ADS)

    Frenkel, I.; Niv, A.

    2017-08-01

    The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.

  3. Spatial characterization of colonies of the flying fox bat, a carrier of Nipah virus in Thailand.

    PubMed

    Thanapongtharm, Weerapong; Linard, Catherine; Wiriyarat, Witthawat; Chinsorn, Pornpiroon; Kanchanasaka, Budsabong; Xiao, Xiangming; Biradar, Chandrashekhar; Wallace, Robert G; Gilbert, Marius

    2015-03-28

    A major reservoir of Nipah virus is believed to be the flying fox genus Pteropus, a fruit bat distributed across many of the world's tropical and sub-tropical areas. The emergence of the virus and its zoonotic transmission to livestock and humans have been linked to losses in the bat's habitat. Nipah has been identified in a number of indigenous flying fox populations in Thailand. While no evidence of infection in domestic pigs or people has been found to date, pig farming is an active agricultural sector in Thailand and therefore could be a potential pathway for zoonotic disease transmission from the bat reservoirs. The disease, then, represents a potential zoonotic risk. To characterize the spatial habitat of flying fox populations along Thailand's Central Plain, and to map potential contact zones between flying fox habitats, pig farms and human settlements, we conducted field observation, remote sensing, and ecological niche modeling to characterize flying fox colonies and their ecological neighborhoods. A Potential Surface Analysis was applied to map contact zones among local epizootic actors. Flying fox colonies are found mainly on Thailand's Central Plain, particularly in locations surrounded by bodies of water, vegetation, and safe havens such as Buddhist temples. High-risk areas for Nipah zoonosis in pigs include the agricultural ring around the Bangkok metropolitan region where the density of pig farms is high. Passive and active surveillance programs should be prioritized around Bangkok, particularly on farms with low biosecurity, close to water, and/or on which orchards are concomitantly grown. Integration of human and animal health surveillance should be pursued in these same areas. Such proactive planning would help conserve flying fox colonies and should help prevent zoonotic transmission of Nipah and other pathogens.

  4. Low-CO2 Acid-Base Binders Made with Fly Ash

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2016-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works in urban areas. It is, however, responsible for 5-10 % of all anthropogenic CO2 emissions, nearly half of which arise from the decomposition of calcareous raw materials, and the other half from kiln fuel combustion and cement clinker grinding operations. As such, PC production contributes to global warming and climate change. Lately, efforts to develop alternative binders with lower greenhouse gas emissions have gained interest. An important class of such binders is geopolymers, typically formed by activating natural or waste materials with suitable alkaline solutions. These binders can have very low CO2 emissions from grinding of the starting materials, and some from the production of the activating chemical but the total CO2 emissions can be as low as 1/5th - 1/10th of those of PC concrete mixtures with comparable properties. Less commonly researched, acidic activating chemicals can also be used with powder materials to produce pastes that can set and harden into durable solids. One such powder is fly ash from coal-burning power plants. This ash is mostly stockpiled and can be an environmental hazard such as exacerbating air pollution in cities. This study investigates the chemical activation of fly ashes from Turkey using solutions of acids such as orthophosphoric acid. Amorphous and crystalline reaction products are observed to form, yielding a strong binder that sets much more rapidly than PC-based mixtures or alkali-activated geopolymers. As the change in the rheological properties and mechanical properties of these pastes can be balanced by combining different ashes, as well as by adjusting solution properties, they can offer environmental, energetic, and economical advantages over conventional PC-based mixtures.

  5. Integrated Management of European Cherry Fruit Fly Rhagoletis cerasi (L.): Situation in Switzerland and Europe.

    PubMed

    Daniel, Claudia; Grunder, Jürg

    2012-10-16

    The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities.

  6. Integrated Management of European Cherry Fruit Fly Rhagoletis cerasi (L.): Situation in Switzerland and Europe

    PubMed Central

    Daniel, Claudia; Grunder, Jürg

    2012-01-01

    The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities. PMID:26466721

  7. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  8. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  9. Low cost attitude control system scanwheel development

    NASA Astrophysics Data System (ADS)

    Bialke, William; Selby, Vaughn

    1991-03-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  10. Low cost attitude control system scanwheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William; Selby, Vaughn

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  11. Highly condensed fluorinated methacrylate hybrid material for transparent low-kappa passivation layer in LCD-TFT.

    PubMed

    Oh, Ji-Hoon; Kwak, Seung-Yeon; Yang, Seung-Cheol; Bae, Byeong-Soo

    2010-03-01

    Photocurable and highly condensed fluorinated methacrylate oligosiloxane, with a low dielectric constant (kappa = 2.54), was prepared by a nonhydrolytic sol-gel condensation reaction. The oligosiloxane resin was then spin-coated, photocured, and thermally baked in order to fabricate a fluorinated methacrylate hybrid material (FM hybrimer) thin film. This study investigated the application of this FM hybrimer film as a low-kappa passivation layer in LCD-based thin film transistors (TFT). It was found that a dielectric constant as low as kappa = 2.54 could be obtained, without introducing pores in the dense FM hybrimer films. This study compares FM hybrimer film characteristics with those required for passivation layers in LCD-TFTs, including thermal stability, optical transmittance, hydrophobicity, gap fill, and planarization effects as well as electrical insulation.

  12. Removal of Cr6 + and Ni2+ from aqueous solution using bagasse and fly ash.

    PubMed

    Rao, M; Parwate, A V; Bhole, A G

    2002-01-01

    Raw bagasse and fly ash, the waste generated in sugar mills and boilers respectively have been used as low-cost potential adsorbents. Raw bagasse was pretreated with 0.1N NaOH followed by 0.1N CH3COOH before its application. These low-cost adsorbents were used for the removal of chromium and nickel from an aqueous solution. The kinetics of adsorption and extent of adsorption at equilibrium are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental system. The effect of hydrogen ion concentration, contact time, sorbent dose, initial concentrations of adsorbate and adsorbent and particle size on the uptake of chromium and nickel were studied in batch experiments. The Sorption data has been correlated with Langmuir, Freundlich and Bhattacharya and Venkobachar adsorption models. The efficiencies of adsorbent materials for the removal of Cr(VI) and Ni(II) were found to be between 56.2 and 96.2% and 83.6 and 100%, respectively. These results were obtained at the optimized conditions of pH, contact time, sorbent dose, sorbate concentration of 100 mg/l and with the variation of adsorbent particles size between 0.075 and 4.75 mm. The order of selectivity is powdered activated carbon > bagasse > fly ash for Cr(VI) removal and powdered activated carbon > fly ash > bagasse for Ni(II) removal.

  13. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system

    PubMed Central

    2012-01-01

    In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730

  14. A low-cost, portable, laser heterodyne radiometer for validating passive satellite observations of column carbon dioxide and methane

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.

    2017-12-01

    We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on

  15. Low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Mcpherson, J.

    1991-01-01

    The topics presented are covered in viewgraph form. The objectives are to develop and validate technology, design tools and methodologies to enable the low cost commercial development and operational uses of hydrogen and hydrocarbon fueled liquid engines, low pressure booster engines and hybrid engines.

  16. Nepetalactones from essential oil of Nepeta cataria represent a stable fly feeding and oviposition repellent.

    PubMed

    Zhu, J J; Berkebile, D R; Dunlap, C A; Zhang, A; Boxler, D; Tangtrakulwanich, K; Behle, R W; Baxendale, F; Brewer, G

    2012-06-01

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is one of the most serious pests to livestock. It feeds mainly on cattle and causes significant economic losses in the cattle industry. Standard stable fly control involving insecticides and sanitation is usually costly and often has limited effectiveness. As we continue to evaluate and develop safer fly control strategies, the present study reports on the effectiveness of catnip (Nepeta cataria L.) oil and its constituent compounds, nepetalactones, as stable fly repellents. The essential oil of catnip reduced the feeding of stable flies by >96% in an in vitro bioassay system, compared with other sesquiterpene-rich plant oils (e.g. amyris and sandalwood). Catnip oil demonstrated strong repellency against stable flies relative to other chemicals for repelling biting insects, including isolongifolenone, 2-methylpiperidinyl-3-cyclohexen-1-carboxamide and (1S,2'S)-2-methylpiperidinyl-3-cyclohexen-1-carboxamide. The repellency against stable flies of the most commonly used mosquito repellent, DEET, was relatively low. In field trials, two formulations of catnip oil provided >95% protection and were effective for up to 6 h when tested on cattle. Catnip oil also acted as a strong oviposition repellent and reduced gravid stable fly oviposition by 98%. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  17. A passive pendulum wobble damper for a low spin rate Jupiter flyby spacecraft

    NASA Technical Reports Server (NTRS)

    Fowler, R. C.

    1972-01-01

    When the spacecraft has a low spin rate and precise pointing requirements, the wobble angle must be damped in a time period equivalent to a very few wobble cycles. The design, analysis, and test of a passive pendulum wobble damper are described.

  18. Chemical and engineering properties of fired bricks containing 50 weight percent of class F fly ash

    USGS Publications Warehouse

    Chou, I.-Ming; Patel, V.; Laird, C.J.; Ho, K.K.

    2001-01-01

    The generation of fly ash during coal combustion represents a considerable solid waste disposal problem in the state of Illinois and nationwide. In fact, the majority of the three million tons of fly ash produced from burning Illinois bituminous coals is disposed of in landfills. The purpose of this study was to obtain a preliminary assessment of the technical feasibility of mitigating this solid waste problem by making fired bricks with the large volume of fly ash generated from burning Illinois coals. Test bricks were produced by the extrusion method with increasing amounts (20-50% by weight) of fly ash as a replacement for conventional raw materials. The chemical characteristics and engineering properties of the test bricks produced with and without 50 wt% of fly ash substitutions were analyzed and compared. The properties of the test bricks containing fly ash were at least comparable to, if not better than, those of standard test bricks made without fly ash and met the commercial specifications for fired bricks. The positive results of this study suggest that further study on test bricks with fly ash substitutions of greater than 50wt% is warranted. Successful results could have an important impact in reducing the waste disposal problem related to class F fly ash while providing the brick industry with a new low cost raw material. Copyright ?? 2001 Taylor & Francis.

  19. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  20. Ecology of sand flies in a low-density residential rural area, with mixed forest/agricultural exploitation, in north-eastern Brazil.

    PubMed

    Miranda, Débora Elienai de Oliveira; Sales, Kamila Gaudêncio da Silva; Faustino, Maria Aparecida da Gloria; Alves, Leucio Câmara; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Carvalho, Gílcia Aparecida

    2015-06-01

    Cutaneous leishmaniasis caused by Leishmania braziliensis is endemic in Brazil, where Lutzomyia whitmani is the most important vector involved in the transmission to humans, particularly in the peridomestic environment. Herein, we assessed the ecology of sand flies, including Lu. whitmani, in a low-density residential rural area with mixed forest/agricultural exploitation in north-eastern Brazil, where cutaneous leishmaniasis is endemic. Particularly, we hypothesized that sand fly abundance was correlated with climatic variables. Sand fly collections were carried out monthly from August 2013 to August 2014, using seven CDC light traps, for three consecutive nights, in three kinds of environments: indoor, peridomicile and forest. Collected sand flies were identified based on morphology and females of Lu. whitmani (n=169), Lu. amazonensis (n=134) and Lu. complexa (n=21) were selected and tested by PCR for Leishmania (Viannia) spp. In total, 5167 sand flies belonging to 19 species were identified, being that Lu. choti (43.2%) was the most frequent species, followed by Lu. amazonensis (16.6%), Lu. whitmani (15.8%), Lu. sordellii (10.7%) and Lu. quinquefer (5.8%), which together represented over 90% of the collected sand flies. All females tested by PCR were negative. The number of sand flies collected daily was positively correlated with temperature and negatively correlated with rainfall and relative humidity. Furthermore, there was a positive correlation between daily number of sand flies and daily average saturation deficit. This study points out that the number of sand flies captured daily is correlated to climatic variables, including saturation deficit, which may represent a useful parameter for monitoring sand fly populations in leishmaniasis-endemic areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Performance of a Low-Cost, Low-Concentration Photovoltaic Module

    NASA Astrophysics Data System (ADS)

    Shell, Kara A.; Brown, Scott A.; Schuetz, Mark A.; Davis, Bob J.; French, Roger H.

    2011-12-01

    In order to significantly reduce the cost of solar power, Replex Plastics has developed a low-cost, low-concentration PV module incorporating acrylic mirror reflectors. The reflectors are compound parabolic concentrators designed for use with low-accuracy single axis trackers. The prototypes use crystalline silicon photovoltaic cells and achieved 7.1x concentration over a receiver without reflectors. The 1×1.6 m module used 1/10th the silicon of a standard module and produced a max power of 140 W.

  2. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  3. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    PubMed

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  4. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  5. Ultra Low-Cost Radar

    NASA Astrophysics Data System (ADS)

    Davies, P.; da Silva Curiel, A.; Eves, S.; Sweeting, M.; Thompson, A.; Hall, D.

    From early 2003, Surrey Satellite Technology Limited (SSTL), together with its partners from Algeria, Nigeria and Turkey, has operated the Disaster Monitoring Constellation (DMC). During this period we have demonstrated the utility of a low-cost satellite system that uses optical sensors and is capable of providing daily imaging globally. For example, DMC data has been used operationally in the relief work in Darfur and following the Asian Tsunami. In addition to the use of the DMC to support disasters, the DMC has also been extensively used by the consortium members in support of national imaging needs and some residual system capacity has been provided to commercial customers. In the same timeframe, EADS Astrium Ltd has developed the technologies needed to implement the low-cost radar satellites of the MicroSAR range of synthetic aperture radar (SAR) satellites. EADS Astrium Ltd and SSTL are now looking to combine their expertises in low cost space technology and extend the capability of the DMC constellation by including a complementary small satellite radar sensor. The product of this activity is a satellite design that strikes an appropriate balance between revisit frequency and resolution. Hence, by comparison with other small satellite SAR concepts, the satellite described in this paper will provide broader area coverage at spatial resolutions in the region of 10 - 15m. Most significantly, perhaps, as a result of the specific cost targets imposed at the beginning of the design process, the satellite can provide this level of performance at a lower cost than other comparable space-based radar systems and significantly lower than larger, more performant, space-based radar systems.

  6. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

    NASA Astrophysics Data System (ADS)

    Li, Chao; Hao, Ya-fei; Zhao, Feng-qing

    2018-03-01

    Based on activation and synergistic effect among various materials, a low-cost mine backfill cementing material, FGC binder, was prepared by using fly ash, granulated blast-furnace slag (GBFS), carbide slag and composite activator. The proper proportioning of FGC binder is obtained by response surface experiment optimization method: fly ash 62 %, GBFS 20 %, carbide slag 8 % and compound activators 10 %. Adjusting the material ratio obtains different cementing material which could satisfy requirements of different mined-out areas. With the mass ratio of cementing material and tailings 1:4∼1:8, the concentration of total solid 70 %, the compressive strength values of total tailings filling body at 28 d reaches 1.64∼4.14 MPa, and the backfilling cost is 20 % lower than using OPC cement.

  7. Spacecraft Formation Flying Maneuvers Using Linear Quadratic Regulation With No Radial Axis Inputs

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame, propulsion system simplifications and weight reduction may be accomplished. This work focuses on the validation of this control system on its own merits, and in comparison to a related system which does provide thrust along the radial axis of the relative frame. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. Control algorithm performance is evaluated based on measures such as the fuel required to complete a maneuver and the maximum acceleration required by the controller. Based on this evaluation, the exclusion of the radial axis of control still allows enough control authority to use Linear Quadratic Regulator (LQR) techniques to design a gain matrix of adequate performance over finite maneuvers. Additional simulations are conducted including perturbations and using no radial control inputs. A major conclusion presented is that control inputs along the three axes have significantly different relationships to the governing orbital dynamics that may be exploited using LQR.

  8. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  9. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  10. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.

    PubMed

    Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season

    2015-01-01

    Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3 °C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the "archaic" method of hand-transferring PCR tubes between water baths. We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC) can enable on-site molecular

  11. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings

    PubMed Central

    Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season

    2015-01-01

    Background Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3°C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. Methodology/Principal Findings In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the “archaic” method of hand-transferring PCR tubes between water baths. Conclusions/Significance We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach

  12. Direct synthesis of carbon nanofibers from South African coal fly ash

    NASA Astrophysics Data System (ADS)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  13. Turning behaviour depends on frictional damping in the fruit fly Drosophila.

    PubMed

    Hesselberg, Thomas; Lehmann, Fritz-Olaf

    2007-12-01

    Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.

  14. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    PubMed

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  15. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys

    PubMed Central

    Baldoncini, Marica; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia

    2017-01-01

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35–2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%. PMID:28813023

  16. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  17. [Pretreatment technology for fly ash from MSWI and the corresponding study of chloride behavior].

    PubMed

    Zhu, Fen-Fen; Takaoka, Masaki; Oshita, Kazuyuki; Jiang, Hui-Min; Kitajima, Yoshinori

    2013-06-01

    The introduced pretreatment technology, WCCB (Washing + Calcination), was effective to reduce chlorides in fly ash by consuming relatively low energy for recycling fly ash as the raw material for cement industry. The washing conditions are: twice-washing, liquid/solid = 3, mixing speed = 150 r x min(-1), 1st mixing time = 5 min, and 2nd mixing time = 10 min. The original incinerator was used for the calcination process, 1 000 degrees C, 10% O2 and dwelling time of 1 hour were adopted. By adopting X-ray absorption near edge structure and X-ray diffraction, the behavior of chlorides was explained and NaCl, KCl and CaCl2 are the main form of chlorides existing in fly ash. The reagent used in the air pollution control system to neutralize the acid component in the discharged gas surely acted a very important role in the formation of chlorides. The insoluble chlorides in fly ash had a very similar structure as that of Friedel's salt, which was related with CaCl2.

  18. Who Purchases Low-Cost Alcohol in Australia?

    PubMed

    Callinan, Sarah; Room, Robin; Livingston, Michael; Jiang, Heng

    2015-11-01

    Debates surrounding potential price-based polices aimed at reducing alcohol-related harms tend to focus on the debate concerning who would be most affected-harmful or low-income drinkers. This study will investigate the characteristics of people who purchase low-cost alcohol using data from the Australian arm of the International Alcohol Control study. 1681 Australians aged 16 and over who had consumed alcohol and purchased it in off-licence premises were asked detailed questions about both practices. Low-cost alcohol was defined using cut-points of 80¢, $1.00 or $1.25 per Australian standard drink. With a $1.00 cut-off low income (OR = 2.1) and heavy drinkers (OR = 1.7) were more likely to purchase any low-cost alcohol. Harmful drinkers purchased more, and low-income drinkers less, alcohol priced at less than $1.00 per drink than high income and moderate drinkers respectively. The relationship between the proportion of units purchased at low cost and both drinker category and income is less clear, with hazardous, but not harmful, drinkers purchasing a lower proportion of units at low cost than moderate drinkers. The impact of minimum pricing on low income and harmful drinkers will depend on whether the proportion or total quantity of all alcohol purchased at low cost is considered. Based on absolute units of alcohol, minimum unit pricing could be differentially effective for heavier drinkers compared to other drinkers, particularly for young males. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  19. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics

    PubMed Central

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A.; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S.

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC’s ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC’s performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  20. System design and instrument development for future formation-flying magnetospheric satellite mission SCOPE

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Fujimoto, M.; Maezawa, K.; Kojima, H.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Tsuda, Y.; Higuchi, K.; Toda, T.

    Japan Aerospace Exploration Agency JAXA is currently planning a next generation magnetosphere observation mission called SCOPE cross-Scale COupling in the Plasma universE The main purpose of this mission is to investigate the dynamic behaviors of plasmas in the Terrestrial magnetosphere that range over various time and spatial scales The basic idea of the SCOPE mission is to distinguish temporal and spatial variations of physical processes by putting five formation flying spacecraft into the key region of the Terrestrial magnetosphere The orbit of SCOPE is a highly elliptical orbit with its apogee 30Re from the Earth center SCOPE consists of one 450kg mother satellite and four 90kg daughter satellites flying 5 to 5000km apart from each other The inter-satellite link is used for telemetry command operation as well as ranging to determine the relative orbit of 5 satellites in a small distance which cannot be resolved by the ground-based orbit determination The SCOPE mission is designed such that observational studies from the new perspective that is the cross-scale coupling viewpoint are enabled The orbit is so designed that the spacecraft will visit most of the key regions in the magnetosphere that is the bow shock the magnetospheric boundary the inner-magnetosphere and the near-Earth magnetotail In order to realize the science objectives high performance Plasma Particle sensors DC AC Magnetic and Electric field sensors and Wave Particle Correlator are planned to be onboard the SCOPE satellite All the SCOPE satellites have two 5m spin-axis antenna

  1. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  2. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    NASA Astrophysics Data System (ADS)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  3. FIELD METHOD COMPARISON BETWEEN PASSIVE AIR SAMPLERS AND CONTINUOUS MONITORS FOR VOLATILE ORGANIC COMPOUNDS AND NO2 IN EL PASO, TEXAS, USA

    EPA Science Inventory

    Passive sampling of gas-phase air toxics and criteria pollutants has become an attractive monitoring method in human exposure studies due to the relatively low sampling cost and ease of use. This study evaluates the performance of Model 3300 Ogawa(TM) Passive NO2 Samplers and 3...

  4. Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2017-01-25

    The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s -1 , an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L -1 was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES)

    NASA Astrophysics Data System (ADS)

    Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul

    2013-09-01

    Inclusive in the planning of Spaceport Malaysia are 2 local suborbital vehicles development. One of the vehicles is called SOLVES or Suborbital Low Cost and Low Risk Vehicle to the Edge of Space. The emphasis on the design and operation of SOLVES is green and robotic technology, where both green technology and robotic technology are used to protect the environment and enhance safety. As SOLVES climbs, its center of gravity stabilizes and remains at the bottom as its propellant being used until it depletes, due to the position of the vehicle's passenger cabin and its engines at its lower end. It will reach 80km from sea level generally known as "the edge of space" due to its momentum although its propellant will be depleted at a lower altitude. As the suborbital vehicle descends tail first, its wings automatically extend and rotate at horizontal axes perpendicular to the fuselage. These naturally and passively rotating wings ensure controlled low velocity and stable descend of the vehicle. The passenger cabin also rotates automatically at a steady low speed at the centerline of its fuselage as it descends, caused naturally by the lift force, enabling its passengers a surrounding 360 degrees view. SOLVES is steered automatically to its landing point by an electrical propulsion system with a vectoring nozzle. The electrical propulsion minimizes space and weight and is free of pollution and noise. Its electrical power comes from a battery aided by power generated by the naturally rotating wings. When the vehicle lands, it is in the safest mode as its propellant is depleted and its center of gravity remains at the bottom of its cabin. The cabin, being located at the bottom of the fuselage, enables very convenient, rapid and safe entry and exit of its passengers. SOLVES will be a robotic suborbital vehicle with green technology. The vehicle will carry 4 passengers and each passenger will be trained to land the vehicle manually if the fully automated landing system fails

  6. Heavy metals in MSW incineration fly ashes

    NASA Astrophysics Data System (ADS)

    Ferreira, C.; Ribeiro, A.; Ottosen, L.

    2003-05-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2g/kg for zinc, 2,4g/kg for lead, 1,7g/kg for iron, and 7,9g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash.

  7. Low-Cost Aqueous Coal Desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.

    1982-01-01

    Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.

  8. Silicon surface passivation by polystyrenesulfonate thin films

    NASA Astrophysics Data System (ADS)

    Chen, Jianhui; Shen, Yanjiao; Guo, Jianxin; Chen, Bingbing; Fan, Jiandong; Li, Feng; Liu, Haixu; Xu, Ying; Mai, Yaohua

    2017-02-01

    The use of polystyrenesulfonate (PSS) thin films in a high-quality passivation scheme involving the suppression of minority carrier recombination at the silicon surface is presented. PSS has been used as a dispersant for aqueous poly-3,4-ethylenedioxythiophene. In this work, PSS is coated as a form of thin film on a Si surface. A millisecond level minority carrier lifetime on a high resistivity Si wafer is obtained. The film thickness, oxygen content, and relative humidity are found to be important factors affecting the passivation quality. While applied to low resistivity silicon wafers, which are widely used for photovoltaic cell fabrication, this scheme yields relatively shorter lifetime, for example, 2.40 ms on n-type and 2.05 ms on p-type wafers with a resistivity of 1-5 Ω.cm. However, these lifetimes are still high enough to obtain high implied open circuit voltages (Voc) of 708 mV and 697 mV for n-type and p-type wafers, respectively. The formation of oxides at the PSS/Si interface is suggested to be responsible for the passivation mechanism.

  9. Locomotor performance and cost of transport in the northern flying squirrel Glaucomys sabrinus.

    Treesearch

    John S. Scheibe; Winston P. Smith; Jill Bassham; Dawn Magness

    2006-01-01

    We assess locomotor performance by northern flying squirrels Glartcontys sabrinus Shaw, 1801 and test the hypothesis that gliding locomotion is energetically cheaper than quadrupedal locomotion. We measured 168 glides by 82 northern flying squirrels in Alaska. Mean glide distances varied from 12.46 m to 14.39 m, with a maximum observed glide...

  10. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion.

    PubMed

    Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling

    2016-03-01

    Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Encapsulant Characterization and Doped Passivated Contacts for Use in a Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Fogel, Derek

    We report progress towards encapsulant characterization and the fabrication of passivated interdigitated back contact silicon solar cells using spin-on dopants for use in a luminescent solar concentrator. For the luminescent solar concentrator to be successful, the encapsulants used to assemble the final device must not contribute to optical losses and the tandem cell must exhibit excellent passivation and low contact resistivity values. The index of refraction of polydimethylsiloxane (PDMS) is calculated to be 1.405-1.415 for 600-800 nm and 1.475-1.505 is calculated for ethylene vinyl acetate (EVA). The absorption coefficient is calculated to be less than 0.1 cm-1 for PDMS and less than 0.5 cm-1 for EVA at wavelengths less than 1000 nm. Polysilicon / SiOx passivated contact symmetric structures grown using plasma-enhanced chemical vapor deposition (PECVD) and low pressure chemical vapor deposition (LPCVD) and subsequently doped using P, B, and Ga spin-on dopants are fabricated, and their passivation and contact properties are analyzed. The n-type, P-doped passivated contact gives an implied open circuit voltage (iVOC) of 708 mV in PECVD and 727 mV in LPCVD. The p-type, B-doped passivated contact gives an iVOC of 667 mV in PECVD and 689 mV in LPCVD. The p-type, Ga-doped passivated contact, which has not been previously reported, gives an iVOC of 731 mV in PECVD and 714 mV in LPCVD. For the n-type, P-doped contact a low metal to polysilicon contact resistivity of 23.8 mO-cm2 was measured for Al on PECVD and 15.8 mO-cm2 was measured for Al on LPCVD. For the p-type, B-doped contact a low metal to polysilicon contact resistivity of 0.3 mO-cm2 was measured for Al on LPCVD. These results are encouraging for the processing of passivated interdigitated back contact solar cells, and present a route towards high-efficiency Si PV at low cost.

  12. Passive ice freezing-releasing heat pipe

    DOEpatents

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  13. THE ROLE OF GAS-PHASE CL2 IN THE FORMATION OF PCDD/PCDF DURING WASTE COMBUSTION

    EPA Science Inventory

    Results of previous experiments investigating formation of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/PCDF) through low-temperature (300°C), fly-ash-catalyzed reactions are demonstrated to have occurred through intermediate formation of gas-phase Cl2 by deco...

  14. Strategies to fight low-cost rivals.

    PubMed

    Kumar, Nirmalya

    2006-12-01

    Companies find it challenging and yet strangely reassuring to take on opponents whose strategies, strengths, and weaknesses resemble their own. Their obsession with familiar rivals, however, has blinded them to threats from disruptive, low-cost competitors. Successful price warriors, such as the German retailer Aldi, are changing the nature of competition by employing several tactics: focusing on just one or a few consumer segments, delivering the basic product or providing one benefit better than rivals do, and backing low prices with superefficient operations. Ignoring cutprice rivals is a mistake because they eventually force companies to vacate entire market segments. Price wars are not the answer, either: Slashing prices usually lowers profits for incumbents without driving the low-cost entrants out of business. Companies take various approaches to competing against cut-price players. Some differentiate their products--a strategy that works only in certain circumstances. Others launch low-cost businesses of their own, as many airlines did in the 1990s--a so-called dual strategy that succeeds only if companies can generate synergies between the existing businesses and the new ventures, as the financial service providers HSBC and ING did. Without synergies, corporations are better off trying to transform themselves into low-cost players, a difficult feat that Ryanair accomplished in the 1990s, or into solution providers. There will always be room for both low-cost and value-added players. How much room each will have depends not only on the industry and customers' preferences, but also on the strategies traditional businesses deploy.

  15. Low cost audiovisual playback and recording triggered by radio frequency identification using Raspberry Pi.

    PubMed

    Lendvai, Ádám Z; Akçay, Çağlar; Weiss, Talia; Haussmann, Mark F; Moore, Ignacio T; Bonier, Frances

    2015-01-01

    Playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events, such as performing a specific behavior, or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system and to test one of its possible applications, we tagged female and male tree swallows (Tachycineta bicolor) from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time focal females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. In addition, the set-up does not require programming knowledge, and it easily customized to many other applications, depending on the research questions. Here, we discuss the possible applications and limitations of the system. The low cost and the small learning curve of the RFID-Raspberry Pi system provides a powerful new tool to field biologists.

  16. Low cost audiovisual playback and recording triggered by radio frequency identification using Raspberry Pi

    PubMed Central

    Akçay, Çağlar; Weiss, Talia; Haussmann, Mark F.; Moore, Ignacio T.; Bonier, Frances

    2015-01-01

    Playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events, such as performing a specific behavior, or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system and to test one of its possible applications, we tagged female and male tree swallows (Tachycineta bicolor) from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time focal females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. In addition, the set-up does not require programming knowledge, and it easily customized to many other applications, depending on the research questions. Here, we discuss the possible applications and limitations of the system. The low cost and the small learning curve of the RFID-Raspberry Pi system provides a powerful new tool to field biologists. PMID:25870771

  17. Design guide for space shuttle low-cost payloads

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A handbook is presented which delineates the principles of the new low-cost design methodology for designers of unmanned payloads to be carried by the space shuttle. The basic relationships between payload designs and program cost effects are discussed, and some concepts for designing low-cost payloads and implementing low-cost programs are given. The data are summarized from a payloads effects study of three unmanned earth satellites (OAO, a syneq orbiter, and a small research satellite), and the earth satellite design is emphasized. Brief summaries of space shuttle and space tug performance, environmental, and interface data pertinent to low-cost payload concepts are included.

  18. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  19. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    PubMed Central

    2018-01-01

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (passive sampling, irrespective of the specific method used, is fit for implementation in risk assessment and management of contaminated sediments, provided that method setup and performance, as well as chemical analyses are quality-controlled. PMID:29488382

  20. Low Cost Benefit Suggestions.

    ERIC Educational Resources Information Center

    Doyel, Hoyt W.; McMillan, John D.

    1980-01-01

    Outlines eight low-cost employee benefits and summarizes their relative advantages. The eight include a stock ownership program, a sick leave pool, flexible working hours, production incentives, and group purchase plans. (IRT)

  1. The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus) (Chiroptera: Pteropodidae).

    PubMed

    Reeder, DeeAnn M; Kosteczko, Nicole S; Kunz, Thomas H; Widmaier, Eric P

    2006-04-01

    This study examined behavioral and physiological responses (changes in inter-animal spacing, total glucocorticoids, testosterone, and body mass) to the formation of breeding and same-sex groups in two bat species, the socially gregarious Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus). We hypothesized that social instability, especially in the breeding groups and especially in P. vampyrus, would result in elevated glucocorticoids and that social facilitation of breeding and/or male-male competition would result in persistently higher levels of testosterone in breeding males. Seasonal rhythms in all measures were also predicted, and the glucocorticoid stress response was expected to vary by sex, season, and group type. Nearly all animals responded to group formation with elevated glucocorticoids, but, for breeding animals (especially aggressive male P. vampyrus), these responses persisted over time. In both species, breeding group formation resulted in elevated testosterone in males. Glucocorticoids, testosterone, testes volume, and body mass generally peaked in the breeding season in males (late summer and early autumn), but the seasonal glucocorticoid peak in females occurred in late winter and early spring. All animals responded to restraint stress with elevations in glucocorticoids that largely did not differ by sex, time of year, reproductive condition, group type, or, in lactating females, the presence of her pup. Changes in both behavior and physiology were more evident in P. vampyrus than in P. pumilus, and we believe that their underlying social differences influenced their responses to group formation and to the changing seasonal environment.

  2. From the Atlantic Forest to the borders of Amazonia: species richness, distribution, and host association of ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in northeastern Brazil.

    PubMed

    Barbier, Eder; Bernard, Enrico

    2017-11-01

    Better knowledge of the geographical distribution of parasites and their hosts can contribute to clarifying aspects of host specificity, as well as on the interactions among hosts, parasites, and the environment in which both exist. Ectoparasitic flies of the Nycteribiidae and Streblidae families are highly specialized hematophagous parasites of bats, whose distributional patterns, species richness, and associations with hosts remain underexplored and poorly known in Brazil. Here, we used information available in the literature and unpublished data to verify if the occurrence of bat hosts in a given environment influences the occurrence and distribution of nycteribiid and streblid flies in different ecoregions in the northeastern Brazil. We evaluate species richness and similarity between ecoregions and tested correlations between species richness and the number of studies in each ecoregion and federative unit. We recorded 50 species and 15 genera of bat ectoparasitic flies on 36 species and 27 genera of bat hosts. The Atlantic Forest had the highest fly species richness (n = 31; 62%), followed by Caatinga (n = 27; 54%). We detected the formation of distinct groups, with low species overlap between ecoregions for both flies and bats. Fly species richness was correlated with host species richness and with the number of studies in each federative unit, but not with the number of studies by ecoregion. Due to the formation of distinct groups with low species overlap for both groups, host availability is likely to be one of the factors that most influence the occurrence of highly specific flies. We also discuss host specificity for some species, produced an updated list of species and distribution for both nycteribiid and streblid flies with information on interaction networks, and conclude by presenting recommendations for more effective inventories of bat ectoparasites in the future.

  3. Low Cost, Low Power, High Sensitivity Magnetometer

    DTIC Science & Technology

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  4. Preliminary optical design of the coronagraph for the ASPIICS formation flying mission

    NASA Astrophysics Data System (ADS)

    Vivès, S.; Lamy, P.; Saisse, M.; Boit, J.-L.; Koutchmy, S.

    2017-11-01

    Formation flyers open new perspectives and allow to conceive giant, externally-occulted coronagraphs using a two-component space system with the external occulter on one spacecraft and the optical instrument on the other spacecraft at approximately 100-150 m from the first one. ASPIICS (Association de Satellites Pour l'Imagerie et l'Interfromtrie de la Couronne Solaire) is a mission proposed to ESA in the framework of the PROBA-3 program of formation flying which is presently in phase A to exploit this technique for coronal observations. ASPIICS is composed of a single coronagraph which performs high spatial resolution imaging of the corona as well as 2-dimensional spectroscopy of several emission lines from the coronal base out to 3 R. The selected lines allow to address different coronal regions: the forbidden line of Fe XIV at 530.285 nm (coronal matter), Fe IX/X at 637.4 nm (coronal holes), HeI at 587.6 nm (cold matter). An additional broad spectral channel will image the white light corona so as to derive electron densities. The classical design of an externally occulted coronagraph is adapted to the detection of the very inner corona as close as 1.01 R and the addition of a Fabry-Perot interferometer using a so-called "etalon". This paper is dedicated to the description of the optical design and its critical components: the entrance optics and the FabryPerot interferometer.

  5. Using Passive Sampling to Asses Ozone Formation in Sparsely Monitored Areas

    NASA Astrophysics Data System (ADS)

    Crosby, C. M.; Mainord, J.; George, L. A.

    2016-12-01

    Tropospheric ozone (O3), a secondary pollutant, is detrimental to both human health and the environment. O3 is formed from nitrogen oxides (NOx) and volatile organic compounds, (VOC's) in the presence of sunlight. Hermiston is a low population rural city in Oregon (17,707), where O3 levels are expected to be minimal. However, Hermiston has recently experienced elevated O3 concentrations, approaching EPA levels of non-attainment. These levels were not predicted by airshed modeling of the region, suggesting that precursor emissions are not adequately represented in the model. Due to the limited monitoring in the area, there are no measurements of precursors in the region. In this study, passive Ogawa samplers were used to measure NOx and O3 levels at twenty sites in the area. The concentrations were then mapped in conjunction with wind trajectories derived from HYSPLIT and compared to NOx point sources attained from the National Emissions Inventory (NEI). The measurement campaign revealed areas of elevated NOx concentrations that were not accounted for in the airshed model. Further exploration is needed to identify these sources. This study lays groundwork for the use of passive sampling to ground-truth airshed models in the absence of monitoring networks.

  6. Emerging low-cost LED thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-10-01

    As chip size and power levels continue to increase, thermal management, thermal stresses and cost have become key LED packaging issues. Until recently, low-coefficient-of-thermal-expansion (CTE) materials, which are needed to minimize thermal stresses, had thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. Copper, which has a higher thermal conductivity (400 W/m-K), also has a high CTE, which can cause severe thermal stresses. We now have over a dozen low-CTE materials with thermal conductivities ranging between 400 and 1700 W/m-K, and almost a score with thermal conductivities at least 50% greater than that of aluminum. Some of these materials are low cost. Others have the potential to be low cost in high volume production. Emphasizing low cost, this paper reviews traditional packaging materials and the six categories of advanced materials: polymer matrix-, metal matrix-, ceramic matrix-, and carbon matrix composites; monolithic carbonaceous materials; and metal-metal composites/alloys. Topics include properties, status, applications, cost and likely future directions of new advanced materials, including carbon nanotubes and inexpensive graphite nanoplatelets.

  7. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  8. Expansion-matched passively cooled heatsinks with low thermal resistance for high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart

    2006-02-01

    The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.

  9. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers

    NASA Astrophysics Data System (ADS)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-01

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  10. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.

    PubMed

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-24

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  11. Ultra-low activities of a common radioisotope for permission-free tracking of a drosophilid fly in its natural habitat

    PubMed Central

    Arthofer, Wolfgang; Decristoforo, Clemens; Schlick-Steiner, Birgit C.; Steiner, Florian M.

    2016-01-01

    Knowledge of a species’ ecology, including its movement in time and space, is key for many questions in biology and conservation. While numerous tools for tracking larger animals are available, millimetre-sized insects are averse to standard tracking and labelling procedures. Here, we evaluated the applicability of ultra-low, permission-exempt activities of the metastable isomer of the radionuclide Technetium-99 for labelling and field detection of the mountain fly Drosophila nigrosparsa. We demonstrate that an activity of less than 10 MBq is sufficient to label dozens of flies and detect single individuals using standard radiation protection monitors. The methodology presented here is applicable to many small-sized, low-mobility animals as well as independent from light and weather conditions and visual contact with the target organism. PMID:27812000

  12. Safe to Fly: Certifying COTS Hardware for Spaceflight

    NASA Technical Reports Server (NTRS)

    Fichuk, Jessica L.

    2011-01-01

    Providing hardware for the astronauts to use on board the Space Shuttle or International Space Station (ISS) involves a certification process that entails evaluating hardware safety, weighing risks, providing mitigation, and verifying requirements. Upon completion of this certification process, the hardware is deemed safe to fly. This process from start to finish can be completed as quickly as 1 week or can take several years in length depending on the complexity of the hardware and whether the item is a unique custom design. One area of cost and schedule savings that NASA implements is buying Commercial Off the Shelf (COTS) hardware and certifying it for human spaceflight as safe to fly. By utilizing commercial hardware, NASA saves time not having to develop, design and build the hardware from scratch, as well as a timesaving in the certification process. By utilizing COTS hardware, the current detailed certification process can be simplified which results in schedule savings. Cost savings is another important benefit of flying COTS hardware. Procuring COTS hardware for space use can be more economical than custom building the hardware. This paper will investigate the cost savings associated with certifying COTS hardware to NASA s standards rather than performing a custom build.

  13. Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi

    2016-03-18

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  14. Shape and texture fused recognition of flying targets

    NASA Astrophysics Data System (ADS)

    Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás

    2011-06-01

    This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).

  15. Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device

    NASA Astrophysics Data System (ADS)

    Pudasaini, P. R.; Ayon, A. A.

    2013-12-01

    Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.

  16. Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the flymore » ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.« less

  17. Laser-fired contact formation on metallized and passivated silicon wafers under short pulse durations

    NASA Astrophysics Data System (ADS)

    Raghavan, Ashwin S.

    The objective of this work is to develop a comprehensive understanding of the physical processes governing laser-fired contact (LFC) formation under microsecond pulse durations. Primary emphasis is placed on understanding how processing parameters influence contact morphology, passivation layer quality, alloying of Al and Si, and contact resistance. In addition, the research seeks to develop a quantitative method to accurately predict the contact geometry, thermal cycles, heat and mass transfer phenomena, and the influence of contact pitch distance on substrate temperatures in order to improve the physical understanding of the underlying processes. Finally, the work seeks to predict how geometry for LFCs produced with microsecond pulses will influence fabrication and performance factors, such as the rear side contacting scheme, rear surface series resistance and effective rear surface recombination rates. The characterization of LFC cross-sections reveals that the use of microsecond pulse durations results in the formation of three-dimensional hemispherical or half-ellipsoidal contact geometries. The LFC is heavily alloyed with Al and Si and is composed of a two-phase Al-Si microstructure that grows from the Si wafer during resolidification. As a result of forming a large three-dimensional contact geometry, the total contact resistance is governed by the interfacial contact area between the LFC and the wafer rather than the planar contact area at the original Al-Si interface within an opening in the passivation layer. By forming three-dimensional LFCs, the total contact resistance is significantly reduced in comparison to that predicted for planar contacts. In addition, despite the high energy densities associated with microsecond pulse durations, the passivation layer is well preserved outside of the immediate contact region. Therefore, the use of microsecond pulse durations can be used to improve device performance by leading to lower total contact resistances

  18. Orbiter Flying Qualities (OFQ) Workstation user's guide

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Parseghian, Zareh; Hogue, Jeffrey R.

    1988-01-01

    This project was devoted to the development of a software package, called the Orbiter Flying Qualities (OFQ) Workstation, for working with the OFQ Archives which are specially selected sets of space shuttle entry flight data relevant to flight control and flying qualities. The basic approach to creation of the workstation software was to federate and extend commercial software products to create a low cost package that operates on personal computers. Provision was made to link the workstation to large computers, but the OFQ Archive files were also converted to personal computer diskettes and can be stored on workstation hard disk drives. The primary element of the workstation developed in the project is the Interactive Data Handler (IDH) which allows the user to select data subsets from the archives and pass them to specialized analysis programs. The IDH was developed as an application in a relational database management system product. The specialized analysis programs linked to the workstation include a spreadsheet program, FREDA for spectral analysis, MFP for frequency domain system identification, and NIPIP for pilot-vehicle system parameter identification. The workstation also includes capability for ensemble analysis over groups of missions.

  19. Modes of thrust generation in flying animals

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Song, Jialei; Tobalske, Bret; Luo Team; Tobalske Team

    2016-11-01

    For flying animals in forward flight, thrust is usually much smaller as compared with weight support and has not been given the same amount of attention. Several modes of thrust generation are discussed in this presentation. For insects performing slow flight that is characterized by low advance ratios (i.e., the ratio between flight speed and wing speed), thrust is usually generated by a "backward flick" mode, in which the wings moves upward and backward at a faster speed than the flight speed. Paddling mode is another mode used by some insects like fruit flies who row their wings backward during upstroke like paddles (Ristroph et al., PRL, 2011). Birds wings have high advance ratios and produce thrust during downstroke by directing aerodynamic lift forward. At intermediate advance ratios around one (e.g., hummingbirds and bats), the animal wings generate thrust during both downstroke and upstroke, and thrust generation during upstroke may come at cost of negative weight support. These conclusions are supported by previous experiment studies of insects, birds, and bats, as well as our recent computational modeling of hummingbirds. Supported by the NSF.

  20. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Cao; Quan-Hai Wang; Jun Li

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gasmore » inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.« less

  1. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    PubMed

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  2. Canadian Snowbirds fly over KSC

    NASA Image and Video Library

    2018-05-09

    The Canadian Forces Snowbirds fly in a tribute Shuttle formation over NASA’s Kennedy Space Center in Florida. The Snowbirds, Canada’s air demonstration team, carried out a practice flight over Kennedy and nearby Cape Canaveral Air Force Station in Florida on Wednesday, May 9, 2018, between their scheduled U.S. air shows.

  3. Canadian Snowbirds fly over KSC

    NASA Image and Video Library

    2018-05-09

    The Canadian Forces Snowbirds fly in Concorde formation over the Kennedy Space Center Visitor Complex. The Snowbirds, Canada’s air demonstration team, carried out a practice flight over NASA’s Kennedy Space Center and Cape Canaveral Air Force Station in Florida on Wednesday, May 9, 2018, between their scheduled U.S. air shows.

  4. Low-cost satellite mechanical design and construction

    NASA Astrophysics Data System (ADS)

    Boisjolie-Gair, Nathaniel; Straub, Jeremy

    2017-05-01

    This paper presents a discussion of techniques for low-cost design and construction of a CubeSat mechanical structure that can serve as a basis for academic programs and a starting point for government, military and commercial large-scale sensing networks, where the cost of each node must be minimized to facilitate system affordability and lower the cost and associated risk of losing any node. Spacecraft Design plays a large role in manufacturability. An intentionally simplified mechanical design is presented which reduces machining costs, as compared to more intricate designs that were considered. Several fabrication approaches are evaluated relative to the low-cost goal.

  5. A Contamination-Free Ultrahigh Precision Formation Flying Method for Micro-, Nano-, and Pico-Satellites with Nanometer Accuracy

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    2006-01-01

    Formation flying of clusters of micro-, nano- and pico-satellites has been recognized to be more affordable, robust and versatile than building a large monolithic satellite in implementing next generation space missions requiring large apertures or large sample collection areas and sophisticated earth imaging/monitoring. We propose a propellant free, thus contamination free, method that enables ultrahigh precision satellite formation flying with intersatellite distance accuracy of nm (10-9 m) at maximum estimated distances in the order of tens of km. The method is based on ultrahigh precision CW intracavity photon thrusters and tethers. The pushing-out force of the intracavity photon thruster and the pulling-in force of the tether tension between satellites form the basic force structure to stabilize crystalline-like structures of satellites and/or spacecrafts with a relative distance accuracy better than nm. The thrust of the photons can be amplified by up to tens of thousand times by bouncing them between two mirrors located separately on pairing satellites. For example, a 10 W photon thruster, suitable for micro-satellite applications, is theoretically capable of providing thrusts up to mN, and its weight and power consumption are estimated to be several kgs and tens of W, respectively. The dual usage of photon thruster as a precision laser source for the interferometric ranging system further simplifies the system architecture and minimizes the weight and power consumption. The present method does not require propellant, thus provides significant propulsion system mass savings, and is free from propellant exhaust contamination, ideal for missions that require large apertures composed of highly sensitive sensors. The system can be readily scaled down for the nano- and pico-satellite applications.

  6. Development of a Low-Cost and Effective Trapping Device for Apple Maggot Fly (Diptera: Tephritidae) Monitoring and Control in Mexican Commercial Hawthorn Groves.

    PubMed

    Tadeo, E; Muñiz, E; Rull, J; Yee, W L; Aluja, M; Lasa, R

    2017-08-01

    Few efforts have been made in Mexico to monitor Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) in commercial hawthorn (Crataegus spp.) crops. Therefore, the main objectives of this study were to evaluate infestation levels of R. pomonella in feral and commercial Mexican hawthorn and to assess the efficacy of different trap-lure combinations to monitor the pest. Wild hawthorn was more infested than commercially grown hawthorn at the sample site. No differences among four commercial baits (Biolure, ammonium carbonate, CeraTrap, and Captor + borax) were detected when used in combination with a yellow sticky gel (SG) adherent trap under field conditions. However, liquid lures elicited a slightly higher, although not statistically different, capture. Cage experiments in the laboratory revealed that flies tended to land more often on the upper and middle than lower-bottom part of polyethylene (PET) bottle traps with color circles. Among red, orange, green, and yellow circles attached to a bottle trap, only yellow circles improved fly captures compared with a colorless trap. A PET bottle trap with a red circle over a yellow background captured more flies than a similar trap with yellow circles. An SG adherent yellow panel trap baited with ammonium carbonate was superior to the improved PET bottle trap (red over a yellow background) baited with different liquid proteins, but a higher proportion of females and no differences in fly detection were measured in PET traps baited with protein lures. These trials open the door for future research into development of a conventional nonadherent trap to monitor or control R. pomonella. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    PubMed

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2017-04-01

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  9. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters

    NASA Astrophysics Data System (ADS)

    Ghasemi, S.; Khorasani, K.

    2015-10-01

    In this paper, the problem of fault detection and isolation (FDI) of the attitude control subsystem (ACS) of spacecraft formation flying systems is considered. For developing the FDI schemes, an extended Kalman filter (EKF) is utilised which belongs to a class of nonlinear state estimation methods. Three architectures, namely centralised, decentralised, and semi-decentralised, are considered and the corresponding FDI strategies are designed and constructed. Appropriate residual generation techniques and threshold selection criteria are proposed for these architectures. The capabilities of the proposed architectures for accomplishing the FDI tasks are studied through extensive numerical simulations for a team of four satellites in formation flight. Using a confusion matrix evaluation criterion, it is shown that the centralised architecture can achieve the most reliable results relative to the semi-decentralised and decentralised architectures at the expense of availability of a centralised processing module that requires the entire team information set. On the other hand, the semi-decentralised performance is close to the centralised scheme without relying on the availability of the entire team information set. Furthermore, the results confirm that the FDI results in formations with angular velocity measurement sensors achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations that utilise attitude measurement sensors.

  10. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  11. Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella.

    PubMed Central

    Feder, Jeffrey L; Roethele, Joseph B; Filchak, Kenneth; Niedbalski, Julie; Romero-Severson, Jeanne

    2003-01-01

    Evidence suggests that the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) is undergoing sympatric speciation (i.e., divergence without geographic isolation) in the process of shifting and adapting to a new host plant. Prior to the introduction of cultivated apples (Malus pumila) in North America, R. pomonella infested the fruit of native hawthorns (Crataegus spp.). However, sometime in the mid-1800s the fly formed a sympatric race on apple. The recently derived apple-infesting race shows consistent allele frequency differences from the hawthorn host race for six allozyme loci mapping to three different chromosomes. Alleles at all six of these allozymes correlate with the timing of adult eclosion, an event dependent on the duration of the overwintering pupal diapause. This timing difference differentially adapts the univoltine fly races to an approximately 3- to 4-week difference in the peak fruiting times of apple and hawthorn trees, partially reproductively isolating the host races. Here, we report finding substantial gametic disequilibrium among allozyme and complementary DNA (cDNA) markers encompassing the three chromosomal regions differentiating apple and hawthorn flies. The regions of disequilibrium extend well beyond the previously characterized six allozyme loci, covering substantial portions of chromosomes 1, 2, and 3 (haploid n = 6 in R. pomonella). Moreover, significant recombination heterogeneity and variation in gene order were observed among single-pair crosses for each of the three genomic regions, implying the existence of inversion polymorphism. We therefore have evidence that genes affecting diapause traits involved in host race formation reside within large complexes of rearranged genes. We explore whether these genomic regions (inversions) constitute coadapted gene complexes and discuss the implications of our findings for sympatric speciation in Rhagoletis. PMID:12663534

  12. High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.

    2013-12-01

    Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.

  13. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes

    PubMed Central

    Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei

    2015-01-01

    Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and low Rm are attributable to the intrinsic properties of membrane ion channels or to gap junction coupling in functionally mature astrocytes. In the present study, freshly dissociated hippocampal tissues were used as a new model to examine this basic question in young adult animals. The morphologically intact single astrocytes could be reliably dissociated from animals postnatal day 21 and older. At this animal age, dissociated single astrocytes exhibit passive conductance and resting membrane potential similar to those exhibited by astrocytes in situ. To precisely measure the Rm from single astrocytes, dual-patch single-astrocyte recording was performed. We show that dissociated single astrocytes exhibit a low Rm similarly to syncytial coupled astrocytes. Functionally, the symmetric expression of high-K+ conductance enabled rapid change in the intracellular K+ concentrations in response to changing K+ drive force. Altogether, we demonstrate that freshly dissociated tissue preparation is a highly useful model for study of the functional expression and regulation of ion channels, receptors, and transporters in astrocytes and that passive behavior and low Rm are the intrinsic properties of mature astrocytes. PMID:25810481

  14. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    NASA Astrophysics Data System (ADS)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about

  15. Canadian Snowbirds fly over KSC

    NASA Image and Video Library

    2018-05-09

    The Canadian Forces Snowbirds fly in Concorde formation over NASA’s Kennedy Space Center in Florida during their performance practice. The Snowbirds, Canada’s air demonstration team, carried out a practice flight over Kennedy and nearby Cape Canaveral Air Force Station in Florida on Wednesday, May 9, 2018, between their scheduled U.S. air shows.

  16. To walk or to fly? How birds choose among foraging modes

    PubMed Central

    Bautista, Luis M.; Tinbergen, Joost; Kacelnik, Alejandro

    2001-01-01

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments. PMID:11158599

  17. To walk or to fly? How birds choose among foraging modes.

    PubMed

    Bautista, L M; Tinbergen, J; Kacelnik, A

    2001-01-30

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments.

  18. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.

    PubMed

    Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G

    2017-10-01

    We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.

  19. Bed Bug (Hemiptera: Cimicidae) Detection in Low-Income, High-Rise Apartments Using Four or Fewer Passive Monitors.

    PubMed

    Vail, K M; Chandler, J G

    2017-06-01

    Bed bug, Cimex lectularius L., management in low-income, high-rise housing for the elderly and disabled can be difficult. Early detection is key to slowing their spread, and reducing management cost and time needed for control. To determine the minimum number of passive monitors needed to detect low-level bed bug infestations in this environment, we evaluated three monitors placed one, two, or four per apartment in a 3 by 3 experimental design. One sticky monitor, The Bedbug Detection System, and the two pitfall monitors, ClimbUp Insect Interceptors BG and BlackOut BedBug Detectors, were evaluated. Bed bugs were trapped by the ClimbUp Insect Interceptors BG and the BlackOut BedBug Detector in 88% and 79% of apartments, respectively, but only in 39% of the apartments monitored with The Bedbug Detection System. The Bedbug Detection System required significantly longer time to detect bed bugs than either the ClimbUp Insect Interceptor BG or the BlackOut BedBug Detector. With the less effective Bedbug Detection System data removed from analyses, detection rates ranged from 80 to 90%, with no significant differences among one, two, or four monitors per apartment. Results indicate it is especially important to include a bed placement when only placing a few monitors. Future work should compare the combination of cursory visual inspections with various monitor numbers and placements per apartment to determine the most efficient, cost-effective system that will be accepted and implemented in low-income housing. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. S.H.,; Castel, Arnaud; Akbarnezhad, A.

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. Nomore » traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.« less

  1. Investigation of monolithic passively mode-locked quantum dot lasers with extremely low repetition frequency.

    PubMed

    Xu, Tianhong; Cao, Juncheng; Montrosset, Ivo

    2015-01-01

    The dynamical regimes and performance optimization of quantum dot monolithic passively mode-locked lasers with extremely low repetition rate are investigated using the numerical method. A modified multisection delayed differential equation model is proposed to accomplish simulations of both two-section and three-section passively mode-locked lasers with long cavity. According to the numerical simulations, it is shown that fundamental and harmonic mode-locking regimes can be multistable over a wide current range. These dynamic regimes are studied, and the reasons for their existence are explained. In addition, we demonstrate that fundamental pulses with higher peak power can be achieved when the laser is designed to work in a region with smaller differential gain.

  2. Electromagnetic microforging apparatus for low-cost fabrication of molds for microlens arrays

    NASA Astrophysics Data System (ADS)

    Pribošek, Jaka; Diaci, Janez

    2015-06-01

    This study addresses the problem of low-cost microlens fabrication and outlines the development of a novel microforging apparatus for microlens mold fabrication. The apparatus consists of an electromagnetic impact tool which strikes a piston with a hardened steel ball into a workpiece. The impact creates a spherical indentation which serves as a lens cavity. The microforging apparatus is controlled by a microprocessor control unit communicating with a personal computer and enables on-the-fly variation of electromagnetic excitation to control the microforging process. We studied the effects of process parameters on the diameter of the fabricated lens cavities inspected by a custom automatic image processing algorithm. Different microforging regimes are analyzed and discussed. The surface quality of fabricated cavities has been inspected by confocal microscopy and the influence of fill factor on sphericity error has been studied. The proposed microforging method enables the fabrication of molds with 100% fill factor, surface roughness as low as Ra 0.15 µm and sphericity error lower than 0.5 µm. The fabricated microlens arrays exhibit nearly diffraction-limited performance, offering a wide range of possible applications. We believe this study provides access to microoptical technology for smaller optical and computer vision laboratories.

  3. Screen printed passive components for flexible power electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  4. Screen printed passive components for flexible power electronics

    PubMed Central

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  5. Screen printed passive components for flexible power electronics.

    PubMed

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-10-30

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  6. Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-03-01

    Columbia County Habitat for Humanity (CCHH) (New York, Climate Zone 5A) built a pair of townhomes to Passive House Institute U.S. (PHIUS+ 2015) criteria to explore approaches for achieving Passive House performance (specifically with respect to exterior wall, space-conditioning, and ventilation strategies) within the labor and budget context inherent in a Habitat for Humanity project. CCHH’s goal is to eventually develop a cost-justified Passive House prototype design for future projects.

  7. Modeling the cost-effectiveness of insect rearing on artificial diets: A test with a tephritid fly used in the sterile insect technique.

    PubMed

    Pascacio-Villafán, Carlos; Birke, Andrea; Williams, Trevor; Aluja, Martín

    2017-01-01

    We modeled the cost-effectiveness of rearing Anastrepha ludens, a major fruit fly pest currently mass reared for sterilization and release in pest control programs implementing the sterile insect technique (SIT). An optimization model was generated by combining response surface models of artificial diet cost savings with models of A. ludens pupation, pupal weight, larval development time and adult emergence as a function of mixtures of yeast, a costly ingredient, with corn flour and corncob fractions in the diet. Our model revealed several yeast-reduced mixtures that could be used to prepare diets that were considerably cheaper than a standard diet used for mass rearing. Models predicted a similar production of insects (pupation and adult emergence), with statistically similar pupal weights and larval development times between yeast-reduced diets and the standard mass rearing diet formulation. Annual savings from using the modified diets could be up to 5.9% of the annual cost of yeast, corn flour and corncob fractions used in the standard diet, representing a potential saving of US $27.45 per ton of diet (US $47,496 in the case of the mean annual production of 1,730.29 tons of artificial diet in the Moscafrut mass rearing facility at Metapa, Chiapas, Mexico). Implementation of the yeast-reduced diet on an experimental scale at mass rearing facilities is still required to confirm the suitability of new mixtures of artificial diet for rearing A. ludens for use in SIT. This should include the examination of critical quality control parameters of flies such as adult flight ability, starvation resistance and male sexual competitiveness across various generations. The method used here could be useful for improving the cost-effectiveness of invertebrate or vertebrate mass rearing diets worldwide.

  8. Modeling the cost-effectiveness of insect rearing on artificial diets: A test with a tephritid fly used in the sterile insect technique

    PubMed Central

    Birke, Andrea; Williams, Trevor; Aluja, Martín

    2017-01-01

    We modeled the cost-effectiveness of rearing Anastrepha ludens, a major fruit fly pest currently mass reared for sterilization and release in pest control programs implementing the sterile insect technique (SIT). An optimization model was generated by combining response surface models of artificial diet cost savings with models of A. ludens pupation, pupal weight, larval development time and adult emergence as a function of mixtures of yeast, a costly ingredient, with corn flour and corncob fractions in the diet. Our model revealed several yeast-reduced mixtures that could be used to prepare diets that were considerably cheaper than a standard diet used for mass rearing. Models predicted a similar production of insects (pupation and adult emergence), with statistically similar pupal weights and larval development times between yeast-reduced diets and the standard mass rearing diet formulation. Annual savings from using the modified diets could be up to 5.9% of the annual cost of yeast, corn flour and corncob fractions used in the standard diet, representing a potential saving of US $27.45 per ton of diet (US $47,496 in the case of the mean annual production of 1,730.29 tons of artificial diet in the Moscafrut mass rearing facility at Metapa, Chiapas, Mexico). Implementation of the yeast-reduced diet on an experimental scale at mass rearing facilities is still required to confirm the suitability of new mixtures of artificial diet for rearing A. ludens for use in SIT. This should include the examination of critical quality control parameters of flies such as adult flight ability, starvation resistance and male sexual competitiveness across various generations. The method used here could be useful for improving the cost-effectiveness of invertebrate or vertebrate mass rearing diets worldwide. PMID:28257496

  9. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  10. Active and passive vibration suppression for space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  11. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain.

    PubMed

    Cohen, Dror; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2018-01-01

    Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1-5 Hz) mediated FB from the center to the periphery, while higher frequencies (10-45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB.

  12. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain

    PubMed Central

    2018-01-01

    Abstract Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1–5 Hz) mediated FB from the center to the periphery, while higher frequencies (10–45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB. PMID:29541686

  13. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    PubMed

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.

  14. DEMONSTRATION OF LOW COST, LOW BURDEN EXPOSURE MONITORING STRATEGIES

    EPA Science Inventory

    This study is designed to develop and demonstrate relevant, low-cost, low-burden monitoring strategies that could be used in large longitudinal exposure/epidemiological studies, such as the National Children's Study. The focus of this study is on (1) recruiting and retaining p...

  15. Low cost solar cell arrays

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Mclennan, H.

    1975-01-01

    Limitations in both space and terrestial markets for solar cells are described. Based on knowledge of the state-of-the-art, six cell options are discussed; as a result of this discussion, the three most promising options (involving high, medium and low efficiency cells respectively) were selected and analyzed for their probable costs. The results showed that all three cell options gave promise of costs below $10 per watt in the near future. Before further cost reductions can be achieved, more R and D work is required; suggestions for suitable programs are given.

  16. Network formation: neighborhood structures, establishment costs, and distributed learning.

    PubMed

    Chasparis, Georgios C; Shamma, Jeff S

    2013-12-01

    We consider the problem of network formation in a distributed fashion. Network formation is modeled as a strategic-form game, where agents represent nodes that form and sever unidirectional links with other nodes and derive utilities from these links. Furthermore, agents can form links only with a limited set of neighbors. Agents trade off the benefit from links, which is determined by a distance-dependent reward function, and the cost of maintaining links. When each agent acts independently, trying to maximize its own utility function, we can characterize “stable” networks through the notion of Nash equilibrium. In fact, the introduced reward and cost functions lead to Nash equilibria (networks), which exhibit several desirable properties such as connectivity, bounded-hop diameter, and efficiency (i.e., minimum number of links). Since Nash networks may not necessarily be efficient, we also explore the possibility of “shaping” the set of Nash networks through the introduction of state-based utility functions. Such utility functions may represent dynamic phenomena such as establishment costs (either positive or negative). Finally, we show how Nash networks can be the outcome of a distributed learning process. In particular, we extend previous learning processes to so-called “state-based” weakly acyclic games, and we show that the proposed network formation games belong to this class of games.

  17. Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device

    NASA Astrophysics Data System (ADS)

    Duperron, Matthieu; Carroll, Lee; Rensing, Marc; Collins, Sean; Zhao, Yan; Li, Yanlu; Baets, Roel; O'Brien, Peter

    2017-02-01

    The cost-effective integration of laser sources on Silicon Photonic Integrated Circuits (Si-PICs) is a key challenge to realizing the full potential of on-chip photonic solutions for telecommunication and medical applications. Hybrid integration can offer a route to high-yield solutions, using only known-good laser-chips, and simple freespace micro-optics to transport light from a discrete laser-diode to a grating-coupler on the Si-PIC. In this work, we describe a passively assembled micro-optical bench (MOB) for the hybrid integration of a 1550nm 20MHz linewidth laser-diode on a Si-PIC, developed for an on-chip interferometer based medical device. A dual-lens MOB design minimizes aberrations in the laser spot transported to the standard grating-coupler (15 μm x 12 μm) on the Si-PIC, and facilitates the inclusion of a sub-millimeter latched-garnet optical-isolator. The 20dB suppression from the isolator helps ensure the high-frequency stability of the laser-diode, while the high thermal conductivity of the AlN submount (300/W=m.°C), and the close integration of a micro-bead thermistor, ensure the stable and efficient thermo-electric cooling of the laser-diode, which helps minimise low-frequency drift during the approximately 15s of operation needed for the point-of-care measurement. The dual-lens MOB is compatible with cost-effective passively-aligned mass-production, and can be optimised for alternative PIC-based applications.

  18. Formation Control for the MAXIM Mission

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.

  19. Low-Cost III-V Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Low-Cost III-V Solar Cells Low-Cost III-V Solar Cells At present, the cost of III-V solar cells is to drastically lower the cost of these devices, while maintaining their conversion efficiency, thus costs in the production of high-efficiency III-V devices: the cost of the epitaxy and the single-crystal

  20. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

    PubMed Central

    Pandey, Udai Bhan

    2011-01-01

    The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126

  1. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  2. Dose-dependent fate of GFP-E. coli in the alimentary canal of adult house flies

    PubMed Central

    Naveen, Kumar H.V.; Nayduch, Dana

    2015-01-01

    Adult house flies (Diptera: Muscidae; Musca domestica L.) can disseminate bacteria from microbe-rich substrates to areas where humans and domesticated animals reside. Because bacterial abundance fluctuates widely across substrates, flies encounter and ingest varying amounts of bacteria. We investigated the dose-dependent survival of bacteria in house flies. Flies were fed four different “doses” of GFP-expressing Escherichia coli (GFP E. coli; very low, low, medium, high, defined in text) and survival was determined at 1, 4, 10 and 22 h post-ingestion via culture and epiflourescent microscopy. Over 22 h, decline of GFP E. coli was significant for all treatments (P<0.04) except the very low dose (P=0.235). Change in survival (Δ S) did not differ between flies fed low and very low doses of bacteria across all time points, although both treatments differed from flies fed high and medium bacterial doses at several time points. At 4, 10 and 22 h, GFP E. coli Δ S significantly differed between medium and high dose-fed flies. A threshold dose, above which bacteria are detected and destroyed by house flies, may exist and likely is immune-mediated. Understanding dose-dependent bacterial survival in flies can help in predicting bacteria transmission potential. PMID:26843509

  3. Tetrahedron Formation Control

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.

    2003-01-01

    Spacecraft flying in tetrahedron formations are excellent instrument platforms for electromagnetic and plasma studies. A minimum of four spacecraft - to establish a volume - is required to study some of the key regions of a planetary magnetic field. The usefulness of the measurements recorded is strongly affected by the tetrahedron orbital evolution. This paper considers the preliminary development of a general optimization procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-stage optimization method is employed. The stages include targeting to a fixed tetrahedron orientation, rotating and translating the tetrahedron and/or varying the initial and final times. The number of impulsive maneuvers citn also be varied. As the impulse locations and times change, new arcs are computed using a differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost function. Direct optimization techniques are employed. The procedure is applied to the Magnetospheric Multiscale Mission (MMS) to compute preliminary formation control fuel requirements.

  4. Stable fly, house fly (Diptera: Muscidae), and other nuisance fly development in poultry litter associated with horticultural crop production.

    PubMed

    Cook, D F; Dadour, I R; Keals, N J

    1999-12-01

    Poultry litter usage in horticultural crop production is a contributor to nuisance fly populations, in particular stable flies (Stomoxys calcitrans L.) and house flies (Musca domestica L.). Extrapolation of adult emergence data suggests that approximately 1.5 million house flies and 0.2 million stable flies are emerging on average from every hectare of poultry litter applied as a preplant fertilizer for vegetable production in Perth, Western Australia. To a lesser extent, sideband applications to established crops may allow for the development of 0.5 million house flies and 45,000 stable flies per hectare. However, up to 1 million house flies, 0.45 million lesser house flies, Fannia cannicularis L., and 11,000 stable flies per hectare may be produced from surface dressings of poultry litter associated with turf production. Other nuisance flies present in poultry litter included the false stable fly, Muscina stabulans (Fallén), bluebodied blowfly, Calliphora dubia Hardy, black carrion fly, Hydrotaea rostrata Robineau-Desvoidy, Australian sheep blowfly, Lucilia cuprina Wiedemann, and flesh flies (Sarcophagidae). Only house flies developed in poultry litter for the first 4 d after application in the field. Stable flies were not present in poultry litter until 4-7 d after application, and were the only fly species developing in litter > 9 d after application.

  5. Low cost miniature data collection platform

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of the RF elements of a telecommunications package involved detailed study and analysis of concepts and techniques followed by laboratory testing and evaluation of designs. The design goals for a complete telecommunications package excluding antenna were a total weight of 300 grams, in a total volume of 400 cu cm with a capability of unattended operation for a period of six months. Of utmost importance is extremely low cost when produced in lots of 10,000. Early in the program it became apparent that a single Miniature Data Collection Platform would not satisfy all users. A single high efficiency system would not satisfy a user who had available a large battery capacity but required a low cost system. Conversely, the low cost system would not satisfy the end user who had a very limited battery capacity. A system design to satisfy these varied requirements was implemented by designing several versions of the system building blocks and then constructing three systems from these building blocks.

  6. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS

    PubMed Central

    Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe

    2016-01-01

    . The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases. PMID:26771833

  7. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.

    PubMed

    Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe

    2016-01-01

    Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI

  8. Low speed streak formation in a separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew

    2017-11-01

    Separation control mechanisms present on the skin of the shortfin mako shark may permit higher swimming speeds. The morphology of the scales varies over the entire body, with maximum scale flexibility found on the flank region with an adverse pressure gradient(APG). It is hypothesized that reversing flow close the skin bristles the scales inhibiting further flow reversal and controlling flow separation. Experiments are conducted in water tunnel facility and the flow field of a separating turbulent boundary layer(TBL) is measured using DPIV and Insight V3V. Flow separation is induced by a rotating cylinder which generates a controlled APG over a flat plate (Re = 510000 and 620000). Specifically, the low speed streak(LSS) formation is documented and matches predicted sizing based on viscous length scale calculations. It is surmised that shark scale width corresponds to this LSS sizing for real swimming TBL conditions. However, flow separation control has been demonstrated over real skin specimens under much lower speed conditions which indicates the mechanism is fairly Re independent if multiple scales are bristled as the width of the LSS increases. The formation of reversing flow within the streaks is studied specifically to better understand the process by which this flow initiates scale bristling on shortfin mako skin as a passive, flow actuated separation control mechanism. The authors would like to greatefully acknowledge the Army Research Office for funding this project.

  9. A low-cost colorimeter.

    PubMed

    Jones, N B; Riley, C; Sheya, M S; Hosseinmardi, M M

    1984-01-01

    A need for a colorimeter with low capital and maintenance costs has been suggested for countries with foreign exchange problems and no local medical instrumentation industry. This paper puts forward a design for such a device based on a domestic light-bulb, photographic filters and photovoltaic cells. The principle of the design is the use of a balancing technique involving twin light paths for test solution and reference solution and an electronic bridge circuit. It is shown that proper selection of the components will allow the cost objectives to be met and also provide acceptable linearity, precision, accuracy and repeatability.

  10. The fruit flies (Tephritidae) of Ontario

    USDA-ARS?s Scientific Manuscript database

    Thirteen species of Tephritidae are newly recorded from Ontario, and alternative format keys are provided to the 31 genera and 72 species of fruit fly now known from, or likely to occur, in the province. Standard dichotomous keys to genera, and simplified field keys to genera and species are provide...

  11. Determinants of escalating costs in low risk workers' compensation claims.

    PubMed

    Bernacki, Edward J; Yuspeh, Larry; Tao, Xuguang

    2007-07-01

    To identify and quantify attributes that lead to unanticipated cost escalation in workers' compensation claims. We constructed four claim categories: low initial reserve/low cost, migrated catastrophic (low initial reserve/high cost), high initial reserve/low cost, and catastrophic (high initial reserve/high cost). To assess the attributes associated with the increased cost of migrated catastrophic claims, we analyzed 36,329 Louisiana workers' compensation claims in the four categories over a 5-year period. In the 729 claims initially thought to be low-cost claims (migrated catastrophic), the most significant predictors for cost escalation were attorney involvement and claim duration, followed by low back disorder, married/single/divorced status, male gender, small company size, high premium, reporting delays, and older age. These injuries accounted for 2% of all claims but 32.3% of the costs. Accelerated escalation of costs occurred late in the claim cycle (2 years). Certain attributes, particularly attorney involvement and claim duration, are associated with unanticipated cost escalation in a small number of claims that drastically affect overall losses. The results of this study suggest that these cases may be identified and addressed before rapid escalation occurs.

  12. Developments toward a Low-Cost Approach for Long-Term, Unattended Vapor Intrusion Monitoring

    PubMed Central

    Tolley, William K.

    2014-01-01

    There are over 450,000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these site stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10−9, or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors. PMID:24903107

  13. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  14. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  15. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  16. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  17. Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices.

    PubMed

    Donald, Carey E; Elie, Marc R; Smith, Brian W; Hoffman, Peter D; Anderson, Kim A

    2016-06-01

    Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However, such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers or foil wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between -20 and 35 °C. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88 to 113 %. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor.

  18. Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices

    PubMed Central

    Donald, Carey E.; Elie, Marc R.; Smith, Brian W.; Hoffman, Peter D.; Anderson, Kim A.

    2016-01-01

    Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers, or foil-wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between -20 and 35 degrees Celsius. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88% to 113%. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor. PMID:26983811

  19. dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction.

    PubMed

    Parashar, Vijay; Rogina, Blanka

    2009-06-22

    Calorie restriction (CR) is the most effective way to increase life span and delay the onset of age-related symptoms in animals. We have previously reported that CR affects a variety of physiological phenotypes in flies and results in dramatic behavioral, physical and demographic changes. Here we show effects of low and high calorie levels on the spontaneous physical activity of flies. Wild type flies maintained on a low calorie diet exhibit higher spontaneous activity compared to flies on higher calorie diets. This increase is dependent on the presence of Sir2 since a low calorie diet does not increase the activity of dSir2 null flies. Similarly, increasing dSir2 activity by feeding flies resveratrol, a CR mimetic, increases spontaneous physical activity of flies on high caloric food. In Drosophila, spontaneous physical activity therefore closely mimics life span in its dependence on Sir2.

  20. Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng

    2018-06-01

    A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.

  1. Design and analysis of a high Q MEMS passive RF filter

    NASA Astrophysics Data System (ADS)

    Rathee, Vishal; Pande, Rajesh

    2016-04-01

    Over the past few years, significant growth has been observed in using MEMS based passive components in the RF microelectronics domain, especially in transceiver system. This is due to some excellent properties of the MEMS devices like low loss, low cost and excellent isolation. This paper presents a design of high performance MEMS passive band pass filter, consisting of L and C with improved quality factor and insertion loss less than the reported filters. In this paper we have presented a design of 2nd order band pass filter with 2.4GHz centre frequency and 83MHz bandwidth for Bluetooth application. The simulation results showed improved Q-factor of 34 and Insertion loss of 1.7dB to 1.9dB. The simulation results needs to be validated by fabricating the device, fabrication flow of which is also presented in the paper.

  2. A Low Cost Spacecraft Architecture for Robotic Lunar Exploration Projects

    NASA Technical Reports Server (NTRS)

    Lemke, Lawrence G.; Gonzales, Andrew A.

    2006-01-01

    A program of frequent, capable, but affordable lunar robotic missions prior to return of humans to the moon can contribute to the Vision for Space Exploration (VSE) NASA is tasked to execute. The Lunar Reconnaissance Orbiter (LRO) and its secondary payload are scheduled to orbit the moon, and impact it, respectively, in 2008. It is expected that the sequence of missions occurring for approximately the decade after 2008 will place an increasing emphasis on soft landed payloads. These missions are requited to explore intrinsic characteristics of the moon, such as hydrogen distribution in the regolith, and levitated dust, to demonstrate the ability to access and process in-situ resources, and to demonstrate functions critical to supporting human presence, such as automated precision navigation and landing. Additional factors governing the design of spacecraft to accomplish this diverse set of objectives are: operating within a relatively modest funding profile, the need tb visit multiple sites (both polar and equatorial) repeatedly, and to use the current generation of launch vehicles. In the US, this implies use of the Evolved Expendable Launch Vehicles, or EELVs, although this design philosophy may be extended to launch vehicles of other nations, as well. Many of these factors are seemingly inconsistent with each other. For example, the cost of a spacecraft usually increases with mass; therefore the desire to fly frequent, modestly priced spacecraft seems to imply small spacecraft (< 1 Mt, injected mass). On the other hand, the smallest of the EELVs will inject approx. 3 Mt. on a Trans Lunar Injection (TLI) trajectory md would therefore be wasteful or launching a single, small spacecraft. Increasing the technical capability of a spacecraft (such as autonomous navigation and soft landing) also usually increases cost. A strategy for spacecraft design that meets these conflicting requirements is presented. Taken together, spacecraft structure and propulsion subsystems

  3. Canadian Snowbirds fly over KSC

    NASA Image and Video Library

    2018-05-09

    The Canadian Forces Snowbirds fly in Concorde formation over Launch Complex 39B and the Space Coast shoreline at NASA’s Kennedy Space Center in Florida. The Snowbirds, Canada’s air demonstration team, carried out a practice flight over Kennedy and nearby Cape Canaveral Air Force Station in Florida on Wednesday, May 9, 2018, between their scheduled U.S. air shows.

  4. Effect of the Ti/Si ratio of spin coating solutions on surface passivation of crystalline silicon by TiO x -SiO x composite films

    NASA Astrophysics Data System (ADS)

    Yoshiba, Shuhei; Tanitsu, Katsuya; Suda, Yoshiyuki; Kamisako, Koichi

    2017-06-01

    Passivation films or antireflection coatings are generally prepared using costly vacuum or high-temperature processes. Thus, we report the preparation of TiO x -SiO x composite films by novel spin coatable solutions for the synthesis of low-cost passivation coating materials. The desired films were formed by varying the mixing ratios of TiO x and SiO x , and the resulting films exhibited excellent surface passivation properties. For the p-type wafer, an optimal effective surface recombination velocity (S eff) of 93 cm/s was achieved at \\text{TiO}x:\\text{SiO}x = 6:4, while a surface recombination current density (J 0s) of 195 fA/cm2 was obtained. In contrast, for the n-type wafer, an S eff of 27 cm/s and a J 0s of 38 fA/cm2 were achieved at \\text{TiO}x:\\text{SiO}x = 8:2. This excellent surface passivation effect could be attributed to the low interface state density and high positive fixed charge density. Furthermore, the thickness of the interfacial SiO x layer was determined to be important for obtaining the desired surface passivation effect.

  5. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  6. Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength.

    PubMed

    Portuondo-Campa, E; Paschotta, R; Lecomte, S

    2013-08-01

    We report on the ultralow timing jitter of the 100 MHz pulse trains generated by two identical passively mode-locked diode-pumped solid-state lasers (DPSSLs) emitting at 1556 nm. Ultralow timing jitter of 83 as (integrated from 10 kHz to 50 MHz) for one laser has been measured with a balanced optical cross-correlator as timing discriminator. Extremely low intensity noise has been measured as well. Several measurement techniques have been used and show similar jitter results. Different possible noise sources have been theoretically investigated and compared to the measured jitter power spectral density. It is found that although the measured integrated jitter is quite low, it is still significantly above the quantum limit in the considered frequency span. Therefore, there is a substantial potential for technical improvements that could make passively mode-locked DPSSL outperform fiber lasers as source of microwaves with low phase noise.

  7. Design guide for low cost standardized payloads, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Concept point designs of low cost and refurbishable spacecraft, subsystems, and modules revealed payload program savings up to 50 percent. The general relationship of payload approaches to program costs; cost reductions from low cost standardized payloads; cost effective application of payload reliability, MMD, repair, and refurbishment; and implementation of standardization for future spacecraft are discussed. Shuttle interfaces and support equipment for future payloads are also considered

  8. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  9. Hydrogen passivation of polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.

    2012-09-01

    The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.

  10. Climate-Specific Passive Building Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Graham S.; Klingenberg, Katrin

    2015-07-29

    In 2012, the U.S. Department of Energy (DOE) recognized the value of performance-based passive building standards when it joined with Passive House Institute US (PHIUS) to promote DOE’s Challenge Home program in tandem with the PHIUS+ Certification program. Since then, the number of passive building projects that have been certified under the partnership has grown exponentially because of some synergy. Passive building represents a well-developed approach to arrive at the envelope basis for zero energy and energy-positive projects by employing performance-based criteria and maximizing cost-effective savings from conservation before implementing renewable energy technologies. The Challenge Home program evolved into themore » Zero Energy Ready Home (ZERH) program in a move toward 1) attaining zero energy and 2) including active renewable energy generation such as photovoltaics (PV)—toward the zero energy goal.« less

  11. Zinc oxide nanostructures as low-cost templates for neuronal circuit

    NASA Astrophysics Data System (ADS)

    Kritharidou, A.; Georgoussi, Z.; Tsamis, C.; Makarona, E.

    2013-05-01

    ZnO nanostructures were explored as templates for the development of topography-mediated neuronal cultures. Nanostructures of varying features were produced on 4" Si substrates via a rapid, facile and low-cost technique that allows the systematic investigation of nanotopographically-mediated formation of neuronal cultures. The developed ZnO-nanowire based templates were seeded with Neuro-2A mouse neuroblastoma cells and their viability over the course of 1 to 4 days was assessed. Our studies demonstrate that the ZnO-templates can support neuronal cell growth and proliferation suggesting that ZnO substrate can be used for the development of neuronal cell-based platform technologies.

  12. Role of bond adaptability in the passivation of colloidal quantum dot solids.

    PubMed

    Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.

  13. Low potential for mechanical transmission of Ebola virus via house flies (Musca domestica)

    USDA-ARS?s Scientific Manuscript database

    Ebola virus emerged in West Africa in March 2014 and has caused more than 28,000 cases and 11,000 deaths. The unusually high number of cases raised the question as to whether muscid flies could mechanically transmit the virus. Mechanical transmission of Ebola virus was attempted using house flies t...

  14. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.

    PubMed

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.

  15. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster

    PubMed Central

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607

  16. Low-Cost Servomotor Driver for PFM Control

    PubMed Central

    Aragon-Jurado, David

    2017-01-01

    Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM. PMID:29301221

  17. Low-Cost Servomotor Driver for PFM Control.

    PubMed

    Aragon-Jurado, David; Morgado-Estevez, Arturo; Perez-Peña, Fernando

    2017-12-31

    Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.

  18. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less

  19. Passive ice freezing-releasing heat pipe. [Patent application

    DOEpatents

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  20. Development of low cost custom hybrid microcircuit technology

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  1. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control

    NASA Astrophysics Data System (ADS)

    Ren, Wei

    Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and

  2. Passive range estimation for rotorcraft low-altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Suorsa, R.; Hussien, B.

    1991-01-01

    The automation of rotorcraft low-altitude flight presents challenging problems in control, computer vision and image understanding. A critical element in this problem is the ability to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory. This requirement is also necessary for the safe landing of an autonomous lander on Mars. This paper examines some of the issues in the location of objects using a sequence of images from a passive sensor, and describes a Kalman filter approach to estimate the range to obstacles. The Kalman filter is also used to track features in the images leading to a significant reduction of search effort in the feature extraction step of the algorithm. The method can compute range for both straight line and curvilinear motion of the sensor. A laboratory experiment was designed to acquire a sequence of images along with sensor motion parameters under conditions similar to helicopter flight. Range estimation results using this imagery are presented.

  3. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride.

    PubMed Central

    Dunham, P B; Ellory, J C

    1981-01-01

    The major pathway of passive K influx (ouabain-insensitive) was characterized in low-K type (LK) red cells of sheep. 1. Passive K transport in these cells was highly sensitive to variations in cell volume; it increased threefold or more in cells swollen osmotically by 10%, and decreased up to twofold in cells shrunken 5-10%. Active K influx was insensitive to changes in cell volume. Three different methods for varying cell volume osmotically all gave similar results. 2. The volume-sensitive pathway was specific for K in that Na influx did not vary with changes in cell volume. 3. The volume-sensitive K influx was a saturable function of external K concentration. It was slightly inhibited by Na, whereas K influx in shrunken cells was unaffected by Na. 4. Passive K influx was dependent on the major anion in the medium in that replacement of Cl with any of six other anions resulted in a reduction of K influx by 50-80% (replacement of Cl by Br caused an increase in K influx). The activation of K influx by Cl followed sigmoid kinetics. 5. Passive K influx is inhibited by anti-L antibody. The antibody affected only that portion of influx which was Cl-dependent and volume-sensitve. Of the subfractions of the antibody, it is anti-L1 which inhibits passive K transport. 6. Pretreatment of cells with iodoacetamide reduced the sensitivity of K influx to cell volume in that the influx was reduced in swollen IAA-treated cells and increased in shrunken IAA-cells. 7. Intracellular Ca has no role in altering passive K transport in LK sheep cells. Therefore, the major pathway of passive K transport in LK sheep red cells is sensitive to changes in cell volume, specific for K, dependent on Cl, and inhibited by anti-L1 antibody, The minor pathway, observed in shrunken cells, has none of these properties. PMID:6798197

  4. Evaluation of Passive Vents in New Construction Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sean; Berger, David; Zuluaga, Marc

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  5. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  6. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zheng, Minghui; Li, Li; Li, Chunping; Jiang, Xiaoxu; Wang, Mei; Zhao, Yuyang; Jin, Rong

    2015-12-15

    A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Key issues for low-cost FGD installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePriest, W.; Mazurek, J.M.

    1995-12-01

    This paper will discuss various methods for installing low-cost FGD systems. The paper will include a discussion of various types of FGD systems available, both wet and dry, and will compare the relative cost of each type. Important design issues, such as use of spare equipment, materials of construction, etc. will be presented. An overview of various low-cost construction techniques (i.e., modularization) will be included. This paper will draw heavily from Sargent & Lundy`s database of past and current FGD projects together with information we gathered for several Electric Power Research Institute (EPRI) studies on the subject.

  8. Low cost attitude control system reaction wheel development

    NASA Astrophysics Data System (ADS)

    Bialke, William

    1991-03-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  9. Low cost attitude control system reaction wheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  10. Class Size Reduction or Rapid Formative Assessment?: A Comparison of Cost-Effectiveness

    ERIC Educational Resources Information Center

    Yeh, Stuart S.

    2009-01-01

    The cost-effectiveness of class size reduction (CSR) was compared with the cost-effectiveness of rapid formative assessment, a promising alternative for raising student achievement. Drawing upon existing meta-analyses of the effects of student-teacher ratio, evaluations of CSR in Tennessee, California, and Wisconsin, and RAND cost estimates, CSR…

  11. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  12. Spacecraft Formation Flying near Sun-Earth L2 Lagrange Point: Trajectory Generation and Adaptive Full-State Feedback Control

    NASA Technical Reports Server (NTRS)

    Wong, Hong; Kapila, Vikram

    2004-01-01

    In this paper, we present a method for trajectory generation and adaptive full-state feedback control to facilitate spacecraft formation flying near the Sun-Earth L2 Lagrange point. Specifically, the dynamics of a spacecraft in the neighborhood of a Halo orbit reveals that there exist quasi-periodic orbits surrounding the Halo orbit. Thus, a spacecraft formation is created by placing a leader spacecraft on a desired Halo orbit and placing follower spacecraft on desired quasi-periodic orbits. To produce a formation maintenance controller, we first develop the nonlinear dynamics of a follower spacecraft relative to the leader spacecraft. We assume that the leader spacecraft is on a desired Halo orbit trajectory and the follower spacecraft is to track a desired quasi-periodic orbit surrounding the Halo orbit. Then, we design an adaptive, full-state feedback position tracking controller for the follower spacecraft providing an adaptive compensation for the unknown mass of the follower spacecraft. The proposed control law is simulated for the case of the leader and follower spacecraft pair and is shown to yield global, asymptotic convergence of the relative position tracking errors.

  13. Geotechnical characterization of some Indian fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less

  14. Graphene/fly ash geopolymeric composites as self-sensing structural materials

    NASA Astrophysics Data System (ADS)

    Saafi, Mohamed; Tang, Leung; Fung, Jason; Rahman, Mahbubur; Sillars, Fiona; Liggat, John; Zhou, Xiangming

    2014-06-01

    The reduction of graphene oxide during the processing of fly ash-based geopolymers offers a completely new way of developing low-cost multifunctional materials with significantly improved mechanical and electrical properties for civil engineering applications such as bridges, buildings and roads. In this paper, we present for the first time the self-sensing capabilities of fly ash-based geopolymeric composites containing in situ reduced graphene oxide (rGO). Geopolymeric composites with rGO concentrations of 0.0, 0.1 and 0.35% by weight were prepared and their morphology and conductivity were determined. The piezoresistive effect of the rGO-geopolymeric composites was also determined under tension and compression. The Fourier transform infrared spectroscopy (FTIR) results indicate that the rGO sheets can easily be reduced during synthesis of geopolymers due to the effect of the alkaline solution on the functional groups of GO. The scanning electron microscope (SEM) images showed that the majority of pores and voids within the geopolymers were significantly reduced due to the addition of rGO. The rGO increased the electrical conductivity of the fly ash-based rGO-geopolymeric composites from 0.77 S m-1 at 0.0 wt% to 2.38 S m-1 at 0.35 wt%. The rGO also increased the gauge factor by as much as 112% and 103% for samples subjected to tension and compression, respectively.

  15. Low-cost CWDM transmitter package

    NASA Astrophysics Data System (ADS)

    Bhandarkar, Navin; Castillega, Jaime

    2005-03-01

    A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.

  16. A Low Cost TDRSS Compatible Transmitter Option

    NASA Technical Reports Server (NTRS)

    Whiteman, Don

    2005-01-01

    The NASA Space-based Telemetry and Range Safety (STARS) program has developed and tested a low cost Ku-Band transmitter alternative for TDRSS applications based on an existing IRIG shaped offset quaternary phase shift keying (SOQPSK) transmitter. This paper presents information related to the implementation of this low cost system, as well as performance measurements of the alternative TDRSS transmitter system compared with an existing QPSK TDRSS transmitter.

  17. Multi-Scale Investigation of the Formation and Breakdown of Passive Films on Carbon Steel Rebar in Concrete

    NASA Astrophysics Data System (ADS)

    Ghods, Pouria

    The multi-scale investigation presented in this thesis was carried out to understand better the mechanisms of passivation and chloride-induced depassivation of carbon steel reinforcement in concrete. The study consisted of electrochemical experiments (electrochemical impedance spectroscopy, linear polarization resistance, free corrosion potential, anodic polarization), microscopic examinations (scanning electron microscopy, transmission electron microscopy, selected area diffraction, convergent beam electron diffraction), numerical modeling (finite element method), and spectroscopic studies (x-ray photoelectron, energy dispersed x-ray, electron energy loss). Electrochemical and microscopic studies showed that the composition of the pore solution and the surface conditions of the rebar affect the passivity and depassivation of carbon steel in concrete. It was demonstrated that crevices between mill scale and steel may become potential sites for depassivation and pit nucleation. The numerical investigation that was carried out to test this hypothesis confirmed that the ratio of chloride to hydroxide concentrations, Cl-/OH-, in crevices increased to levels higher than that of the bulk pore solution, making crevices more vulnerable to depassivation. Therefore, it was concluded that the variability associated with reported chloride thresholds might be attributed, at least in part, to the variability in mill scale properties resulting from the variability in manufacturing. The nano-scale microscopic and spectroscopic studies indicated the formation of 4-10 nm-thick passive oxide films on carbon steel in simulated concrete pore solutions, and these films consisted of two layers separated with an indistinct border. The inner layer was mainly composed of protective Fe2+-rich oxides that are in epitaxial relationship with the underlying steel surface; while the outer layer mostly consisted of (possibly porous) Fe3+-rich oxides, through which chlorides can penetrate. It was

  18. Development of a low-cost, low micro-vibration CMG for small agile satellite applications

    NASA Astrophysics Data System (ADS)

    Kawak, B. J.

    2017-02-01

    The agility of the spacecraft which refers to the spacecraft's ability to execute fast and accurate manoeuvers within a fixed period of time, is a key satellite parameter. The spacecraft' s agility is directly proportional to the spacecraft actuators' output torque. For high torque inertial actuators (>0.5 Nm), Control Moment Gyroscope (CMG) exhibits better performances in terms of mass and electrical power consumption than reaction wheels. However, in addition to the complex steering law required to avoid CMG singularities, one of the reasons why CMGs are not widely used is also due to their high micro-vibration emission which may interfere and disrupt the spacecraft' s sensitive instruments such as optical payloads. In this paper, an innovative two-stage viscoelastic isolation system has been designed and implemented in a new low micro-vibration CMG prototype. The first stage of the damping system acts at bearing level to attenuate the possible shock vibrations while the second stage acts at mechanism level to attenuate the structural resonances and motor noise. The developed CMG enables to combine high actuator output torque with a low micro-vibration signature. The viscoelastic damping system is cost effective as it is a fully passive system which requires no thermal control and no electronics. Furthermore, the attenuation provided by this innovative two stage damping system can reach a slope up to -80 dB/dec which leads to a Mini-CMG micro-vibration signature lower than similar output torque reaction wheels not equipped with a damping system.

  19. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei.

    PubMed

    Gao, Jie; Atiyeh, Hasan K; Phillips, John R; Wilkins, Mark R; Huhnke, Raymond L

    2013-11-01

    The development of a low cost medium for ethanol production is critical for process feasibility. Ten media were formulated for Clostridium ragsdalei by reduction, elimination and replacement of expensive nutrients. Cost analysis and effects of medium components on growth and product formation were investigated. Fermentations were performed in 250 mL bottles using syngas (20% CO, 15% CO2, 5% H2 and 60% N2). The standard medium M1 cost is $9.83/L, of which 93% is attributed to morpholinoethane sulfonic acid (MES) buffer. Statistical analysis of the results showed that MES removal did not affect cell growth and ethanol production (P>0.05). Based on cells' elemental composition, a minimal mineral concentration medium M7 was formulated, which provided 29% higher ethanol yield from CO at 3% of the cost compared to medium M1. Ethanol yield from CO in the completely defined medium M9 was 36% higher than while at 5% the cost of medium M1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Research on formation of microsatellite communication with genetic algorithm.

    PubMed

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication.