Sample records for low-dose splenic irradiation

  1. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    PubMed

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  2. [Changes in cellular radiosensitivity after low dose irradiation].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O V; Riabchenko, N I; Akleev, A V

    2012-01-01

    When the adaptive response (AR) was studied on human blood lymphocytes, a new dependence was discovered. This dependence defines the direction of the radiosensitivity change after a low dose of irradiation. Using micronucleus (MN) test with cytochalasin B the dependence between the cell reaction after low level irradiation and radiosensititvity (the effect after irradiation at the dose of 1 Gy) was observed. The negative correlation between the frequency of AR manifestation, sensibilization, intermediate links and radiosensitivity was discovered. This regularity is observed in the population of Moscow, Obninsk, Chelyabinsk region (irradiated and control) inhabitants, Chernobyl accident liquidators, Moscow children, in individuals with Hodgkin's lymphoma before and during treatment. The negative correlation is also noted by AR determination with two irradiation schemes: in one or two different cell cycle phases (G1-G1 or G1-G2). Similar links are observed using the chromosome methaphase analysis (the frequency of cells with chromosome aberrations). So, the results of the experiments conducted allow us to suppose that the connection between the cell radiosensitivity and a different type of reaction after low dose irradiation--from AR to the increase in radiosensitivity (sensibilization) is a general regularity. AR is induced by low level irradiation and high cell radiosensitivity, while sensibilization is induced by low radiosensitivity. Since AR and sensibilization can be induced not only by irradiation, but many different chemicals and physical agents, the described correlation can be observed in the case of different exposures. Cellular AR and sensibilization are integral indexes depending on many genetic and epigenetic factors, as well as on the initiation of a large number of events. However, the discovered mechanisms of interrelations are still difficult to explain.

  3. Dose controlled low energy electron irradiator for biomolecular films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface weremore » developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.« less

  4. Low- and high-dose laser irradiation effects on cell migration and destruction

    NASA Astrophysics Data System (ADS)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  5. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis.

    PubMed

    Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi; Ohshima, Yasuhiro; Tago, Fumitoshi; Masada, Ayako; Kojima, Shuji

    2008-07-01

    We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4(+)CD25(+)Foxp3(+) regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells.

  7. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  8. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts.

    PubMed

    Balsly, Colleen R; Cotter, Andrew T; Williams, Lisa A; Gaskins, Barton D; Moore, Mark A; Wolfinbarger, Lloyd

    2008-12-01

    The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3-21.8 kGy) and a moderate absorbed dose (24.0-28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.

  9. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    PubMed

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  10. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation.

  11. Hyperkalemia complicating splenic irradiation of chronic lymphocytic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurlander, R.; Stein, R.S.; Roth, D.

    1975-09-01

    Hyperkalemia is an infrequent complication of the therapy of malignant disease. In previously reported cases, hyperkalemia following the institution of chemotherapy has been associated with acute renal failure. In this report, we present a patient with chronic lymphocytic leukemia who developed hyperkalemia following splenic irradiation. Necrosis of tumor cells, either as direct or an abscopal effect appears to be implicated as a cause of hyperkalemia. It seems appropriate to monitor potassium levels when therapy of a responsive tumor is instituted. (auth)

  12. Differential response of two cell lines sequentially irradiated with low X-ray doses.

    PubMed

    Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I

    2005-05-01

    An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.

  13. Splenic infarction associated with sickle cell trait at low altitude.

    PubMed

    Seegars, Mary Beth; Brett, Allan S

    2015-12-01

    Sickle cell trait is widely known to be associated with splenic infarction at high altitudes. Although textbooks and reviews imply that this complication does not occur at low altitudes, we encountered such a case and identified several previous cases in the literature. An 18-year-old woman with sickle cell trait who resided near sea level presented with left upper quadrant abdominal pain and was found to have multiple splenic infarcts. She was otherwise well, with no comorbidities that would predispose to hypoxemia or vascular injury. A review of the literature revealed 12 previously published cases of low-altitude splenic infarction in patients with sickle trait; 7 of those patients had comorbidities that likely predisposed to splenic infarction. None. Spontaneous splenic infarction can occur in patients with sickle trait who live at low altitudes. It is unclear whether this complication is rare, or whether it is relatively common but under-recognized.

  14. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  15. Comparison in vivo Study of Genotoxic Action of High- Versus Very Low Dose-Rate γ-Irradiation

    PubMed Central

    Osipov, A. N.; Klokov, D. Y.; Elakov, A. L.; Rozanova, O. M.; Zaichkina, S. I.; Aptikaeva, G. F.; Akhmadieva, A. Kh.

    2004-01-01

    The aim of the present study was to compare genotoxicity induced by high- versus very low dose-rate exposure of mice to γ-radiation within a dose range of 5 to 61 cGy using the single-cell gel electrophoresis (comet) assay and the micronucleus test. CBA/lac male mice were irradiated at a dose rate of 28.2 Gy/h (high dose rate) or 0.07 mGy/h (very low dose rate). The comet assay study on spleen lymphocytes showed that very low dose-rate irradiation resulted in a statistically significant increase in nucleoid relaxation (DNA breaks), starting from a dose of 20 cGy. Further prolongation of exposure time and, hence, increase of a total dose did not, however, lead to further increase in the extent of nucleoid relaxation. Doses of 20 and 61 cGy were equal in inducing DNA breaks in mouse spleen lymphocytes as assayed by the comet assay. Of note, the level of DNA damage by 20–61 cGy doses of chronic irradiation (0.07 mGy/h) was similar to that an induced by an acute (28.2 Gy/h) dose of 14 cGy. The bone marrow micronucleus test revealed that an increase in polychromatic erythrocytes with micronuclei over a background level was induced by very low-level γ-irradiation with a dose of 61 cGy only, with the extent of the cytogenetic effect being similar to that of 10 cGy high-dose-rate exposure. In summary, presented results support the hypothesis of the nonlinear threshold nature of mutagenic action of chronic low dose-rate irradiation. PMID:19330145

  16. Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga

    2016-01-01

    Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way. PMID:27375442

  17. Report on FY16 Low-dose Metal Fuel Irradiation and PIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Philip D.

    2016-09-01

    This report gives an overview of the efforts into the low-dose metal fuel irradiation and PIE as part of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) milestone M3FT-16OR020303031. The current status of the FCT and FCRP irradiation campaigns are given including a description of the materials that have been irradiated, analysis of the passive temperature monitors, and the initial PIE efforts of the fuel samples.

  18. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  19. Low-dose irradiation as a measure to improve microbial quality of ice cream.

    PubMed

    Kamat, A; Warke, R; Kamat, M; Thomas, P

    2000-12-05

    The present study was undertaken to investigate the efficacy of low-dose irradiation to improve the microbial safety of ice cream. Initially three different flavors (vanilla, strawberry and chocolate) of ice cream were exposed, at -72 degrees C, to doses of 1, 2, 5, 10 and 30 kGy to gamma-radiation. Irradiation at 1 kGy resulted in reduction of microbial population by one log cycle, thus meeting the requirement limits prescribed by Bureau of Indian Standards. Pathogens such as Listeria monocytogenes 036, Yersinia enterocoliticta 5692 and Escherichia coli O157:H19, respectively, showed the D10 values 0.38, 0.15 and 0.2 kGy in ice cream at -72 degrees C suggesting the efficacy of low doses (1 kGy) in eliminating them. Sensory evaluation studies of ice cream irradiated at 1, 2, 3 and 5 kGy by a 15 member panel demonstrated that doses higher than 2 kGy irradiation induced off-odour and an aftertaste was evident in vanilla ice cream. A radiation dose of 1 kGy was sufficient to eliminate the natural number of pathogens present in the ice cream. No statistically significant differences were observed in the sensory attributes of all the three flavours of ice cream either unirradiated or exposed to 1 kGy (P < 0.05).

  20. Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro; Sakoda, Akihiro; Yoshimoto, Masaaki; Nakagawa, Shinya; Toyota, Teruaki; Nishiyama, Yuichi; Yamato, Keiko; Ishimori, Yuu; Kawabe, Atsushi; Hanamoto, Katsumi; Taguchi, Takehito; Yamaoka, Kiyonori

    2011-07-01

    Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl(4)) administration. Results showed that radon inhalation alleviates CCl(4)-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases.

  1. Hematopoietic responses under protracted exposures to low daily dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Seed, T. M.; Fritz, T. E.; Tolle, D. V.; Jackson, W. E.

    In attempting to evaluate the possible health consequences of chronic ionizing radiation exposure during extended space travel (e.g., Mars Mission), ground-based experimental studies of the clinical and pathological responses of canines under low daily doses of 60Co gamma irradiation (0.3-26.3 cGy d -1) have been examined. Specific reference was given to responses of the blood forming system. Results suggest that the daily dose rate of 7.5 cGy d -1 represents a threshold below which the hematopoietic system can retain either partial or full trilineal cell-producing capacity (erythropoiesis, myelopoiesis, and megakaryopoiesis) for extended periods of exposure (> 1yr). Trilineal capacity was fully retained for several years of exposure at the lowest dose-rate tested (0.3 cGy d -1) but was completely lost within several hundred days at the highest dose-rate (26.3 cGy d -1). Retention of hematopoietic capacity under chronic exposure has been demonstrated to be mediated by hematopoietic progenitors with acquired radioresistance and repair functions, altered cytogenetics, and cell-cycle characteristics. Radiological, biological, and temporal parameters responsible for these vital acquisitions by hematopoietic progenitors have been partially characterized. These parameters, along with threshold responses, are described and discussed in relation to potential health risks of the space traveler under chronic stress of low-dose irradiation.

  2. Hematopoietic responses under protracted exposures to low daily dose gamma irradiation.

    PubMed

    Seed, T M; Fritz, T E; Tolle, D V; Jackson, W E

    2002-01-01

    In attempting to evaluate the possible health consequences of chronic ionizing radiation exposure during extended space travel (e.g., Mars Mission), ground-based experimental studies of the clinical and pathological responses of canines under low daily doses of 60Co gamma irradiation (0.3-26.3 cGy d-1) have been examined. Specific reference was given to responses of the blood forming system. Results suggest that the daily dose rate of 7.5 cGy d-1 represents a threshold below which the hematopoietic system can retain either partial or full trilineal cell-producing capacity (erythropoiesis, myelopoiesis, and megakaryopoiesis) for extended periods of exposure (>1 yr). Trilineal capacity was fully retained for several years of exposure at the lowest dose-rate tested (0.3 cGy d-1) but was completely lost within several hundred days at the highest dose-rate (26.3 cGy d-1). Retention of hematopoietic capacity under chronic exposure has been demonstrated to be mediated by hematopoietic progenitors with acquired radioresistance and repair functions, altered cytogenetics, and cell-cycle characteristics. Radiological, biological, and temporal parameters responsible for these vital acquisitions by hematopoietic progenitors have been partially characterized. These parameters, along with threshold responses, are described and discussed in relation to potential health risks of the space traveler under chronic stress of low-dose irradiation. Published by Elsevier Science Ltd on behalf of COSPAR.

  3. The effects of pre-emptive low-dose X-ray irradiation on MIA induced inflammatory pain in rats

    NASA Astrophysics Data System (ADS)

    Hahm, Suk-Chan; Lee, Go-Eun; Kim, Eun-Hye; Kim, Junesun; Lee, Taewoong; Lee, Wonho

    2013-07-01

    This study was performed to determine the effect of pre-emptive low-dose irradiation on the development of inflammatory pain and to characterize the potential mechanisms underlying this effect in osteoarthritis (OA) animal model. Whole-body X-irradiations with 0.1, 0.5, 1 Gy or sham irradiations were performed for 3 days before the induction of ostearthritis with monosodium iodoacetate (MIA) (40 µl, in saline) into the right knee joint in male Sprague Dawley rats. Behavioral tests for arthritic pain including evoked and non-evoked pain were conducted before and after MIA injection and inducible nitric-oxide synthase (iNOS) expression level was measured by western blot. Low-dose radiation significantly prevented the development of mechanical allodynia and thermal hyperalgesia and reduction in weight bearing that is regarded as a behavioral signs of non-evoked pain following MIA injection. Low-dose radiation significantly inhibited the increase in iNOS expression after MIA injection in spinal L3-5 segments in rat. These data suggest that low-dose X-irradiation is able to prevent the development of arthritic pain through modulation of iNOS expression in the spinal cord dorsal horn. Thus, low-dose radiotherapy could be substituted in part for treatment with drugs for patients with chronic inflammatory disease in clinical setting.

  4. Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice

    PubMed Central

    Wang, Yingying; Chang, Jianhui; Li, Xin; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong

    2017-01-01

    During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs. PMID:29232383

  5. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    PubMed

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  6. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; hide

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  7. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue.

    PubMed

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-09-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages.

    PubMed

    Schaue, D; Marples, B; Trott, K R

    2002-07-01

    Local irradiation with a dose of around 0.5 Gy is an effective treatment of acute necrotizing inflammations. The hypothesis that low doses of X-rays modulate the oxidative burst in activated macrophages, which plays a major role in the acute inflammatory process, was tested. Murine RAW 264.7 macrophages were stimulated with LPS/gammaIFN, PMA or zymosan and oxidative burst was measured using either DCFH-DA or by reduction of cytochrome-C. Radiation doses of 0.3-10 Gy were given shortly before or after stimulation. Low X-ray doses of <1 Gy significantly reduced the oxidative burst in activated macrophages, whereas higher doses had little effect on oxidative burst. The modulation of oxidative burst by low radiation doses may contribute to the therapeutic effectiveness of low-dose radiotherapy of acute necrotizing inflammations.

  9. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  10. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  11. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  12. Effect of low-dose irradiation on structural and mechanical properties of hyaline cartilage-like fibrocartilage.

    PubMed

    Öncan, Tevfik; Demirağ, Burak; Ermutlu, Cenk; Yalçinkaya, Ulviye; Özkan, Lütfü

    2013-01-01

    The aim of this study was to analyze the effect of low-dose irradiation on fibrous cartilage and to obtain a hyaline cartilage-like fibrocartilage (HCLF) with similar structural and mechanical properties to hyaline cartilage. An osteochondral defect was created in 40 knees of 20 rabbits. At the 7th postoperative day, a single knee of each rabbit was irradiated with a total dose of 5.0 Gy in 1.0 Gy fractions for 5 days (radiotherapy group), while the other knee was not irradiated (control group). Rabbits were then divided into four groups of 5 rabbits each. The first three groups were sacrificed at the 4th, 8th and the 12th postoperative weeks and cartilage defects were macroscopically and microscopically evaluated. The remaining group of 5 rabbits was sacrificed at the 12th week and biomechanical compression tests were performed on the cartilage defects. There was no significant biomechanical difference between the radiotherapy and the control group (p=0.686). There was no significant macroscopic and microscopic difference between groups (p=0.300). Chondrocyte clustering was observed in the irradiated group. Low-dose irradiation does not affect the mechanical properties of HCLF in vivo. However, structural changes such as chondrocyte clustering were observed.

  13. Neurodegeneration and adaptation in response to low-dose photon irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limoli, Charles L.

    2014-10-27

    Neural stem and precursor cells (i.e. multipotent neural cells) are concentrated in the neurogenic regions of the brain (hippocampal dentate gyrus, subventricular zones), and considerable evidence suggests that these cells are important in mediating the stress response of the CNS after damage from ionizing radiation. The capability of these cells to proliferate, migrate and differentiate (i.e. to undergo neurogenesis) suggests they can participate in the repair and maintenance of CNS functions by replacing brain cells damaged or depleted due to irradiation. Importantly, we have shown that multipotent neural cells are markedly sensitive to irradiation and oxidative stress, insults that compromisemore » neurogenesis and hasten the onset and progression of degenerative processes that are likely to have an adverse impact on cognition. Our past and current work has demonstrated that relatively low doses of radiation cause a persistent (weeks-months) oxidative stress in multipotent neural cells that can elicit a range of degenerative sequelae in the CNS. Therefore, our project is focused on determining the extent that endogenous and redox sensitive multipotent neural cells represent important radioresponsive targets for low dose radiation effects. We hypothesize that the activation of redox sensitive signaling can trigger radioadaptive changes in these cells that can be either harmful or beneficial to overall cognitive health.« less

  14. Decrease in laminin content and protein excretion rate after five sixths nephrectomy and low-dose irradiation in the rat.

    PubMed

    Aunapuu, Marina; Arend, Andres; Kolts, Ivo; Egerbacher, Monika; Ots, Mai

    2004-04-01

    The effect of low-dose irradiation on laminin distribution and urine protein excretion in the remnant rat kidney has been studied. The rat remnant kidney formed after 5/6 nephrectomy is an experimental model of chronic renal failure. In the remnant kidney, focal segmental glomerulosclerosis is developed characterized by focal or segmental sclerosis in glomeruli, alterations in the tubules and thickening of the glomerular basement membrane. Low dose irradiation has been presumed to suppress sclerotic processes. In this study 24 male Wistar rats were subdivided into the nephrectomized group, nephrectomized and irradiated groups (1 or 3 Grey), and healthy control group. Animals were sacrificed at 2, 4 and 8 weeks after beginning the experiment. Laminin immunohistochemical staining was found along the tubular and glomerular basement membranes in all experimental groups, but with varying intensity. Laminin content in the basement membranes was decreased in early stages (week 2), especially after irradiation followed by increase during the later stages with relatively high levels at the end of the experiment (week 8). Irradiation at a dose of 3 Grey decreased protein excretion compared to the nephrectomized rats at all stages, while 1 Grey dose was ineffective. Based on decreased proteinuria we conclude that moderate low-dose irradiation has beneficial effects on the rat remnant kidney and that laminin in basement membranes is probably not the most crucial component in regulating membrane permeability.

  15. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation

    PubMed Central

    Kataoka, Takahiro

    2013-01-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation. PMID:23420683

  16. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro

    2013-07-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.

  17. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    PubMed

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  18. [The absence of the facts connected with the genomic instability after the irradiation in low doses by radiation with low LET].

    PubMed

    Koterov A N

    2006-01-01

    In the review which is a brief account of more complete document (Koterov A.N. // Int. J. Low Radiat. 2005. V. 1. No. 4. P. 376-451) the data of world researches devoted to a phenomenon of radiation-induced genomic instability (RIGI) are considered. The purpose of the review is the definition of the bottom limit of radiation doses which induced of RIGI in experiments at different methodical approaches (irradiation in vitro, in vivo, in utero, bystander effect and transgeneration effects of radiation). The action only radiation with low LET is examined. Among several hundreds works wasn't revealed any fact, when RIGI induced by low doses irradiation (up to 0.2 Gy) for normal cells and for organism left from maternal womb. Six exceptions are revealed which are named as "apparent" so in all cases the abnormal, unstable, defective objects or ambiguous final parameter were used. Thus, RIGI at low doses of radiation with low LET is a myth.

  19. [Effect of low-dose focused ultrasound pre-irradiation versus microbubbles for enhancing high-intensity focused ultrasound ablation of VX2 hepatic tumor in rabbits].

    PubMed

    Zhang, Yi; Yang, Chao; Zou, Jian-Zhong; Chen, Fei; Ou, Xia; Zou, Hai-Rong; Wang, Yan

    2016-10-20

    To compare the effect of low-dose focused ultrasound pre-irradiation and microbubbles for enhancing the ablation effect of high intensity focused ultrasound (HIFU) on VX 2 hepatic tumor in rabbits. Fifty-five rabbits bearing VX 2 hepatic tumor were randomly divided into low-dose pre-irradiation + HIFU ablation group, microbubbles+HIFU ablation group, and HIFU ablation group for corresponding treatments. The pathological changes in the tumors after low-dose irradiation, time for HIFU ablation, tumor volume with coagulative necrosis, energy efficiency factor (EEF), pathological changes in the ablated tumor, and sound channel of HIFU ablation were observed. Tumor cell edema, vacuolar changes in the cytoplasm and tumor interstitial vascular congestion were observed 24 h after low-dose pre-irradiation. The ablation time were significantly shorter, coagulative necrosis volume was larger, and EEF was lower in low-dose irradiation + HIFU ablation group and microbubbles+HIFU ablation group than in simple HIFU ablation group (P<0.05), but the differences between the former two groups were not significant. The effectiveness and stability of the synergistic effect of low-dose pre-irradiation were inferior to microbubbles, but the former ensured a better safety of the sound channel. Low-dose irradiation has comparable synergistic effect in HIFU with microbubbles with such advantages as non-invasiveness, high concentration and good safety, and can be a potentially new method to enhance the efficiency of HIFU.

  20. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  1. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  2. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  3. Isolated splenic vein thrombosis secondary to splenic metastasis: A case report

    PubMed Central

    Hiraiwa, Kunihiko; Morozumi, Kyoei; Miyazaki, Hiroshi; Sotome, Keiichi; Furukawa, Akio; Nakamaru, Makoto; Tanaka, Yoichi; Iri, Hisami

    2006-01-01

    A 49-year-old, previously healthy woman sought treatment for abdominal pain. Colonoscopy revealed ascending colon cancer. Computed tomography and angiography showed splenic metastasis and thrombosis extending from the splenic vein to the portal vein. She underwent right hemicolectomy, splenectomy, and distal pancreatomy. Histological findings showed no malignant cell in the splenic vein which was filled with organizing thrombus. We postulate the mechanism of splenic vein thrombosis in our case to be secondary to the extrinsic compression of the splenic vein by the splenic metastasis or by the inflammatory process produced by the splenic metastasis. In conclusion, we suggest that splenic metastasis should be added to the list of differential diagnosis which causes splenic vein thrombosis. In the absence of other sites of neoplastic disease, splenectomy seems to be the preferred therapy because it can be performed with low morbidity and harbors the potential for long-term survival. PMID:17072993

  4. Low-dose ionizing irradiation triggers a 53BP1 response to DNA double strand breaks in mouse spermatogonial stem cells.

    PubMed

    Le, Wei; Qi, Lixin; Li, Jiaxuan; Wu, DengIong; Xu, Jun; Zhang, Jinfu

    2016-01-01

    The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.

  5. Survival and Hematopoietic Recovery in Mice after Wound Trauma and Whole-Body Irradiation

    DTIC Science & Technology

    1982-01-01

    approp- riate line transformation of doie to insure an increasing dose meta - meter. Chi square analysis for linearity and paralleliss of the data were made...conceivable that the splenic myeloproliferative response in wounded mice in the post-irradiation period could account for the enhancement of survival. Splenic

  6. Triphasic low-dose response in zebrafish embryos irradiated by microbeam protons.

    PubMed

    Choi, Viann Wing Yan; Yum, Emily Hoi Wa; Konishi, Teruaki; Oikawa, Masakazu; Cheng, Shuk Han; Yu, Kwan Ngok

    2012-01-01

    The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed to irradiate dechorionated zebrafish embryos at the 2-cell stage at 0.75 h post fertilization (hpf) by microbeam protons. Either one or both of the cells of the embryos were irradiated with 10, 20, 40, 50, 80, 100, 160, 200, 300 and 2000 protons each with an energy of 3.37 MeV. The embryos were then returned back to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay, with the apoptotic signals captured by a confocal microscope. The results revealed a triphasic dose-response for zebrafish embryos with both cells irradiated at the 2-cell stage, namely, (1) increase in apoptotic signals for < 200 protons (< 30 mGy), (2) hormesis to reduce the apoptotic signals below the spontaneous number for 200-400 protons (at doses of 30-60 mGy), and (3) increase in apoptotic signals again for > 600 protons (at doses > 90 mGy). The dose response for zebrafish embryos with only one cell irradiated at the 2-cell stage was also likely a triphasic one, but the apoptotic signals in the first zone (< 200 protons or < 30 mGy) did not have significant differences from those of the background. At the same time, the experimental data were in line with induction of radiation-induced bystander effect as well as rescue effect in the zebrafish embryos, particular in those embryos with unirradiated cells.

  7. Low-dose radiation induces Drosophila innate immunity through Toll pathway activation.

    PubMed

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Park, Joong-Jean; Min, Kyung-Jin; Jin, Young-Woo

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and JNK. These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila.

  8. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  9. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    NASA Astrophysics Data System (ADS)

    Machhour, Hasna; El Hadrami, Ismail; Imziln, Boujamaa; Mouhib, Mohamed; Mahrouz, Mostafa

    2011-04-01

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  10. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation.

    PubMed

    Barrett, A; Depledge, M H; Powles, R L

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to less than 0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  11. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation.

    PubMed

    Tseng, Bertrand P; Lan, Mary L; Tran, Katherine K; Acharya, Munjal M; Giedzinski, Erich; Limoli, Charles L

    2013-01-01

    Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs). We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS), reactive nitrogen species (RNS), nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  12. Synergistic Effects of Incubation in Rotating Bioreactors and Cumulative Low Dose 60Co γ-ray Irradiation on Human Immortal Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Wei, Lijun; Han, Fang; Yue, Lei; Zheng, Hongxia; Yu, Dan; Ma, Xiaohuan; Cheng, Huifang; Li, Yu

    2012-11-01

    The complex space environments can influence cell structure and function. The research results on space biology have shown that the major mutagenic factors in space are microgravity and ionizing radiation. In addition, possible synergistic effects of radiation and microgravity on human cells are not well understood. In this study, human immortal lymphoblastoid cells were established from human peripheral blood lymphocytes and the cells were treated with low dose (0.1, 0.15 and 0.2 Gy) cumulative 60Co γ-irradiation and simulated weightlessness [obtained by culturing cells in the Rotating Cell Culture System (RCCS)]. The commonly used indexes of cell damage such as micronucleus rate, cell cycle and mitotic index were studied. Previous work has proved that Gadd45 (growth arrest and DNA-damage-inducible protein 45) gene increases with a dose-effect relationship, and will possibly be a new biological dosimeter to show irradiation damage. So Gadd45 expression is also detected in this study. The micronucleus rate and the expression of Gadd45α gene increased with irradiation dose and were much higher after incubation in the rotating bioreactor than that in the static irradiation group, while the cell proliferation after incubation in the rotating bioreactor decreased at the same time. These results indicate synergetic effects of simulated weightlessness and low dose irradiation in human cells. The cell damage inflicted by γ-irradiation increased under simulated weightlessness. Our results suggest that during medium- and long-term flight, the human body can be damaged by cumulative low dose radiation, and the damage will even be increased by microgravity in space.

  13. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  14. The effect of low dose rate irradiation on the tensile properties and microstructure of austenitic stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, T. R.; Tsai, H.; Cole, J. I.

    2002-09-17

    To assess the effects of long-term, low-dose-rate neutron exposure on mechanical strength and ductility, tensile properties were measured on 12% and 20% cold-worked Type 316 stainless steel. Samples were prepared from reactor core components retrieved from the EBR-II reactor following final shutdown. Sample locations were chosen to cover a dose range of 1-56 dpa at temperatures from 371-440 C and dose rates from 0.5-5.8 x10{sup -7} dpa/s. These dose rates are approximately an order of magnitude lower than those of typical EBR-II test sample locations. The tensile tests for the 12% CW material were performed at 380 C and 430more » C while those for the 20% CW samples were performed at 370 C. In each case, the tensile test temperature approximately matched the irradiation temperature. To help understand the tensile properties, microstructural samples with similar irradiation history were also examined. The strength and loss of work hardening increase the fastest as a function of irradiation dose for the 12% CW material irradiated at lower temperature. The decrease in ductility with increasing dose occurs more rapidly for the 12% CW material irradiated at lower temperature and the 20% cold-worked material. Post-tensile test fractography indicates that at higher dose, the 20% CW samples begin a shift in fracture mode from purely ductile to mainly small facets and slip bands, suggesting a transition toward channel fracture. The fracture for all of the 12% cold-worked samples was ductile. For both the 12% and 20% CW materials, the yield strength increases correlate with changes in void and loop density and size.« less

  15. Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells.

    PubMed

    Tsukimoto, Mitsutoshi; Tamaishi, Nana; Homma, Takujiro; Kojima, Shuji

    2010-01-01

    The transcription factor nuclear erythroid-derived 2-related factor 2 (Nrf2) regulates expression of genes encoding antioxidant proteins involved in cellular redox homeostasis, while gamma-ray irradiation is known to induce reactive oxygen species in vivo. Although activation of Nrf2 by various stresses has been studied, it has not yet been determined whether ionizing irradiation induces activation of Nrf2. Therefore, we investigated activation of Nrf2 in response to gamma-irradiation in mouse macrophage RAW264.7 cells. Irradiation of cells with gamma-rays induced an increase of Nrf2 expression. Even 0.1 Gy of gamma-irradiation induced a translocation of Nrf2 from cytoplasm to the nucleus, indicating the activation of Nrf2 by low-dose irradiation. Expression of heme oxygenase-1, which is regulated by Nrf2, was also increased at 24 h after irradiation with more than 0.1 Gy of gamma-rays. Furthermore, the activation of Nrf2 was suppressed by U0126, which is an inhibitor of the extracellular signal regulated protein kinase 1/2 (ERK1/2) pathway, suggesting involvement of ERK1/2-dependent pathway in the irradiation-induced activation of Nrf2. Our results indicate that low-dose gamma-irradiation induces activation of Nrf2 through ERK1/2-dependent pathways.

  16. Evaluation of low-dose irradiation on microbiological quality of white carrots and string beans

    NASA Astrophysics Data System (ADS)

    Koike, Amanda C. R.; Santillo, Amanda G.; Rodrigues, Flávio T.; Duarte, Renato C.; Villavicencio, Anna Lucia C. H.

    2012-08-01

    The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.

  17. Does Unintentional Splenic Radiation Predict Outcomes After Pancreatic Cancer Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadha, Awalpreet S.; Liu, Guan; Chen, Hsiang-Chun

    2017-02-01

    Purpose: To determine whether severity of lymphopenia is dependent on radiation dose and fractional volume of spleen irradiated unintentionally during definitive chemoradiation (CRT) in patients with locally advanced pancreatic cancer (LAPC). Methods: 177 patients with LAPC received induction chemotherapy (mainly gemcitabine-based regimens) followed by CRT (median 50.4 Gy with concurrent capecitabine) from January 2006 to December 2012. Absolute lymphocyte count (ALC) was recorded at baseline, before CRT, and 2 to 10 weeks after CRT. Splenic dose-volume histogram (DVH) parameters were reported as mean splenic dose (MSD) and percentage of splenic volume receiving at least 5- (V5), 10- (V10), 15- (V15), and 20-Gymore » (V20) dose. Overall survival (OS) was analyzed with use of the Cox model, and development of post-CRT severe lymphopenia (ALC <0.5 K/UL) was assessed by multivariate logistic regression with use of baseline and treatment factors. Results: The median post-CRT ALC (0.68 K/UL; range, 0.13-2.72) was significantly lower than both baseline ALC (1.42 K/UL; range, 0.34-3.97; P<.0001) and pre-CRT ALC (1.32 K/UL, range 0.36-4.82; P<.0001). Post-CRT ALC <0.5 K/UL was associated with inferior OS on univariate analysis (median, 11.1 vs 15.3 months; P=.01) and multivariate analysis (hazard ratio = 1.66, P=.01). MSD (9.8 vs 6 Gy, P=.03), median V10 (32.6 vs 16%, P=.04), V15 (23.2 vs 9.5%, P=.03), and V20 (15.4 vs 4.6%, P=.02) were significantly higher in patients with severe lymphopenia than in those without. On multivariate analysis, postinduction lymphopenia (P<.001; odds ratio [OR] = 5.25) and MSD (P=.002; OR= 3.42) were independent predictors for the development of severe post-CRT lymphopenia. Conclusion: Severe post-CRT lymphopenia is an independent predictor of poor OS in LAPC patients receiving CRT. Higher splenic doses increase the risk for the development of severe post-CRT lymphopenia. When clinically indicated, assessment of splenic DVHs

  18. Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice

    PubMed Central

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chul; Choi, Seung Jin

    2013-01-01

    We previously determined that AKR/J mice housed in a low-dose-rate (LDR) (137Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation facility developed less spontaneous thymic lymphoma and survived longer than those receiving sham or high-dose-rate (HDR) (137Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, histopathological analysis showed a mild lymphomagenesis in the thymus of LDR-irradiated mice. Therefore, in this study, we investigated whether LDR irradiation could trigger the expression of thymic genes involved in the DNA repair process of AKR/J mice. The enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed immune response, nucleosome organization, and the peroxisome proliferator-activated receptors signaling pathway in LDR-irradiated mice. Our microarray analysis and quantitative polymerase chain reaction data demonstrated that mRNA levels of Lig4 and RRM2 were specifically elevated in AKR/J mice at 130 days after the start of LDR irradiation. Furthermore, transcriptional levels of H2AX and ATM, proteins known to recruit DNA repair factors, were also shown to be upregulated. These data suggest that LDR irradiation could trigger specific induction of DNA repair-associated genes in an attempt to repair damaged DNA during tumor progression, which in turn contributed to the decreased incidence of lymphoma and increased survival. Overall, we identified specific DNA repair genes in LDR-irradiated AKR/J mice. PMID:23820165

  19. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    PubMed

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  20. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation

    PubMed Central

    Sweet, Tara B.; Hurley, Sean D.; Wu, Michael D.; Olschowka, John A.; Williams, Jacqueline P.; O’Banion, M. Kerry

    2017-01-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel. PMID:27905869

  1. Exposition of humans to low doses and low dose rate irradiation: an urgent need for new markers and new models.

    PubMed

    Chenal, C; Legue, F; Nourgalieva, K; Brouazin-Jousseaume, V; Durel, S; Guitton, N

    2000-01-01

    In human radiation protection, the shape of the dose effects curve for low doses irradiation (LDI) is assumed to be linear, extrapolated from the clinical consequences of Hiroshima and Nagasaki nuclear explosions. This extrapolation probably overestimates the risk below 200 mSv. In many circumstances, the living species and cells can develop some mechanisms of adaptation. Classical epidemiological studies will not be able to answer the question and there is a need to assess more sensitive biological markers of the effects of LDI. The researches should be focused on DNA effects (strand breaks), radioinduced expression of new genes and proteins involved in the response to oxidative stress and DNA repair mechanisms. New experimental biomolecular techniques should be developed in parallel with more conventional ones. Such studies would permit to assess new biological markers of radiosensitivity, which could be of great interest in radiation protection and radio-oncology.

  2. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability.

  3. Effect of low doses beta irradiation on micromechanical properties of surface layer of injection molded polypropylene composite

    NASA Astrophysics Data System (ADS)

    Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin

    2015-09-01

    The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.

  4. Changes in compartments of hemospoietic and stromal marrow progenitor cells after continuous low dose gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Starostin, V.

    The low dose continuous gamma-irradiation chosen corresponded with that affected the organisms onboard a spacecraft (Mitrikas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice were used at 3 4 months of age. Experimental mice were- irradiated during 10 days to a total dose of 15 mGy (Co60 gamma-sources, mean dose rate of 1.5-2.0 mGy/day). Another group of intact mice served as control. Younger and advanced hemopoietic progenitors measured at day 11 (i.e. CFU -S-11) and day 7 (i.e. CFU-S-7), respectively, after transplantation of test donor cells were assayed by the method of Till and McCulloch (1961). Stromal changes were evaluated by estimation of in vitro fibroblastic colony-forming units (CFU -F ) content and by the ability of ectopically grafted (under renal capsule) stroma to regenerate the new bone marrow organ. CFU-S-11 number increased of 40% as compared with control and almost 2-fold higher than that of CFU-S-7. The CFU-F content increased almost of 3-fold. Size of ectopic marrow transplants was estimated at day 70 following grafting by counting myelokariocyte and CFU -S number that repopulated the newly formed bone marrow organ. It was found more than 2-fold increase of myelokariocytes in transplants produced by marrow stroma of irradiated donors. CFU -S contents in transplants increased strikingly in comparison to control level. CFU-S-7 and CFU-S-11 increased of 7.5- and of 3.7-fold, respectively, i.e. the rate of advanced CFU - S predominated. It should be noted a good correlation between number of stromal progenitor cells (CFU-F) and ectopic transplant sizes evaluated as myelokaryocyte counts when irradiated donors used. In the same time, if sizes of transplants was measured as CFU-S-7 and CFU - S-11 numbers, their increases were more pronounced. Therefore, continuous low dose gamma- irradiation augments significantly both hemopoietic and stromal progenitor cell number in bone marrow. Additionally, the ratio of distinct CFU -S subpopulations

  5. Hematopoietic tissue repair under chronic low daily dose irradiation

    NASA Astrophysics Data System (ADS)

    Seed, T. M.

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). In our laboratory we have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d^-1). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific (three major responding subgroups identified) and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup 1), the failure to augment basic repair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments (particularly marked within erythroid compartments) that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccommodated and either prone- or not prone to ML, subgroup 2 & 3) appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high-tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity. The kinetics of these repair-mediated, regenerative hematopoietic

  6. Low-dose carbon ion irradiation effects on DNA damage and oxidative stress in the mouse testis

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Long, Jing; Zhang, Luwei; Zhang, Hong; Liu, Bin; Zhao, Weiping; Wu, Zhehua

    2011-01-01

    To investigate the effects of low-dose carbon ion irradiation on reproductive system of mice, the testes of outbred Kunming strain mice were whole-body irradiated with 0, 0.05, 0.1, 0.5 and 1 Gy, respectively. We measured DNA double-strand breaks (DNA DSBs) and oxidative stress parameters including malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and testis weight and sperm count at 12 h, 21 d and 35 d after irradiation in mouse testis. At 12 h postirradiation, a significant increase in DNA DSB level but no pronounced alterations in MDA content or SOD activity were observed in 0.5 and 1 Gy groups compared with the control group. At 21 d postirradiation, there was a significant reduction in sperm count and distinct enhancements of DSB level and MDA content in 0.5 and 1 Gy groups in comparison with control. At 35 d postirradiation, the levels of DNA DSBs and MDA, and SOD activity returned to the baseline except for the MDA content in 1 Gy (P < 0.05), while extreme falls of sperm count were still observed in 0.5 (P < 0.01) and 1 Gy (P < 0.01) groups. For the 0.05 or 0.1 Gy group, no differences were found in DNA DSB level and MDA content between control and at 12 h, 21 d and 35 d after irradiation, indicating that lower doses of carbon ion irradiation have no significant influence on spermatogenesis processes. In this study, male germ cells irradiated with over 0.5 Gy of carbon ions are difficult to repair completely marked by the sperm count. Furthermore, these data suggest that the deleterious effects may be chronic or delayed in reproductive system after whole-body exposure to acute high-dose carbon ions.

  7. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Y. Chuang

    2006-08-31

    It has been long recognized that a significant fraction of the radiation-induced genetic damage to cells are caused by secondary oxidative species. Internal cellular defense systems against oxidative stress play significant roles in countering genetic damage induced by ionizing radiation. The role of the detoxifying enzymes may be even more prominent in the case of low-dose, low-LET irradiation, as the majority of genetic damage may be caused by secondary oxidative species. In this study we have attempted to decipher the roles of the superoxide dismutase (SOD) genes, which are responsible for detoxifying the superoxide anions. We used adenovirus vectors tomore » deliver RNA interference (RNAi or siRNA) technology to down-regulate the expression levels of the SOD genes. We have also over-expressed the SOD genes by use of recombinant adenovirus vectors. Cells infected with the vectors were then subjected to low dose γ-irradiation. Total RNA were extracted from the exposed cells and the expression of 9000 genes were profiled by use of cDNA microarrays. The result showed that low dose radiation had clear effects on gene expression in HCT116 cells. Both over-expression and down-regulation of the SOD1 gene can change the expression profiles of sub-groups of genes. Close to 200 of the 9000 genes examined showed over two-fold difference in expression under various conditions. Genes with changed expression pattern belong to many categories that include: early growth response, DNA-repair, ion transport, apoptosis, and cytokine response.« less

  8. The influence of low dose neutron irradiation on the thermal conductivity of Allcomp carbon foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D.; Porter, Wallace D.; McDuffee, Joel Lee

    Oak Ridge National Laboratory was contracted via a Work for Others Agreement with Allcomp Inc. (NFE-14-05011-MSOF: Carbon Foam for Beam Stop Applications ) to determine the influence of low irradiation dose on the thermal conductivity of Allcomp Carbon Foam. Samples (6 mm dia. x 5 mm thick) were successfully irradiated in a rabbit capsule in a hydraulic tube in the target region of the High Flux Isotope Reactor at the Oak Ridge National Laboratory. The specimens were irradiated at T irr = 747.5 C to a neutron damage dose of 0.2 dpa. There is a small dimensional and volume shrinkagemore » and the mass and density appear reduced (we would expect density to increase as volume reduces at constant mass). The small changes in density, dimensions or volume are not of concern. At 0.2 dpa the irradiation shrinkage rate difference between the glassy carbon skeleton and the CVD coating was not sufficient to cause a large enough irradiation-induced strain to create any mechanical degradation. Similarly differential thermal expansion was not a problem. It appears that only the thermal conductivity was affected by 0.2 dpa. For the intended application conditions, i.e. @ 400 C and 0 DPA (start- up) the foam thermal conductivity is about 57 W/m.K and at 700 C and 0.2 DPA (end of life) the foam thermal conductivity is approx. 30.7 W/m.K. The room temp thermal conductivity drops from 100-120 W/m.K to approximately 30 W/m.K after 0.2 dpa of neutron irradiation.« less

  9. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhijie

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  10. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart.

    PubMed

    Seawright, John W; Samman, Yusra; Sridharan, Vijayalakshmi; Mao, Xiao Wen; Cao, Maohua; Singh, Preeti; Melnyk, Stepan; Koturbash, Igor; Nelson, Gregory A; Hauer-Jensen, Martin; Boerma, Marjan

    2017-01-01

    Space travel is associated with an exposure to low-dose rate ionizing radiation and the microgravity environment, both of which may lead to impairments in cardiac function. We used a mouse model to determine short- and long-term cardiac effects to simulated microgravity (hindlimb unloading; HU), continuous low-dose rate γ-irradiation, or a combination of HU and low-dose rate γ-irradiation. Cardiac tissue was obtained from female, C57BL/6J mice 7 days, 1 month, 4 months, and 9 months following the completion of a 21 day exposure to HU or a 21 day exposure to low-dose rate γ-irradiation (average dose rate of 0.01 cGy/h to a total of 0.04 Gy), or a 21 day simultaneous exposure to HU and low-dose rate γ-irradiation. Immunoblot analysis, rt-PCR, high-performance liquid chromatography, and histology were used to assess inflammatory cell infiltration, cardiac remodeling, oxidative stress, and the methylation potential of cardiac tissue in 3 to 6 animals per group. The combination of HU and γ-irradiation demonstrated the strongest increase in reduced to oxidized glutathione ratios 7 days and 1 month after treatment, but a difference was no longer apparent after 9 months. On the other hand, no significant changes in 4-hydroxynonenal adducts was seen in any of the groups, at the measured endpoints. While manganese superoxide dismutase protein levels decreased 9 months after low-dose γ-radiation, no changes were observed in expression of catalase or Nrf2, a transcription factor that determines the expression of several antioxidant enzymes, at the measured endpoints. Inflammatory marker, CD-2 protein content was significantly decreased in all groups 4 months after treatment. No significant differences were observed in α-smooth muscle cell actin protein content, collagen type III protein content or % total collagen. This study has provided the first and relatively broad analysis of small molecule and protein markers of oxidative stress, T-lymphocyte infiltration, and

  11. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart

    PubMed Central

    Samman, Yusra; Sridharan, Vijayalakshmi; Mao, Xiao Wen; Cao, Maohua; Singh, Preeti; Melnyk, Stepan; Koturbash, Igor; Nelson, Gregory A.; Hauer-Jensen, Martin; Boerma, Marjan

    2017-01-01

    Purpose Space travel is associated with an exposure to low-dose rate ionizing radiation and the microgravity environment, both of which may lead to impairments in cardiac function. We used a mouse model to determine short- and long-term cardiac effects to simulated microgravity (hindlimb unloading; HU), continuous low-dose rate γ-irradiation, or a combination of HU and low-dose rate γ-irradiation. Methods Cardiac tissue was obtained from female, C57BL/6J mice 7 days, 1 month, 4 months, and 9 months following the completion of a 21 day exposure to HU or a 21 day exposure to low-dose rate γ-irradiation (average dose rate of 0.01 cGy/h to a total of 0.04 Gy), or a 21 day simultaneous exposure to HU and low-dose rate γ-irradiation. Immunoblot analysis, rt-PCR, high-performance liquid chromatography, and histology were used to assess inflammatory cell infiltration, cardiac remodeling, oxidative stress, and the methylation potential of cardiac tissue in 3 to 6 animals per group. Results The combination of HU and γ-irradiation demonstrated the strongest increase in reduced to oxidized glutathione ratios 7 days and 1 month after treatment, but a difference was no longer apparent after 9 months. On the other hand, no significant changes in 4-hydroxynonenal adducts was seen in any of the groups, at the measured endpoints. While manganese superoxide dismutase protein levels decreased 9 months after low-dose γ-radiation, no changes were observed in expression of catalase or Nrf2, a transcription factor that determines the expression of several antioxidant enzymes, at the measured endpoints. Inflammatory marker, CD-2 protein content was significantly decreased in all groups 4 months after treatment. No significant differences were observed in α-smooth muscle cell actin protein content, collagen type III protein content or % total collagen. Conclusions This study has provided the first and relatively broad analysis of small molecule and protein markers of oxidative stress

  12. Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S.

    NASA Astrophysics Data System (ADS)

    Chung, B. Y.; Lee, Y.-B.; Baek, M.-H.; Kim, J.-H.; Wi, S. G.; Kim, J.-S.

    2006-09-01

    The yield increase of secondary metabolite production was examined in plant cell cultures with the use of relatively low to high doses gamma irradiation. Suspension culture of Lithospermum erythrorhizon cells was irradiated to 2, 16, and 32 Gy. The gamma irradiation significantly stimulated the shikonin biosynthesis of the cells and increased the total shikonin yields (intracellular+extracellular shikonin yields) by 400% at 16 Gy and by only 240% and 180% at 2 and 32 Gy, respectively. One of the key enzymes for the shikonin biosynthesis of cells, p-hydroxylbenzoic acid (PHB) geranyltransferase, was found to be stimulated by the gamma-radiation treatments. The activity of PHB geranyltransferase was increased at 2 and 16 Gy with a negligible change at 32 Gy. In contrast, the activity of PHB glucosyltransferase was slightly changed at all doses of gamma radiation compared with the control cells. Therefore, the increase in PHB geranyltransferase activity leads to the accumulation of secondary metabolites such as a shikonin, which may contribute to plant defense against the stresses induced by gamma irradiation.

  13. Final report for project "Effects of Low-Dose Irradiation on NFkB Signaling Networks and Mitochondria"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, Gayle E; Grdina, David; Li, Jian-Jian

    Low dose ionizing radiation effects are difficult to study in human population because of the numerous confounding factors such as genetic and lifestyle differences. Research in mammalian model systems and in vitro is generally used in order to overcome this difficulty. In this program project three projects have joined together to investigate effects of low doses of ionizing radiation. These are doses at and below 10 cGy of low linear energy transfer ionizing radiation such as X-ray and gamma rays. This project was focused on cellular signaling associated with nuclear factor kappa B (NFkB) and mitochondria - subcellular organelles criticalmore » for cell aging and aging-like changes induced by ionizing radiation. In addition to cells in culture this project utilized animal tissues accumulated in a radiation biology tissue archive housed at Northwestern University (http://janus.northwestern.edu/janus2/index.php). Major trust of Project 1 was to gather all of the DoE sponsored irradiated animal (mouse, rat and dog) data and tissues under one roof and investigate mitochondrial DNA changes and micro RNA changes in these samples. Through comparison of different samples we were trying to delineate mitochondrial DNA quantity alterations and micro RNA expression differences associated with different doses and dose rates of radiation. Historic animal irradiation experiments sponsored by DoE were done in several national laboratories and universities between 1950’s and 1990’s; while these experiments were closed data and tissues were released to Project 1. Project 2 used cells in culture to investigate effects that low doses or radiation have on NFκB and its target genes manganese superoxide dismutase (MnSOD) and genes involved in cell cycle: Cyclins (B1 and D1) and cyclin dependent kinases (CDKs). Project 3 used cells in culture such as “normal” human cells (breast epithelial cell line MCF10A cells and skin keratinocyte cells HK18) and mouse embryo fibroblast

  14. Inhibitive effect on apoptosis in splenic lymphocytes of mice pretreated with lingzhi (Ganoderma lucidum) spores.

    PubMed

    Wang, Quanxi; Huang, Yifan; Wu, Baocheng; Mei, Jingliang; Zhang, Honglei; Qi, Baomin

    2014-04-01

    To investigate how the pretreatment of mice with Ganoderma spores affected the apoptosis of their splenic lymphocytes induced by dexamethasone after 19 days treatment. Sixty Kunming mice were randomly divided into six groups: blank control groupdrenched with normal saline; a drug control group drenched with 150 mg/mL Ganoderma spores; a model group treated with saline; a low dose group with 50 mg/mL Ganoderma spores; a moderate dose group with 100 mg/mL Ganoderma spores; and a high dose group with 150 mg/mL Ganoderma spores. The effect of Ganoderma spores on apoptosis in spleen lymphocytes was analyzed. All groups were treated for 19 days. On day 20, the model group and the 3 treatment groups were intraperitoneally injected dexamethasone to induce apoptosis. Splenic index and apoptosis indes were employed to measure cell apoptosis. The results showed that Ganoderma spores reduced the splenic index to different degrees in each group and the best effect was seen in the high dose group (P < 0.05).Terminal dexynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate nick end labeling staining revealed that the apoptotic index in all groups administered Ganoderma spores differed significantly from the model group, and a dose-response was observed. Flow cytometric analysis indicated that spleen lymphocyte apoptosis in the model group was extensive. Each dose of Ganoderma spores inhibited dexamethasone-induced apoptosis in spleen lymphocytes, and a dose-response was observed as well. The highest dose of Ganoderma spores decreased Malondialdehyde content in serum induced by dexamethasone (P < 0.05). The findings imply that the pretreatment of the mice with Ganoderma spores could reduce the apoptosis rate induced by dexamethasone in their splenic lymphocytes.

  15. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, Manuel

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  16. Splenic abscess after splenic blunt injury angioembolization.

    PubMed

    Tartaglia, Dario; Galatioto, Christian; Lippolis, Piero Vincenzo; Modesti, Matteo; Gianardi, Desirée; Bertolucci, Andrea; Cucinotta, Monica; Zocco, Giuseppe; Seccia, Massimo

    2014-11-03

    Splenic Angioembolization (SAE), during Nonoperative Management (NOM) of Blunt Splenic Injury (BSI), is an effective therapy for hemodynamically stable patients with grade III, IV, and V OIS splenic injuries. We report a case of a patient with a blunt abdominal trauma due to an accidental fall, who presented splenic abscess a week after SAE and a review of the literature. A 38-year-old male arrived at Emergency after an accidental fall with contusion of the left upper quadrant of the abdomen. Abdominal CT scan revealed the fracture of the lower splenic pole with intraparenchymal pseudoaneurysms (OIS spleen injury scale IV). Considering the hemodynamic stability, NOM was undertaken and SAE was performed. After a week, the patient developed a splenic abscess confirmed by Abdominal CT; therefore, splenectomy was performed. There was no evidence of bacterial growing in the perisplenic hematoma cultures but the histological examination showed multiple abscess and hemorrhagic areas in the spleen. Splenic abscess after SAE during NOM of BSI is a rare major complication. The most frequently cultured organisms include Clostridium perfringens, Alpha-Hemoliticus Streptococcus, gram-positive Staphylococcus, gram-negative Salmonella, Candida, and Aspergillus. This case represents our first reported splenic abscess after SAE. SAE is a very useful tool for BSI managing; splenic abscess can occur in a short time, even if it is a rare major complication, so it may be useful to monitor patients undergoing SAE, focusing not only on the hemodynamic parameters but also on the inflammatory and infectious aspects.

  17. Radiation-induced splenic atrophy in patients with Hodgkin's disease and non-Hodgkin's lymphomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dailey, M.O.; Coleman, C.N.; Kaplan, H.S.

    1980-01-24

    Effective treatment of Hodgkin's disease requires the determination of the extent of the disease. This usually involves staging laparotomy, which includes splenectomy and biopsies of the para-aortic lymph nodes, liver, and bone marrow. Absence of the spleen predisposes a person to fulminant septicemia from encapsulated bacteria, a risk even greater in patients undergoing treatment for Hodgkin's disease. For this reason, some investigators have suggested that spleens not be removed for diagnosis but, rather, that they be included within the fields of radiation, which would preserve normal splenic function. We present a case of fatal spontaneous pneumococcal sepsis in a patientmore » with splenic atrophy; the sepsis occurred 12 years after successful treatment of Hodgkin's disease by total nodal and splenic irradiation. A retrospective study of patients treated for Hodgkin's and non-Hodgkin's lymphomas indicated that atrophy and functional asplenia may be an important sequela of splenic irradiation.« less

  18. Anorexia in rats after protracted whole-body irradiation with low doses (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schraub, A.; Sattler, E.L.; Doell, G.

    1975-07-01

    In our experiments, carried out hitherto, concerning the effect of incorporated and radioactive substances, weight behaviour and food uptake have proved to be a sensitive test. With regard to these experiments and the half- life of the radionuclides used, it is reported about trial series in Wistar rats. These rats were applied, with Co-60 gamma irradiation, different whole-body doses protracted over 48 hours. A total of 32 groups of experimental animals (20 animals each) was exposed to irradiation doses of lethal, medium lethal, and sublethal ranges, control and pseudo-irradiation series included. The experiments were carried out under observance of constantmore » irradiation and attitude conditions, night and day changes, as conditioned by the season, included. Even in the inferior sublethal range (12 to 24 R), a significant trend of decreased food uptake is registered. This trend remains for a short period after the end of irradiation, but then it returns to normal conditions. Furthermore, a new decrease with subsequent increase seems to become evident - about ten days after termination of the radiotherapy (especially after several hundred R); report about these items will be made later on. (orig.)« less

  19. SR-TXRF analysis of trace elements in whole blood and heart of rats: effects of irradiation with low and high doses

    NASA Astrophysics Data System (ADS)

    Mota, C. L.; Pickler, A.; Braz, D.; Barroso, R. C.; Mantuano, A.; Salata, C.; Ferreira-Machado, S. C.; Lau, C. C.; de Almeida, C. E.

    2018-04-01

    In the last decades, studies showed that the exposure to low doses of ionizing radiation of the body could sense and activate the cell signaling pathways needed to respond to any induced cellular damage. This procedure reduces cell killing compared with a single dose of high radiation dose. Damage to the vasculature can affect the function of most body organs by restricting blood flow and oxygen to tissues; however, the heart and brain are of main concern. The precise relationship between long-term health effects and low-dose exposures remain poorly understood. Biological markers are powerful tools that can be used to determine dose- response relationships and to estimate risk, especially when dealing with, the effects of low dose exposures in humans. These markers should be specific, sensitive, as well as easy and fast to quantify. Various types of biologic specimens are potential candidates for identifying biomarkers but blood has the advantage of being minimally invasive to obtain. In this study, we propose to apply total reflection X-ray fluorescence to quantify possible chemical elemental concentration (sulfer, iron, zinc, potassium and calcium) changes in blood and heart tissues of Wistar rats after total body irradiation with low (0.1 Gy) and high (2.5 Gy) doses. The fluorescence measurements were carried out at the X-ray Fluorescence beamline in the Brazilian Synchrotron Light Laboratory. The results showed that the irradiated animals with low doses have significant alterations in blood and cardiac tissue when compared with animals that received high doses of radiation. Taken together the analysis of all the elements, we can observe that the radiation induced oxidative stress may be the leading cause for alteration of the elemental level in the studied samples.

  20. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Masahiro; Laboratory of Vascular Medicine, Department of Cardiovascular and Respiratory Disorders Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Kawahara, Ko-ichi

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and itmore » was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.« less

  1. Minimizing material damage using low temperature irradiation

    NASA Astrophysics Data System (ADS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  2. Cyclic, low-dose total body irradiation for metastatic neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Angio, G.J.; Evans, A.E.

    1983-12-01

    Total body irradiation (TBI) can be thought of as a systemic anticancer agent. It therefore might best be given like an adjuvant drug, i.e., in tolerable doses, cyclically. The therapeutic ratio between normal bone marrow stem cells and suitably sensitive cancer cells should be widened by these means. Fourteen children with advanced (Stage IV) neuroblastomas were given 100-150 rad TBI in 50 rad daily fractions along with each three-week cycle of standard triple-agent chemotherapy (vincristine, DTIC, cyclophosphamide). Two patients died of toxicity and one is still undergoing therapy. Four of the remaining 12 survive free of disease for 12+ tomore » 31+ months. The regimen is well tolerated, but prolonged, pronounced bone marrow depression, especially thrombocytopenia, commonly occurs after doses of 300-450 rad.« less

  3. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  4. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    PubMed

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  5. Effect of low-dose gamma irradiation on Staphylococcus aureus and product packaging in ready-to-eat ham and cheese sandwiches.

    PubMed

    Lamb, Jennifer L; Gogley, Jennifer M; Thompson, M Jasmine; Solis, Daniel R; Sen, Sumit

    2002-11-01

    Staphylococcus aureus is a common pathogen that causes foodborne illness. Traditional methods for controlling S. aureus do not address postprocess contamination. Low-dose gamma irradiation is effective in reducing pathogens in a variety of foods and may be effective in reducing S. aureus in ready-to-eat foods. The effects of gamma irradiation on product packaging should also be considered. The objective of this study was to determine the effects of gamna irradiation on product packaging and on S. aureus in ready-to-eat ham and cheese sandwiches. The effects of refrigerated storage on irradiated and nonirradiated sandwiches were also investigated. Ham and cheese sandwiches were inoculated with 10(6) or 10(7) CFU of S. aureus per g, frozen, irradiated, and analyzed by a standard plate count method. D10-values, the amount of irradiation needed to elicit a 1-log10 reduction of bacteria, were calculated. In addition, irradiated sandwiches were analyzed after 1, 13, 27, and 39 days of storage at 4 degrees C. The integrity of postirradiated packaging material was analyzed using Fourier transform infrared (FTIR) spectroscopy. Two experiments yielded D10-values of 0.62 and 0.63. During refrigerated storage, sandwiches irradiated with 5.9 kGy showed no S. aureus growth at any time; sandwiches irradiated with 3.85 kGy showed a 6.18-log reduction in S. aureus after 13 days; and nonirradiated sandwiches showed a 0.53-log increase in S. aureus after 39 days. FTIR spectroscopy showed that the label side and the bulge side were composed of polyethylene terephthalate and nylon 6, respectively. No significant change in the packaging due to irradiation was detected. In this study, low-dose gamma irradiation was shown to be an effective method for reducing S. aureus in ready-to-eat ham and cheese sandwiches and proved to be more efficacious than refrigeration alone. Additionally, package integrity was not adversely affected by gamma irradiation.

  6. The biobehavioral and neuroimmune impact of low-dose ionizing radiation

    PubMed Central

    York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G

    2011-01-01

    In the clinical setting, repeated exposures (10–30) to low-doses of ionizing radiation (≤ 200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 h and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. PMID:21958477

  7. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  8. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts

    PubMed Central

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R.; Medlin, Donald; Zheng, Leon; Wilson, R. Kevin; Rusin, Matthew; Takacs, Endre

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature. PMID:29300773

  9. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1974-01-01

    Cellular response and cell population kinetics were studied during lymphopoiesis in the thymus of the mouse under continuous gamma irradiation using autoradiographic techniques and specific labeling with tritiated thymidine. On the basis of tissue weights, it is concluded that the response of both the thymus and spleen to continuous low dose-rate irradiation is multiphasic. That is, alternating periods of steady state growth, followed by collapse, which in turn is followed by another period of homeostasis. Since there are two populations of lymphocytes - short lived and long-lived, it may be that different phases of steady state growth are mediated by different lymphocytes. The spleen is affected to a greater extent with shorter periods of steady-state growth than exhibited by the thymus.

  10. Synchronous isolated splenic metastasis from colon carcinoma and concomitant splenic abscess: A case report and review of the literature

    PubMed Central

    Pisanu, Adolfo; Ravarino, Alberto; Nieddu, Riccardo; Uccheddu, Alessandro

    2007-01-01

    This study aimed to describe a case in which an isolated splenic metastasis was synchronous with the colonic primary and a concomitant splenic abscess was associated. A wide review of the literature was also performed. A 54-year-old woman with abdominal pain and fever was admitted to our department. Abdominal CT revealed two low-density areas in the spleen and wall-thickening of the left colonic flexure, which was indistinguishable from the spleen parenchyma. The patient underwent emergency celiotomy, with the presumptive diagnosis of obstructing colon carcinoma of the splenic flexure, and concomitant splenic abscess. Subtotal colectomy and splenectomy were performed. Pathological findings were consistent with mucinous colonic carcinoma, synchronous isolated splenic metastasis and concomitant splenic abscess. This paper is also a review of the existing literature on the association between colorectal cancer and splenic metastasis. Only 41 cases of isolated splenic metastasis from colon carcinoma have been reported in the literature. This report is the third described case of synchronous isolated splenic metastasis from colon carcinoma. Only one case with concomitant splenic abscess has been previously reported. When obstructing left-sided colorectal cancer is suspected, careful CT examination can allow early diagnosis of splenic involvement by the tumor. The literature review suggests that there might be a significant improvement in survival following splenectomy for a metachronous isolated splenic metastasis from colon carcinoma. Prognosis for synchronous splenic metastasis seems to be related to the advanced stage of the disease. Nevertheless, no definitive conclusions can be drawn because of the small number of cases. PMID:17907299

  11. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  12. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  13. The biobehavioral and neuroimmune impact of low-dose ionizing radiation.

    PubMed

    York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G

    2012-02-01

    In the clinical setting, repeated exposures (10-30) to low-doses of ionizing radiation (≤200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES

    Shimada, Masashi; Cao, G.; Otsuka, T.; ...

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  15. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Globus, Ruth K.

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron /more » protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively

  16. Splenic abscess owing to cancer at the splenic flexure

    PubMed Central

    Awotar, Gavish K.; Luo, Fuwen; Zhao, Zhengdong; Guan, Guoxin; Ning, Shili; Ren, Jinshuai; Liu, Yaqing; Wang, Guangzhi; Liu, Pixu

    2016-01-01

    Abstract Background: The cancer of the splenic flexure of the colon is a rare medical entity with severe morbidity because of its insidious onset. Methods: We present the case of a 59-year-old male patient with dull left upper quadrant pain, leukocytosis, and anemia. A splenic abscess described as an air-fluid level with splenocolic fistula was found on CT scan imaging. Surgery was done for splenic pus drainage. He was again admitted 2 months later for intestinal obstruction. Results: An exploratory laparotomy showed multiple hard, gray liver nodules as well as a hard mass in the small bowel. Owing to extensive adhesions and a late stage of cancer involvement, the splenic flexure tumor was not resected. A loop transverse colostomy was done and a ColoplastTM Colostomy bag placed. We also reviewed the literature-linking colon cancer and splenic abscess with specific attention to the carcinoma of the splenic flexure. As the latter invades through the spleen matter, there is the creation of a splenocolic fistula, which allows the migration of normal gut flora into the spleen. This leads to the formation of the splenic abscess. Conclusion: This is the 13th case report pertaining to invading colonic cancer causing a splenic abscess. Although the treatment for splenic abscesses is shifting from splenectomy to image-guided percutaneous pus drainage, the few reported cases make the proper management of such complication still unclear. PMID:27661050

  17. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kirby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; hide

    2010-01-01

    We present results of ultra-low dose-rate irradiations on a variety of commercial and radiation hardened bipolar circuits. We observed enhanced degradations at dose rates lower than 10 mrad(Si)/s in some devices.

  18. Low-angle X-ray scattering properties of irradiated spices

    NASA Astrophysics Data System (ADS)

    Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  19. Jeju ground water containing vanadium induced immune activation on splenocytes of low dose γ-rays-irradiated mice.

    PubMed

    Ha, Danbee; Joo, Haejin; Ahn, Ginnae; Kim, Min Ju; Bing, So Jin; An, Subin; Kim, Hyunki; Kang, Kyung-goo; Lim, Yoon-Kyu; Jee, Youngheun

    2012-06-01

    Vanadium, an essential micronutrient, has been implicated in controlling diabetes and carcinogenesis and in impeding reactive oxygen species (ROS) generation. γ-ray irradiation triggers DNA damage by inducing ROS production and causes diminution in radiosensitive immunocytes. In this study, we elucidate the immune activation capacities of Jeju water containing vanadium on immunosuppression caused by γ-ray irradiation, and identify its mechanism using various low doses of NaVO(3). We examined the intracellular ROS generation, DNA damage, cell proliferation, population of splenocytes, and cytokine/antibody profiles in irradiated mice drinking Jeju water for 180 days and in non-irradiated and in irradiated splenocytes both of which were treated with NaVO(3). Both Jeju water and 0.245 μM NaVO(3) attenuated the intracellular ROS generation and DNA damage in splenocytes against γ-ray irradiation. Splenocytes were significantly proliferated by the long-term intake of Jeju water and by 0.245 μM NaVO(3) treatment, and the expansion of B cells accounted for the increased number of splenocytes. Also, 0.245 μM NaVO(3) treatment showed the potency to amplify the production of IFN-γ and total IgG in irradiated splenocytes, which correlated with the expansion of B cells. Collectively, Jeju water containing vanadium possesses the immune activation property against damages caused by γ-irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ingu; Saito, Takeshi; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately leadmore » to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. - Highlights: • Low-dose γ-rays induced oxidation at specific residues in γE- and γF-crystallin. • The number of oxidation sites was higher in insoluble than soluble crystallins. • γ-Irradiation closely mimics the oxidation that occur in senile human cataracts.« less

  1. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    PubMed

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  2. Comparison of the uncertainties of several European low-dose calibration facilities

    NASA Astrophysics Data System (ADS)

    Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.

    2018-04-01

    The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.

  3. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer.

    PubMed

    Akın, Mustafa; Ergen, Arzu; Unal, Aysegul; Bese, Nuran

    2014-01-01

    Thyroid gland is one of the radiosensitive endocrine organs in the body. It has been shown that direct irradiation of thyroid with total doses of 26 to 30 Gy can lead to functional abnormalities. In this study, irradiation doses on thyroid gland of the patients who received postoperative chest-wall/breast and regional nodal irradiation were assessed. Retrospective analyses of treatment plans from 122 breast cancer patients who were treated with 3D conformal radiotherapy (3D CRT) planning was performed. All patients received irradiation to supraclavicular/level III lymph nodes in addition to chest-wall/breast. A total dose of 46 Gy was delivered in 25 days to supraclavicular/level III lymph node region while a total dose of 50 Gy was delivered to whole breast/chest-wall. Thyroid gland was contoured on 2-5 mm thickness of computed tomography scans. Absolute thyroid volume, mean thyroid doses were calculated. The mean thyroid volume of all patients was 16.7 cc (min: 1.9 cc, max: 41.6 cc). The mean irradiation dose on was 22.5 Gy (0.32 Gy-46.5 Gy). The level of dose was higher than 26 Gy in 44% of the patients. In majority of the node-positive breast cancer patients treated with 3D CRT, the thyroid gland was exposed to considerable doses. On the other hand, for 44% of the patients are at risk for developing thyroid function abnormalities which should be considered during the routine follow-up.

  4. Effects of gamma-low dose irradiation on skin flap survival in rats.

    PubMed

    Karimipour, Mojtaba; Amanzade, Vahid; Jabbari, Nasrollah; Farjah, Gholam Hossein

    2017-08-01

    Skin flap necrosis due to inadequate blood supply has remained a common postoperative problem in constructive surgery. As low-dose irradiation (LDI) has been shown to promote the wound-healing process, this study aims to investigate whether LDI could increase neovascularization and skin flap survival in rats. McFarlane flaps were created in 21 male rats, which were divided into one control and two treatment groups (Ta and Tb). The treatment groups received a whole body single dose of 100cGy gamma ray irradiation before (Tb) and after (Ta) flap surgery. The flap survival area was evaluated after seven days. The skin samples were collected for histological analysis and determining the vascular endothelial growth factor (VEGF) using the immunohistochemical method. Serum malondialdehyde (MDA) was examined with the kit. The mean areas of flap survival were 56.7±3.24, 61.7±2.6, and 66.5±3.82 in the control, Tb, and Ta groups, respectively. There were significant differences between the Tb and Ta groups in comparison with the control group (P<0.05 and P<0.01, respectively). Compared with the control group (8.0±0.73), the mean numbers of the blood vessels in the Ta group (22±1.24) and the Tb group (14±1.29) were significantly higher (P<0.001 and P<0.01). Moreover, the mean numbers of the VEGF-positive cells in the Ta group (4.5±1.04) were significantly higher (P<0.05) than the control group (2.5±0.83). However, no significant differences in the MDA levels were observed among the groups. The findings of this study suggest that LDI has the potential to promote neovascularization to improve flap survival. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Effects of Low-Dose Total-Body Irradiation on Canine Bone Marrow Function and Canine Lymphoma

    DTIC Science & Technology

    1981-11-01

    SCIENTIFIC REPORT Effects of low-dose total-body irradiation on canine bone marrow function and canine lymphoma cc ca D. E. Cowal! 7. J. MacVittie G... CANINE BONE MARROW FUNCTION AND CANINE LYMPHOMA 6. PERFORMING O1G. REPORT NUMBER 7. AUTHO1R(s) 8. CONTRACT OR GRANT NUMBER(s) Dt E. Cowall*, T. J...ott it e r .f00 !(1414011V byt block tumbv,) canine , I’M, bone marrow, GM-CFC 20 A US TR AC y t (𔃺t 104#0 00 ,r ,. @#PS#0 It Ml 0 le~ 9 ncj0 dd0 19

  6. Biological effects of low-dose-rate irradiation of pancreatic carcinoma cells in vitro using 125I seeds

    PubMed Central

    Wang, Zhong-Min; Lu, Jian; Zhang, Li-Yun; Lin, Xiao-Zhu; Chen, Ke-Min; Chen, Zhi-Jin; Liu, Fen-Ju; Yan, Fu-Hua; Teng, Gao-Jun; Mao, Ai-Wu

    2015-01-01

    AIM: To determine the mechanism of the radiation-induced biological effects of 125I seeds on pancreatic carcinoma cells in vitro. METHODS: SW1990 and PANC-1 pancreatic cancer cell lines were cultured in DMEM in a suitable environment. Gray’s model of iodine-125 (125I) seed irradiation was used. In vitro, exponential phase SW1990, and PANC-1 cells were exposed to 0, 2, 4, 6, and 8 Gy using 125I radioactive seeds, with an initial dose rate of 12.13 cGy/h. A clonogenic survival experiment was performed to observe the ability of the cells to maintain their clonogenic capacity and to form colonies. Cell-cycle and apoptosis analyses were conducted to detect the apoptosis percentage in the SW1990 and PANC-1 cells. DNA synthesis was measured via a tritiated thymidine (3H-TdR) incorporation experiment. After continuous low-dose-rate irradiation with 125I radioactive seeds, the survival fractions at 2 Gy (SF2), percentage apoptosis, and cell cycle phases of the SW1990 and PANC-1 pancreatic cancer cell lines were calculated and compared. RESULTS: The survival fractions of the PANC-1 and SW1990 cells irradiated with 125I seeds decreased exponentially as the dose increased. No significant difference in SF2 was observed between SW1990 and PANC-1 cells (0.766 ± 0.063 vs 0.729 ± 0.045, P < 0.05). The 125I seeds induced a higher percentage of apoptosis than that observed in the control in both the SW1990 and PANC-1 cells. The rate of apoptosis increased with increasing radiation dosage. The percentage of apoptosis was slightly higher in the SW1990 cells than in the PANC-1 cells. Dose-dependent G2/M cell-cycle arrest was observed after 125I seed irradiation, with a peak value at 6 Gy. As the dose increased, the percentage of G2/M cell cycle arrest increased in both cell lines, whereas the rate of DNA incorporation decreased. In the 3H-TdR incorporation experiment, the dosimetry results of both the SW1990 and PANC-1 cells decreased as the radiation dose increased, with a minimum

  7. EFFECTS OF LOW-DOSE IRRADIATION AND STORAGE ON ACCEPTABILITY OF BROCCOLI, SWEET CORN, AND STRAWBERRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.C.; Tichenor, D.A.

    1962-11-01

    Fresh vegetables, in some cases stored in nitrogen, were gamma irradiated with doses of 0.25 to 1.0 Mrad, then stored at 35 deg F, and evaluated for taste at various periods up to 305 days. All nitrogen-packed irradiated sweet corn was acceptable after 305 days, in contrast with unirradiated 35 deg F control samples, which were spoiled. One set of nitrogenpacked irradiated broccoli samples was acceptable after 270 days at 35 deg F; all others were unacceptable after this period. All of the irradiated strawberries were less acceptable than 35 deg F controls at all time periods. Correlation of objectivemore » color measurements with visual color scores varied with the product, but dominant wavelength, purity, or brightness was significantly related to color score for all products tested. Irradiation of strawberries resulted in bleaching of the characteristic red color, the amount of bleaching being greater at the higher dose levels. Samples irradiated at the higher levels had the lowest average dominant wavelength, closer to the orange area of the spectrum, and the lowest average purity. The pH of all strawberry syrup samples was between 3.1 and 3.5, and varied only slightly with blanching, radiation treatment, or time period. (H.H.D.)« less

  8. Structural changes of Ti3SiC2 induced by helium irradiation with different doses

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Su, Ranran; Shi, Liqun; O'Connor, Daryl J.; Wen, Haiming

    2018-03-01

    In this study, the microstructure changes of Ti3SiC2 MAX phase material induced by helium irradiation and evolution with a sequence of different helium irradiation doses of 5 × 1015, 1 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) were characterized with grazing incidence X-ray diffraction (GIXRD) and Raman spectra analysis. The irradiation damage process of Ti3SiC2 can be roughly divided into three stages according to the level of helium irradiation dose: (1) for a low damage dose, only crystal and damaged Ti3SiC2 exit; (2) at a higher irradiation dose, there is some damaged TiC phase additionally; (3) with a much higher irradiation dose, crystal TiC phase could be found inside the samples as well. Moreover, the 450 °C 5 × 1016 cm-2 helium irradiation on Ti3SiC2 has confirmed that Ti3SiC2 has much higher irradiation tolerance at higher temperature, which implies that Ti3SiC2 could be a potential future structural and fuel coating material working at high temperature environments.

  9. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with

  10. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    NASA Astrophysics Data System (ADS)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  11. [Splenic nodules and sickle cell anemia].

    PubMed

    Jouini, S; Sehili, S; Mokrani, A; Ayadi, K; Fakunle, Y; Daghfous, M H; Ladeb, M F

    2001-11-01

    We report 4 patients with sickle cell anemia presenting with intra-splenic benign nodules corresponding to islands of preserved tissue within splenic ferro-calcinosis. Ultrasound, CT and MRI findings were evaluated and compared to a follow-up study by ultrasound and CT done after 6 to 12 months. Ultrasound showed multiple well-defined rounded nodules appearing hypoechoic compared to the rest of the spleen that was hyperechoic. On CT, the nodules were homogenous, hypodense relative to the spleen, isodense to the liver in 3 cases and hypodense to the liver in 1 case. On MRI, the nodules appeared relatively hyperintense within low-signal-intensity spleens. The ultrasound and CT follow-up study demonstrated no remarkable change. In sickle cell patients, intra-splenic benign nodules corresponding to normal splenic tissue may be identified on imaging studies. The differential diagnosis is discussed.

  12. Long-term results of a pilot study of low dose cranial-spinal irradiation for cerebellar medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, W.N.; Schneider, P.A.; Tokars, R.P.

    1987-11-01

    Between May 1974 and March 1983, 44 children with histologically verified cerebellar medulloblastoma were seen for post-operative cranial-spinal irradiation following attempted total tumor removal. Six patients were excluded from review because they received all or part of their treatment at another institution (3 patients) or did not complete the planned course of irradiation (3 patients). All of the 38 remaining patients were treated by a previously described technique on a 4 MeV Linear Accelerator with 55 Gy delivered to the primary tumor site. Prior to December 1978, 19 consecutive children (Group A) had spinal prophylactic doses of 30-40 Gy andmore » brain prophylactic doses of 40-50 Gy. After the date, 25 Gy was given to the cranial-spinal axis of 19 consecutive children (Group B). This lower dose was arbitrarily selected with the hope of reducing morbidity in treated survivors and achieving the same tumor control. Risk factors that define good and poor prognosis were evaluated for each group, and there were no differences noted. Myelography and CSF cytology were not routinely performed. Follow-up for the 38 patients ranges from 20 months to 124 months. For the low risk patients, survival (12/15 or 80%) was independent of cranial-spinal radiation dose (Group A 6/8, Group B 6/7). For the high risk patients survival was poor (9/23 or 39%), not dependent on cranial-spinal radiation dose (Group A 5/11, Group B 4/12), and associated with failure at the primary site (10/14), often with CSF seeding (8/10). The other 4 failures include 2 who had moved outside the United States (details of failure are unknown), 1 with supratentorial, CSF seeding and distant metastases, and 1 with distant metastasis only.« less

  13. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  14. Low Dose Food Irradiation at Natick

    DTIC Science & Technology

    1977-06-01

    bread, cakes, and cookies made with this irradiated flour have consistently received excellent ratings by taste panelists and other consumers at Natick...activity, titratable acidity, pH, ash, protein, and moisture content), dough and baking characteristics (bread scores, rheological and alpha-amylase...on the vitamin content in the irradiated flour or in the bread made from the 1 3See footnote 5 15 flour (Tables 10,11). Farinographs, dough

  15. Effect of irradiation on the prevulcanized latex/low nitrosamines latex blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Pairu; Zin, Wan Manshol Wan; Daik, Rusli

    2015-09-25

    Radiation Prevulcanized Natural Rubber Latex (RVNRL) was blended with Low Nitrosamines Latex (LNL) at different composition ratio. Methyl Metachrylate (MMA) was added for grafting onto the blended latex. Blended latex was subjected to gamma irradiation at various doses up to 8kGy. The mechanical properties and FTIR analysis were investigated as a function of the blended composition and irradiation dose. It was found that blending at specific ratio and gamma irradiation at specific dose led to significant improvement on the properties of the latex. The optimum mechanical properties was attained at a total blending ratio of 70% RVNRL and 30% ofmore » LNL.« less

  16. Animal Studies of Residual Hematopoietic and Immune System Injury from Low Dose/Low Dose Rate Radiation and Heavy Metals.

    DTIC Science & Technology

    1998-09-01

    accidents and industrial accidents (e.g., Chernobyl ) who receive high doses of radiation over a relatively short period of time, there are thousands of...several years after exposure may have been terminated. Examples of such groups include those affected by the fallout near Chernobyl , those living near...cohorts (e.g., Chernobyl victims) particular damage from low dose irradiation, especially membrane damage and mismatched DNA repair. Dosimetric Problems

  17. Effect of low-dose irradiation on growth of and toxin production by Staphylococcus aureus and Bacillus cereus in roast beef and gravy.

    PubMed

    Grant, I R; Nixon, C R; Patterson, M F

    1993-03-01

    The effect of irradiation (2 kGy) on growth of and toxin production by Staphylococcus aureus and Bacillus cereus in roast beef and gravy during storage at abuse temperatures (15 and 22 degrees C) was assessed by inoculation studies. Irradiation resulted in a 3-4 log10 reduction in numbers of both pathogens. Whenever B. cereus and S. aureus numbers reached 10(6) and 10(7) cfu/g, respectively, during storage their toxins were detectable. As the time taken to attain these levels was longer in irradiated than in unirradiated samples, toxin production by both pathogens was delayed by irradiation. When samples initially containing low levels (10(2)/g) of S. aureus were irradiated no toxin was produced during subsequent storage at 15 or 22 degrees C. Diarrhoeal toxin produced by B. cereus was detected after 2 days at 22 degrees C, but not at 15 degrees C, in samples containing 10(2) cells/g prior to irradiation. When higher numbers (10(6)/g) of either pathogen were present prior to irradiation, toxins were produced by both pathogens at 22 degrees C, but not at 15 degrees C. Microbial competition had an effect on the growth of B. cereus and S. aureus after irradiation when a low initial inoculum was applied. However, when a higher inoculum was used the pathogens outnumbered their competitors and competition effects were less important. It was concluded that low-dose irradiation would improve the microbiological safety of roast beef and gravy.

  18. Delayed splenic vascular injury after nonoperative management of blunt splenic trauma.

    PubMed

    Furlan, Alessandro; Tublin, Mitchell E; Rees, Mitchell A; Nicholas, Dederia H; Sperry, Jason L; Alarcon, Louis H

    2017-05-01

    Delayed splenic vascular injury (DSVI) is traditionally considered a rare, often clinically occult, harbinger of splenic rupture in patients with splenic trauma that are managed conservatively. The purpose of our study was to assess the incidence of DSVI and associated features in patients admitted with blunt splenic trauma and managed nonoperatively. A retrospective analysis was conducted over a 4-y time. Patients admitted with blunt splenic trauma, managed no-operatively and with a follow-up contrast-enhanced computed tomography (CT) scan study during admission were included. The CT scans were reviewed for American Association for the Surgery of Trauma splenic injury score, amount of hemoperitoneum, and presence of DSVI. Logistic regression models were used to investigate the risk factors associated with DSVI. A total of 100 patients (60 men and 40 women) constituted the study group. Follow-up CT scan demonstrated a 23% incidence of DSVI. Splenic artery angiography validated DSVI in 15% of the total patient population. Most DSVIs were detected only on arterial phase CT scan imaging. The American Association for the Surgery of Trauma splenic injury score (odds ratio = 1.73; P = 0.045) and the amount of hemoperitoneum (odds ratio = 1.90; P = 0.023) on admission CT scan were associated with the development of DSVI on follow-up CT scan. DSVI on follow-up CT scan imaging of patients managed nonoperatively after splenic injury is common and associated with splenic injury score assessed on admission CT scan. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of low-dose prenatal irradiation on the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolvingmore » uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.« less

  20. Effects of low-dose prenatal irradiation on the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolvingmore » uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.« less

  1. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    PubMed

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P < 0.05) with irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  2. Pretreatment of low dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells.

    PubMed

    Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y

    1997-06-01

    Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.

  3. Effect of gamma irradiation on high temperature hardness of low-density polyethylene

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh

    2015-11-01

    Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.

  4. Combination Treatment of Glioblastoma by Low-Dose Radiation and Genistein.

    PubMed

    Atefeh, Zamanian; Vahid, Changizi; Hasan, Nedaie; Saeed, Amanpour; Mahnaz, Haddadi

    2016-01-01

    Gioblastoma multiforme as a chemoresistant and radioresistant malignant cell line needs to novel strategies to treatment. Low-dose hyper-radiosensitivity (LDHRS) seems to be an effective phenomenon to irradiation that can save normal brain fibroblasts. Genistein which is a soy isoflavone can be cytotoxic in some tumor cell lines. So we determined to study the effect of combining these two treatment modalities. After 30 hours incubation with Genistein in different concentrations on U87MG cell line, proliferation and clonogenicity were conducted by both clonogenic and MTT assays. A conventional 2Gy radiation dose was compared with 10 doses of 0.2Gy gamma irradiation with 3 minutes and 1 hour intervals. Finally, concurrent effect of these modalities was assessed. Based on acquired cell doubling time (30 hours), one doubling time treatment by Genistein could decrease clonogenicity. U87MG cell line exhibited HRS at low dose irradiations. 2Gy irradiation was more effective than ultra-fractionation methods in comparison with control group. All groups with 50uM concentration of Genistein showed decrease in the survival. This decrease compared with control group, in 10x0.2Gy with 3 minutes intervals plus 50uM Genistein was significant and for groups with the same dose of Genistein but along with continuous 2Gy was more significant. In one day treatment regimen, 10x0.2Gy ultra-fractionation with 3 minutes and 1 hour intervals seems to be less effective than conventional 2Gy irradiation, however adding 50uM Genistein can decrease survival more. Although 2Gy conventional dose plus 50uM Genistein was the most effective regimen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Proximal Versus Distal Splenic Artery Embolisation for Blunt Splenic Trauma: What is the Impact on Splenic Immune Function?

    PubMed

    Foley, P T; Kavnoudias, H; Cameron, P U; Czarnecki, C; Paul, E; Lyon, S M

    2015-10-01

    To compare the impact of proximal or distal splenic artery embolisation versus that of splenectomy on splenic immune function as measured by IgM memory B cell levels. Patients with splenic trauma who were treated by splenic artery embolisation (SAE) were enrolled. After 6 months splenic volume was assessed by CT, and IgM memory B cells in peripheral blood were measured and compared to a local normal reference population and to a post-splenectomy population. Of the 71 patients who underwent embolisation, 38 underwent proximal embolisation, 11 underwent distal embolisation, 22 patients were excluded, 1 had both proximal and distal embolisation, 5 did not survive and 16 did not return for evaluation. There was a significant difference between splenectomy and proximal or distal embolisation and a trend towards greater preservation of IgM memory B cell number in those with distal embolisation-a difference that could not be attributed to differences in age, grade of injury or residual splenic volume. IgM memory B cell levels are significantly higher in those treated with SAE compared to splenectomy. Our data provide evidence that splenic embolisation should reduce immunological complications of spleen trauma and suggest that distal embolisation may maintain better function.

  6. Proximal Versus Distal Splenic Artery Embolisation for Blunt Splenic Trauma: What is the Impact on Splenic Immune Function?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, P. T., E-mail: pfoley@doctors.org.uk; Kavnoudias, H., E-mail: h.kavnoudias@alfred.org.au; Cameron, P. U., E-mail: paul.cameron@unimelb.edu.au

    PurposeTo compare the impact of proximal or distal splenic artery embolisation versus that of splenectomy on splenic immune function as measured by IgM memory B cell levels.Materials and MethodsPatients with splenic trauma who were treated by splenic artery embolisation (SAE) were enrolled. After 6 months splenic volume was assessed by CT, and IgM memory B cells in peripheral blood were measured and compared to a local normal reference population and to a post-splenectomy population.ResultsOf the 71 patients who underwent embolisation, 38 underwent proximal embolisation, 11 underwent distal embolisation, 22 patients were excluded, 1 had both proximal and distal embolisation, 5 didmore » not survive and 16 did not return for evaluation. There was a significant difference between splenectomy and proximal or distal embolisation and a trend towards greater preservation of IgM memory B cell number in those with distal embolisation—a difference that could not be attributed to differences in age, grade of injury or residual splenic volume.ConclusionIgM memory B cell levels are significantly higher in those treated with SAE compared to splenectomy. Our data provide evidence that splenic embolisation should reduce immunological complications of spleen trauma and suggest that distal embolisation may maintain better function.« less

  7. Splenic artery embolization for post-traumatic splenic artery pseudoaneurysm in children.

    PubMed

    Yardeni, Dani; Polley, Theodore Z; Coran, Arnold G

    2004-08-01

    Although rare, traumatic splenic artery pseudoaneurysm (SAP) can be life threatening. The diagnostic approaches as well as the methods of treatment of SAP are yet to be determined. We present the case of a 10-year-old boy treated conservatively for a grade III blunt splenic injury (BSI). The child was discharged to home after a 5-day uneventful hospitalization but was found on routine follow-up CT scan to have a large SAP. The pseudoaneurysm was successfully angiographically embolized and subsequent abdominal CT demonstrated successful resolution of the pseudoaneurysm with a small residual splenic cyst. We reviewed the eight cases of post-traumatic SAP in children that have been published in the English literature. Unlike SAP in adult patients, the severity of the splenic injury does not have predictive value for development of SAP in children. Abdominal pain was the most frequent symptom of SAP, but three children were asymptomatic at the time of diagnosis. Therefore, the possibility of SAP should be investigated even in the asymptomatic child with mild splenic injury. When a splenic pseudoaneurysm is diagnosed, we believe splenic artery embolization is indicated.

  8. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and

  9. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fractionated irradiation of carbon beam and the isoeffect dose on acute reaction of skin

    PubMed Central

    Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Koda, Kana; Koike, Sachiko; Ando, Koichi; Furusawa, Yoshiya

    2014-01-01

    Purpose: The aim of this study was to clear any specific LETs cause change in skin reaction. We irradiated mice feet with mono-energetic and SOBP carbon ions, to obtain dose–response of early skin reaction at different LETs. Materials and methods: Mice: C3H/HeMsNrsf female mice aged 4 months old were used for this study. The animals were produced and maintained in specific pathogen-free (SPF) facilities. Irradiation: The mice right hind legs received daily fractionated irradiation ranged from single to six fractions. Carbon ions (12C6+) were accelerated by the HIMAC synchrotron to 290 MeV/u. Irradiation was conducted using horizontal carbon-ion beams with a dose rate of ∼3 Gy/min. We chose the LETs at entrance of plateau (20keV/μm) and the SOBP (proximal: 40 keV/μm, middle: 45 keV/μm, distal: 60 keV/μm, distal-end: 80 keV/μm). The reference beam was 137Cs gamma rays with a dose rate of 1.2 Gy/min. Skin reaction: Skin reaction of the irradiated legs was scored every other day, between the14th and 35th post-irradiation days. Our scoring scale consisted of seven steps, ranging from 0.5 to 3.5 [ 1]. The skin score analyzed a result by the method that described by Ando et al. [ 2]. The Fe-plot proposed by Douglas and Fowler was used as a multifraction linear quadratic model. A plot between the reciprocal of the isoeffect dose and the dose per fraction resulted in a straight line. Results: Required isoeffect total dose increased linearly with the fraction numbers on a semi-logarithmic chart at LET 20–60 keV/µm SOBP beam. The isoeffect total dose decreased with the increase in the LET. However, no increases in isoeffect total dose were observed at few fractionations at 80 keV/µm. (data not shown) Using an Fe-plot, we analyzed the isoeffect total dose to evaluate the dependence on Carbon beam, or gamma ray. When I irradiate it by gamma ray, an Fe-plot shows linearly. But, irradiated by Carbon beam, an Fe-plot bent at low fractions (Fig. 1). Conclusion: The LQ

  11. Quantification of applied dose in irradiated citrus fruits by DNA Comet Assay together with image analysis.

    PubMed

    Cetinkaya, Nurcan; Ercin, Demet; Özvatan, Sümer; Erel, Yakup

    2016-02-01

    The experiments were conducted for quantification of applied dose for quarantine control in irradiated citrus fruits. Citrus fruits exposed to doses of 0.1 to 1.5 kGy and analyzed by DNA Comet Assay. Observed comets were evaluated by image analysis. The tail length, tail moment and tail DNA% of comets were used for the interpretation of comets. Irradiated citrus fruits showed the separated tails from the head of the comet by increasing applied doses from 0.1 to 1.5 kGy. The mean tail length and mean tail moment% levels of irradiated citrus fruits at all doses are significantly different (p < 0.01) from control even for the lowest dose at 0.1 kGy. Thus, DNA Comet Assay may be a practical quarantine control method for irradiated citrus fruits since it has been possible to estimate the applied low doses as small as 0.1 kGy when it is combined with image analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry andmore » risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies

  13. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).

    PubMed

    Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P

    2014-02-01

    An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid

  14. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  15. Effects of low dose pre-irradiation on hepatic damage and genetic material damage caused by cyclophosphamide.

    PubMed

    Yu, H-S; Song, A-Q; Liu, N; Wang, H

    2014-01-01

    Cyclophosphamide (CTX) can attack tumour cells, but can also damage the other cells and microstructures of an organism at different levels, such as haematopoietic cells, liver cells, peripheral lymphocyte DNA, and genetic materials. Low dose radiation (LDR) can induce general adaptation reaction. In this study, we explore the effects of low dose radiation on hepatic damage and genetic material damage caused by CTX. Mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, mice of the LDR and LDR+CTX groups were given 75 mGy of whole-body γ-irradiation; whereas mice of the CTX and LDR+CTX groups were injected intraperitoneally with 3.0 mg of CTX. All mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes, alanine aminotransferase (ALT) activity, total protein (TP), albumin (ALB) of the plasma, malonyl-dialdheyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity of the hepatic homogenate, and micronucleus frequency (MNF) of polychromatoerythrocytes in the bone marrow were analysed. The control group had the lowest MDA content and the highest SOD and GSH-PX activity, whereas the CTX group had the highest MDA content and the lowest SOD and GSH-PX activity. Compared with the CTX group, the MDA content decreased significantly (p < 0.01) and the SOD and GSH-PX activity increased significantly (p < 0.05) in the LDR+CTX group. TP and ALB in control group were higher than that of the other groups. Compared with the sham-irradiated group, TP and ALB in the LDR group elevated significantly (p < 0.05). The control group had the lightest DNA damage, whereas the CTX group had the severest. DNA damage in LDR+CTX group was much lighter compared with that of the CTX group (p < 0.05). MNF in the CTX group increased significantly compared with the control and the sham-irradiated groups (p < 0.01). Compared with the CTX group, MNF in LDR+CTX group had a tendency of decline

  16. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells.

    PubMed

    Vávrová, Jirina; Mareková-Rezácová, Martina; Vokurková, Doris; Szkanderová, Sylva; Psutka, Jan

    2003-10-01

    Most cell lines that lack functional p53 protein are arrested in the G(2) phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G(2) phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G(2) phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D(0) value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G(2) phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D(0)=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5-7 post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.

  17. Micronucleus induction in Vicia faba roots. Part 1. Absence of dose-rate, fractionation, and oxygen effect at low doses of low LET radiations.

    PubMed

    Marshall, I; Bianchi, M

    1983-08-01

    Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.

  18. Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations

    NASA Astrophysics Data System (ADS)

    Sánchez-Mejorada, G.; Frias, D.

    2006-09-01

    A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.

  19. Born-again spleen. Return of splenic function after splenectomy for trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, H.A.; Johnston, D.; Smith, K.A.

    1978-06-22

    We assessed splenic activity after splenectomy by interference phase microscopical examination of circulating red cells. Normal eusplenic children had a low number (<1%) of red cells with surface indentations or pits. About 20% of red cells of children who had electively been subjected to splenectomy for hematologic indications were pitted. Thirteen of 22 children who had had emergency splenectomy because of traumatic injury had a low percentage of pitted red cells, suggesting a return of splenic function. In five of these children a /sup 99m/Tc sulfur colloid scan demonstrated multiple nodules of recurrent splenic tissue. In contrast to the prevailingmore » opinion that splenosis is rare, we have found it to be a frequent occurrence. Return of splenic function may, in part, account for the low frequency with which overwhelming bacterial sepsis and meningitis have been documented after splenectomy for traumatic indications.« less

  20. Assessment of simulated high-dose partial-body irradiation by PCC-R assay.

    PubMed

    Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe

    2013-09-01

    The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.

  1. DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry

    NASA Astrophysics Data System (ADS)

    Batista, Adriana S. M.; Faria, Luiz O.

    2017-11-01

    Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.

  2. Physics must join with biology in better assessing risk from low-dose irradiation.

    PubMed

    Feinendegen, L E; Neumann, R D

    2005-01-01

    This review summarises the complex response of mammalian cells and tissues to low doses of ionising radiation. This thesis encompasses induction of DNA damage, and adaptive protection against both renewed damage and against propagation of damage from the basic level of biological organisation to the clinical expression of detriment. The induction of DNA damage at low radiation doses apparently is proportional to absorbed dose at the physical/chemical level. However, any propagation of such damage to higher levels of biological organisation inherently follows a sigmoid function. Moreover, low-dose-induced inhibition of damage propagation is not linear, but instead follows a dose-effect function typical for adaptive protection, after an initial rapid rise it disappears at doses higher than approximately 0.1-0.2 Gy to cells. The particular biological response duality at low radiation doses precludes the validity of the linear-no-threshold hypothesis in the attempt to relate absorbed dose to cancer. In fact, theory and observation support not only a lower cancer incidence than expected from the linear-no-threshold hypothesis, but also a reduction of spontaneously occurring cancer, a hormetic response, in the healthy individual.

  3. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    PubMed Central

    Kim, Cha Soon; Seong, Ki Moon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. PMID:25792464

  4. Quality changes of the Mediterranean horse mackerel ( Trachurus mediterraneus) during chilled storage: The effect of low-dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Mbarki, Raouf; Sadok, Saloua; Barkallah, Insaf

    2009-04-01

    Pelagic fishes represent the main Mediterranean fisheries in terms of quantity. However, waste and spoilage of pelagic fish are substantial for a variety of reasons, such as their high perishability and the lack or inadequate supply of ice and freezing facilities. In this work, fresh Mediterranean horse mackerel ( Trachurus mediterraneus) were irradiated at 1 and 2 kGy and stored in ice for 18 days. Quality changes during storage were followed by the determination of microbial counts, trimethylamine (TMA) and volatile basic nitrogen contents. Similarly, lipid composition and sensory analysis were carried out. Irradiation treatment was effective in reducing total bacterial counts throughout storage. Total basic volatile nitrogen content (TVB-N) and TMA levels increased in all lots with storage time, their concentrations being significantly reduced by irradiation, even when the lower level (1 kGy) was used. According to the quality index method, the control lot had a sensory shelf-life of 4 days, whereas those of the irradiated lots were extended by 5 days. Also, low-dose irradiation had no adverse effect on the nutritionally important polyunsaturated fatty acids (PUFA) of Mediterranean horse mackerel. In the same way, thiobarbituric acid-reactive substances values increased with irradiation during the first day, but these values were lower at the end of storage, compared to the control. Results confirm the practical advantages of using γ irradiation as an additional process to chilled storage to enhance the microbiological quality and to extend the shelf-life of small pelagic species.

  5. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  6. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  7. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

    PubMed Central

    Takahashi, Shinya; Kojo, Kei H.; Kutsuna, Natsumaro; Endo, Masaki; Toki, Seiichi; Isoda, Hiroko; Hasezawa, Seiichiro

    2015-01-01

    Ultraviolet (UV)-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress–induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2) cells. Both low-dose UV-B (low UV-B: 740 J m−2) and high-dose UV-B (high UV-B: 2960 J m−2) inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B–irradiated cells entered mitosis within 12 h. Cell cycle progression was gradually restored in low-UV-B–irradiated cells but not in high-UV-B–irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD) photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B–induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B–irradiated cells, but remained elevated after 3 days in high-UV-B–irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) checkpoint kinases, reduced the rate of cell death in high-UV-B–irradiated cells. Our data suggest that low-UV-B–induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B–induced CPDs and/or DNA strand-breaks lead to cell death. PMID:25954287

  8. Threshold irradiation dose for amorphization of silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenonmore » ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.« less

  9. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses

    PubMed Central

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Abstract Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  10. Continuous Low-dose-rate Irradiation of Iodine-125 Seeds Inhibiting Perineural Invasion in Pancreatic Cancer.

    PubMed

    Lu, Zheng; Dong, Teng-Hui; Si, Pei-Ren; Shen, Wei; Bi, Yi-Liang; Min, Min; Chen, Xin; Liu, Yan

    2016-10-20

    Perineural invasion (PNI) is a histopathological characteristic of pancreatic cancer (PanCa). The aim of this study was to observe the treatment effect of continuous low-dose-rate (CLDR) irradiation to PNI and assess the PNI-related pain relief caused by iodine-125 ( 125 I) seed implantation. The in vitro PNI model established by co-culture with dorsal root ganglion (DRG) and cancer cells was interfered under 2 and 4 Gy of 125 I seeds CLDR irradiation. The orthotopic models of PNI were established, and 125 I seeds were implanted in tumor. The PNI-related molecules were analyzed. In 30 patients with panCa, the pain relief was assessed using a visual analog scale (VAS). Pain intensity was measured before and 1 week, 2 weeks, and 1, 3, and 6 months after 125 I seed implantation. The co-culture of DRG and PanCa cells could promote the growth of PanCa cells and DRG neurites. In co-culture groups, the increased number of DRG neurites and pancreatic cells in radiation group was significantly less. In orthotopic models, the PNI-positive rate in radiation and control group was 3/11 and 7/11; meanwhile, the degrees of PNI between radiation and control groups was significant difference (P < 0.05). At week 2, the mean VAS pain score in patients decreased by 50% and significantly improved than the score at baseline (P < 0.05). The pain scores were lower in all patients, and the pain-relieving effect was retained about 3 months. The CLDR irradiation could inhibit PNI of PanCa with the value of further study. The CLDR irradiation could do great favor in preventing local recurrence and alleviating pain.

  11. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice.

    PubMed

    Cetkovic-Cvrlje, Marina; Thinamany, Sinduja; Bruner, Kylie A

    2017-12-01

    Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disorder characterized by destruction of insulin-producing pancreatic β-cells. Whereas epidemiological data implicate environmental factors in the increasing incidence of T1D, their identity remains unknown. Though exposure to bisphenol A (BPA) has been associated with several disorders, no epidemiologic evidence has linked BPA exposure and T1D. The goal of this study was to elucidate diabetogenic potentials of BPA and underlying mechanisms in the context of T-cell immunity, in a multiple low-dose streptozotocin (MLDSTZ)-induced autoimmune mouse T1D model. C57BL/6 mice were orally exposed to 1 or 10 mg BPA/L starting at 4 wk of age; diabetes was induced at 9 wk of age with STZ. T-cell composition, function, and insulitis levels were studied at Days 11 and 50 during diabetes development (i.e. post-first STZ injection). Results showed both BPA doses increased diabetes incidence and affected T-cell immunity. However, mechanisms of diabetogenic action appeared divergent based on dose. Low-dose BPA fits a profile of an agent that exhibits pro-diabetogenic effects via T-cell immunomodulation in the early stages of disease development, i.e. decreases in splenic T-cell subpopulations [especially CD4 + T-cells] along with a trend in elevation of splenic T-cell formation of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6). In contrast, high-dose BPA did not affect T-cell populations and led to decreased levels of IFN-γ and TNF-α. Both treatments did not affect insulitis levels at the disease early stage, but aggravated it later on. By the study end, besides decreasing T-cell proliferative capacity, low-dose BPA did not affect other T-cell-related parameters, including cytokine secretion, comparable to the effects of high-dose BPA. In conclusion, this study confirmed BPA as a potential diabetogenic compound with immunomodulatory mechanisms of action - in the context of T-cell immunity - that seemed to be dose

  12. S-Nitrosylation in Organs of Mice Exposed to Low or High Doses of γ-Rays: The Modulating Effect of Iodine Contrast Agent at a Low Radiation Dose

    PubMed Central

    Nicolas, Fadia; Wu, Changgong; Bukhari, Salwa; de Toledo, Sonia M.; Li, Hong; Shibata, Masayuki; Azzam, Edouard I.

    2015-01-01

    The covalent addition of nitric oxide (NO•) onto cysteine thiols, or S-nitrosylation, modulates the activity of key signaling proteins. The dysregulation of normal S-nitrosylation contributes to degenerative conditions and to cancer. To gain insight into the biochemical changes induced by low-dose ionizing radiation, we determined global S-nitrosylation by the “biotin switch” assay coupled with mass spectrometry analyses in organs of C57BL/6J mice exposed to acute 0.1 Gy of 137Cs γ-rays. The dose of radiation was delivered to the whole body in the presence or absence of iopamidol, an iodinated contrast agent used during radiological examinations. To investigate whether similar or distinct nitrosylation patterns are induced following high-dose irradiation, mice were exposed in parallel to acute 4 Gy of 137Cs γ rays. Analysis of modulated S-nitrosothiols (SNO-proteins) in freshly-harvested organs of animals sacrificed 13 days after irradiation revealed radiation dose- and contrast agent-dependent changes. The major results were as follows: (i) iopamidol alone had significant effects on S-nitrosylation in brain, lung and liver; (ii) relative to the control, exposure to 0.1 Gy without iopamidol resulted in statistically-significant SNO changes in proteins that differ in molecular weight in liver, lung, brain and blood plasma; (iii) iopamidol enhanced the decrease in S-nitrosylation induced by 0.1 Gy in brain; (iv) whereas a decrease in S-nitrosylation occurred at 0.1 Gy for proteins of ~50 kDa in brain and for proteins of ~37 kDa in liver, an increase was detected at 4 Gy in both organs; (v) mass spectrometry analyses of nitrosylated proteins in brain revealed differential modulation of SNO proteins (e.g., sodium/potassium-transporting ATPase subunit beta-1; beta tubulins; ADP-ribosylation factor 5) by low- and high-dose irradiation; and (vi) ingenuity pathway analysis identified major signaling networks to be modulated, in particular the neuronal nitric oxide

  13. S-Nitrosylation in Organs of Mice Exposed to Low or High Doses of γ-Rays: The Modulating Effect of Iodine Contrast Agent at a Low Radiation Dose.

    PubMed

    Nicolas, Fadia; Wu, Changgong; Bukhari, Salwa; de Toledo, Sonia M; Li, Hong; Shibata, Masayuki; Azzam, Edouard I

    2015-04-28

    The covalent addition of nitric oxide (NO • ) onto cysteine thiols, or S -nitrosylation, modulates the activity of key signaling proteins. The dysregulation of normal S -nitrosylation contributes to degenerative conditions and to cancer. To gain insight into the biochemical changes induced by low-dose ionizing radiation, we determined global S -nitrosylation by the "biotin switch" assay coupled with mass spectrometry analyses in organs of C57BL/6J mice exposed to acute 0.1 Gy of 137 Cs γ-rays. The dose of radiation was delivered to the whole body in the presence or absence of iopamidol, an iodinated contrast agent used during radiological examinations. To investigate whether similar or distinct nitrosylation patterns are induced following high-dose irradiation, mice were exposed in parallel to acute 4 Gy of 137 Cs γ rays. Analysis of modulated S -nitrosothiols (SNO-proteins) in freshly-harvested organs of animals sacrificed 13 days after irradiation revealed radiation dose- and contrast agent-dependent changes. The major results were as follows: (i) iopamidol alone had significant effects on S -nitrosylation in brain, lung and liver; (ii) relative to the control, exposure to 0.1 Gy without iopamidol resulted in statistically-significant SNO changes in proteins that differ in molecular weight in liver, lung, brain and blood plasma; (iii) iopamidol enhanced the decrease in S -nitrosylation induced by 0.1 Gy in brain; (iv) whereas a decrease in S -nitrosylation occurred at 0.1 Gy for proteins of ~50 kDa in brain and for proteins of ~37 kDa in liver, an increase was detected at 4 Gy in both organs; (v) mass spectrometry analyses of nitrosylated proteins in brain revealed differential modulation of SNO proteins (e.g., sodium/potassium-transporting ATPase subunit beta-1; beta tubulins; ADP-ribosylation factor 5) by low- and high-dose irradiation; and (vi) ingenuity pathway analysis identified major signaling networks to be modulated, in particular the neuronal nitric

  14. Radiation Dose Uncertainty and Correction for a Mouse Orthotopic and Xenograft Irradiation Model

    PubMed Central

    Gan, Gregory N.; Altunbas, Cem; Morton, John J.; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    Purpose In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Materials and Methods Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Results Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on 2 different animal irradiation days was 514±37 cGy (range: 437–545). Exit dose measurements taken from 7 radiochromic films on two separate days were 341±21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368±9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Conclusion Variations related to the irradiation model can lead to significant under or over- dosing in vivo which can affect tumor control and/or biologic endpoints that are dose dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses. PMID:26689828

  15. Splenic function after angioembolization for splenic trauma in children and adults: A systematic review.

    PubMed

    Schimmer, J A G; van der Steeg, A F W; Zuidema, W P

    2016-03-01

    Splenic artery embolization (SAE), proximal or distal, is becoming the standard of care for traumatic splenic injury. Theoretically the immunological function of the spleen may be preserved, but this has not yet been proven. A parameter for measuring the remaining splenic function must therefore be determined in order to decide whether or not vaccinations and/or antibiotic prophylaxis are necessary to prevent an overwhelming post-splenectomy infection (OPSI). A systematic review of the literature was performed July 2015 by searching the Embase and Medline databases. Articles were eligible if they described at least two trauma patients and the subject was splenic function. Description of procedure and/or success rate of SAE was not necessary for inclusion. Two reviewers independently assessed the eligibility and the quality of the articles and performed the data extraction. Twelve studies were included, eleven with adult patients and one focusing on children. All studies used different parameters to assess splenic function. None of them reported a OPSI after splenic embolization. Eleven studies found a preserved splenic function after SAE, in both adults and children. All but one studies on the long term effects of SAE indicate a preserved splenic function. However, there is still no single parameter or test available which can demonstrate that unequivocally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Overview of Nonoperative Blunt Splenic Injury Management with Associated Splenic Artery Pseudoaneurysm.

    PubMed

    Morrison, Chet A; Gross, Brian W; Kauffman, Matthew; Rittenhouse, Katelyn J; Rogers, Frederick B

    2017-06-01

    The delayed development of splenic artery pseudoaneurysm (SAP) can complicate the nonoperative management of splenic injuries. We sought to determine the utility of repeat imaging in diagnosing SAP in patients managed nonoperatively without angioembolization. We hypothesized that a significant rate of SAPs would be found in this population on repeat imaging. Patients undergoing nonoperative splenic injury management from January 2011 to June 2015 were queried from the trauma registry. Rates of repeat imaging, angioembolization, readmission, and SAP development were analyzed. Further, subanalyses investigating the incidence of SAP in patients managed nonoperatively without angioembolization were conducted. A total of 133 patients met inclusion criteria. Repeat imaging rate was 40 per cent, angioembolization rate was 26 per cent, and readmission rate was 6 per cent. Within the study population, nine SAPs were found (8/9 in patients with splenic injury grade ≥III). Of these nine SAPs, three (33%) were identified on initial scans and embolized, whereas six (67%) were found on repeat imaging in patients not initially receiving angioembolization. Splenic injuries are typically managed nonoperatively without serious complications. Our results suggest patients with splenic injuries grade ≥III managed nonoperatively without angioembolization should have repeat imaging within 48 hours to rule out the possibility of SAP.

  17. Radiation dose uncertainty and correction for a mouse orthotopic and xenograft irradiation model.

    PubMed

    Gan, Gregory N; Altunbas, Cem; Morton, John J; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on two different animal irradiation days was 514 ± 37 cGy (range: 437-545). Exit dose measurements taken from seven radiochromic films on two separate days were 341 ± 21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368 ± 9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Variations related to the irradiation model can lead to significant under or overdosing in vivo which can affect tumor control and/or biologic endpoints that are dose-dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses.

  18. Clinical application of the OneDose Patient Dosimetry System for total body irradiation.

    PubMed

    Best, S; Ralston, A; Suchowerska, N

    2005-12-21

    The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  19. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  20. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; hide

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  1. Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis.

    PubMed

    Alessio, Nicola; Esposito, Giuseppe; Galano, Giovanni; De Rosa, Roberto; Anello, Pasquale; Peluso, Gianfranco; Tabocchini, Maria Antonella; Galderisi, Umberto

    2017-09-01

    The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography.

    PubMed

    Olszewski, R; Frison, L; Wisniewski, M; Denis, J M; Vynckier, S; Cosnard, G; Zech, F; Reychler, H

    2013-01-01

    The purpose of this study is to compare the reproducibility of three-dimensional cephalometric landmarks on three-dimensional computed tomography (3D-CT) surface rendering using clinical protocols based on low-dose (35-mAs) spiral CT and cone-beam CT (I-CAT). The absorbed dose levels for radiosensitive organs in the maxillofacial region during exposure in both 3D-CT protocols were also assessed. The study population consisted of ten human dry skulls examined with low-dose CT and cone-beam CT. Two independent observers identified 24 cephalometric anatomic landmarks at 13 sites on the 3D-CT surface renderings using both protocols, with each observer repeating the identification 1 month later. A total of 1,920 imaging measurements were performed. Thermoluminescent dosimeters were placed at six sites around the thyroid gland, the submandibular glands, and the eyes in an Alderson phantom to measure the absorbed dose levels. When comparing low-dose CT and cone-beam CT protocols, the cone-beam CT protocol proved to be significantly more reproducible for four of the 13 anatomical sites. There was no significant difference between the protocols for the other nine anatomical sites. Both low-dose and cone-beam CT protocols were equivalent in dose absorption to the eyes and submandibular glands. However, thyroid glands were more irradiated with low-dose CT. Cone-beam CT was more reproducible and procured less irradiation to the thyroid gland than low-dose CT. Cone-beam CT should be preferred over low-dose CT for developing three-dimensional bony cephalometric analyses.

  3. Literature review of non-operative management of patients with blunt splenic injury: impact of splenic artery embolization

    PubMed Central

    Sosada, Krystyn; Piecuch, Jerzy

    2014-01-01

    Splenic injuries constitute the most common injuries accompanying blunt abdominal traumas. Non-operative treatment is currently the standard for treating hemodynamically stable patients with blunt splenic injuries. The introduction of splenic angiography has increased the possibility of non-operative treatment for patients who, in the past, would have qualified for surgery. This cohort includes mainly patients with severe splenic injuries and with active bleeding. The results have indicated that applying splenic angioembolization reduces the frequency of non-operative treatment failure, especially in severe splenic injuries; however, it is still necessary to perform prospective, randomized clinical investigations. PMID:25337151

  4. Literature review of non-operative management of patients with blunt splenic injury: impact of splenic artery embolization.

    PubMed

    Sosada, Krystyn; Wiewióra, Maciej; Piecuch, Jerzy

    2014-09-01

    Splenic injuries constitute the most common injuries accompanying blunt abdominal traumas. Non-operative treatment is currently the standard for treating hemodynamically stable patients with blunt splenic injuries. The introduction of splenic angiography has increased the possibility of non-operative treatment for patients who, in the past, would have qualified for surgery. This cohort includes mainly patients with severe splenic injuries and with active bleeding. The results have indicated that applying splenic angioembolization reduces the frequency of non-operative treatment failure, especially in severe splenic injuries; however, it is still necessary to perform prospective, randomized clinical investigations.

  5. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGES

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; ...

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  6. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  7. Low dose X -ray effects on catalase activity in animal tissue

    NASA Astrophysics Data System (ADS)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  8. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masashi Shimada; M. Hara; T. Otsuka

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recoverymore » mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st

  9. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  10. Higher incidence of major complications after splenic embolization for blunt splenic injuries in elderly patients.

    PubMed

    Wu, Shih-Chi; Fu, Chih-Yuan; Chen, Ray-Jade; Chen, Yung-Fang; Wang, Yu-Chun; Chung, Ping-Kuei; Yu, Shu-Fen; Tung, Cheng-Cheng; Lee, Kun-Hua

    2011-02-01

    Nonoperative management (NOM) of blunt splenic injuries has been widely accepted, and the application of splenic artery embolization (SAE) has become an effective adjunct to NOM. However, complications do occur after SAE. In this study, we assess the factors leading to the major complications associated with SAE. Focusing on the major complications after SAE, we retrospectively studied patients who received SAE and were admitted to 2 major referral trauma centers under the same established algorithm for management of blunt splenic injuries. The demographics, angiographic findings, and factors for major complications after SAE were examined. Major complications were considered to be direct adverse effects arising from SAE that were potentially fatal or were capable of causing disability. There were a total of 261 patients with blunt splenic injuries in this study. Of the 261 patients, 53 underwent SAE, 11 (21%) of whom were noted to have 12 major complications: 8 cases of postprocedural bleeding, 2 cases of total infarction, 1 case of splenic abscess, and 1 case of splenic atrophy. Patients older than 65 years were more susceptible to major complications after SAE. Splenic artery embolization is considered an effective adjunct to NOM in patients with blunt splenic injuries. However, risks of major complications do exist, and being elderly is, in part, associated with a higher major complication incidence. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effects of gamma irradiation dose-rate on sterile male Aedesaegypti

    NASA Astrophysics Data System (ADS)

    Ernawan, Beni; Tambunan, Usman Sumo Friend; Sugoro, Irawan; Sasmita, Hadian Iman

    2017-06-01

    Aedesaegypti is the most important vector for dengue, yellow fever and Zika viruses. Considering its medical importance, vector population control program utilizing radiation-based sterile insect technique (SIT) is one of the potential methods for preventing and limiting the dispersal of these viruses. The present study was undertaken to evaluate the dose-rates effects of γ-sterilization on quality parameters of sterile males. Males Ae.aegypti at the pupal stage were sterilized by applying 70 Gyγ-rays in varies dose-rates, i.e. 0 (control), 300, 600, 900, 1200 and 1500Gy/h utilizing panoramic irradiator. Adult males that emerged from the pupal stage were assessed for their quality parameters, which are the percentage of emergence, longevity, sterility and mating competitiveness. The results herein indicate that there was no major effect of dose-rate on the percentage of emergence, the data showedthat there were no differences between irradiated males compared with control. Generally, the longevity of irradiated males was lower compared to control. The data also demonstrated that longevity was significantly increased at the dose-rate from 300 to 900Gy/h, then decreased at the dose-rate 900 to 1500 Gy/h. Sterility of irradiated maleswas significantly different compared to control, while there was no significantly different at dose rate 300 to 1500 Gy/h. Mating competitiveness of irradiated males was increased at the dose rate from 300 to 1200 Gy/h, then the value was decreased significantly at the dose rate 1500 Gy/h. The dose-rate effects of γ-sterilization were discussed in the context genetic vector control, in particular, the SIT. The results give information and contribute to better understanding towards γ-sterilization optimization and quality parameters of sterile male Ae. aegypti on SIT methods.

  12. An exponential model equation for thiamin loss in irradiated ground pork as a function of dose and temperature of irradiation

    NASA Astrophysics Data System (ADS)

    Fox, J. B.; Thayer, D. W.; Phillips, J. G.

    The effect of low dose γ-irradiation on the thiamin content of ground pork was studied in the range of 0-14 kGy at 2°C and at radiation doses from 0.5 to 7 kGy at temperatures -20, 10, 0, 10 and 20°C. The detailed study at 2°C showed that loss of thiamin was exponential down to 0kGy. An exponential expression was derived for the effect of radiation dose and temperature of irradiation on thiamin loss, and compared with a previously derived general linear expression. Both models were accurate depictions of the data, but the exponential expression showed a significant decrease in the rate of loss between 0 and -10°C. This is the range over which water in meat freezes, the decrease being due to the immobolization of reactive radiolytic products of water in ice crystals.

  13. Congenital absence of the splenic artery and splenic vein accompanied with a duodenal ulcer and deformity.

    PubMed

    Shin, Eun Kyung; Moon, Won; Park, Seun Ja; Park, Moo In; Kim, Kyu Jong; Lee, Jee Suk; Kwon, Jin Hwan

    2009-03-21

    Congenital absence of the splenic artery is a very rare condition. To the best of our knowledge, congenital absence of the splenic artery accompanied with absence of the splenic vein has not been reported. We report a case of the absence of the splenic artery and vein in a 61-year-old woman who presented with postprandial epigastric discomfort. Upper gastrointestinal endoscopy showed a dilated, pulsatile vessel in the fundus and duodenal stenosis. An abdominal computed tomography (CT) scan revealed absence of the splenic vein with a tortuously engorged gastroepiploic vein. Three-dimensional CT demonstrated the tortuously dilated left gastric artery and the left gastroepiploic artery with non-visualization of the splenic artery. After administration of a proton pump inhibitor, abdominal symptoms resolved without any recurrence of symptoms during 6 mo of follow-up.

  14. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.

  15. Low dose ionizing radiation detection using conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, E.A.B.; Borin, J.F.; Nicolucci, P.

    2005-03-28

    In this work, the effect of gamma radiation on the optical properties of poly[2-methoxy-5-(2{sup '}-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) is studied. The samples were irradiated at room temperature with different doses from 0 Gy to 152 Gy using a {sup 60}Co gamma ray source. For thin films, significant changes in the UV-visible spectra were only observed at high doses (>1 kGy). In solution, shifts in absorption peaks are observed at low doses (<10 Gy), linearly dependent on dose. The shifts are explained by conjugation reduction, and possible causes are discussed. Our results indicate that MEH-PPV solution can be used as a dosimeter adequatemore » for medical applications.« less

  16. Assessment of dose and DNA damages in individuals exposed to low dose and low dose rate ionizing radiations during computed tomography imaging.

    PubMed

    Kanagaraj, Karthik; Abdul Syed Basheerudeen, Safa; Tamizh Selvan, G; Jose, M T; Ozhimuthu, Annalakshmi; Panneer Selvam, S; Pattan, Sudha; Perumal, Venkatachalam

    2015-08-01

    Computed tomography (CT) is a frequently used imaging modality that contributes to a tenfold increase in radiation exposure to the public when compared to other medical imaging modalities. The use of radiation for therapeutic need is always rationalized on the basis of risk versus benefit thereby increasing concerns on the dose received by patients undergoing CT imaging. Therefore, it was of interest to us to investigate the effects of low dose and low dose-rate X-irradiation in patients who underwent CT imaging by recording the doses received by the eye, forehead and thyroid, and to study the levels of damages in the lymphocytes in vivo. Lithium manganese borate doped with terbium (LMB:Tb) thermo luminescence dosimeters (TLD) were used to record the doses in the patient's (n = 27) eye, forehead, and thyroid and compared with the dose length product (DLP) values. The in vivo DNA damages measured were compared before and after CT imaging using chromosomal aberration (CA) and micronucleus (MN) assays. The overall measured organ dose ranged between 2 ± 0.29 and 520 ± 41.63 mGy for the eye, 0.84 ± 0.29 and 210 ± 20.50 mGy for the forehead, and 1.79 ± 0.43 and 185 ± 0.70 mGy for the thyroid. The in vivo damages measured from the blood lymphocytes of the subjects showed an extremely significant (p < 0.0001) increase in CA frequency and significant (p < 0.001) increase in MN frequency after exposure, compared to before exposure. The results suggest that CT imaging delivers a considerable amount of radiation dose to the eye, forehead, and thyroid, and the observed increase in the CA and MN frequencies show low dose radiation effects calling for protective regulatory measures to increase patient's safety. This study is the first attempt to indicate the trend of doses received by the patient's eye, forehead and thyroid and measured directly in contrast to earlier values obtained by extrapolation from phantoms, and to assess the in vivo low dose effects in an Indian

  17. Dose response and repair kinetics of gamma-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and gamma-radiation.

    PubMed

    Beels, Laurence; Werbrouck, Joke; Thierens, Hubert

    2010-09-01

    Dose response and repair kinetics of phosphorylated histone H2A isoform X (gamma-H2AX) foci in T-lymphocytes were investigated in the low-dose range after in vitro irradiation of whole blood and T-lymphocytes with 100 kVp X-rays and (60)Co gamma-rays. Whole blood or isolated T-lymphocytes were irradiated in vitro and gamma-H2AX foci were scored. Dose response was determined in the 0-500 mGy dose range. Foci kinetics were studied at doses of 5 and 200 mGy up to 24 h post-irradiation. After X-irradiation, the dose response for whole blood shows a biphasic behaviour with a low-dose hypersensitivity, which is less pronounced for isolated T-lymphocytes. In contrast, gamma-radiation shows a linear dose response for both irradiation conditions. Concerning repair kinetics, delayed repair was found after X-ray whole blood irradiation (5 and 200 mGy) with 40% of the foci persisting 24 h post-irradiation. This number of foci is reduced to 10% after irradiation of isolated T-lymphocytes with 200 mGy X-rays. On the contrary, gamma-H2AX foci are reduced to background levels 24 h post-irradiation with 200 mGy (60)Co gamma-rays. gamma-H2AX foci response and repair kinetics depend on irradiation conditions and radiation quality, possibly linked to Bystander response.

  18. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  19. [Splenic infarction].

    PubMed

    Cuquerella, J; Ferrer, L; Rivera, P; Tuset, J A; Medina, E; Pamós, S; Ariete, V; Tomé, A; García, V

    1996-06-01

    A 53-year-old male suffered splenic infarction etiologically related to atrial fibrillation and non-obstructive hypertrophic cardiomyopathy. The main clinical manifestations were a one-month history of epigastric and left upper quadrant pain, with tenderness to palpation in the later zone. Laboratory tests revealed a slight leucocytosis (14.700) with left shift and a marked increase in LDH concentration (945 IU). Abdominal CAT and arteriography established the diagnosis, Echography proved normal. Patient evolution was satisfactory with conservative medical treatment. We conclude that splenic infarction should be considered in all cases of acute or chronic pain in the left hypochondrium. The diagnosis is established by CAT, arteriography and hepatosplenic gammagraphy. Medical management is initially advocated, surgery being reserved for those cases involving complications or in which diagnosis is not clear. Emphasis is placed on the main etiological, clinical, diagnostic and management characteristics of splenic infarction.

  20. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    PubMed Central

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  1. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE PAGES

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; ...

    2012-01-01

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident atmore » longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  2. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident atmore » longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  3. Total dose radiation test methodologies for advanced spacecraft electronics experiencing enhanced low dose rate sensitivity

    NASA Astrophysics Data System (ADS)

    Ashton, Chris

    The purpose of this thesis is to determine whether hydrogen can be implanted into elec- tronic components for the goal of investigating low ionising dose rate sensitivity, and using this to suggest whether hydrogen implantation can be used as an accelerated method to detect ELDRS (Enhanced Low Dose Rate Sensitivity) susceptability. Current ground testing methods for total ionising dose irradiate using cobalt-60 at dose rates greater than 10mGy(Si)/s up to 200Gy. It has been found that bipolar devices show an increased susceptibility to radiation induced damage at dose rates below 10mGy(Si)/s known as ELDRS. Current research has linked ELDRS susceptibility with hydrogen content within the integrated circuit and experiments based upon hydrogen soaking de-lidded bipolar devices demonstrate this relationship, however this has not led to an accepted method for testing ELDRS susceptibility in previously un-tested devices. In this thesis, a novel proposal is put forward whereby bipolar devices are directly implanted with hydrogen using a targeted ion beam in order to accelerate the testing process. Hydrogen implantation via a 600keV ion beam has been achieved to a level of 10. 17 H/cm. 2 in Analog Device’s AD590KF temperature transducer, and 10. 14-15 H/cm. 2in National Semiconductor’s LM124 quad operational amplifiers. Devices were decapped, optically analysed, and targeted with a focussed proton beam. These devices were then irradiated at 15mGy/s, 5mGy/s and 15mGy/s. Increased degradation was seen at lower dose rates which was matched by high dose rate irradiation of the implanted devices followed by a room temperature anneal. The use of ion implantation for the development of an accelerated ELDRS test method is proposed. This thesis demonstrated that hydrogen can be succesfully implanted into devices, established an upper bound for the LM124 for implantation and a lower bound for hydrogen remaining in the target area and the effect of hydrogen implantation on the

  4. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    NASA Astrophysics Data System (ADS)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  5. Absorbed dose measurement in low temperature samples:. comparative methods using simulated material

    NASA Astrophysics Data System (ADS)

    Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason

    2004-09-01

    There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.

  6. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    PubMed

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  7. Embolization Therapy for Traumatic Splenic Lacerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Niloy; Matsumoto, Alan H., E-mail: ahm4d@virginia.edu; Arslan, Bulent

    Purpose: This study was designed to evaluate the clinical success, complications, and transfusion requirements based on the location of and agents used for splenic artery embolization in patients with splenic trauma. Methods: A retrospective study was performed of patients with splenic trauma who underwent angiography and embolization from September 2000 to January 2010 at a level I trauma center. Electronic medical records were reviewed for demographics, imaging data, technical aspects of the procedure, and clinical outcomes. Results: Fifty patients were identified (34 men and 16 women), with an average age of 48 (range, 16-80) years. Extravasation was seen on initialmore » angiography in 27 (54%) and was absent in 23 (46%). All 27 patients with extravasation were embolized, and 18 of 23 (78.2%) without extravasation were embolized empirically. Primary clinical success was similar (>75%) across all embolization locations, embolic agents, and grades of laceration treated. Of 45 patients treated, 9 patients (20%) were embolized in the main splenic artery, 34 (75.6%) in the splenic hilum, and 2 (4.4%) were embolized in both locations. Partial splenic infarctions developed in 47.3% treated in the splenic hilum compared with 12.5% treated in the main splenic artery. There were four (8.9%) mortalities: two occurred in patients with multiple critical injuries and two from nonbleeding etiologies. Conclusions: Embolization of traumatic splenic artery injuries is safe and effective, regardless of the location of treatment. Embolization in splenic hilar branches may have a higher incidence of infarction. The grade of laceration and agents used for embolotherapy did not impact the outcomes.« less

  8. Different doses of partial liver irradiation promotes hepatic regeneration in rat

    PubMed Central

    Liu, Ying; Shi, Changzheng; Cui, Meng; Yang, Zhenhua; Gan, Danhui; Wang, Yiming

    2015-01-01

    The aim of this study is to investigate whether partial liver irradiation promotes hepatic regeneration in rat. Left-half liver of rat was irradiated to 10 Gy, and the Right-half to 0, 5, 10 and 15 Gy, respectively. Then, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) levels were evaluated on 0 day, 15-day, 30-day, 45-day and 60-day after liver irradiation. Next, the serum HGF, NF-κB and TGF-β1 levels were also analyzed on 60-day after liver irradiation. Lastly, the cyclinD1 protein expression was appraised by western blots on 60-day after liver irradiation. ALT, AST and ALP levels were reduced compared with that of controls. The serum HGF, NF-κB and TGF-β1 levels, and the cyclinD1 protein expression in liver irradiation group were increased compared with that of controls group. However, hepatic regeneration of higher dose-irradiated cirrhotic liver was triggered a more enhanced regeneration, compared with that of higher doses group. In summary, these results suggest that different doses of partial liver irradiation promotes hepatic regeneration in rat. PMID:26261535

  9. Effect of high-dose irradiation on quality characteristics of ready-to-eat chicken breast

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Haeng Lee, Kyung; Jung Lee, Hyun; Woon Lee, Ju; Uk Ahn, Dong; Jo, Cheorun

    2012-08-01

    High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC-MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy.

  10. Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics.

    PubMed

    Kong, W W; Zhang, C; Liu, F; Gong, A P; He, Y

    2013-08-01

    The objective of this study was to examine the possibility of applying visible and near-infrared spectroscopy to the quantitative detection of irradiation dose of irradiated milk powder. A total of 150 samples were used: 100 for the calibration set and 50 for the validation set. The samples were irradiated at 5 different dose levels in the dose range 0 to 6.0 kGy. Six different pretreatment methods were compared. The prediction results of full spectra given by linear and nonlinear calibration methods suggested that Savitzky-Golay smoothing and first derivative were suitable pretreatment methods in this study. Regression coefficient analysis was applied to select effective wavelengths (EW). Less than 10 EW were selected and they were useful for portable detection instrument or sensor development. Partial least squares, extreme learning machine, and least squares support vector machine were used. The best prediction performance was achieved by the EW-extreme learning machine model with first-derivative spectra, and correlation coefficients=0.97 and root mean square error of prediction=0.844. This study provided a new approach for the fast detection of irradiation dose of milk powder. The results could be helpful for quality detection and safety monitoring of milk powder. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Dose-dependent changes of chemical attributes in irradiated sausages.

    PubMed

    Nam, K C; Lee, E J; Ahn, D U; Kwon, J H

    2011-05-01

    To determine the effects of irradiation on the chemical attributes of sausages, TBARS values, volatile compounds, gaseous compounds, and hydrocarbons of vacuum-packaged sausages were analyzed during 60 d of refrigerated storage. A sulfur-containing volatile (dimethyl disulfide), a gas (methane), and radiation-induced hydrocarbons (1-tetradecene, pentadecane, heptadecane, 8-heptadecene, eicosane, 1, 7-hexadecadiene, hexadecane) were mainly detected in irradiated sausages and the concentrations of these compounds were irradiation dose-dependent with R(2) = 0.9585, 0.9431, and 0.9091-0.9977, respectively. Especially methane and a few hydrocarbons were detected only in irradiated sausages and their amounts were dose-dependent. On the other hand, TBARS values, other off-odor volatiles (carbon disulfide, hexanal), and gases (carbon monoxide, carbon dioxide) were found both in irradiated and nonirradiated sausages. Therefore, it is suggested that radiation-induced hydrocarbons (1-tetradecene, pentadecane, heptadecane, 8-heptadecene, eicosane, 1, 7-hexadecadiene, hexadecane), dimethyl disulfide, and methane can be used as markers for irradiated sausages. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  12. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac; Kim, Jun Won, E-mail: JUNWON@yuhs.ac; Yoo, Hyun, E-mail: gochunghee@yuhs.ac

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in amore » co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion

  13. Factors Associated With Chest Wall Toxicity After Accelerated Partial Breast Irradiation Using High-Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sheree, E-mail: shereedst32@hotmail.com; Vicini, Frank; Vanapalli, Jyotsna R.

    2012-07-01

    Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc)more » (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.« less

  14. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues.

    PubMed

    Milićević, Novica M; Nohroudi, Klaus; Schmidt, Friederike; Schmidt, Hendrik; Ringer, Cornelia; Sorensen, Grith Lykke; Milićević, Živana; Westermann, Jürgen

    2016-01-01

    Development and maintenance of secondary lymphoid organs such as lymph nodes and spleen essentially depend on lymphotoxin β-receptor (LTβR) signaling. It is unclear, however, by which molecular mechanism their size is limited. Here, we investigate whether the LTβR pathway is also growth suppressing. By using splenic tissue transplantation it is possible to analyze a potential contribution of LTβR signaling inside and outside of the implanted tissue. We show that LTβR signaling within the endogenous spleen and within non-splenic tissues both significantly suppressed the regeneration of implanted splenic tissue. The suppressive activity positively correlated with the total number of LTβR expressing cells in the animal (regenerate weights of 115 ± 8 mg in LTβR deficient recipients and of 12 ± 9 mg in wild-type recipients), affected also developed splenic tissue, and was induced but not executed via LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size of secondary lymphoid organs, and might be therapeutically used to eradicate tertiary lymphoid tissues during autoimmune diseases.

  15. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues

    PubMed Central

    Schmidt, Friederike; Schmidt, Hendrik; Ringer, Cornelia; Sorensen, Grith Lykke; Milićević, Živana; Westermann, Jürgen

    2016-01-01

    Development and maintenance of secondary lymphoid organs such as lymph nodes and spleen essentially depend on lymphotoxin β-receptor (LTβR) signaling. It is unclear, however, by which molecular mechanism their size is limited. Here, we investigate whether the LTβR pathway is also growth suppressing. By using splenic tissue transplantation it is possible to analyze a potential contribution of LTβR signaling inside and outside of the implanted tissue. We show that LTβR signaling within the endogenous spleen and within non-splenic tissues both significantly suppressed the regeneration of implanted splenic tissue. The suppressive activity positively correlated with the total number of LTβR expressing cells in the animal (regenerate weights of 115 ± 8 mg in LTβR deficient recipients and of 12 ± 9 mg in wild-type recipients), affected also developed splenic tissue, and was induced but not executed via LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size of secondary lymphoid organs, and might be therapeutically used to eradicate tertiary lymphoid tissues during autoimmune diseases. PMID:27936003

  16. Pleural effusion following blunt splenic injury in the pediatric trauma population.

    PubMed

    Kulaylat, Afif N; Engbrecht, Brett W; Pinzon-Guzman, Carolina; Albaugh, Vance L; Rzucidlo, Susan E; Schubart, Jane R; Cilley, Robert E

    2014-09-01

    Pleural effusion is a potential complication following blunt splenic injury. The incidence, risk factors, and clinical management are not well described in children. Ten-year retrospective review (January 2000-December 2010) of an institutional pediatric trauma registry identified 318 children with blunt splenic injury. Of 274 evaluable nonoperatively managed pediatric blunt splenic injures, 12 patients (4.4%) developed left-sided pleural effusions. Seven (58%) of 12 patients required left-sided tube thoracostomy for worsening pleural effusion and respiratory insufficiency. Median time from injury to diagnosis of pleural effusion was 1.5days. Median time from diagnosis to tube thoracostomy was 2days. Median length of stay was 4days for those without and 7.5days for those with pleural effusions (p<0.001) and 6 and 8days for those pleural effusions managed medically or with tube thoracostomy (p=0.006), respectively. In multivariate analysis, high-grade splenic injury (IV-V) (OR 16.5, p=0.001) was associated with higher odds of developing a pleural effusion compared to low-grade splenic injury (I-III). Pleural effusion following pediatric blunt splenic injury has an incidence of 4.4% and is associated with high-grade splenic injuries and longer lengths of stay. While some symptomatic patients may be successfully managed medically, many require tube thoracostomy for progressive respiratory symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  18. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed themore » dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and

  19. Three-Dimensional Dose Calculation for Total Body Irradiation

    NASA Astrophysics Data System (ADS)

    Ito, Akira

    Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases 1 . Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor's marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere 2,3 .

  20. Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low-LET gamma-rays and high-LET fast neutrons.

    PubMed

    Vral, A; Thierens, H; Baeyens, A; De Ridder, L

    2002-04-01

    To determine by means of the G2 assay the number of chromatid breaks induced by low-LET gamma-rays and high-LET neutrons, and to compare the kinetics of chromatid break rejoining for radiations of different quality. The G2 assay was performed on blood samples of four healthy donors who were irradiated with low-LET gamma-rays and high-LET neutrons. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for gamma-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments, the kinetics of chromatid break formation and disappearance were investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 and 3.5 h. For the highest dose of 0.5 Gy, the number of isochromatid breaks was also scored. No significant differences in the number of chromatid breaks were observed between low-LET gamma-rays and high-LET neutrons for the four donors at any of the doses given. The dose-response curves for the formation of chromatid breaks are linear for both radiation qualities and RBEs = 1 were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high-LET neutrons were, however, more effective at inducing isochromatid breaks (RBE = 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low-LET gamma-rays or high-LET neutrons were not significantly different. Half-times of 0.92 h for gamma-rays and 0.84 h for neutrons were obtained. Applying the G2 assay, the results demonstrate that at low doses of irradiation, the induction as well as the disappearance of chromatid breaks is independent of the LET of the radiation qualities used (0.24 keV x microm(-1) 60Co gamma-rays and 20 keV x microm(-1) fast neutrons). As these radiation qualities produce the same initial number of double-strand breaks, the results support the signal model that proposes that chromatid breaks are the result

  1. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates

    PubMed Central

    Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E

    2018-01-01

    Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579

  2. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1973-01-01

    The problem studied involved cell proliferation in mice thymus undergoing irradiation at a dose rate of 10 roetgens/day for 105 days. Specifically, the aim was to determine wheather or not a steady state of cell population can be established for the indicated period of time and what compensatory mechanisms of cell population are involved.

  3. Shelf-stable food through high dose irradiation

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Svobodová, V.; Bartoníček, B.; Rosmus, J.; Čamra, M.

    2004-09-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75°C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30°C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Řež 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO x-containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested.

  4. [Ultrahigh dose-rate, "flash" irradiation minimizes the side-effects of radiotherapy].

    PubMed

    Favaudon, V; Fouillade, C; Vozenin, M-C

    2015-10-01

    Pencil beam scanning and filter free techniques may involve dose-rates considerably higher than those used in conventional external-beam radiotherapy. Our purpose was to investigate normal tissue and tumour responses in vivo to short pulses of radiation. C57BL/6J mice were exposed to bilateral thorax irradiation using pulsed (at least 40 Gy/s, flash) or conventional dose-rate irradiation (0.03 Gy/s or less) in single dose. Immunohistochemical and histological methods were used to compare early radio-induced apoptosis and the development of lung fibrosis in the two situations. The response of two human (HBCx-12A, HEp-2) tumour xenografts in nude mice and one syngeneic, orthotopic lung carcinoma in C57BL/6J mice (TC-1 Luc+), was monitored in both radiation modes. A 17 Gy conventional irradiation induced pulmonary fibrosis and activation of the TGF-beta cascade in 100% of the animals 24-36 weeks post-treatment, as expected, whereas no animal developed complications below 23 Gy flash irradiation, and a 30 Gy flash irradiation was required to induce the same extent of fibrosis as 17 Gy conventional irradiation. Cutaneous lesions were also reduced in severity. Flash irradiation protected vascular and bronchial smooth muscle cells as well as epithelial cells of bronchi against acute apoptosis as shown by analysis of caspase-3 activation and TUNEL staining. In contrast, the antitumour effectiveness of flash irradiation was maintained and not different from that of conventional irradiation. Flash irradiation shifted by a large factor the threshold dose required to initiate lung fibrosis without loss of the antitumour efficiency, suggesting that the method might be used to advantage to minimize the complications of radiotherapy. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. Later Life Changes in Hippocampal Neurogenesis and Behavioral Functions After Low-Dose Prenatal Irradiation at Early Organogenesis Stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapathi, Ramya; Manda, Kailash, E-mail: kailashmanda@gmail.com

    Purpose: To investigate long-term changes in behavioral functions of mice after exposure to low-dose prenatal radiation at an early organogenesis stage. Methods and Materials: Pregnant C57BL/6J mice were irradiated (20 cGy) at postcoitus day 5.5. The male and female offspring were subjected to different behavioral assays for affective, motor, and cognitive functions at 3, 6, and 12 months of age. Behavioral functions were further correlated with the population of CA1 and CA3 pyramidal neurons and immature neurons in hippocampal dentate gyrus. Results: Prenatally exposed mice of different age groups showed a sex-specific pattern of sustained changes in behavioral functions. Male mice showed significantmore » changes in anxiety-like phenotypes, learning, and long-term memory at age 3 months. At 6 months of age such behavioral functions were recovered to a normal level but could not be sustained at age 12 months. Female mice showed an appreciable recovery in almost all behavioral functions at 12 months. Patterns of change in learning and long-term memory were comparable to the population of CA1 and CA3 pyramidal neurons and doublecortin-positive neurons in hippocampus. Conclusion: Our finding suggests that prenatal (early organogenesis stage) irradiation even at a lower dose level (20 cGy) is sufficient to cause potential changes in neurobehavioral function at later stages of life. Male mice showed relatively higher vulnerability to radiation-induced neurobehavioral changes as compared with female.« less

  6. Immunocyte responses of mouse exposure by low dose 12C6+ ion beam

    NASA Astrophysics Data System (ADS)

    Dang, B. R.

    High LET radiations such as heavy ion or neutron have an increased biological effectiveness compared to low LET radiations for cell killing cell cycle perturbations and genetic instability In this paper we investigate the peripheral blood lymphocytes thymus cell and spleen lymphocytes cycle effects of exposure with different dose of 73 74MeV u 12 C 6 ion on mouse These BalB C were irradiated with 39cGy 55cGy and 1Gy of 12 C 6 ion at 20cGy min The cell cycle and apoptosis were determined by flow cytometry and the thymus and spleen index were measured by weight When these mice were irradiated by 12 C 6 the cycle of immunocyte had some changes and the percentage of apoptosis increased with doses increasing irradiation especially blood lymphocyte It might be suggested that irradiated by 12 C 6 total-body can result in more damage for immune system than normal irradiation

  7. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness.

    PubMed

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-07-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. An example of problems in dose reconstruction from doses formed by electromagnetic irradiation by different energy sources.

    PubMed

    Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana

    2010-02-01

    Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.

  9. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  10. Sexual Competitiveness, Field Survival, and Dispersal of Anastrepha obliqua (Diptera: Tephritidae) Fruit Flies Irradiated at Different Doses.

    PubMed

    Gallardo-Ortiz, Uriel; Pérez-Staples, Diana; Liedo, Pablo; Toledo, Jorge

    2018-04-02

    The sterile insect technique (SIT) is used in area-wide pest management programs for establishing low pest prevalence and/or areas free of fruit flies (Diptera: Tephritidae). The aim of this technique is to induce high levels of sterility in the wild population, for this the released insects must have a high sexual competitiveness and field dispersal. However, radiation decreases these biological attributes that do not allow it to compete successfully with wild insects. In this study the sexual competitiveness, field survival and dispersal of Anastrepha obliqua (Macquart; Diptera: Tephritidae) irradiated at 0, 40, 50, 60, 70, and 80 Gy were evaluated in laboratory. A dose of 60 Gy produced 98% sterility, whereas doses of 70 and 80 Gy produced 99% sterility. Sexual competitiveness was assessed in field cages, comparing males irradiated at 0, 50, 60, 70, and 80 Gy against wild males for mating with wild fertile females. Males irradiated at 50 and 60 Gy achieved more matings than those irradiated at 70 and 80 Gy. Wild males were more competitive than mass-reared males, even when these were not irradiated (0 Gy). There was no effect of irradiation on mating latency, yet wild males showed significantly shorter mating latency than mass-reared males. Female remating did not differ among those that mated with wild males and those that mated with males irradiated with different doses. The relative sterility index (RSI) increased from 0.25 at 80 Gy to 0.37 at 60 Gy. The Fried competitiveness index was 0.69 for males irradiated at 70 Gy and 0.57 for those irradiated at 80 Gy, which indicates that a 10 Gy reduction in the irradiation dose produces greater induction of sterility in the wild population. There were no significant differences in field survival and dispersal between flies irradiated at 70 or 80 Gy. Reducing the irradiation dose to 60 or 70 Gy could improve the performance of sterile males and the effectiveness of the SIT. Our results also distinguish between the

  11. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    PubMed

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  12. Splenic artery aneurysm.

    PubMed

    Tcbc-Rj, Rui Antônio Ferreira; Ferreira, Myriam Christina Lopes; Ferreira, Daniel Antônio Lopes; Ferreira, André Gustavo Lopes; Ramos, Flávia Oliveira

    2016-01-01

    Splenic artery aneurysms - the most common visceral artery aneurysms - are found most often in multiparous women and in patients with portal hypertension. Indications for treatment of splenic artery aneurysm or pseudoaneurysm include specific symptoms, female gender and childbearing age, presence of portal hypertension, planned liver transplantation, a pseudoaneurysm of any size, and an aneurysm with a diameter of more than 2.5cm. Historically, the treatment of splenic artery aneurysm has been surgical ligation of the splenic artery, ligation of the aneurysm, or aneurysmectomy with or without splenectomy, depending on the aneurysm location. There are other percutaneous interventional techniques. The authors present a case of a splenic artery aneurysm in a 51-year-old woman, detected incidentally. RESUMO Aneurismas da artéria esplênica - os aneurismas arteriais viscerais mais comuns - são encontrados mais frequentemente em mulheres multíparas e em pacientes com hipertensão portal. As indicações para o seu tratamento incluem sintomas específicos, sexo feminino e idade fértil, presença de hipertensão portal, paciente em fila de transplante hepático, um pseudoaneurisma de qualquer tamanho, e um aneurisma com um diâmetro superior a 2,5cm. Historicamente, o tratamento do aneurisma da artéria esplênica tem sido a ligadura cirúrgica da artéria esplênica, a ligadura do aneurisma ou a aneurismectomia, com ou sem esplenectomia, dependendo do local do aneurisma. Existem outras técnicas intervencionistas percutâneas. Os autores apresentam o caso de um aneurisma de artéria esplênica em uma mulher de 51 anos de idade, diagnosticado incidentalmente.

  13. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Low dose elective brain irradiation in small cell carcinoma of the lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiler, D.D.; Kane, R.C.; Bernath, A.M.

    Elective brain irradiation (EBI) in a dosage of 3000 rad (midplane) in 2 weeks (nominal standard dose (NSD) = 1314 ret) has proven highly effective in preventing initial brain relapse in small cell lung carcinoma. However, the optimal radiation dose for EBI is unknown. 55 patients (31 with regional disease, 24 with extensive disease) without brain metastases were treated with a 4 drug chemotherapy program, (lomustine (CCNU), methotrexate, cyclophosphamide, vincristine) plus radiotherapy (R.T.), 3000 rad in 2 weeks to the primary chest lesion and were randomized to EBI or a control group. The EBI consisted of 2400 rad whole brain,more » midplane, in 8 fractions, 10 days (NSD = 1130 ret) given at the same time as the R.T. to the primary (3 weeks post-initial chemotherapy). Though all 54 evaluable patients received CCNU 50 mg/M/sup 2/q. 6 weeks, there were 5 initial brain relapses among 31 control patients (16%) vs none in the 23 EBI patients. The time at risk for recurrence was similar in the two groups, i.e. 31 weeks median in the EBI and 32 weeks in the no-EBI patients. Brain relapses occurred in 2/17 with limited disease and 3/14 with extensive disease. It appears that 2400 rad in 8 fractions is as effective for EBI as larger doses. Toxicity was limited to alopecia. Survival was not significantly affected by EBI, though there is a suggestion of improvement in the regional group.« less

  15. Long-term results of high-dose conformal radiotherapy for patients with medically inoperable T1-3N0 non-small-cell lung cancer: is low incidence of regional failure due to incidental nodal irradiation?

    PubMed

    Chen, Ming; Hayman, James A; Ten Haken, Randall K; Tatro, Daniel; Fernando, Shaneli; Kong, Feng-Ming

    2006-01-01

    To report the results of high-dose conformal irradiation and examine incidental nodal irradiation and nodal failure in patients with inoperable early-stage non-small-cell lung cancer (NSCLC). This analysis included patients with inoperable CT-staged T1-3N0M0 NSCLC treated on our prospective dose-escalation trial. Patients were treated with radiation alone (total dose, 63-102.9 Gy in 2.1-Gy daily fractions) with a three-dimensional conformal technique without intentional nodal irradiation. Bilateral highest mediastinal and upper/lower paratracheal, prevascular and retrotracheal, sub- and para-aortic, subcarinal, paraesophageal, and ipsilateral hilar regions were delineated individually. Nodal failure and doses of incidental irradiation were studied. The potential median follow-up was 104 months. For patients who completed protocol treatment, median survival was 31 months. The actuarial overall survival rate was 86%, 61%, 43%, and 21% and the cause-specific survival rate was 89%, 70%, 53%, and 35% at 1, 2, 3, and 5 years, respectively. Weight loss (p = 0.008) and radiation dose in Gy (p = 0.013) were significantly associated with overall survival. In only 22% and 13% of patients examined did ipsilateral hilar and paratracheal (and subaortic for left-sided tumor) nodal regions receive a dose of > or = 40 Gy, respectively. Less than 10% of all other nodal regions received a dose of > or = 40 Gy. No patients failed initially at nodal sites. Radiation dose is positively associated with overall survival in patients with medically inoperable T1-3N0 NSCLC, though long-term results remain poor. The nodal failure rate is low and does not seem to be due to high-dose incidental irradiation.

  16. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.

    PubMed

    Kim, Ingu; Saito, Takeshi; Fujii, Norihiko; Kanamoto, Takashi; Chatake, Toshiyuki; Fujii, Noriko

    2015-10-30

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Thyroid gland morphology in young adults: normal subjects versus those with prior low-dose neck irradiation in childhood.

    PubMed

    Hanson, G A; Komorowski, R A; Cerletty, J M; Wilson, S D

    1983-12-01

    Thyroid glands obtained at autopsy from young adults were studied to establish more accurately the "normal" morphology in the groups 20 to 40 years of age. A total of 56 autopsy specimens (many obtained from trauma victims) were examined in detail by totally embedding and sectioning the thyroid glands. The morphology of these thyroid glands also was compared to that of surgically removed thyroid glands from 47 young adult patients with prior low-dose neck irradiation. The "normal" thyroid specimens frequently showed morphologic features, such as thyroid tissue outside the recognizable capsule of the gland (40 of 56 patients) and in the strap muscles of the neck (six of 56 patients), which are conditions commonly considered as evidence for invasive thyroid carcinoma. The thyroid glands from the "normal" young adult population were significantly different from those thyroid glands surgically removed from patients who had received irradiation. The irradiated thyroid glands invariably showed multiple nodules of a wide variety of histologic types, extensive lymphocytic infiltrates, and distorting fibrosis as well as a high incidence of malignancy (27 of 47 patients). A single 0.1 cm focus of papillary carcinoma was found in one specimen in the nonirradiated thyroid group. This study suggests that "occult" thyroid carcinomas in the group 20 to 40 years of age are rare and are significantly fewer in number than in the older population (P less than 0.02).

  18. Tumor Induction in Mice After Localized Single- or Fractionated-Dose Irradiation: Differences in Tumor Histotype and Genetic Susceptibility Based on Dose Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Elijah F., E-mail: elijah.edmondson@colostate.edu; Hunter, Nancy R.; Weil, Michael M.

    2015-07-15

    Purpose: To investigate differences in tumor histotype, incidence, latency, and strain susceptibility in mice exposed to single-dose or clinically relevant, fractioned-dose γ-ray radiation. Methods and Materials: C3Hf/Kam and C57BL/6J mice were locally irradiated to the right hindlimb with either single large doses between 10 and 70 Gy or fractionated doses totaling 40 to 80 Gy delivered at 2-Gy/d fractions, 5 d/wk, for 4 to 8 weeks. The mice were closely evaluated for tumor development in the irradiated field for 800 days after irradiation, and all tumors were characterized histologically. Results: A total of 210 tumors were induced within the radiation field in 788 mice. Anmore » overall decrease in tumor incidence was observed after fractionated irradiation (16.4%) in comparison with single-dose irradiation (36.1%). Sarcomas were the predominant postirradiation tumor observed (n=201), with carcinomas occurring less frequently (n=9). The proportion of mice developing tumors increased significantly with total dose for both single-dose and fractionated schedules, and latencies were significantly decreased in mice exposed to larger total doses. C3Hf/Kam mice were more susceptible to tumor induction than C57BL/6J mice after single-dose irradiation; however, significant differences in tumor susceptibilities after fractionated radiation were not observed. For both strains of mice, osteosarcomas and hemangiosarcomas were significantly more common after fractionated irradiation, whereas fibrosarcomas and malignant fibrous histiocytomas were significantly more common after single-dose irradiation. Conclusions: This study investigated the tumorigenic effect of acute large doses in comparison with fractionated radiation in which both the dose and delivery schedule were similar to those used in clinical radiation therapy. Differences in tumor histotype after single-dose or fractionated radiation exposures provide novel in vivo evidence for differences in tumor

  19. The use of low-dose electron-beam irradiation and storage conditions for sprout control and their effects on xanthophyllis, antioxidant capacity, and phenolics in the potato cultivar Atlantic

    USDA-ARS?s Scientific Manuscript database

    The effects of storage and low-dose electron-beam (e-beam) irradiation on health-promoting compounds were evaluated in the potato cultivar Atlantic. Tubers were either not exposed or subjected to 200 Gy and were either sampled immediately or stored at either 4 degrees C or ambient temperature for 10...

  20. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response.

  1. Red blood cells metabolome changes upon treatment with different X-ray irradiation doses.

    PubMed

    Baroni, Fabio; Marraccini, Chiara; Merolle, Lucia; Piccagli, Vando; Lambertini, Daniele; Iori, Mauro; Fasano, Tommaso; Casali, Emanuela; Spisni, Alberto; Baricchi, Roberto; Pertinhez, Thelma A

    2018-06-07

    The upholding of red blood cells (RBC) quality and the removal of leukocytes are two essential issues in transfusion therapy. Leukodepletion provides optimum results, nonetheless there are cases where irradiation is recommended for some groups of hematological patients such as the ones with chronic graft-vs-host disease, congenital cellular immunodeficiency, and hematopoietic stem cell transplant recipients. The European guidelines suggest irradiation doses from 25 to 50 Gray (Gγ). We evaluated the effect of different prescribed doses (15 to 50 Gγ) of X-ray irradiation on fresh leukodepleted RBCs bags using a novel protocol that provides a controlled irradiation. Biochemical assays integrated with RBCs metabolome profile, assessed by nuclear magnetic resonance spectroscopy, were performed on RBC units supernatant, during 14 days storage. Metabolome analysis evidenced a direct correlation between concentration increase of three metabolites, glycine, glutamine and creatine, and irradiation dose. Higher doses (35 and 50 Gγ) effect on RBC mean corpuscular volume, hemolysis, and ammonia concentration are considerable after 7 and 14 days of storage. Our data show that irradiation with 50 Gγ should be avoided and we suggest that 35 Gγ should be the upper limit. Moreover, we suggest for leukodepleted RBCs units the irradiation with the prescribed dose of 15 Gγ, value at center of bag, and ranging between 13.35-15 Gγ, measured over the entire bag volume, may guarantee the same benefits of a 25 Gγ dose assuring, in addition, a better quality of RBCs.

  2. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages.

    PubMed

    Helinski, M E H; Knols, B G J

    2008-07-01

    Male mating competitiveness is a crucial parameter in many genetic control programs including the sterile insect technique (SIT). We evaluated competitiveness of male Anopheles arabiensis Patton as a function of three experimental variables: (1) small or large cages for mating, (2) the effects of either a partially sterilizing (70 Gy) or fully sterilizing (120 Gy) dose, and (3) pupal or adult irradiation. Irradiated males competed for females with an equal number of unirradiated males. Competitiveness was determined by measuring hatch rates of individually laid egg batches. In small cages, pupal irradiation with the high dose resulted in the lowest competitiveness, whereas adult irradiation with the low dose gave the highest, with the latter males being equal in competitiveness to unirradiated males. In the large cage, reduced competitiveness of males irradiated in the pupal stage was more pronounced compared with the small cage; the males irradiated as adults at both doses performed similarly to unirradiated males. Unexpectedly, males irradiated with the high dose performed better in a large cage than in a small one. A high proportion of intermediate hatch rates was observed for eggs collected in the large cage experiments with males irradiated at the pupal stage. It is concluded that irradiation of adult An. arabiensis with the partially sterilizing dose results in the highest competitiveness for both cage designs. Cage size affected competitiveness for some treatments; therefore, competitiveness determined in laboratory experiments must be confirmed by releases into simulated field conditions. The protocols described are readily transferable to evaluate male competitiveness for other genetic control techniques.

  3. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  4. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storb, R.; Raff, R.F.; Graham, T.

    1993-03-20

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing [sup 60]Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionatedmore » total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs.« less

  5. Colonoscopic splenic injuries: incidence and management.

    PubMed

    Kamath, Ashwin S; Iqbal, Corey W; Sarr, Michael G; Cullinane, Daniel C; Zietlow, Scott P; Farley, David R; Sawyer, Mark D

    2009-12-01

    Splenic injuries that occur during colonoscopies are rare. There is no available incidence of this serious complication, and the literature is limited to case reports. Our study looks at single institution experience of splenic injuries during colonoscopy to define the incidence and management of this serious complication. All patients from 1980 through June 2008 sustaining a splenic injury during colonoscopy were reviewed. Four patients (of 296,248 colonoscopies) sustained a splenic injury directly from colonoscopy performed at our institution (incidence 0.001%). Three additional patients were treated at our tertiary referral center after splenic injury from colonoscopy performed elsewhere. The mean age at the time of colonoscopy was 54 years (range 40-70 years). The most common presenting symptom was abdominal pain (n = 4) with a mean decrease in hemoglobin of 6.5 g/dl (range 4.5-8.5 g/dl). Splenic injury was diagnosed by computed tomography in five patients. Six patients received a mean of 5.5 U of packed red blood cells (range 2-14 U). All patients were managed with splenectomy, six patients within 24 h of the index colonoscopy, and one patient presented more than 24 h after initial colonoscopy. There was no evidence of preexisting splenic disease in any of the patients by surgical pathology, and there were no postoperative complications or deaths. The mean duration of stay was 10 days (range 7-15 days). All patients are alive at a median follow up of 22 months (range 1-164 months). Splenic injury occurring during colonoscopy is a rare but serious complication. Patients presented with abdominal pain and a precipitous decrease in hemoglobin and have all required emergent splenectomy.

  6. Final Report - Epigenetics of low dose radiation effects in an animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchuk, Olga

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis ofmore » induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their

  7. In vitro analysis of low-level laser irradiation on human osteoblast-like cells proliferation

    NASA Astrophysics Data System (ADS)

    Bloise, Nora; Saino, Enrica; Bragheri, Francesca; Minzioni, Paolo; Cristiani, Ilaria; Imbriani, Marcello; Visai, Livia

    2011-07-01

    The objective of this study was to examine the in vitro effect of a single or a multiple doses of low-level laser irradiation (LLLI) on proliferation of the human osteosarcoma cell line, SAOS-2. SAOS-2 cells were divided in five groups and exposed to LLLI (659 nm diode laser; 11 mW power output): group I as a control (dark), group II exposed to a single laser dose of 1 J/cm2, group III irradiated with a single dose of 3 J/cm2, and group IV and V exposed for three consecutive days to 1 or 3 J/cm², respectively. Cellular proliferation was assessed daily up to 7 days of culturing. The obtained results showed an increase in proliferative capacity of SAOS-2 cells during the first 96 h of culturing time in once-irradiated cells, as compared to control cells. Furthermore, a significantly higher proliferation in the group IV and V was detected if compared to a single dose or to control group after 96 h and 7 days. In conclusion, the effect of the single dose on cell proliferation was transitory and repeated irradiations were necessary to observe a strong enhancement of SAOS-2 growth. As a future perspective, we would like to determine the potential of LLLI as a new approach for promoting bone regeneration onto biomaterials.

  8. Evidences for amelioration of reserpine-induced fibromyalgia in rat by low dose of gamma irradiation and duloxetine.

    PubMed

    Shibrya, Eman E; Radwan, Rasha R; Abd El Fattah, Mai A; Shabaan, Esmat A; Kenawy, Sanaa A

    2017-05-01

    Fibromyalgia is a prevalent disorder characterized by chronic widespread pain and complex symptoms. This study was conducted to investigate the potential therapeutic effect of low-dose irradiation (LDI) alone or in combination with duloxetine on the reserpine-induced fibromyalgia in rats. Fibromyalgia was induced by administration of reserpine (1 mg/kg/s.c) for 3 consecutive days. Duloxetine (30 mg/kg, p.o) was administered 60 min before a forced swimming test (FST), and rats were exposed to a single dose of γ-radiation (0.5 Gy) 1 day before the FST. Reserpine significantly increased immobility time in the FST, decreased the amount of 5-hydroxytryptamine, dopamine, and norepinephrine in cerebral cortex. It also increased malondialdehyde and nitric oxide and reduced glutathione contents in brain tissue. LDI alone or combined with duloxetine completely antagonized reserpine-induced fibromyalgia as assessed by the measured parameters. One of the most significant findings in this study was that the therapeutic effect of duloxetine was more pronounced by its combination with LDI. A possible mechanism of action of LDI and duloxetine responsible for their therapeutic effect was discussed. On the basis of the presented evidences, it could be concluded that LDI alone or combined with duloxetine could be of value in the management of fibromyalgia.

  9. Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship.

    PubMed

    Geras'kin, Stanislav A; Oudalova, Alla A; Kim, Jin Kyu; Dikarev, Vladimir G; Dikareva, Nina S

    2007-03-01

    The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10-1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed.

  10. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  11. SU-C-BRB-01: Automated Dose Deformation for Re-Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, S; Kainz, K; Li, X

    Purpose: An objective of retreatment planning is to minimize dose to previously irradiated tissues. Conventional retreatment planning is based largely on best-guess superposition of the previous treatment’s isodose lines. In this study, we report a rigorous, automated retreatment planning process to minimize dose to previously irradiated organs at risk (OAR). Methods: Data for representative patients previously treated using helical tomotherapy and later retreated in the vicinity of the original disease site were retrospectively analyzed in an automated fashion using a prototype treatment planning system equipped with a retreatment planning module (Accuray, Inc.). The initial plan’s CT, structures, and planned dosemore » were input along with the retreatment CT and structure set. Using a deformable registration algorithm implemented in the module, the initially planned dose and structures were warped onto the retreatment CT. An integrated third-party sourced software (MIM, Inc.) was used to evaluate registration quality and to contour overlapping regions between isodose lines and OARs, providing additional constraints during retreatment planning. The resulting plan and the conventionally generated retreatment plan were compared. Results: Jacobian maps showed good quality registration between the initial plan and retreatment CTs. For a right orbit case, the dose deformation facilitated delineating the regions of the eyes and optic chiasm originally receiving 13 to 42 Gy. Using these regions as dose constraints, the new retreatment plan resulted in V50 reduction of 28% for the right eye and 8% for the optic chiasm, relative to the conventional plan. Meanwhile, differences in the PTV dose coverage were clinically insignificant. Conclusion: Automated retreatment planning with dose deformation and definition of previously-irradiated regions allowed for additional planning constraints to be defined to minimize re-irradiation of OARs. For serial organs that do not

  12. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation.

    PubMed

    Abdel-Dayem, H M; Rosen, G; El-Zeftawy, H; Naddaf, S; Kumar, M; Atay, S; Cacavio, A

    1999-05-01

    Two patients with sarcoma, one with recurrent osteosarcoma of the spine and the other with metastatic synovial cell sarcoma, were treated with high-dose chemotherapy that produced severe leukopenia. The patients received granulocyte colony-stimulating factor (G-CSF) to stimulate the bone marrow (480 mg given subcutaneously twice daily for 5 to 7 days); their responses were seen as a marked increase in peripheral leukocyte count with no change in the erythrocyte or platelet counts. The patients had fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging 24 hours after the end of G-CSF treatment. Diffusely increased uptake of F-18 FDG was seen in the bone marrow in both patients. In addition, markedly increased uptake in the spleen was noted in both, indicating that the spleen was the site of extramedullary hematopoiesis. The patients had no evidence of splenic metastases. The first patient had a history of irradiation to the dorsal spine, which was less responsive to G-CSF administration than was the nonirradiated lumbar spine.

  13. Sterility and Sexual Competitiveness of Tapachula-7 Anastrepha ludens Males Irradiated at Different Doses.

    PubMed

    Orozco-Dávila, Dina; Adriano-Anaya, Maria de Lourdes; Quintero-Fong, Luis; Salvador-Figueroa, Miguel

    2015-01-01

    A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed.

  14. Sterility and Sexual Competitiveness of Tapachula-7 Anastrepha ludens Males Irradiated at Different Doses

    PubMed Central

    Orozco-Dávila, Dina; Adriano-Anaya, Maria de Lourdes; Quintero-Fong, Luis; Salvador-Figueroa, Miguel

    2015-01-01

    A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed. PMID:26274926

  15. Mutagenesis and repair by low doses of α radiation in mammalian cells

    PubMed Central

    Puck, Theodore T.; Johnson, Robert; Webb, Patricia; Cui, Helen; Valdez, Joseph G.; Crissman, Harry

    2002-01-01

    Low doses of α radiation in basements have been causally implicated in lung cancer. Previous studies have concentrated on high dose effects, for which no significant repair was found. In the present study, the methodology for measuring mutation by quantitating mitotic breaks and gaps was found to be applicable to G2-phase Chinese hamster ovary cells irradiated with 10–50 cGy of α radiation. The mutation yield in such cells closely resembles that of γ irradiation. Caffeine, which inhibits repair, produces the same straight line increase of α and γ mutation yields plotted against the dose. In the absence of caffeine, the repair of α radiation lesions is almost twice as great as for γ radiation. Mitotic index changes substantiate these interpretations. It is proposed that the higher ion density associated with α radiation may result in fewer lesions being missed by the repair processes. The quantitation of chromosomal lesions for G2 cells exposed to low doses of α radiation, γ radiation, or chemical mutagens in the presence and absence of caffeine is a rapid and reproducible methodology. Protection from mutational disease in a fashion similar to the use of sanitation for infectious disease appears practical. PMID:12198179

  16. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    NASA Astrophysics Data System (ADS)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  17. Arterial phase CT for the detection of splenic injuries in blunt trauma: would it improve clinical outcomes?

    PubMed

    Corwin, Michael T; Fananapazir, Ghaneh; Lamba, Ramit; Salcedo, Edgardo S; Holmes, James F

    2016-01-01

    To determine if the addition of an arterial phase abdominal computed tomography (CT) improves clinical outcomes in patients with blunt splenic injuries. Retrospective review of patients who underwent CT of the abdomen revealing splenic injuries. Clinical management in these patients was determined. Fifty-one of three thousand five hundred twenty-five patients had splenic injuries. Twenty-five patients underwent nonsurgical management, and 3 failed. The theoretical additional arterial phase resulted in a 62% increase in mean effective dose compared to the portal venous phase alone. Routine use of arterial phase CT in blunt trauma patients may not be warranted as there is minimal improvement in outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Re-irradiation: outcome, cumulative dose and toxicity in patients retreated with stereotactic radiotherapy in the abdominal or pelvic region.

    PubMed

    Abusaris, Huda; Hoogeman, M; Nuyttens, Joost J

    2012-12-01

    The purpose of the present study was to explore the outcome, cumulative dose in tumor and organs at risk and toxicity after extra-cranial stereotactic re-irradiation. Twenty-seven patients were evaluated who had been re-irradiated with stereotactic body radiotherapy (SBRT) after conventional radiotherapy (CRT). The dose summation of the SBRT and CRT plans was done by dose point calculations accounting for fraction size by the linear-quadratic model. Efficacy and toxicity was scored by looking at the reduction in tumor size, pain and bleeding. Symptomatic response was observed in 96% of the patients. The median maximum SBRT dose to the tumor was 90 Gy(3) (range: 42-420 Gy(3)). The median cumulative dose for the rectum, bowel and bladder resulted in 104 Gy(3), 98 Gy(3) and 113 Gy(3), respectively. No grades 5, 4 and 3 acute and late toxicity was observed. re-irradiation to the same region using extra-cranial stereotactic radiotherapy is feasible and resulted in a 96% symptomatic response with low toxicity.

  19. Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.

    2017-11-01

    In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.

  20. [Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].

    PubMed

    Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M

    2017-10-01

    Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. Use of computer code for dose distribution studies in A 60CO industrial irradiator

    NASA Astrophysics Data System (ADS)

    Piña-Villalpando, G.; Sloan, D. P.

    1995-09-01

    This paper presents a benchmark comparison between calculated and experimental absorbed dose values tor a typical product, in a 60Co industrial irradiator, located at ININ, México. The irradiator is a two levels, two layers system with overlapping product configuration with activity around 300kCi. Experimental values were obtanied from routine dosimetry, using red acrylic pellets. Typical product was Petri dishes packages, apparent density 0.13 g/cm3; that product was chosen because uniform size, large quantity and low density. Minimum dose was fixed in 15 kGy. Calculated values were obtained from QAD-CGGP code. This code uses a point kernel technique, build-up factors fitting was done by geometrical progression and combinatorial geometry is used for system description. Main modifications for the code were related with source sumilation, using punctual sources instead of pencils and an energy and anisotropic emission spectrums were included. Results were, for maximum dose, calculated value (18.2 kGy) was 8% higher than experimental average value (16.8 kGy); for minimum dose, calculated value (13.8 kGy) was 3% higher than experimental average value (14.3 kGy).

  2. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators.

    PubMed

    Belley, Matthew D; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J; Chen, Benny J; Dewhirst, Mark W; Yoshizumi, Terry T

    2014-03-01

    Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Average doses in soft-tissue organs were found to vary by as much as 23%-32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  3. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    PubMed Central

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-01-01

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigning a single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs. PMID:24593746

  4. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application formore » tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.« less

  5. Parotid gland mean dose as a xerostomia predictor in low-dose domains.

    PubMed

    Gabryś, Hubert Szymon; Buettner, Florian; Sterzing, Florian; Hauswald, Henrik; Bangert, Mark

    2017-09-01

    Xerostomia is a common side effect of radiotherapy resulting from excessive irradiation of salivary glands. Typically, xerostomia is modeled by the mean dose-response characteristic of parotid glands and prevented by mean dose constraints to either contralateral or both parotid glands. The aim of this study was to investigate whether normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands are suitable for the prediction of xerostomia in a highly conformal low-dose regime of modern intensity-modulated radiotherapy (IMRT) techniques. We present a retrospective analysis of 153 head and neck cancer patients treated with radiotherapy. The Lyman Kutcher Burman (LKB) model was used to evaluate predictive power of the parotid gland mean dose with respect to xerostomia at 6 and 12 months after the treatment. The predictive performance of the model was evaluated by receiver operating characteristic (ROC) curves and precision-recall (PR) curves. Average mean doses to ipsilateral and contralateral parotid glands were 25.4 Gy and 18.7 Gy, respectively. QUANTEC constraints were met in 74% of patients. Mild to severe (G1+) xerostomia prevalence at both 6 and 12 months was 67%. Moderate to severe (G2+) xerostomia prevalence at 6 and 12 months was 20% and 15%, respectively. G1 + xerostomia was predicted reasonably well with area under the ROC curve ranging from 0.69 to 0.76. The LKB model failed to provide reliable G2 + xerostomia predictions at both time points. Reduction of the mean dose to parotid glands below QUANTEC guidelines resulted in low G2 + xerostomia rates. In this dose domain, the mean dose models predicted G1 + xerostomia fairly well, however, failed to recognize patients at risk of G2 + xerostomia. There is a need for the development of more flexible models able to capture complexity of dose response in this dose regime.

  6. Predictors of splenic function preservation in children with sickle cell anemia treated with hydroxyurea.

    PubMed

    Nottage, Kerri A; Ware, Russell E; Winter, Bryan; Smeltzer, Matthew; Wang, Winfred C; Hankins, Jane S; Dertinger, Stephen D; Shulkin, Barry; Aygun, Banu

    2014-11-01

    More than 90% of children with sickle cell anemia (SCA) lose splenic function by the age of 2 yrs. Splenic function may improve with hydroxyurea, but previous studies are conflicting. We prospectively evaluated the effect of hydroxyurea on splenic filtrative function. Children with SCA enrolled in the Hydroxyurea Study of Long-Term Effects (HUSTLE-NCT00305175) underwent clinical evaluations including Tc(99) m liver-spleen (LS) scans before hydroxyurea initiation and after 3 yrs of treatment to maximum tolerated dose (MTD). LS scans were classified as follows: no uptake, <10% uptake, decreased but ≥10% uptake, and normal. Mean age (N = 40) was 9.1 yrs, range 2.3-17.0. After 3 yrs of treatment, 13 (33%) had uptake on LS scan. These 13 children were younger (median age 6.0 vs. 10.6 yrs, P = 0.008), had a higher HbF at baseline (mean 10.2% vs. 5.8%, P = 0.004) and after 3 yrs (22.9% vs. 13.9%, P < 0.001), achieved MTD more rapidly (median 288 vs. 358 d, P = 0.021), and were more likely to have baseline splenic uptake (P < 0.001). Hydroxyurea at MTD is associated with preserved or improved splenic filtrative function, with 33% demonstrating LS scan uptake after 3 yrs. Younger age, higher %HbF, and baseline splenic function are associated with a favorable outcome. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki

    2009-01-01

    Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less

  8. Management of splenic trauma--changing concepts.

    PubMed

    Reihneŕ, E; Brismar, B

    1995-03-01

    During the last two decades the reported risk of overwhelming postsplenectomy infection (OPSI) has resulted in a conservative approach to splenic trauma, with the aim of splenic salvage. The appropriateness of this strategy is now questioned. The risk of OPSI varies with age and indication for splenectomy from less than 1% in adults to more than 4% in children. Pneumococcus is the causative agent in about 60% of cases. A prerequisite for splenic preservation procedures should be a haemodynamically stable patient without other intraabdominal injuries. The benefits derived from non-operative treatment of splenic salvage procedures may be overshadowed by the potential risk of transfusion-related bacterial and viral diseases. Polyvalent pneumococcal vaccines given early after splenectomy appear to reduce the incidence of OPSI substantially.

  9. Neural network analysis of Charpy transition temperature of irradiated low-activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Cottrell, G. A.; Kemp, R.; Bhadeshia, H. K. D. H.; Odette, G. R.; Yamamoto, T.

    2007-08-01

    We have constructed a Bayesian neural network model that predicts the change, due to neutron irradiation, of the Charpy ductile-brittle transition temperature (ΔDBTT) of low-activation martensitic steels given a set of multi-dimensional published data with doses <100 displacements per atom (dpa). Results show the high significance of irradiation temperature and (dpa) 1/2 in determining ΔDBTT. Sparse data regions were identified by the size of the modelling uncertainties, indicating areas where further experimental data are needed. The method has promise for selecting and ranking experiments on future irradiation materials test facilities.

  10. The Acute Gastrointestinal Syndrome in High-Dose Irradiated Mice

    PubMed Central

    Booth, Catherine; Tudor, Gregory; Tudor, Julie; Katz, Barry P; MacVittie, Thomas

    2012-01-01

    The most detailed reports of the response of the gastrointestinal system to high dose acute radiation have focused mainly on understanding the histopathology. However, to enable medical countermeasure assessment under the animal rule criteria, it is necessary to have a robust model in which the relationship between radiation dose and intestinal radiation syndrome incidence, timing and severity are established and correlated with histopathology. Although many mortality studies have been published, they have used a variety of mouse strains, ages, radiation sources and husbandry conditions, all of which influence the dose response. Further, it is clear that the level of bone marrow irradiation and supportive care can influence endpoints. In order to create robust baseline data we have generated dose response data in adult male mice, maintained under identical conditions, and exposed to either total or partial-body irradiation. Partial-body irradiation includes both extensive (40%) and minimal (5%) bone marrow sparing models, the latter designed to correlate with an established primate model and allow assessment of effects of any medical countermeasure on all three major radiation syndromes (intestinal, bone marrow and lung) in the surviving mice. Lethal dose (LD30, LD50 and LD70) data are described in the various models, along with the impact of enteric flora and response to supportive care. Correlation with diarrhea severity and histopathology are also described. This data can be used to aid the design of good laboratory practice (GLP) compliant Animal Rule studies that are reflective of the conditions following accidental radiation exposure. PMID:23091876

  11. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonablemore » matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, T o, in alloys irradiated to 7 dpa and higher.« less

  12. [Study of genome instability using DNA fingerprinting of the offspring of male mice subjected to chronic low dose gamma irradiation].

    PubMed

    Bezlepkin, V G; Vasil'eva, G V; Lomaeva, M G; Sirota, N P; Gaziev, A I

    2000-01-01

    By a polymerase chain reaction with an arbitrary primer (AP-PCR), the possibility of transmission of genome instability to somatic cells of the offspring (F1 generation) from male parents of mice exposed to chronic low-level gamma-radiation was studied. Male BALB/c mice 15 days after exposure to 10-50 cGy were mated with unirradiated females. Biopsies were taken from tale tips of two month-old offspring mice and DNA was isolated. The primer in the AP-PCR was a 20-mer oligonucleotide flanking the microsatellite locus Atp1b2 on chromosome 11 of the mouse. A comparative analysis of individual fingerprints of AP-PCR products on DNA-templates from the offspring of irradiated and unirradiated male mice revealed an increased variability of microsatellite-associated sequences in the genome of the offspring of the males exposed to 25 and 50 cGy. The DNA-fingerprints of the offspring of male mice exposed to chronic irradiation with the doses 10 and 25 cGy 15 days before fertilization (at the post-meiotic stage of spermatogenesis) showed an increased frequency of "non-parent bands". The results of the study point to the possibility of transmission to the offspring somatic cells of changes increasing genome instability from male parents exposed to chronic low-level radiation prior to fertilization.

  13. Study of damage to red blood cells exposed to different doses of γ-ray irradiation.

    PubMed

    Xu, Deyi; Peng, Mingxi; Zhang, Zhe; Dong, Guofei; Zhang, Yiqin; Yu, Hongwei

    2012-07-01

    The aims of this research were to study alterations in the ultrastructure of red blood cells, the changes in concentrations of plasma electrolytes and the killing effect of lymphocytes in samples of blood exposed to different doses of γ-ray irradiation. Blood samples were treated with different doses of γ-ray irradiation and then preserved for different periods. Specimens were prepared for standard electron microscopy and transmission electron microscopy. At the same time, changes in the concentrations of Na(+), K(+) and Cl(-) and pH values in the plasma as well as Fas and FasL expression of lymphocytes before and after irradiation were determined. The proportions of reversibly and irreversibly transformed cells, for example, echinocytes, sphero-echinocytes, and degenerated forms, increased with increasing doses of irradiation and storage period, while the number of discocyte shaped red blood cells decreased. The change in K(+) concentration was greater than that of Na+ or Cl(-) after irradiation and was dosage-dependent. Plasma pH was influenced by different doses of radiation and storage time. After exposure to (137)Cs γ-irradiation, the expression of both Fas and FasL in lymphocytes differed significantly from that in the control group: the expression was positively correlated with irradiation dose (r=0.95, 0.96), but no significant difference in the Fas/FasL ratio was observed (P>0.05). We conclude that the ultrastructure of red blood cells is not changed obviously by irradiation with some doses of γ-rays and various periods of storage. However, irradiation does have some dose-dependent and time-dependent adverse effects on the erythrocytes.

  14. Splenic Infarction: An Under-recognized Complication of Infectious Mononucleosis?

    PubMed Central

    Li, Yan; George, Ann; Arnaout, Sami; Wang, Jennifer P; Abraham, George M

    2018-01-01

    Abstract Splenic infarction is a rare complication of infectious mononucleosis. We describe 3 cases of splenic infarction attributed to infectious mononucleosis that we encountered within a 2-month period. We underscore the awareness of this potential complication of infectious mononucleosis and discuss the differential diagnosis of splenic infarction, including infectious etiologies. While symptomatic management is usually sufficient for infectious mononucleosis-associated splenic infarction, close monitoring for other complications, including splenic rupture, is mandated. PMID:29577060

  15. Splenic Infarction: An Under-recognized Complication of Infectious Mononucleosis?

    PubMed

    Li, Yan; George, Ann; Arnaout, Sami; Wang, Jennifer P; Abraham, George M

    2018-03-01

    Splenic infarction is a rare complication of infectious mononucleosis. We describe 3 cases of splenic infarction attributed to infectious mononucleosis that we encountered within a 2-month period. We underscore the awareness of this potential complication of infectious mononucleosis and discuss the differential diagnosis of splenic infarction, including infectious etiologies. While symptomatic management is usually sufficient for infectious mononucleosis-associated splenic infarction, close monitoring for other complications, including splenic rupture, is mandated.

  16. Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model

    PubMed Central

    Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo

    2009-01-01

    We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245

  17. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    PubMed

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  18. MicroPET/CT Imaging of an Orthotopic Model of Human Glioblastoma Multiforme and Evaluation of Pulsed Low-Dose Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sean S.; Chunta, John L.; Robertson, John M.

    2011-07-01

    Purpose: Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Methods: Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CTmore » (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Results: Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 x 10{sup 6} cells produced a 50- to 70-mm{sup 3} tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). Conclusion: This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage.« less

  19. MicroPET/CT imaging of an orthotopic model of human glioblastoma multiforme and evaluation of pulsed low-dose irradiation.

    PubMed

    Park, Sean S; Chunta, John L; Robertson, John M; Martinez, Alvaro A; Oliver Wong, Ching-Yee; Amin, Mitual; Wilson, George D; Marples, Brian

    2011-07-01

    Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CT (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 × 10(6) cells produced a 50- to 70-mm(3) tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    PubMed Central

    2013-01-01

    Purpose To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. Methods We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. Results We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Conclusions Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities. PMID:23369282

  1. Spontaneous splenic rupture in infectious mononucleosis.

    PubMed

    Rothwell, S; McAuley, D

    2001-09-01

    Spontaneous splenic rupture is a rare but life-threatening complication of infectious mononucleosis. Abdominal pain and tachycardia are unusual in uncomplicated infectious mononucleosis and should alert a doctor to the possibility of spontaneous splenic rupture.

  2. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  3. Molecular detection of vector-borne pathogens in blood and splenic samples from dogs with splenic disease.

    PubMed

    Movilla, Rebeca; Altet, Laura; Serrano, Lorena; Tabar, María-Dolores; Roura, Xavier

    2017-03-13

    The spleen is a highly perfused organ involved in the immunological control and elimination of vector-borne pathogens (VBP), which could have a fundamental role in the pathogenesis of splenic disease. This study aimed to evaluate certain VBP in samples from dogs with splenic lesions. Seventy-seven EDTA-blood and 64 splenic tissue samples were collected from 78 dogs with splenic disease in a Mediterranean area. Babesia spp., Bartonella spp., Ehrlichia/Anaplasma spp., Hepatozoon canis, Leishmania infantum, hemotropic Mycoplasma spp. and Rickettsia spp. were targeted using PCR assays. Sixty EDTA-blood samples from dogs without evidence of splenic lesions were included as a control group. More than half (51.56%) of the biopsies (33/64) were consistent with benign lesions and 48.43% (31/64) with malignancy, mostly hemangiosarcoma (25/31). PCR yielded positive results in 13 dogs with spleen alterations (16.67%), for Babesia canis (n = 3), Babesia gibsoni (n = 2), hemotropic Mycoplasma spp. (n = 2), Rickettsia massiliae (n = 1) and "Babesia vulpes" (n = 1), in blood; and for B. canis, B. gibsoni, Ehrlichia canis and L. infantum (n = 1 each), in spleen. Two control dogs (3.3%) were positive for B. gibsoni and H. canis (n = 1 each). Benign lesions were detected in the 61.54% of infected dogs (8/13); the remaining 38.46% were diagnosed with malignancies (5/13). Infection was significantly associated to the presence of splenic disease (P = 0.013). There was no difference in the prevalence of infection between dogs with benign and malignant splenic lesions (P = 0.69); however B. canis was more prevalent in dogs with hemangiosarcoma (P = 0.006). VBP infection could be involved in the pathogenesis of splenic disease. The immunological role of the spleen could predispose to alterations of this organ in infected dogs. Interestingly, all dogs with B. canis infection were diagnosed with hemangiosarcoma in the present survey. As previously

  4. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  5. Atrial natriuretic factor increases splenic microvascular pressure and fluid extravasation in the rat.

    PubMed

    Sultanian, R; Deng, Y; Kaufman, S

    2001-05-15

    The spleen is an important site of atrial natriuretic factor (ANF)-induced fluid extravasation into the systemic lymphatic system. The mechanism underlying this process was studied in a blood-perfused (1 ml min(-1)) rat spleen using the double occlusion technique. To ensure that our observations were spleen specific, a similar protocol was repeated in the hindquarters. Rat ANF(1-28), infused into the splenic artery of anaesthetized male rats, caused a dose-dependent (0.3-59 pmol min(-1)) increase in microvascular pressure from 11.3 +/- 0.7 to 14.9 +/- 0.5 mmHg and in post-capillary resistance from 7.2 +/- 0.6 to 10.1 +/- 1.1 mmHg ml(-1). ANF elicited no change in splenic pre-capillary resistance or in hindquarter haemodynamics. Intrasplenic ANF (6.5 pmol min(-1)) caused a sustained increase in intrasplenic fluid efflux from 0.1 +/- 0.1 to 0.3 +/- 0.1 ml min(-1), and in capillary filtration coefficient (Kf) from 1.2 +/- 0.5 to 2.4 +/- 0.6 ml mmHg-1 min-1 (100 g tissue)-1. Mechanical elevation of splenic intravascular pressure (from 11.3 +/- 0.7 to 22.4 +/- 0.2 mmHg) significantly increased intrasplenic fluid extravasation (from 0.4 +/- 0.3 to 1.4 +/- 0.3 ml min(-1)). The natriuretic peptide receptor-C (NPRC)-specific agonist C-ANF(4-23) (12.5 and 125 pmol min(-1)) did not alter splenic intravascular pressure or pre-/post-capillary resistance. The ANF antagonist A71915 (8.3 and 83 pmol min-1), which blocks ANF-stimulated cGMP production via natriuretic peptide receptor-A (NPRA), inhibited the ANF-induced changes in splenic microvascular pressure and post-capillary resistance. It is concluded that ANF enhances the extravasation of isoncotic fluid from the splenic vasculature both by raising intrasplenic microvascular pressure (increased post-capillary resistance) and by increasing filtration area. The constrictive activity of ANF on the splenic vasculature is mediated through NPRA.

  6. Splenic infarction: an update on William Osler's observations.

    PubMed

    Lawrence, Yaacov R; Pokroy, Russell; Berlowitz, Daniel; Aharoni, Dvora; Hain, Daniel; Breuer, Gabriel S

    2010-06-01

    Osler taught that splenic infarction presents with left upper abdominal quadrant pain, tenderness and swelling accompanied by a peritoneal friction rub. Splenic infarction is classically associated with bacterial endocarditis and sickle cell disease. To describe the contemporary experience of splenic infarction. We conducted a chart review of inpatients diagnosed with splenic infarction in a Jerusalem hospital between 1990 and 2003. We identified 26 cases with a mean age of 52 years. Common causes were hematologic malignancy (six cases) and intracardiac thrombus (five cases). Only three cases were associated with bacterial endocarditis. In 21 cases the splenic infarction brought a previously undiagnosed underlying disease to attention. Only half the subjects complained of localized left-sided abdominal pain, 36% had left-sided abdominal tenderness; 31% had no signs or symptoms localized to the splenic area, 36% had fever, 56% had leukocytosis and 71% had elevated lactate dehydrogenase levels. One splenectomy was performed and all patients survived to discharge. A post hoc analysis demonstrated that single infarcts were more likely to be associated with fever (20% vs. 63%, p < 0.05) and leukocytosis (75% vs. 33%, P = 0.06) The clinical presentation of splenic infarction in the modern era differs greatly from the classical teaching, regarding etiology, signs and symptoms. In patients with unexplained splenic infarction, investigation frequently uncovers a new underlying diagnosis.

  7. Determinants of splenectomy in splenic injuries following blunt abdominal trauma.

    PubMed

    Akinkuolie, A A; Lawal, O O; Arowolo, O A; Agbakwuru, E A; Adesunkanmi, A R K

    2010-02-01

    The management of splenic injuries has shifted from splenectomy to splenic preservation owing to the risk of overwhelming post-splenectomy infection (OPSI). This study aimed to identify the factors that determine splenectomy in patients with isolated splenic injuries, with a view to increasing the rate of splenic preservation. Files of 55 patients managed for isolated splenic injuries from blunt abdominal trauma between 1998 and 2007 were retrospectively analysed using a pro forma. Management options were classified into nonoperative, operative salvage and splenectomy. The majority of patients suffered splenic injury as a result of motor vehicle accident (MVA) trauma or falls. Splenectomy was undertaken in 33 (60%) patients, 12 (22%) had non-operative management, and operative salvage was achieved in 10 (18%) patients. Significant determinants of splenectomy were grade of splenic injury, hierarchy of the surgeon, and hierarchy of the assistant. MVA injury and falls accounted for the vast majority of blunt abdominal trauma in this study. The rate and magnitude of energy transferred versus splenic protective mechanisms at the time of blunt abdominal trauma seems to determine the grade of splenic injury. Interest in splenic salvage surgery, availability of technology that enables splenic salvage surgery, and the experience of the surgeon and assistant appear to determine the surgical management. Legislation on vehicle safety and good parental control may reduce the severity of splenic injury in blunt abdominal trauma. When surgery is indicated, salvage surgery should be considered in intermediate isolated splenic injury to reduce the incidence of OPSI.

  8. The effect of EGDMA on tensile and thermal properties of irradiated low density polyethylene/sepiolite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Nadia Aini; Mohamad, Zurina; Majid, Rohah A.; Appadu, Sivanesan

    2017-07-01

    This study presents the influence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through electron beam crosslinking process. Therefore, the effects of EGDMA on irradiated low density polyethylene/sepiolite (LDPE/SEP) nanocomposites on the tensile and thermal properties at 4 part per hundred resin (phr) sepiolite were investigated. The LDPE/SEP nanocomposites were prepared by melt mixing using twin screw extruder at 160 ˚C with a screw speed of 50 rpm. The nanocomposites were then undergone injection moulding process followed by irradiated using 2 MeV electron beam machine at doses ranging from 0 to 200 kGy in the air at ambient temperature. It was found that the tensile strength and Young's modulus were slightly increased with the presence of co-agent. The sample containing 4 phr sepiolite at 200 kGy showed 9% increase in tensile strength when EGDMA was added. However, the result of thermogravimetry analysis (TGA) showed some reduction in thermal stability of nanocomposites on 100 kGy irradiation dose. EGDMA had reduced the optimum irradiation dose without having any adverse effect on tensile and thermal properties.

  9. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  10. Comparison of Data on Mutation Frequencies of Mice Caused by Radiation with Low Dose Model

    NASA Astrophysics Data System (ADS)

    Manabe, Yuichiro; Bando, Masako

    2013-09-01

    We propose low dose (LD) model, the extension of LDM model which was proposed in the previous paper [Y. Manabe et al.: J. Phys. Soc. Jpn. 81 (2012) 104004] to estimate biological damage caused by irradiation. LD model takes account of cell death effect in addition to the proliferation, apoptosis, repair which were included in LDM model. As a typical example of estimation, we apply LD model to the experiment of mutation frequency on the responses induced by the exposure to low levels of ionizing radiation. The most famous and extensive experiments are those summarized by Russell and Kelly [Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 539], which are known as ``mega-mouse project''. This provides us with important information of the frequencies of transmitted specific-locus mutations induced in mouse spermatogonia stem-cells. It is found that the numerical results of the mutation frequency of mice are in reasonable agreement with the experimental data: the LD model reproduces the total dose and dose rate dependence of data reasonably. In order to see such dose-rate dependence more explicitly, we introduce the dose-rate effectiveness factor (DREF). This represents a sort of dose rate dependent effect, which are to be competitive with proliferation effect of broken cells induced by irradiation.

  11. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    PubMed

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  12. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process

    PubMed Central

    Alessio, Nicola; Del Gaudio, Stefania; Capasso, Stefania; Di Bernardo, Giovanni; Cappabianca, Salvatore; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-01-01

    Low doses of radiation may have profound effects on cellular function. Individuals may be exposed to low doses of radiation either intentionally for medical purposes or accidentally, such as those exposed to radiological terrorism or those who live near illegal radioactive waste dumpsites. We studied the effects of low dose radiation on human bone marrow mesenchymal stromal cells (MSC), which contain a subpopulation of stem cells able to differentiate in bone, cartilage, and fat; support hematopoiesis; and contribute to body's homeostasis. The main outcome of low radiation exposure, besides reduction of cell cycling, is the triggering of senescence, while the contribution to apoptosis is minimal. We also showed that low radiation affected the autophagic flux. We hypothesize that the autophagy prevented radiation deteriorative processes, and its decline contributed to senescence. An increase in ATM staining one and six hours post-irradiation and return to basal level at 48 hours, along with persistent gamma-H2AX staining, indicated that MSC properly activated the DNA repair signaling, though some damages remained unrepaired, mainly in non-cycling cells. This suggested that the impaired DNA repair capacity of irradiated MSC seemed mainly related to the reduced activity of a non-homologous end-joining (NHEJ) system rather than HR (homologous recombination). PMID:25544750

  13. Splenic injuries in athletes: a review.

    PubMed

    Gannon, Elizabeth H; Howard, Thomas

    2010-01-01

    Splenic injuries can be challenging to the sports medicine physician. While these injuries are not common among athletes, they can have serious, potentially fatal consequences if not properly diagnosed and managed in a prompt and timely fashion. Currently, there are no evidence-based guidelines on returning athletes to previous levels of activity after sustaining a splenic injury. In addition, there is no consensus on follow-up imaging after injury. This article discusses the evaluation of athletes with blunt abdominal trauma for splenic injury, including the imaging, management, and current return-to-play guidelines.

  14. Isolated splenic metastasis of endometrial adenocarcinoma--a case report.

    PubMed

    Andrei, S; Preda, C; Andrei, A; Becheanu, G; Herlea, V; Lupescu, I; Popescu, I

    2011-01-01

    The spleen in rarely the place for solid, non-haematological tumors, isolated splenic metastases from adenocarcinomas being extremely rare findings, regardless of the origin and the histological type of the primary tumor. We present the case of a female patient with isolated splenic metastasis diagnosed by abdominal computer tomography at only 20 months after curative surgery for endometrial adenocarcinoma, in which the final diagnosis has been established by histological and immunohistochemical examination of the splenectomy piece. The haematogenous dissemination of the endometrial cancer occurs most commonly in the lungs, liver or bones, the spleen being rarely affected. In the medical literature there are cited up to date only 12 cases of solitary splenic metastasis from endometrial adenocarcinoma. The particularity of the case presented by us is the early appearance of an isolated splenic metastasis, at less than two years after curative surgery (compared to an average of 4-5 years cited in the literature), from an endometrial cancer which was classified histologicaly in the group with low-risk for relapse (well differentiated endometrioid adenocarcinoma). In conclusion, although solitary splenic secondary determinations are very rare, the incidence of the reported cases in the medical literature is increasing, their late appearance (a few years after the primary tumor's resection) and the lack of symptoms until the tumor reaches appreciable size or it complicates with necrosis, justifies the periodic abdominal imaging examination, on long-term, for postoperative monitorisation after the initial curative surgery. Their treatment of choice is open, classical splenectomy that must be followed by chemotherapy in order to prevent the development of other possible micrometastases.

  15. Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters

    NASA Astrophysics Data System (ADS)

    Mantineo, Matías; Pinheiro, João P.; Morgado, António M.

    2014-09-01

    We evaluated the effect of different irradiation parameters in low-level laser therapy (LLLT) for treating inflammation induced in the gastrocnemius muscle of rats through cytokines concentration in systemic blood and analysis of muscle tissue. We used continuous (830 and 980 nm) and pulsed illuminations (830 nm). Animals were divided into five groups per wavelength (10, 20, 30, 40, and 50 mW), and a control group. LLLT was applied during 5 days with a constant irradiation time and area. TNF-α, IL-1β, IL-2, and IL-6 cytokines were quantified by ELISA. Inflammatory cells were counted using microscopy. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100, and 200 Hz). For continuous irradiation, treatment effects occurred for all doses, with a reduction of TNF-α, IL-1β, and IL-6 cytokines and inflammatory cells. Continuous irradiation at 830 nm was more effective, a result explained by the action spectrum of cytochrome c oxidase (CCO). Best results were obtained for 40 mW, with data suggesting a biphasic dose response. Pulsed wave irradiation was only effective for higher frequencies, a result that might be related to the rate constants of the CCO internal electron transfer process.

  16. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells

    PubMed Central

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto

    2016-01-01

    Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from 137Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759

  17. Long-term outcome of nonoperative pediatric splenic injury management.

    PubMed

    Kristoffersen, Kristian W; Mooney, David P

    2007-06-01

    Nonoperative management (NOM) of blunt splenic trauma is the standard of care in hemodynamically stable children. The long-term risk of this strategy remains unknown. The object of this study was to investigate the incidence of long-term complications after NOM of pediatric splenic injury. All children who underwent NOM for blunt splenic trauma over an 11-year period were identified. Patients were interviewed for any ailments that could be related to their splenic injury, and hospital data were analyzed. A total of 266 patients were identified, and 228 patients (86%) were interviewed. Mean follow-up time was 5 +/- 3 years. One patient had a delayed complication, a splenic pseudocyst. Pain more than 4 weeks after injury was unusual. Time until return to full activity varied broadly. The incidence of long-term complications after NOM of pediatric splenic injury was 1 (0.44%) in 228 patients. Nonoperative management of pediatric blunt splenic trauma in children is associated with a minimal risk of long-term complications.

  18. Changes in antigen-presenting cell function in the spleen and lymph nodes of ultraviolet-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurish, M.F.; Lynch, D.H.; Daynes, R.A.

    1982-03-01

    It has been previously reported that mice exposed to ultraviolet (UV) radiation exhibit a decrease in splenic antigen-presenting cell (APC) function. The results presented here confirm this observation and further demonstrate that animals exposed daily to UV for extended periods of time (5 weeks instead of 6 days) no longer exhibit this depressed capability. In spite of the depression in splenic APC activity found in 6-day UV-irradiated mice, lymph node APC function from these same animals was elevated compared with that found in the lymph nodes from normal animals. Lymph node APC activity in animals that were splenectomized prior tomore » the UV irradiation, however, was not enhanced over controls. Treatment of animals with a chemical irritant (turpentine) also caused a depression in splenic APC function without modifying lymph node activity. Collectively, our findings suggest that the observed decrease in splenic APC activity, found after the first week of UV exposures, may be attributable to the migration of splenic APC to peripheral lymphoid tissue which drain the site of epidermal inflammation.« less

  19. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  20. Marked depression of time interval between fertilization period and hatching period following exposure to low-dose X-rays in zebrafish.

    PubMed

    Miyachi, Yukihisa; Kanao, Tomoko; Okamoto, Takehito

    2003-10-01

    In recent years there has been growing concern over the stimulating effects of very low-dose X-rays. Our laboratory had observed that zebrafish irradiated with low-dose X-rays tended to emerge earlier than sham controls. This observation led us to quantitatively examine the effects of low-dose X irradiation on a series of stages of development in the zebrafish. The embryos were fertilized simultaneously in vitro and incubated at an optimal temperature without crowding. Following exposure of the cleavage period (1.5 h after fertilization) to 0.025-Gy X-rays, the duration to hatching was slightly shorter than that of the sham controls. This tendency was increased when the X-ray exposure occurred during the blastula period (3.5 h). In these embryos, the duration to hatching decreased significantly by an average of 6 h sooner than for sham controls. No differences in duration to hatching were seen when irradiation was given during either the zygote period (45 min) or the segmentation period (12 h). On the contrary, upon exposure to 0.5-Gy X-rays during the blastula period, the duration to hatching increased significantly relative to that of sham controls. These results suggest that the radiation-induced early hatching effect is observed for low doses of X-rays.

  1. Splenic abscess in cancer chemotherapy.

    PubMed

    Ismail, Essadi; El Barni, Rachid; Lahkim, Mohamed; Rokhsi, Redouane; Atmane, Elmehdi; El Fikri, Abdelghani; Bouchama, Rachid; Achour, Abdessamad; Zyani, Mohamed

    2015-11-11

    Splenic abcess is an uncommon complication for cancer treatment. It occurs more frequently in immunocompromised patients. They are characterized by high mortality. The classic triad (fever, pain of the left hypochondrium, and sensitive mass left) is only present in one-third of cases the clinical spectrum ranging from no symptoms to events such as fever, nausea, vomiting, weight loss, abdominal pain left, splenomegaly. Treatment options are limited, but must be discussed and adapted to the patient profile. We report the case of a 62-year-old Arabic male, diagnosed with metastatic lung adenocarcinoma, who, after several cycles of chemotherapy, presented symptoms and signs of splenic abcess. Splenic abcess is rare situation, which must be actively researched, to have access to an optimal therapeutic approach.

  2. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.

    PubMed

    Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M

    2002-10-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.

  3. The effects of chronic, low doses of Ra-226 on cultured fish and human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaopei; Seymour, Colin; Mothersill, Carmel, E-mail: mothers@mcmaster.ca

    Purpose: To determine the chronic low-dose radiation effects caused by α-particle radiation from {sup 226}Ra over multiple cell generations in CHSE/F fish cells and HaCaT human cells. Methods: CHSE/F cells and HaCaT cells were cultured in medium containing {sup 226}Ra to deliver the chronic low-dose α-particle radiation. Clonogenic assay was used to test the clonogenic survival fractions of cells with or without being exposed to radiation from {sup 226}Ra. Results: The chronic low-dose radiation from {sup 226}Ra does have effects on the clonogenic survival of CHSE/F cells and HaCaT cells. When CHSE/F cells were cultured in {sup 226}Ra-medium over 9more » passages for about 134 days, the clonogenic surviving fractions for cells irradiated at dose rates ranging from 0.00066 to 0.66 mGy/d were significantly lower than that of cells sham irradiated. For HaCaT cells grown in medium containing the same range of {sup 226}Ra activity, the clonogenic surviving fraction decreased at first and reached the lowest value at about 42 days (8 passages). After that, the clonogenic survival began to increase, and was significantly higher than that of control cells by the end of the experimental period. Conclusion: The chronic, low-dose high LET radiation from {sup 226}Ra can influence the clonogenic survival of irradiated cells. CHSE/F cells were sensitized by the radiation, and HaCaT cells were initially sensitized but later appeared to be adapted. The results could have implications for determining risk from chronic versus acute exposures to radium. - Highlights: • Cells were exposed to chronic low-dose α-radiation from {sup 226}Ra in medium with {sup 226}Ra. • The clonogenic survival of CHSE/F cells decreased when exposed to {sup 226}Ra for 134 days. • The clonogenic survival of HaCaT cells decreased at first and then increased. • The doubling time of both cells were not affected by this kind of radiation.« less

  4. Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis.

    PubMed

    Kim, Joong-Sun; Lee, Hae-June; Kim, Jong Choon; Kang, Seong Soo; Bae, Chun-Sik; Shin, Taekyun; Jin, Jae-Kwang; Kim, Sung Ho; Wang, Hongbing; Moon, Changjong

    2008-09-01

    Neurogenesis in the adult hippocampus, which occurs constitutively, is vulnerable to ionizing radiation. In the relatively low-dose exposure of acute radiation syndrome (ARS), the change in the adult hippocampal function is poorly understood. This study analyzed the changes in apoptotic cell death and neurogenesis in the DGs of hippocampi from adult ICR mice with single whole-body gamma-irradiation using the TUNEL method and immunohistochemical markers of neurogenesis, Ki-67 and doublecortin (DCX). In addition, the hippocampus-dependent learning and memory tasks after single whole-body gamma-irradiation were examined in order to evaluate the hippocampus-related behavioral dysfunction in the relatively low-dose exposure of ARS. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 6-12 h after acute gamma-irradiation (a single dose of 0.5 to 4 Gy). In contrast, the number of Ki-67- and DCX-positive cells began to decrease significantly 6 h postirradiation, reaching its lowest level 24 h after irradiation. The level of Ki-67 and DCX immunoreactivity decreased in a dose-dependent manner within the range of irradiation applied (0-4 Gy). In passive avoidance and object recognition memory test, the mice trained 1 day after acute irradiation (2 Gy) showed significant memory deficits, compared with the sham controls. In conclusion, the pattern of the hippocampus-dependent memory dysfunction is consistent with the change in neurogenesis after acute irradiation. It is suggested that a relatively low dose of ARS in adult ICR mice is sufficiently detrimental to interrupt the functioning of the hippocampus, including learning and memory, possibly through the inhibition of neurogenesis.

  5. [A case of infectious mononucleosis with splenic infarction].

    PubMed

    Kobe, Daisuke; Nakatani, Toshiya; Fujinaga, Yukihisa; Seki, Kenichiro; Saikawa, Soichiro; Sawada, Yasuhiko; Sato, Yoshiki; Nagamatsu, Shinsaku; Matsuo, Hideki; Kikuchi, Eiryo

    2013-08-01

    A 22-year-old man complaining of persisting high fever and right hypochondralgia was admitted to our hospital for infectious mononucleosis with splenic infarction detected by computed tomography. The splenic infarction deteriorated with a marked elevation of inflammatory parameters. This necessitated the commencement of methylprednisolone pulse therapy, resulting in prompt amelioration of inflammation and a reduction in cytokine levels. Including our case, only 9 cases of mononucleosis with splenic infarction have been reported to date; however, splenic infarction should be considered because it is a significant complication of infectious mononucleosis.

  6. Chemotherapeutic tumor microparticles combining low-dose irradiation reprogram tumor-promoting macrophages through a tumor-repopulating cell-curtailing pathway

    PubMed Central

    Sun, Yanling; Zheng, Zu'an; Zhang, Huafeng; Yu, Yuandong; Ma, Jingwei; Tang, Ke; Xu, Pingwei; Ji, Tiantian; Liang, Xiaoyu; Chen, Degao; Jin, Xun; Zhang, Tianzhen; Long, Zhixiong; Liu, Yuying; Huang, Bo

    2017-01-01

    ABSTRACT Stem cell-like tumor-repopulating cells (TRCs) have a critical role in establishing a tumor immunosuppressive microenvironment. However, means to enhance antitumor immunity by disrupting TRCs are absent. Our previous studies have shown that tumor cell-derived microparticles (T-MPs) preferentially abrogate TRCs by delivering antitumor drugs into nuclei of TRCs. Here, we show that low dose irradiation (LDI) enhances the effect of cisplatin-packaging T-MPs (Cis-MPs) on TRCs, leading to inhibiting tumor growth in different tumor models. This antitumor effect is not due to the direct killing of tumor cells but is T cell-dependent and relies on macrophages for their efficacy. The underlying mechanism is involved in therapeutic reprograming macrophages from tumor-promotion to tumor-inhibition by disrupting TRCs and curtailing their vicious education on macrophages. These findings provide a novel strategy to reset macrophage polarization and confer their function more like M1 than M2 types with highly promising potential clinical applications. PMID:28680743

  7. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Wirth, Brian; Motta, Athur

    The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less

  8. Evaluation of GaAs low noise and power MMIC technologies to neutron, ionizing dose and dose rate effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derewonko, H.; Bosella, A.; Pataut, G.

    1996-06-01

    An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less

  9. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gridley, Daila S.

    compared to photons. Over the course of this research, tissues other than spleens were archived and with funding obtained from other sources, including the Department of Radiation Medicine at the Loma Linda University Medical Center, some additional assays were performed. Furthermore, groups of additional mice were included that were pre-exposed to low-dose photons before irradiating with acute photons, protons, and simulated solar particle event (SPE) protons. Hence, the original support together with the additional funding for our research led to generation of much valuable information that was originally not anticipated. Some of the data has already resulted in published articles, manuscripts in review, and a number of presentations at scientific conferences and workshops. Difficulties in reliable and reproducible quantification of secreted cytokines using multi-plex technology delayed completion of this study for a period of time. However, final analyses of the remaining data are currently being performed and should result in additional publications and presentations in the near future. Some of the most notable conclusions, thus far, are briefly summarized below: - Distribution of leukocytes were dependent upon cell type, radiation quality, body compartment analyzed, and time after exposure. Low-dose protons tended to have less effect on numbers of major leukocyte populations and T cell subsets compared to low-dose photons. - The patterns of gene and cytokine expression in CD4+ T cells after protracted low-dose irradiation were significantly modified and highly dependent upon the total dose and time after exposure. - Patterns of gene and cytokine expression differed substantially among groups exposed to low-dose photons versus low-dose protons; differences were also noted among groups exposed to much higher doses of photons, protons, and simulated SPE protons. - Some measurements indicated that exposure to low-dose photon radiation, especially 0.01 Gy, significantly

  10. Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts.

    PubMed

    Lubin, Jay H; Adams, M Jacob; Shore, Roy; Holmberg, Erik; Schneider, Arthur B; Hawkins, Michael M; Robison, Leslie L; Inskip, Peter D; Lundell, Marie; Johansson, Robert; Kleinerman, Ruth A; de Vathaire, Florent; Damber, Lena; Sadetzki, Siegal; Tucker, Margaret; Sakata, Ritsu; Veiga, Lene H S

    2017-07-01

    The increased use of diagnostic and therapeutic procedures that involve radiation raises concerns about radiation effects, particularly in children and the radiosensitive thyroid gland. Evaluation of relative risk (RR) trends for thyroid radiation doses <0.2 gray (Gy); evidence of a threshold dose; and possible modifiers of the dose-response, e.g., sex, age at exposure, time since exposure. Pooled data from nine cohort studies of childhood external radiation exposure and thyroid cancer with individualized dose estimates, ≥1000 irradiated subjects or ≥10 thyroid cancer cases, with data limited to individuals receiving doses <0.2 Gy. Cohorts included the following: childhood cancer survivors (n = 2); children treated for benign diseases (n = 6); and children who survived the atomic bombings in Japan (n = 1). There were 252 cases and 2,588,559 person-years in irradiated individuals and 142 cases and 1,865,957 person-years in nonirradiated individuals. There were no interventions. Incident thyroid cancers. For both <0.2 and <0.1 Gy, RRs increased with thyroid dose (P < 0.01), without significant departure from linearity (P = 0.77 and P = 0.66, respectively). Estimates of threshold dose ranged from 0.0 to 0.03 Gy, with an upper 95% confidence bound of 0.04 Gy. The increasing dose-response trend persisted >45 years after exposure, was greater at younger age at exposure and younger attained age, and was similar by sex and number of treatments. Our analyses reaffirmed linearity of the dose response as the most plausible relationship for "as low as reasonably achievable" assessments for pediatric low-dose radiation-associated thyroid cancer risk. Copyright © 2017 Endocrine Society

  11. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats.

    PubMed

    Jin, Erhui; Li, Shenghe; Ren, Man; Hu, Qianqian; Gu, Youfang; Li, Kui

    2017-08-01

    This study demonstrated the mechanisms of boron effects in a rat model and provided a scientific basis for the rational of boron use. These findings were achieved by investigating the effects of boron (10, 20, 40, 80, 160, 320, and 640 mg/L in drinking water or 1.5, 3, 6, 12, 24, 48, and 96 mg/kg BW) on rat serum immunoglobulins (IgGs), splenic cytokines, lymphocyte subsets, as well as on lymphocyte proliferation and apoptosis. Addition of 20 (3) and 40 (6) mg/L (mg/kg BW) of boron to drinking water significantly increased rat serum IgG concentrations, splenic IFN-γ and IL-4 expression as well as the number of splenic CD3 + , CD4 + and proliferating cell nuclear antigen (PCNA) + cells. Supplementation of drinking water with 40 mg/L (6 mg/kg BW) boron also markedly increased splenic IL-2 expression and the CD4 + /CD8 + cell ratio and reduced splenic CD8 + cell number. Supplementation with 80 mg/L (12 mg/kg BW) boron significantly increased CD3 + and PCNA + cell numbers (P < 0.05) and decreased the IL-10 expression in the spleen. Addition of 320 (48) and 640 (96) mg/L (mg/kg BW) boron markedly reduced the serum IgG concentrations; splenic IL-2 and IL-10 expression; the number of CD3 + , CD4 + and PCNA + cells; and increased the number of splenic CD8 + and caspase-3 + cells and promoted caspase-3 expression in CD3 + cells. In conclusion, these findings suggest that the supplementation of rat drinking water with 20(3) and 40(6) mg/L (mg/kg BW) boron can markedly enhance humoral and cellular immune functions, while boron concentrations above 320 mg/L (48 mg/kg BW) can have an inhibitory effect or even toxicity on immune functions. These results exhibit a U-shaped response characteristic of low and high doses of boron supplementation on immune function and imply that proper boron supplementation in food for humans and animals could be used as an immunity regulator.

  12. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis ofmore » testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.« less

  13. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    NASA Astrophysics Data System (ADS)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  14. Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities.

    PubMed

    Ambrožič, K; Žerovnik, G; Snoj, L

    2017-12-01

    The JSI TRIGA Mark II, IJS research reactor is equipped with numerous irradiation positions, where samples can be irradiated by neutrons and γ-rays. Irradiation position selection is based on its properties, such as physical size and accessibility, as well as neutron and γ-ray spectra, flux and dose intensities. This paper presents an overview on the neutron and γ-ray fluxes, spectra and dose intensities calculations using Monte Carlo MCNP software and ENDF/B-VII.0 nuclear data libraries. The dose-rates are presented in terms of ambient dose equivalents, air kerma, and silicon dose equivalent. At full reactor power the neutron ambient dose equivalent ranges from 5.5×10 3 Svh -1 to 6×10 6 Svh -1 , silicon dose equivalent from 6×10 2 Gy/h si to 3×10 5 Gy/h si , and neutron air kerma from 4.3×10 3 Gyh -1 to 2×10 5 Gyh -1 . Ratio of fast (1MeVdose equivalent at full reactor power from 3.4×10 3 Svh -1 to 3.6×10 5 Svh -1 and γ air kerma range 3.1×10 3 Gyh -1 to 2.9×10 5 Gyh -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Regulation of the Low Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas J.; Opresko, Lee K.; Waisman, David M.

    2009-07-13

    ABSTRACT-Here we identify release of annexin A2 into the culture medium in response to low dose X-ray radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we observe that annexin A2 levels associated with non-irradiated neighboring cells seeded in the lower chamber (annexin A2 silenced [shRNA] JB6 cells) are increased upon coculture with irradiated (10-50 cGy) JB6 cells seeded in the upper chamber, relative to coculture with sham exposed JB6 cells seeded in the upper chamber, suggesting that annexin A2 released into the medium is capable of communicating inmore » a paracrine fashion. Using a previously established coculture model, we observed that the paracrine factor-mediated anchorage-independent growth response to low dose X-ray radiation is markedly reduced when irradiated annexin A2 silenced (shRNA) JB6 cells are used, relative to coculture with irradiated annexin A2 competent vector control counterparts. These observations suggest that annexin A2 is functionally linked to the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells.« less

  16. Increased viability of odontoblast-like cells subjected to low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, C. F.; Basso, F. G.; Lins, E. C.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2010-07-01

    Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm2 were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO2 at 37°C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm2 + 5% FBS; G2: 1.5 J/cm2 + 10% FBS; G3: 5 J/cm2 + 5% FBS; G4: 5 J/cm2 + 10% FBS; G5: 19 J/cm2 + 5% FBS; G6: 19 J/cm2 + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm2. These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.

  17. Low-dose gamma irradiation following hot water immersion of papaya (Carica papaya linn.) fruits provides additional control of postharvest fungal infection to extend shelf life

    NASA Astrophysics Data System (ADS)

    Rashid, M. H. A.; Grout, B. W. W.; Continella, A.; Mahmud, T. M. M.

    2015-05-01

    Low-dose gamma irradiation (0.08 kGy over 10 min), a level significantly below that required to satisfy the majority of international quarantine regulations, has been employed to provide a significant reduction in visible fungal infection on papaya fruit surfaces. This is appropriate for local and national markets in producer countries where levels of commercial acceptability can be retained despite surface lesions due to fungal infection. Irradiation alone and in combination with hot-water immersion (50 °C for 10 min) has been applied to papaya (Carica papaya L.) fruits at both the mature green and 1/3 yellow stages of maturity. The incidence and severity of surface fungal infections, including anthracnose, were significantly reduced by the combined treatment compared to irradiation or hot water treatment alone, extending storage at 11 °C by 13 days and retaining commercial acceptability. The combined treatment had no significant, negative impact on ripening, with quality characteristics such as surface and internal colour change, firmness, soluble solids, acidity and vitamin C maintained at acceptable levels.

  18. Residual splenic function in the presence of thorotrast-associated hepatic tumor: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, R.P.; Turner, J.W.; Syed, I.B.

    1976-03-01

    A 50-year-old man had received intravenous colloidal thorium dioxide (thorotrast) 27 years previously. Scintiscans with both $sup 99$/sup m/Tc-sulfur colloid and $sup 131$I-rose bengal revealed an extensive intrahepatic defect. At operation, the lesion proved to be an infiltrating hemangiosarcoma. The spleen was small but the chronic internal radiation of the spleen had not completely destroyed the function of radiocolloid uptake. Review of the literature disclosed other cases in which th spleen was still capable of accumulating radiocolloid some years after thorotrast administration. In at least one other instance, radiocolloid uptake was not accompanied by splenic ability to clear Howell--Jolly bodies:more » a disassociation of splenic functions. The effects of the internal radiation dose to the spleen from thorotrast are discussed and compared with the effects of external radiation. The discrepancy between the effects of the two doses may be related to the high relative biologic effectiveness of the alpha rays from thorotrast compared with x-radiation, to nonuniformity of distribution, and to the effects of reticuloendothelial blockade. (auth)« less

  19. Laparoscopic splenic hilar lymphadenectomy for advanced gastric cancer.

    PubMed

    Hosogi, Hisahiro; Okabe, Hiroshi; Shinohara, Hisashi; Tsunoda, Shigeru; Hisamori, Shigeo; Sakai, Yoshiharu

    2016-01-01

    Laparoscopic distal gastrectomy has recently become accepted as a surgical option for early gastric cancer in the distal stomach, but laparoscopic total gastrectomy (LTG) has not become widespread because of technical difficulties of esophagojejunal anastomosis and splenic hilar lymphadenectomy. Splenic hilar lymphadenectomy should be employed in the treatment of advanced proximal gastric cancer to complete D2 dissection, but laparoscopically it is technically difficult even for skilled surgeons. Based on the evidence that prophylactic combined resection of spleen in total gastrectomy increased the risk of postoperative morbidity with no survival impact, surgeons have preferred laparoscopic spleen-preserving splenic hilar lymphadenectomy (LSPL) for advanced tumors without metastasis to splenic hilar nodes or invasion to the greater curvature of the stomach, and reports with LSPL have been increasing rather than LTG with splenectomy. In this paper, recent reports with laparoscopic splenic hilar lymphadenectomy were reviewed.

  20. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    PubMed

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  1. Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and 60Co γ-rays.

    PubMed

    Jiang, Ding-Wen; Wang, Qing-Rong; Shen, Xian-Rong; He, Ying; Qian, Tian-Tian; Liu, Qiong; Hou, Deng-Yong; Liu, Yu-Ming; Chen, Wei; Ren, Xin; Li, Ke-Xian

    2017-01-01

    Cimetidine, an antagonist of histamine type II receptors, has shown protective effects against γ-rays or neutrons. However, there have been no reports on the effects of cimetidine against neutrons combined with γ-rays. This study was carried out to evaluate the protective effects of cimetidine on rats exposed to long-term, low-dose-rate neutron and γ-ray combined irradiation (n-γ LDR). Fifty male Sprague-Dawley (SD) rats were randomly divided into 5 groups: the normal control group, radiation model group, 20 mg/(kg · d) cimetidine group, 80 mg/(kg · d) cimetidine group and 160 mg/(kg · d) cimetidine group (10 rats per group). Except for the normal control group, 40 rats were simultaneously exposed to fission neutrons ( 252 Cf, 0.085 mGy/h) for 22 h every day and γ-rays ( 60 Co, 0.097 Gy/h) for 1.03 h once every three days, and the cimetidine groups were administered intragastrically with cimetidine at doses of 20, 80 and 160 mg/kg each day. Peripheral blood WBC of the rats was counted the day following exposure to γ-rays. The rats were anesthetized and sacrificed on the day following exposure to 252 Cf for 28 days. The spleen, thymus, testicle, liver and intestinal tract indexes were evaluated. The DNA content of bone marrow cells and concanavalin A (ConA)-induced lymphocyte proliferation were measured. The frequency of micronuclei in polychromatic erythrocytes (fMNPCEs), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the serum and liver tissues were detected. The peripheral blood WBC in the cimetidine groups was increased significantly on the 8th day and the 26th day compared with those in the radiation model group. The spleen, thymus and testicle indexes of the cimetidine groups were higher than those of the radiation model group. The DNA content of bone marrow cells and lymphocyte proliferation in the cimetidine groups were increased significantly, and fMNPCE was reduced 1.41-1.77 fold in

  2. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  3. Nonoperative management of splenic injury in combat: 2002-2012.

    PubMed

    Mitchell, Thomas A; Wallum, Timothy E; Becker, Tyson E; Aden, James K; Bailey, Jeffrey A; Blackbourne, Lorne H; White, Christopher E

    2015-03-01

    Selective nonoperative management of combat-related blunt splenic injury (BSI) is controversial. We evaluated the impact of the November 2008 blunt abdominal trauma clinical practice guideline that permitted selective nonoperative management of some patients with radiological suggestion of hemoperitoneum on implementation of nonoperative management (NOM) of splenic injury in austere environments. Retrospective evaluation of patients with splenic injuries from November 2002 through January 2012 in Iraq and Afghanistan was performed. International Classification of Diseases, 9th Revision, Clinical Modification procedure codes identified patients as laparotomy with splenectomy, or NOM. Delayed operative management had no operative intervention at earlier North American Treaty Organization (NATO) medical treatment facilities (MTFs), and had a definitive intervention at a latter NATO MTFs. Intra-abdominal complications and overall mortality were juxtaposed. A total of 433 patients had splenic injuries from 2002 to 2012. Initial NOM of BSI from 2002 to 2008 compared to 2009-2012 was 44.1% and 47.2%, respectively (p=0.75). Delayed operative management and NOM completion had intra-abdominal complication and mortality rates of 38.1% and 9.1% (p<0.01), and 6.3% and 8.1% (p=0.77). Despite high-energy explosive injuries, NATO Role II MTFs radiological constraints and limited medical resources, hemodynamically normal patients with BSI and low abdominal abbreviated injury scores underwent NOM in austere environments. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  4. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation

    PubMed Central

    Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.

    2014-01-01

    Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372

  5. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    NASA Astrophysics Data System (ADS)

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-05-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.

  6. 75 FR 46901 - Changes to Treatments for Sweet Cherries from Australia and Irradiation Dose for Mediterranean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ...] Changes to Treatments for Sweet Cherries from Australia and Irradiation Dose for Mediterranean Fruit Fly... into the United States. We are also adding to the treatment manual a new approved irradiation dose for... imported from Australia into the United States.\\3\\ We also proposed to establish an approved irradiation...

  7. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  8. Low Dose Ionizing Radiation Modulates Immune Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gregory A.

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokinemore » secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur

  9. Amifostine ameliorates recognition memory defect in acute radiation syndrome caused by relatively low-dose of gamma radiation.

    PubMed

    Lee, Hae-June; Kim, Joong-Sun; Song, Myoung-Sub; Seo, Heung-Sik; Yang, Miyoung; Kim, Jong Choon; Jo, Sung-Kee; Shin, Taekyun; Moon, Changjong; Kim, Sung-Ho

    2010-03-01

    This study examined whether amifostine (WR-2721) could attenuate memory impairment and suppress hippocampal neurogenesis in adult mice with the relatively low-dose exposure of acute radiation syndrome (ARS). These were assessed using object recognition memory test, the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and immunohistochemical markers of neurogenesis [Ki-67 and doublecortin (DCX)]. Amifostine treatment (214 mg/kg, i.p.) prior to irradiation significantly attenuated the recognition memory defect in ARS, and markedly blocked the apoptotic death and decrease of Ki-67- and DCX-positive cells in ARS. Therefore, amifostine may attenuate recognition memory defect in a relatively low-dose exposure of ARS in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.

  10. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocke, David

    2016-08-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  11. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findingsmore » remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide

  12. Delayed splenic rupture presenting 70 days following blunt abdominal trauma.

    PubMed

    Resteghini, Nancy; Nielsen, Jonpaul; Hoimes, Matthew L; Karam, Adib R

    2014-01-01

    Delayed splenic rupture following conservative management of splenic injury is an extremely rare complication. We report a case of an adult patient who presented with delayed splenic rupture necessitating splenectomy, 2 months following blunt abdominal trauma. Imaging at the initial presentation demonstrated only minimal splenic contusion and the patient was discharge following 24 hours of observation. © 2014.

  13. Low-dose PDT on breast cancer spheroids

    NASA Astrophysics Data System (ADS)

    Campos, C. P.; Inada, N. M.; Kurachi, C.

    2018-02-01

    Photodynamic therapy (PDT) has been investigated in clinical studies as a treatment method for breast cancer chest wall recurrences. Complete response percentage in these studies is not 100% in most patients, indicating the presence of a remaining tumor after PDT. Some in vitro studies show that tumor cells present distinct threshold dose, suggesting that the remaining tumor in vivo could require higher doses or different PDT strategies. There is still a lot of controversy of the multiple PDT sessions effect on bulky tumors. The purpose of this study is to investigate low-dose PDT parameters in 3D cultures of breast cancer cells grown by the magnetic levitation method. PDT was performed with Photodithazine® (PDZ) and LED irradiation at 660 nm. Two concentrations of PDZ were investigated and the 50 μg/mL concentration, which showed a superficial distribution, was used in the PDT. Partial damage was observed in the tumors and the viability test showed a small percentage of cell death. This outcome is favorable for the investigation of PDT effects in the remaining tumor. Multiple PDT sections could provide more noticeable alterations in cell morphology and metabolism.

  14. Proximal splenic angioembolization does not improve outcomes in treating blunt splenic injuries compared with splenectomy: a cohort analysis.

    PubMed

    Duchesne, Juan C; Simmons, Jon D; Schmieg, Robert E; McSwain, Norman E; Bellows, Charles F

    2008-12-01

    Although splenic angioembolization (SAE) has been introduced and adopted in many trauma centers, the appropriate selection for and utility of SAE in trauma patients remains under debate. This study examined the outcomes of proximal SAE as part of a management algorithm for adult traumatic splenic injury compared with splenectomy. A retrospective cohort analysis was performed on all hemodynamically stable (HDS) blunt trauma patients with isolated splenic injury and computed tomographic (CT) evidence of active contrast extravasation that presented to a level 1 Trauma Center over a period of 5 years. The cohorts were defined by two separate 30 month periods and included 78 patients seen before (group I) and 76 patients seen after (group II) the introduction of an institutional SAE protocol. Demographics, splenic injury grade, and outcomes of the two groups were compared using Student's t test, or chi2 test. Analysis was by intention-to-treat. Six hundred eighty-two patients with blunt splenic injury were identified; 154 patients (29%) were HDS with CT evidence of active contrast extravasation. Group I (n = 78) was treated with splenectomy and group II (n = 76) was treated with proximal SAE. There was no difference in age (33 +/- 14 vs. 37 +/- 17 years), Injury Severity Score (31 +/- 13 vs. 29 +/- 11), or mortality (18% vs. 15%) between the two groups. However, the incidence of Adult Respiratory Distress Syndrome (ARDS) was 4-fold higher in those patients that underwent proximal SAE compared with those that underwent splenectomy (22% vs. 5%, p = 0.002). Twenty two patients failed nonoperative management (NOM) after SAE. This failure appeared to be directly related to the grade of splenic organ injury (grade I and II: 0%; grade III: 24%; grade IV: 53%; and grade V: 100%). Introduction of proximal SAE in NOM of HDS splenic trauma patients with active extravasation did not alter mortality rates at a Level 1 Trauma Center. Increased incidence of ARDS and association of

  15. High-dose irradiated food: Current progress, applications, and prospects

    NASA Astrophysics Data System (ADS)

    Feliciano, Chitho P.

    2018-03-01

    Food irradiation as an established and mature technology has gained more attention in the food industry for ensuring food safety and quality. Primarily used for phytosanitary applications, its use has been expanded for developing various food products for varied purposes (e.g. ready-to-eat & ready-to-cook foods, hospital diets, etc.). This paper summarized and analyzed the recent progress and application of high-dose irradiation and discussed its prospects in the field of food product development, its safety and quality.

  16. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  17. Transcatheter Embolization for Delayed Hemorrhage Caused by Blunt Splenic Trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krohmer, Steven J., E-mail: Steven.J.Krohmer@hitchcock.org; Hoffer, Eric K., E-mail: eric.k.hoffer@hitchcock.or; Burchard, Kenneth W., E-mail: Kenneth.W.Burchard@hitchcock.or

    2010-08-15

    Although the exact benefit of adjunctive splenic artery embolization (SAE) in the nonoperative management (NOM) of patients with blunt splenic trauma has been debated, the role of transcatheter embolization in delayed splenic hemorrhage is rarely addressed. The purpose of this study was to evaluate the effectiveness of SAE in the management of patients who presented at least 3 days after initial splenic trauma with delayed hemorrhage. During a 24-month period 4 patients (all male; ages 19-49 years) presented with acute onset of pain 5-70 days after blunt trauma to the left upper quadrant. Two had known splenic injuries that hadmore » been managed nonoperatively. All had computed axial tomography evidence of active splenic hemorrhage or false aneurysm on representation. All underwent successful SAE. Follow-up ranged from 28 to 370 days. These cases and a review of the literature indicate that SAE is safe and effective for NOM failure caused by delayed manifestations of splenic arterial injury.« less

  18. RadNuc: A graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator

    PubMed Central

    Pasternack, Jordan B.; Howell, Roger W.

    2012-01-01

    The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668

  19. RadNuc: a graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator.

    PubMed

    Pasternack, Jordan B; Howell, Roger W

    2013-02-01

    The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect of low-dose (1 kGy) gamma radiation and selected phosphates on the microflora of vacuum-packaged ground pork

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehioba, R.M.

    1987-01-01

    The effects of low-dose (1 kGy) gamma radiation and selected phosphates on the microbiology of refrigerated, vacuum-packaged ground pork were studied. Low-dose gamma radiation reduced the numbers of naturally occurring mesophiles, psychrotrophs, and anaerobes. The effect of low-dose radiation on the populations of lactic acid bacteria was minimal. On storage of the irradiated vacuum-packaged ground pork at 5/sup 0/C, there was a partial bacterial recovery, suggesting sublethal bacterial injury due to irradiation. When 10/sup 7/ CFU/g of meat is taken to be the level beyond which the meat would be considered spoiled, uninoculated, vacuum-packaged ground pork treated with 1 kGymore » (100 krad) of gamma radiation had 3.5 more days of shelf-life in terms of psychrotrophic total counts. In relation to anaerobic bacterial numbers, meat shelf-life was extended 2.5 days, while the shelf-life of meat was extended 1 day in terms of aerobic mesophilic bacteria. Irradiation prolonged shelf-life in inoculated (10/sup 5/CFU/g) meat for 1.0-1.5 days. Addition of 0.4% sodium acid pyrophosphate (SAPP) contributed 2 additional days to inoculated, irradiated vacuum-packaged ground pork shelf-life. However, SAPP had no added effect on naturally occurring microflora. Irradiation greatly decreased the numbers of gram-negative microorganisms, resulting in predominance of the gram-positive, nonsporeforming Lactobacillus and coryneform bacteria.« less

  1. Hyperferritinemia in dogs with splenic hemangiosarcoma.

    PubMed

    Chikazawa, Seishiro; Hori, Yasutomo; Hoshi, Fumio; Kanai, Kazutaka; Ito, Naoyuki; Higuchi, Seiichi

    2013-11-01

    Serum ferritin concentration increases in dogs in association with various diseases. In this study, we measured serum ferritin levels in dogs with splenic masses, using a sandwich ELISA assay. Eleven dogs with hemangiosarcoma (HSA), six with hematoma, 1 with hemangioma and 3 with lymphoma were enrolled. All dogs with HSA had serum ferritin concentrations above the normal limit (1,357 ng/ml, mean + 2× standard deviation of normal). Increased serum ferritin concentrations have also been observed in few cases of hematoma, hemangioma and lymphoma. Therefore, hyperferritinemia is not specific for splenic HSA, but may have clinical usefulness as a sensitive test for the disease. Further evaluation of serum ferritin concentrations in dogs with splenic HSA is needed.

  2. Chromosome damage evolution after low and high LET irradiation

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    Ionizing radiation induces DNA and chromatin lesions which are converted to chromosome lesions detected in the first post-irradiation mitosis by classic cytogenetic techniques as chromosomal aberrations (CAs). These techniques allow to monitor also delayed aberrations observed after many cell generations post-irradiation - the manifestation of chromosomal instability phenotype (CIN). The problem discussed is how to predict time evolution from initial to delayed DNA/chromosome damage. To address this question, in the present work a mechanistic model of CIN is elaborated which integrates pathways of (*) DNA damage induction and its conversion to chromosome lesions (aberrations), (**) lesion transmission and generation through cell cycles. Delayed aberrations in subsequent cycles are formed in the model owing to two pathways, DNA damage generation de novo as well as CA transmission from previous cycles. DNA damage generation rate is assumed to consist of bystander and non-bystander components. Bystander signals impact all cells roughly equally, whereas non-bystander DSB generation rate differs for the descendants of unirradiated and irradiated cells. Monte Carlo simulation of processes underlying CIN allows to predict the time evolution of initial radiation-induced damage - kinetics curve for delayed unstable aberrations (dicentrics) together with dose response and RBE as a function of time after high vs low LET irradiation. The experimental data for radiation-induced CIN in TK6 lymphoblastoid cells and human lymphocytes irradiated with low (gamma) and high (Fe, C) LET radiation are analyzed on the basis of the proposed model. One of the conclusions is that without bystander signaling, just taking into account the initial DNA damage and non-bystander DSB generation, it is impossible to describe the available experimental data for high-LET-induced CIN. The exact contribution of bystander effects for high vs low LET remains unknown, but the relative contribution may be

  3. [Treatment practice in patients with isolated blunt splenic injuries. A survey of Swiss traumatologists].

    PubMed

    Schnüriger, B; Martens, F; Eberle, B M; Renzulli, P; Seiler, C A; Candinas, D

    2013-01-01

    The non-operative management (NOM) of blunt splenic injuries has gained widespread acceptance. However, there are still many controversies regarding follow-up of these patients. The purpose of this study was to survey active members of the Swiss Society of General and Trauma Surgery (SGAUC) to determine their practices regarding the NOM of isolated splenic injuries. A survey of active SGAUC members with a written questionnaire was carried out. The questionnaire was designed to elicit information about personal and facility demographics, diagnostic practices, in-hospital management, preferred follow-up imaging and return to activity. Out of 165 SGAUC members 52 (31.5%) completed the survey and 62.8% of all main trauma facilities in Switzerland were covered by the sample. Of the respondents 14 (26.9%) have a protocol in place for treating patients with splenic injuries. For initial imaging in hemodynamically stable patients 82.7% of respondents preferred ultrasonography (US). In cases of suspected splenic injury 19.2% of respondents would abstain from further imaging. In cases of contrast extravasation from the spleen half of the respondents would take no specific action. For low-grade injuries 86.5% chose to admit patients for an average of 1.6 days (range 0-4 days) with a continuously monitored bed. No differences in post-discharge activity restrictions between moderate and high-grade splenic injuries were found. The present survey showed considerable practice variation in several important aspects of the NOM of splenic injuries. Not performing further CT scans in patients with suspected splenic injuries and not intervening in cases of a contrast extravasation were the most important discrepancies to the current literature. Standardization of the NOM of splenic injuries may be of great benefit for both surgeons and patients.

  4. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    PubMed

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques.

    PubMed

    Duch, M A; Ginjaume, M; Chakkor, H; Ortega, X; Jornet, N; Ribas, M

    1998-06-01

    In total body irradiation (TBI) treatments in vivo dosimetry is recommended because it makes it possible to ensure the accuracy and quality control of dose delivery. The aim of this work is to set up an in vivo thermoluminescence dosimetry (TLD) system to measure the dose distribution during the TBI technique used prior to bone marrow transplant. Some technical problems due to the presence of lung shielding blocks are discussed. Irradiations were performed in the Hospital de la Santa Creu i Sant Pau by means of a Varian Clinac-1800 linear accelerator with 18 MV X-ray beams. Different TLD calibration experiments were set up to optimize in vivo dose assessment and to analyze the influence on dose measurement of shielding blocks. An algorithm to estimate midplane doses from entrance and exit doses is proposed and the estimated dose in critical organs is compared to internal dose measurements performed in an Alderson anthropomorphic phantom. The predictions of the dose algorithm, even in heterogeneous zones of the body such as the lungs, are in good agreement with the experimental results obtained with and without shielding blocks. The differences between measured and predicted values are in all cases lower than 2%. The TLD system described in this work has been proven to be appropriate for in vivo dosimetry in TBI irradiations. The described calibration experiments point out the difficulty of calibrating an in vivo dosimetry system when lung shielding blocks are used.

  6. The case for a generic phytosanitary irradiation dose of 400 Gy for Lepidoptera that infest shipped commodities as pupae.

    PubMed

    Hallman, Guy J; Parker, Andrew C; Blackburn, Carl M

    2013-04-01

    The pros and cons of a generic phytosanitary irradiation dose against all Lepidoptera pupae on all commodities are discussed. The measure of efficacy is to prevent the F1 generation from hatching (F1 egg hatch) when late pupae are irradiated. More data exist for this measure than for others studied, and it is also commercially tenable (i.e., prevention of adult emergence would require a high dose not tolerated by fresh commodities). The dose required to prevent F1 egg hatch provides a liberal margin of security for various reasons. A point at issue is that correctly irradiated adults could be capable of flight and thus be found in survey traps in importing countries resulting in costly and unnecessary regulatory action. However, this possibility would be rare and should not be a barrier to the adoption of this generic treatment. The literature was thoroughly examined and only studies that could reasonably satisfy criteria of acceptable irradiation and evaluation methodology, proper age of pupae, and adequate presentation of raw data were accepted. Based on studies with 34 species in nine families, we suggest an efficacious dose of 400 Gy. However, large-scale confirmatory testing (> or = 30,000 individuals) has only been reported for one species. A dose as low as 350 Gy might suffice if results of more large-scale studies were available or the measure of efficacy were extended beyond prevention of F1 egg hatch, but data to defend measures of efficacy beyond F1 egg hatch are scarce and more would need to be generated.

  7. Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.

    PubMed

    Tran, Van Hung; Tran, Khac An

    2010-06-01

    By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Twenty-years of splenic preservation at a level 1 pediatric trauma center.

    PubMed

    Bairdain, Sigrid; Litman, Heather J; Troy, Michael; McMahon, Maria; Almodovar, Heidi; Zurakowski, David; Mooney, David P

    2015-05-01

    Splenic preservation is the standard of care for hemodynamically stable children with splenic injuries. We report a 20-year single-institutional series of children with splenic injuries managed without a splenectomy. Children evaluated and treated for blunt splenic injury at Boston Children's Hospital from 1994 to 2014 were extracted from the trauma registry. Demographics, clinical characteristics, complications, and outcomes were reviewed. Three time-periods were evaluated based upon the development and modification of splenic injury clinical pathway guidelines (CPGs). Survival was defined as being discharged from the hospital alive. 502 suffered isolated splenic injuries. The median AAST grade of splenic injury increased across the three CPG time periods (p<0.001). No splenic-injury related mortalities occurred. Hospital length of stay decreased significantly secondary to splenic injury CPGs (p<0.001). 99% of the patients were discharged home. In children managed over the last 20years for isolated splenic injury, no patient died or underwent splenectomy. Hospital length of stay decreased across time, despite an increase in the severity of splenic injuries encountered. Splenectomy has become so unusual in the management of hemodynamically stable children with a splenic injury that it may no longer be a legitimate outcome marker. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    PubMed

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  10. Nonoperative management of splenic injuries.

    PubMed

    Oller, B; Armengol, M; Camps, I; Rodriguez, N; Montero, A; Inaraja, L; Salvia, M D; Salva, J A

    1991-07-01

    The traditional management of splenic trauma has undergone major revision in recent years. Given the physiological importance of the spleen, certain controversy has arisen regarding the most appropriate method of managing this type of trauma. Nonoperative therapy in children has proven to be successful not only in the case of kidney lesions but also for splenic lesions. Nonoperative management carried out in the authors' hospital on a group of 56 patients (49 adults and seven children over the age of 7 years) has proved successful in 37 cases. The success of this technique requires a well-formulated protocol, diagnostic methods (ultrasound and computed tomography), rigorous patient control in the emergency room during the initial phase (first 48 hours), the availability of a medical team if surgical intervention becomes necessary (persistent or recurrent hemorrhage), and complementary measures which facilitate the cicatrization of the splenic injury (bed rest, antibiotic therapy).

  11. Management and treatment of splenic trauma in children.

    PubMed

    Arslan, Serkan; Guzel, Mahmut; Turan, Cuneyt; Doğanay, Selim; Kopru, Mehmet

    2015-01-01

    To assess types of splenic traumas, accompanying injuries, their management and results. We studied the reports of 90 patients (64 boys, 26 girls) who were treated for splenic injuries as a result of blunt abdominal trauma between 2005-2012. Age, sex, hospitalization time, mechanisms of traumas, accompanying injuries and management methods were recorded. Causes of trauma were falls from height (46 patients, 51%), pedestrian traffic accidents (17 patients, 19%), passenger traffic accidents (11 patients, 12%), bicycle accidents (10 patients, 11%) and falling objects from height (6 patients, 6.6%). Splenic injury alone was observed in 57 patients (63.3%) and other organ injuries together with splenic injury in 33 patients (36.7%). Splenectomy was performed in six patients (6.6%) due to hemodynamic instability and small intestine repair due to small intestine injury in one patient (1.1%). None of these patients died from their injuries. A large proportion of splenic injuries recover with conservative therapy. Some of the advantages of conservative therapy include short hospitalization time, less need for blood transfusion, and less morbidity and mortality. Falls from height and traffic accidents are important factors in etiology. The possibility of other organ injuries together with splenic injuries should be considered.

  12. Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations

    DOE PAGES

    Aydogan, E.; Almirall, N.; Odette, G. R.; ...

    2017-01-10

    We produced a nanostructured ferritic alloy (NFA), 14YWT, in the form of thin walled tubing. The stability of the nano-oxides (NOs) was determined under 3.5 MeV Fe +2 irradiations up to a dose of ~585 dpa at 450 °C. Transmission electron microscopy (TEM) and atom probe tomography (APT) show that severe ion irradiation results in a ~25% reduction in size between the unirradiated and irradiated case at 270 dpa while no further reduction within the experimental error was seen at higher doses. Conversely, number density increased by ~30% after irradiation. Moreover, this ‘inverse coarsening’ can be rationalized by the competitionmore » between radiation driven ballistic dissolution and diffusional NO reformation. There were no significant changes in the composition of the matrix or NOs observed after irradiation. Modeling the experimental results also indicated a dissolution of the particles.« less

  13. The contemporary management of penetrating splenic injury.

    PubMed

    Berg, Regan J; Inaba, Kenji; Okoye, Obi; Pasley, Jason; Teixeira, Pedro G; Esparza, Michael; Demetriades, Demetrios

    2014-09-01

    Selective non-operative management (NOM) is standard of care for clinically stable patients with blunt splenic trauma and expectant management approaches are increasingly utilised in penetrating abdominal trauma, including in the setting of solid organ injury. Despite this evolution of clinical practice, little is known about the safety and efficacy of NOM in penetrating splenic injury. Trauma registry and medical record review identified all consecutive patients presenting to LAC+USC Medical Center with penetrating splenic injury between January 2001 and December 2011. Associated injuries, incidence and nature of operative intervention, local and systemic complications and mortality were determined. During the study period, 225 patients experienced penetrating splenic trauma. The majority (187/225, 83%) underwent emergent laparotomy. Thirty-eight clinically stable patients underwent a deliberate trial of NOM and 24/38 (63%) were ultimately managed without laparotomy. Amongst patients failing NOM, 3/14 (21%) underwent splenectomy while an additional 6/14 (42%) had splenorrhaphy. Hollow viscus injury (HVI) occurred in 21% of all patients failing NOM. Forty percent of all NOM patients had diaphragmatic injury (DI). All patients undergoing delayed laparotomy for HVI or a splenic procedure presented symptomatically within 24h of the initial injury. No deaths occurred in patients undergoing NOM. Although the vast majority of penetrating splenic trauma requires urgent operative management, a group of patients does present without haemodynamic instability, peritonitis or radiologic evidence of hollow viscus injury. Management of these patients is complicated as over half may remain clinically stable and can avoid laparotomy, making them potential candidates for a trial of NOM. HVI is responsible for NOM failure in up to a fifth of these cases and typically presents within 24h of injury. Delayed laparotomy, within this limited time period, did not appear to increase

  14. Effect of irradiation on the microstructure and the mechanical properties of oxide dispersion strengthened low activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Ramar, A.; Baluc, N.; Schäublin, R.

    2007-08-01

    Ferritic/martensitic (F/M) steels show good resistance to swelling and low damage accumulation upon irradiation relative to stainless steels. 0.3 wt% yttria particles were added to the F/M steel EUROFER 97 to produce oxide dispersion strengthened (ODS) steel, to increase the operating temperature as well as mechanical strength. ODS EUROFER 97 was irradiated in the PIREX facility with 590 MeV protons to 0.3, 1 and 2 dpa at 40 °C. Microstructure of the irradiated samples is analyzed in the transmission electron microscope using bright field, dark field and weak beam conditions. The presence of voids and dislocation loops is observed for the higher doses, where as at low dose (0.3 dpa) only small defects with sizes of 1-3 nm are observed as black dots. The relationship between the defect density to dispersoids is measured and the Burgers' vector of dislocation loops is analyzed.

  15. Splenic injuries at Bugando Medical Centre in northwestern Tanzania: a tertiary hospital experience

    PubMed Central

    2012-01-01

    accidents (RTAs) remains the most common cause of splenic injuries in our setting. Most of the splenic injuries were Grade III & IV and splenectomy was performed in majority of the cases. Non-operative management can be adopted in patients with blunt isolated and low grade splenic injuries but operative management is still indispensable in this part of Tanzania. Urgent preventive measures targeting at reducing the occurrence of RTAs is necessary to reduce the incidence of splenic injuries in our centre. PMID:22269803

  16. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Treatment planning and delivery of shell dose distribution for precision irradiation

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Iyer, Santosh; Ford, Eric; Wong, John; Kazanzides, Peter

    2010-02-01

    The motivation for shell dose irradiation is to deliver a high therapeutic dose to the surrounding supplying blood-vessels of a lesion. Our approach's main utility is in enabling laboratory experiments to test the much disputed hypothesis about tumor vascular damage. That is, at high doses, tumor control is driven by damage to the tumor vascular supply and not the damage to the tumor cells themselves. There is new evidence that bone marrow derived cells can reconstitute tumor blood vessels in mice after irradiation. Shell dosimetry is also of interest to study the effect of radiation on neurogenic stem cells that reside in small niche surface of the mouse ventricles, a generalized form of shell. The type of surface that we are considering as a shell is a sphere which is created by intersection of cylinders. The results are then extended to create the contours of different organ shapes. Specifically, we present a routine to identify the 3-D structure of a mouse brain, project it into 2-D contours and convert the contours into trajectories that can be executed by our platform. We use the Small Animal Radiation Research Platform (SARRP) to demonstrate the dose delivery procedure. The SARRP is a portable system for precision irradiation with beam sizes down to 0.5 mm and optimally planned radiation with on-board cone-beam CT guidance.

  18. Role of Doppler Sonography in Early Detection of Splenic Steal Syndrome.

    PubMed

    Li, Chaolun; Quintini, Cristiano; Hashimoto, Koji; Fung, John; Obuchowski, Nancy A; Sands, Mark J; Wang, Weiping

    2016-07-01

    To retrospectively investigate the role of Doppler sonography in the early detection of splenic steal syndrome. Fifty cases of splenic steal syndrome after orthotopic liver transplantation were identified. A control group was matched to the splenic steal syndrome group. Information was collected about the clinical presentation, liver enzyme levels, Doppler sonographic results, and follow-up after patients underwent splenic artery embolization. A persistent hepatic arterial diastolic reversal waveform was observed in 25 patients with splenic steal syndrome versus 0 control patients. The mean hepatic arterial resistive index (RI) values ± SD were 0.95 ± 0.09 in patients with splenic steal syndrome and 0.80 ± 0.10 in control patients (P < .0001). One week after orthotopic liver transplantation, the area under the receiver operating characteristic curve for the RI was 0.884 (95% confidence interval, 0.793-0.975; P = .001) for splenic steal syndrome diagnosis. After splenic artery embolization, there was normalization of the reversal waveform, with an average RI of 0.77 ± 0.11 (P < .0001). Dynamic changes in the hepatic arterial waveform and RI are keys to detecting splenic steal syndrome with Doppler sonography.

  19. The impact of electron beam irradiation on Low density polyethylene and Ethylene vinyl acetate

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2017-05-01

    Improvement of measured gel content, hardness, tensile strength and elongation at break of Ethylene vinyl acetate (EVA) have confirmed positive effect of electron beam irradiation on EVA. Results obtained from both gel content tests show that degree of cross-linking in amorphous regions is dependent on dose. A significant improvement in tensile strength of neat EVA samples is obtained upon electron-beam radiation up to 210 kGy. Similarly, hardness properties of Low-density polyethylene (LDPE) improvewith increasing electron beam irradiation. This article deals with the impacts of electron beam (EB) irradiation on the properties of LDPE and Ethylene-Vinyl Acetate (EVA) as the two common based formulations for wire and cable applications.

  20. Hyperferritinemia in Dogs with Splenic Hemangiosarcoma

    PubMed Central

    CHIKAZAWA, Seishiro; HORI, Yasutomo; HOSHI, Fumio; KANAI, Kazutaka; ITO, Naoyuki; HIGUCHI, Seiichi

    2013-01-01

    ABSTRACT Serum ferritin concentration increases in dogs in association with various diseases. In this study, we measured serum ferritin levels in dogs with splenic masses, using a sandwich ELISA assay. Eleven dogs with hemangiosarcoma (HSA), six with hematoma, 1 with hemangioma and 3 with lymphoma were enrolled. All dogs with HSA had serum ferritin concentrations above the normal limit (1,357 ng/ml, mean + 2× standard deviation of normal). Increased serum ferritin concentrations have also been observed in few cases of hematoma, hemangioma and lymphoma. Therefore, hyperferritinemia is not specific for splenic HSA, but may have clinical usefulness as a sensitive test for the disease. Further evaluation of serum ferritin concentrations in dogs with splenic HSA is needed. PMID:23803459

  1. Low irradiance losses of photovoltaic modules

    DOE PAGES

    Mavromatakis, F.; Vignola, F.; Marion, Bill

    2017-09-01

    Here, the efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjustedmore » for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.« less

  2. Low irradiance losses of photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatakis, F.; Vignola, F.; Marion, Bill

    Here, the efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjustedmore » for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.« less

  3. Dose response of alanine detectors irradiated with carbon ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen andmore » Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.« less

  4. Low LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution

    NASA Astrophysics Data System (ADS)

    Greubel, Christoph; Ilicic, Katarina; Rösch, Thomas; Reindl, Judith; Siebenwirth, Christian; Moser, Marcus; Girst, Stefanie; Walsh, Dietrich W. M.; Schmid, Thomas E.; Dollinger, Günther

    2017-08-01

    High LET radiation, like heavy ions, are known to have a higher biological effectiveness (RBE) compared to low LET radiation, like X- or γ -rays. Theories and models attribute these higher effectiveness mostly to their extremely inhomogeneous dose deposition, which is concentrated in only a few micron sized spots. At the ion microprobe SNAKE, low LET 20 MeV protons (LET in water of 2.6 keV/μm) can be applied to cells either randomly distributed or focused to submicron spots, approximating heavy ion dose deposition. Thus, the transition between low and high LET energy deposition is experimentally accessible and the effect of different spatial dose distributions can be analysed. Here, we report on the technical setup to cultivate and irradiate 104 cells with submicron spots of low LET protons to measure cell survival in unstained cells. In addition we have taken special care to characterise the beam spot of the 20 MeV proton microbeam with fluorescent nuclear track detectors.

  5. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimatemore » human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.« less

  6. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    PubMed Central

    Giubileo, Filippo; Di Bartolomeo, Antonio; Martucciello, Nadia; Romeo, Francesco; Iemmo, Laura; Romano, Paola; Passacantando, Maurizio

    2016-01-01

    We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρc≈19 kΩ·µm2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements. PMID:28335335

  7. Isolated splenic tuberculosis diagnosed by endoscopic ultrasound-guided fine needle aspiration.

    PubMed

    Nasa, Mukesh; Choudhary, Narendra S; Guleria, Mridula; Puri, Rajesh

    2017-04-01

    Our patient was a 48-year-old female, who presented with history of persistent low-grade fever and weight loss. The CT scan of the abdomen revealed multiple hypodense lesions in spleen. No primary focus of infection was detected in any other organs. Endoscopic ultrasound-guided fine needle aspiration of splenic lesion revealed granulomatous inflammation. The patient was started on anti-tuberculous therapy. There is a diagnostic possibility of splenic tuberculosis even in immunocompetent individuals and we chose a combination anti-tuberculous therapy as the first line treatment with consideration of splenectomy depending on the response. Copyright © 2016 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  8. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  9. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  10. [Splenic abscesses: From diagnosis to therapy].

    PubMed

    Davido, B; Dinh, A; Rouveix, E; Crenn, P; Hanslik, T; Salomon, J

    2017-09-01

    Splenic abscess is septic collection which occurs after haematogenous spread or local dissemination. Splenic abscess is an uncommon and rare condition, more frequently affecting male and immunocompromised patients. There are no guidelines regarding its diagnosis and management. Computed tomography (CT) scan is highly sensitive and specific (95% and 92%, respectively) in the diagnosis of splenic abscess. Diagnosis is based on blood cultures which are positive in 24 to 80% of cases. Bacterial growth culture of abscess after drainage is more efficient (50-80%) and can be performed after surgery or percutaneous drainage under imaging, including CT scan. Microorganisms involved are frequently enterobacteriaceae, gram-positive cocci and anaerobes. This particular ecology leads to an empiric broad-spectrum antibiotic therapy, with a variable duration, from 10days to more than one month. Management remains very close to the one applied in case of liver abscesses. The role of splenectomy in the prevention of recurrence remains controversial. We reviewed the literature regarding splenic abscesses, from diagnosis to therapy. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. The Dose-Volume Relationship of Small Bowel Irradiation and Acute Grade 3 Diarrhea During Chemoradiotherapy for Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, John M.; Lockman, David; Yan Di

    Purpose: Previous work has found a highly significant relationship between the irradiated small-bowel volume and development of Grade 3 small-bowel toxicity in patients with rectal cancer. This study tested the previously defined parameters in a much larger group of patients. Methods and Materials: A total of 96 consecutive patients receiving pelvic radiation therapy for rectal cancer had treatment planning computed tomographic scans with small-bowel contrast that allowed the small bowel to be outlined with calculation of a small-bowel dose-volume histogram for the initial intended pelvic treatment to 45 Gy. Patients with at least one parameter above the previously determined dose-volumemore » parameters were considered high risk, whereas those with all parameters below these levels were low risk. The grade of diarrhea and presence of liquid stool was determined prospectively. Results: There was a highly significant association with small-bowel dose-volume and Grade 3 diarrhea (p {<=} 0.008). The high-risk and low-risk parameters were predictive with Grade 3 diarrhea in 16 of 51 high-risk patients and in 4 of 45 low-risk patients (p = 0.01). Patients who had undergone irradiation preoperatively had a lower incidence of Grade 3 diarrhea than those treated postoperatively (18% vs. 28%; p = 0.31); however, the predictive ability of the high-risk/low-risk parameters was better for preoperatively (p = 0.03) than for postoperatively treated patients (p = 0.15). Revised risk parameters were derived that improved the overall predictive ability (p = 0.004). Conclusions: The highly significant dose-volume relationship and validity of the high-risk and low-risk parameters were confirmed in a large group of patients. The risk parameters provided better modeling for the preoperative patients than for the postoperative patients.« less

  12. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway.

    PubMed

    Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong

    2015-01-01

    We investigated the immunotoxicity and cytotoxicity of deoxynivalenol (DON), a mycotoxin, and the mechanism by which it induces apoptosis. Chicken splenic lymphocytes treated with 0-50μg/mL DON for 48h inhibited growth of splenic lymphocytes in a dose-dependent manner, as revealed by the Cell Counting Kit-8 (CCK-8) bioassay. Annexin V-fluorescein isothiocyanate staining indicated that the number of apoptotic and necrotic cells were significantly higher compared with the control (P<0.01). DON treatment induced ROS accumulation, resulting in reduced mitochondrial transmembrane potential, as detected by flow cytometry and 2',7'-dichlorofluorescein acetate and rhodamine 123 labeling, respectively. Enzyme linked immunosorbent assays revealed that the concentrations of p53, Bax, Bak-1, and Caspase-3 increased with increasing DON concentration (P<0.05 or P<0.01), whereas the concentrations of Bcl-2 decreased (P<0.01) compared with the control. These data suggest that DON induces apoptosis in splenic lymphocytes via a ROS-mediated mitochondrial pathway. Copyright © 2014. Published by Elsevier B.V.

  13. Effects of xylazine, romifidine, or detomidine on hematology, biochemistry, and splenic thickness in healthy horses.

    PubMed

    Kullmann, Annie; Sanz, Macarena; Fosgate, Geoffrey T; Saulez, Montague N; Page, Patrick C; Rioja, Eva

    2014-04-01

    Alpha-2 agonist-induced changes in packed cell volume (PCV), total solids (TS), selected biochemical parameters, and splenic thickness were investigated in horses. Four healthy mares were treated in a blinded, randomized, cross-over design with a dose of xylazine (0.5 mg/kg), romifidine (0.04 mg/kg), or detomidine (0.01 mg/kg) IV, and detomidine (0.02 mg/kg) IM. Hematology, TS, colloid osmotic pressure (COP), plasma osmolality; glucose, lactate, urea (BUN) and electrolyte concentrations; venous blood pH and ultrasonographic splenic thickness were evaluated at intervals for 300 min. Repeated measures analysis of variance (ANOVA) were performed with P < 0.05. There was a significant change over time in PCV and TS following each treatment (P < 0.001), with median (range) reductions of 20.9% (12.9% to 27.3%) and 5.8% (3.0% to 10.3%), respectively. Red blood cell count, BUN, and COP decreased while osmolality, glucose, Na(+), and splenic thickness increased. Treatments induced clinically significant transient changes in PCV, TS, and other biochemical parameters, which should be considered when assessing horses that received these drugs.

  14. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  15. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repairmore » genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.« less

  16. Efficacy of multiple exposure with low level He-Ne laser dose on acute wound healing: a pre-clinical study

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.

  17. Magnetic Resonance Lymphography-Guided Selective High-Dose Lymph Node Irradiation in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meijer, Hanneke J.M., E-mail: H.Meijer@rther.umcn.nl; Debats, Oscar A.; Kunze-Busch, Martina

    2012-01-01

    Purpose: To demonstrate the feasibility of magnetic resonance lymphography (MRL) -guided delineation of a boost volume and an elective target volume for pelvic lymph node irradiation in patients with prostate cancer. The feasibility of irradiating these volumes with a high-dose boost to the MRL-positive lymph nodes in conjunction with irradiation of the prostate using intensity-modulated radiotherapy (IMRT) was also investigated. Methods and Materials: In 4 prostate cancer patients with a high risk of lymph node involvement but no enlarged lymph nodes on CT and/or MRI, MRL detected pathological lymph nodes in the pelvis. These lymph nodes were identified and delineatedmore » on a radiotherapy planning CT to create a boost volume. Based on the location of the MRL-positive lymph nodes, the standard elective pelvic target volume was individualized. An IMRT plan with a simultaneous integrated boost (SIB) was created with dose prescriptions of 42 Gy to the pelvic target volume, a boost to 60 Gy to the MRL-positive lymph nodes, and 72 Gy to the prostate. Results: All MRL-positive lymph nodes could be identified on the planning CT. This information could be used to delineate a boost volume and to individualize the pelvic target volume for elective irradiation. IMRT planning delivered highly acceptable radiotherapy plans with regard to the prescribed dose levels and the dose to the organs at risk (OARs). Conclusion: MRL can be used to select patients with limited lymph node involvement for pelvic radiotherapy. MRL-guided delineation of a boost volume and an elective pelvic target volume for selective high-dose lymph node irradiation with IMRT is feasible. Whether this approach will result in improved outcome for these patients needs to be investigated in further clinical studies.« less

  18. Analysis of localised dose distribution in human body by Monte Carlo code system for photon irradiation.

    PubMed

    Ohnishi, S; Odano, N; Nariyama, N; Saito, K

    2004-01-01

    In usual personal dosimetry, whole body irradiation is assumed. However, the opportunity of partial irradiation is increasing and the tendencies of protection quantities caused under those irradiation conditions are different. The code system has been developed and effective dose and organ absorbed doses have been calculated in the case of horizontal narrow photon beam irradiated from various directions at three representative body sections, 40, 50 and 60 cm originating from the top of the head. This work covers 24 beam directions, each 15 degrees angle ranging from 0 degrees to 345 degrees, three energy levels, 45 keV, 90 keV and 1.25 MeV, and three beam diameters of 1, 2 and 4 cm. These results show that the beam injected from diagonally front or other specific direction causes peak dose in the case of partial irradiation.

  19. Towards dosimetry for photodynamic diagnosis with the low-level dose of photosensitizer.

    PubMed

    Buzalewicz, Igor; Hołowacz, Iwona; Ulatowska-Jarża, Agnieszka; Podbielska, Halina

    2017-08-01

    Contemporary medicine does not concern the issue of dosimetry in photodynamic diagnosis (PDD) but follows the photosensitizer (PS) producers recommendation. Most preclinical and clinical PDD studies indicate a considerable variation in the possibility of visualization and treatment, as e.g. in case of cervix lesions. Although some of these variations can be caused by the different histological subtypes or various tumor geometries, the issue of varying PS concentration in the tumor tissue volume is definitely an important factor. Therefore, there is a need to establish the objective and systematic PDD dosimetry protocol regarding doses of light and photosensitizers. Four different irradiation sources investigated in PDD (literature) were used for PS excitation. The PS luminescence was examined by means of the non-imaging (spectroscopic) and imaging (wide- and narrow-field of view) techniques. The methodology for low-level intensity photoluminescence (PL) characterization and dedicated image processing algorithm for PS luminescence images analysis were proposed. Further, HeLa cells' cultures penetration by PS was studied by a confocal microscopy. Reducing the PS dose with the choice of proper photoexcitation conditions decreases the PDD procedure costs and the side effects, not affecting the diagnostic efficiency. We determined in vitro the minimum incubation time and photosensitizer concentration of Photolon for diagnostic purposes, for which the Photolon PL can still be observed. It was demonstrated that quantification of PS concentration, choice of proper photoexcitation source, appropriate adjustment of light dose and PS penetration of cancer cells may improve the low-level luminescence photodynamic diagnostics performance. Practical effectiveness of the PDD strongly depends on irradiation source parameters (bandwidth, maximum intensity, half-width) and their optimization is the main conditioning factor for low-level intensity and low-cost PDD. Copyright © 2017

  20. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    DOE PAGES

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; ...

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less

  1. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    PubMed

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated

  2. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    PubMed Central

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  3. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    PubMed

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  4. Detection of irradiated fruits by gas-chromatographic methods.

    PubMed

    el-Dien, S; Farag, A

    1996-06-01

    To detect those fruits which have been subjected to low-dose irradiation (0.5-3 kGy), two methods of chromatography (GC-MS and LC-LC-GC-FID) were used to determine the radiolytic compounds of lipids formed after irradiation, such as alkanes and alkenes. Extraction of volatile hydrocarbon compounds from some parts of irradiated fruits, e.g. the flesh (avocado), seeds (papaya) and kernels (mango and apricot) was carried out. The analysis of hydrocarbons by GC-MS proved the suitability of using C17:1, C16:2, C15:0 and C14:1 as markers for avocados irradiated with a low dose (0.75 kGy). The same indicators appeared following the analysis of papayas and mangoes irradiated with 1.5, and 3.0 kGy. Also, C15:0, C14:1 and C16:3 can be used to identify apricots irradiated with a low dose (0.5 kGy). The detection of alkenes was only improved by a more selective isolation, e.g. of dienes or trienes by LC-LC-GC-FID. Within a few minutes, apricots and avocados irradiated at low doses (0.5 and 0.75 kGy) can be recognized by the indicators C16:2, C17:2 and C16:3, without interfering peaks. In all cases, C16:1, C16:2, C16:3 as well as significant amounts of C17:2 can be used as markers for fruit irradiation.

  5. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  6. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...

    2016-08-29

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  7. Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Eldrup, M.; Byun, Thak Sang

    2008-01-01

    Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 x 10{sup -5} to 0.28 dpa at {approx} 80 C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between -50 and 100 C over the strain rate range 1 x 10{sup -5} to 1 x 10{sup -2} s{sup -1}. Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM atmore » {approx}0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at {approx}0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress.« less

  8. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in themore » low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.« less

  9. Development of a four-dimensional Monte Carlo dose calculation system for real-time tumor-tracking irradiation with a gimbaled X-ray head.

    PubMed

    Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Matsuo, Yukinori; Sawada, Akira; Kokubo, Masaki; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-03-01

    To develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT. First, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan]. Differences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels. Our proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael

    2008-06-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapymore » with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.« less

  11. Performance of KCl:Eu2+ storage phosphor dosimeters for low dose measurements

    PubMed Central

    Li, H. Harold; Hansel, Rachael; Knutson, Nels; Yang, Deshan

    2013-01-01

    Recent research has demonstrated that europium doped potassium chloride (KCl:Eu2+) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter (TLD) chips. The purposes of this work are to quantify the performance of KCl:Eu2+ prototype dosimeters for low dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu2+ prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low dose region with only a 20 percent loss of sensitivity comparing to a fresh sample (zero Gy history). The energy-dependence encountered during low dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu2+− based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy). PMID:23735856

  12. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI

    NASA Astrophysics Data System (ADS)

    Haraldsson, P.; Karlsson, A.; Wieslander, E.; Gustavsson, H.; Bäck, S. Å. J.

    2006-02-01

    A low-density (~0.6 g cm-3) normoxic polymer gel, containing the antioxidant tetrakis (hydroxymethyl) phosponium (THP), has been investigated with respect to basic absorbed dose response characteristics. The low density was obtained by mixing the gel with expanded polystyrene spheres. The depth dose data for 6 and 18 MV photons were compared with Monte Carlo calculations. A large volume phantom was irradiated in order to study the 3D dose distribution from a 6 MV field. Evaluation of the gel was carried out using magnetic resonance imaging. An approximately linear response was obtained for 1/T2 versus dose in the dose range of 2 to 8 Gy. A small decrease in the dose response was observed for increasing concentrations of THP. A good agreement between measured and Monte Carlo calculated data was obained, both for test tubes and the larger 3D phantom. It was shown that a normoxic polymer gel with a reduced density could be obtained by adding expanded polystyrene spheres. In order to get reliable results, it is very important to have a uniform distribution of the gel and expanded polystyrene spheres in the phantom volume.

  13. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation.

    PubMed

    Ji, Kai; Zhao, Lujun; Yang, Chengwen; Meng, Maobin; Wang, Ping

    2012-11-27

    To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Thirty-nine patients with medically inoperable T1-4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Under a 60 Gy dosage, the median D mean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40 Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.

  14. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    PubMed Central

    2012-01-01

    Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions. PMID:23186308

  15. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation.

    PubMed

    Aghajanyan, Anna; Kuzmina, Nina; Sipyagyna, Alla; Baleva, Larisa; Suskov, Igor

    2011-08-01

    Transgenerational genomic instability was studied in nonirradiated children born from fathers who were irradiated with low doses of ionizing radiation while working as clean-up workers at the Chernobyl Nuclear Power Plant (liquidators) and nonirradiated mothers from nuclear families. Aberrant cell frequencies (ACFs), chromosomal type aberration frequencies, and chromatid break frequencies (CBFs) in the lymphocytes of fathers-liquidators, and their children were significantly higher when compared with the control group (P < 0.05). Individual ACFs, aberration frequencies, and CBFs were independent of the time between irradiation of the father and conception of the child (1 month to 18 years). Chromosomes were categorized into seven groups (A through G). Analysis of aberrant chromosomes within these groups showed no differences in the average frequency of aberrant chromosomes between children and fathers-liquidators. However, significant differences were observed in the average frequency of aberrant chromosomes in groups A, B, and C between children and mothers in the families of liquidators. These results suggest that low doses of radiation induce genomic instability in fathers. Moreover, low radiation doses might be responsible for individual peculiarities in transgenerational genomic instability in children (as a consequence of response to primary DNA damage). Thus, genomic instability may contribute to increased morbidity over the lifetime of these children. Copyright © 2011 Wiley-Liss, Inc.

  16. Maleic anhydride-g-low density polyethylene: Modification of LDPE molecular structure by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Sheeja, Manaf, O.; Sujith, A.

    2017-06-01

    Polymer modification by radiation grafting of monomers onto polymers has received much attention recently. In the current study, γ-irradiation technique was used to achieve graft copolymerization of maleic anhydride (MA) onto low-density polyethylene (LDPE). To optimize, the process was performed at different γ-irradiation doses and MA concentration. The microstructure of grafted polymer film has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, field emission-scanning electron microscopy, and atomic force microscopy. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield.

  17. [Giant splenic cyst in a teenager girl: Case report].

    PubMed

    Martínez Torres, Beatriz; Medina García, Manuel; Zafra Anta, Miguel Ángel; García Muñoz-Najar, Alejandro José; Tardío Dovao, Juan C

    2017-06-01

    Giant nonparasitic splenic epidermoid cysts are relatively uncommon. These lesions can lead abdominal pain, but most of then are asymptomatic, and they are discovered incidentally. We report a 13-y old female with a giant splenic epidermoid cystic, given the special interest of diagnostic and therapeutic decision-making of this rare entity. A 13-y old female with clinical history of abdominal pain since the last two months. On physical examination a firm, tender mass was palpable in left hypochondrium. Diagnosis of a large cystic splenic mass was made based on ultrasound and abdominal computed tomography scan. Splenectomy was performed, and histopathological-immunohistochemistry studies revealed findings suggestive of primary epithelial cyst. The post-operative clinical course was satisfactory and uneventful. Treatment of giant nonparasitic splenic cysts is surgical. Preserve splenic parenchyma must be the aim in an individualized decision-making. The different types of surgical modalities will be according to the diagnosis and clinical situation (cyst size, age, comorbidities).

  18. High-dose neutron irradiation embrittlement of RAFM steels

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2006-09-01

    Neutron irradiation-induced embrittlement of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 was studied under different heat treatment conditions. Irradiation was performed in the Petten High Flux Reactor within the HFR Phase-IIb (SPICE) irradiation project up to 16.3 dpa and at different irradiation temperatures (250-450 °C). Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) were also irradiated at selected temperatures. The impact properties were investigated by instrumented Charpy-V tests with subsize specimens. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement in terms of the parameter C = ΔDBTT/Δ σ indicates hardening-dominated embrittlement at irradiation temperatures below 350 °C with 0.17 ⩽ C ⩽ 0.53 °C/MPa. Scattering of C at irradiation temperatures above 400 °C indicates no hardening embrittlement.

  19. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  20. Imaging and transcatheter arterial embolization for traumatic splenic injuries: review of the literature.

    PubMed

    Raikhlin, Antony; Baerlocher, Mark Otto; Asch, Murray R; Myers, Andy

    2008-12-01

    The spleen is the most commonly injured visceral organ in blunt abdominal trauma in both adults and children. Nonoperative management is the current standard of practice for patients who are hemodynamically stable. However, simple observation alone has been reported to have a failure rate as high as 34%; the rate is even higher among patients with high-grade splenic injuries (American Association for the Surgery of Trauma [AAST] grade III-V). Over the past decade, angiography with transcatheter splenic artery embolization, an alternative nonoperative treatment for splenic injuries, has increased splenic salvage rates to as high as 97%. With the help of splenic artery embolization, success rates of more than 80% have also been described for high-grade splenic injuries. We discuss the role of computed tomography and transcatheter splenic artery embolization in the diagnosis and treatment of blunt splenic trauma. We review technical considerations, indications, efficacy and complication rates. We also propose an algorithm to guide the use of angiography and splenic embolization in patients with traumatic splenic injury.

  1. Imaging and transcatheter arterial embolization for traumatic splenic injuries: review of the literature

    PubMed Central

    Raikhlin, Antony; Baerlocher, Mark Otto; Asch, Murray R.; Myers, Andy

    2008-01-01

    The spleen is the most commonly injured visceral organ in blunt abdominal trauma in both adults and children. Nonoperative management is the current standard of practice for patients who are hemodynamically stable. However, simple observation alone has been reported to have a failure rate as high as 34%; the rate is even higher among patients with high-grade splenic injuries (American Association for the Surgery of Trauma [AAST] grade III–V). Over the past decade, angiography with transcatheter splenic artery embolization, an alternative nonoperative treatment for splenic injuries, has increased splenic salvage rates to as high as 97%. With the help of splenic artery embolization, success rates of more than 80% have also been described for high-grade splenic injuries. We discuss the role of computed tomography and transcatheter splenic artery embolization in the diagnosis and treatment of blunt splenic trauma. We review technical considerations, indications, efficacy and complication rates. We also propose an algorithm to guide the use of angiography and splenic embolization in patients with traumatic splenic injury. PMID:19057735

  2. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    PubMed

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  3. Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry.

    PubMed

    Schüttrumpf, Lars; Neumaier, Klement; Maihoefer, Cornelius; Niyazi, Maximilian; Ganswindt, Ute; Li, Minglun; Lang, Peter; Reiner, Michael; Belka, Claus; Corradini, Stefanie

    2018-05-01

    Due to the complex surface of the human body, total or partial skin irradiation using large electron fields is challenging. The aim of the present study was to quantify the magnitude of dose optimization required after the application of standard fields. Total skin electron irradiation (TSEI) was applied using the Stanford technique with six dual-fields. Patients presenting with localized lesions were treated with partial skin electron irradiation (PSEI) using large electron fields, which were individually adapted. In order to verify and validate the dose distribution, in vivo dosimetry with thermoluminescent dosimeters (TLD) was performed during the first treatment fraction to detect potential dose heterogeneity and to allow for an individual dose optimization with adjustment of the monitor units (MU). Between 1984 and 2017, a total of 58 patients were treated: 31 patients received TSEI using 12 treatment fields, while 27 patients underwent PSEI and were treated with 4-8 treatment fields. After evaluation of the dosimetric results, an individual dose optimization was necessary in 21 patients. Of these, 7 patients received TSEI (7/31). Monitor units (MU) needed to be corrected by a mean value of 117 MU (±105, range 18-290) uniformly for all 12 treatment fields, corresponding to a mean relative change of 12% of the prescribed MU. In comparison, the other 14 patients received PSEI (14/27) and the mean adjustment of monitor units was 282 MU (±144, range 59-500) to single or multiple fields, corresponding to a mean relative change of 22% of the prescribed MU. A second dose optimization to obtain a satisfying dose at the prescription point was need in 5 patients. Thermoluminescent dosimetry allows an individual dose optimization in TSEI and PSEI to enable a reliable adjustment of the MUs to obtain the prescription dose. Especially in PSEI in vivo dosimetry is of fundamental importance.

  4. The gas chromatography/mass spectrometry can be used for dose estimation in irradiated pork

    NASA Astrophysics Data System (ADS)

    D'Oca, M. C.; Bartolotta, A.; Cammilleri, M. C.; Giuffrida, S. A.; Parlato, A.; Di Noto, A. M.; Caracappa, S.

    2009-07-01

    Food safety can be improved using ionizing radiation to reduce food spoilage and to extend its shelf life. The gas chromatography/mass spectrometry (GC/MS) has been validated by the European Community as a powerful method to identify irradiated food containing fat. The preliminary goals of our research were: (i) to set up this method, based on the detection of radiation induced 2-dodecylcyclobutanones (2-DCB) in pork muscle samples and (ii) to check the microbiological efficacy of the treatment. The main objective was to render the GC/MS a quantitative technique for dose estimation, through the measurement of the 2-DCB concentration in the irradiated sample. Our results show that the reduction of the microbial population is substantially reduced even at 2 kGy, and that a clear identification of irradiated samples can be achieved also one month after irradiation at 2 kGy in frozen-stored samples. The 2-DCB concentration showed a linear dependence on dose in the range 1-10 kGy, no matter the origin of the sample; a unique calibration function was obtained, that allowed dose estimation in irradiated pork samples. A retrospective evaluation on the quality of the treatment could be carried out this way.

  5. Transcatheter Coil Embolization of Splenic Artery Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Satoshi, E-mail: s-yama@hyo-med.ac.jp; Hirota, Shozo; Maeda, Hiroaki

    2008-05-15

    The purpose of this study was to evaluate clinical results and technical problems of transcatheter coil embolization for splenic artery aneurysm. Subjects were 16 patients (8 men, 8 women; age range, 40-80 years) who underwent transcatheter embolization for splenic artery aneurysm (14 true aneurysms, 2 false aneurysms) at one of our hospitals during the period January 1997 through July 2005. Two aneurysms (12.5%) were diagnosed at the time of rupture. Multiple splenic aneurysms were found in seven patients. Aneurysms were classified by site as proximal (or strictly ostial) (n = 3), middle (n = 3), or hilar (n = 10).more » The indication for transcatheter arterial embolization was a false or true aneurysm 20 mm in diameter. Embolic materials were fibered coils and interlocking detachable coils. Embolization was performed by the isolation technique, the packing technique, or both. Technically, all aneurysms were devascularized without severe complications. Embolized aneurysms were 6-40 mm in diameter (mean, 25 mm). Overall, the primary technical success rate was 88% (14 of 16 patients). In the remaining 2 patients (12.5%), partial recanalization occurred, and re-embolization was performed. The secondary technical success rate was 100%. Seven (44%) of the 16 study patients suffered partial splenic infarction. Intrasplenic branching originating from the aneurysm was observed in five patients. We conclude that transcatheter coil embolization should be the initial treatment of choice for splenic artery aneurysm.« less

  6. Influence of detomidine and xylazine on spleen dimensions and on splenic response to epinephrine infusion in healthy adult horses.

    PubMed

    Deniau, Valérie; Depecker, Marianne; Bizon-Mercier, Céline; Couroucé-Malblanc, Anne

    2013-07-01

    To compare the changes in splenic length and thickness and in packed cell volume (PCV) following detomidine or xylazine administration and subsequent epinephrine infusion. Spleen relaxation occurs following xylazine or detomidine administration and interferes with subsequent splenic contractile response to epinephrine. Randomized non-blinded crossover experimental study. 6 healthy adult mares. The mares received an intravenous (IV) epinephrine infusion (1 μg kg(-1 ) minute(-1) over 5 minutes) one hour after IV administration of detomidine (0.01 mg kg(-1) ), xylazine (0.5 mg kg(-1) ) or no drug (control), with a withdrawal period of at least 7 days between experiments. The splenic length measured in two different axes, the splenic thickness, and the PCV were measured prior to sedation (T0), 30 minutes later, and at 5-minute intervals from the start of the epinephrine infusion (T1) until T1 + 40 minutes. Changes from base-line and between treatments were compared using a two-way anova for repeated measures. Significance was set at p < 0.05. Splenic length was significantly increased and PCV was significantly decreased after detomidine administration compared to baseline. Epinephrine infusion resulted in a significant decrease in splenic length and thickness, and a significant increase in PCV, irrespective of prior treatment with detomidine or xylazine. Detomidine administration was followed by a sonographically detectable increase of splenic length. Neither detomidine nor xylazine interfered with the ability of the spleen to contract following subsequent administration of an epinephrine infusion given one hour later. Previous sedation with alpha-2 agonists does not preclude the efficiency of epinephrine as a medical treatment of left dorsal displacement of the large colon, but further investigations are required with other drug doses and different time intervals between administrations. © 2013 The Authors. Veterinary Anaesthesia and Analgesia © 2013 Association of

  7. Doses from external irradiation to Marshall Islanders from Bikini and Enewetak nuclear weapons tests.

    PubMed

    Bouville, André; Beck, Harold L; Simon, Steven L

    2010-08-01

    Annual doses from external irradiation resulting from exposure to fallout from the 65 atmospheric nuclear weapons tests conducted in the Marshall Islands at Bikini and Enewetak between 1946 and 1958 have been estimated for the first time for Marshallese living on all inhabited atolls. All tests that deposited fallout on any of the 23 inhabited atolls or separate reef islands have been considered. The methodology used to estimate the radiation doses at the inhabited atolls is based on test- and location-specific radiation survey data, deposition density estimates of 137Cs, and fallout times-of-arrival provided in a companion paper (Beck et al.), combined with information on the radionuclide composition of the fallout at various times after each test. These estimates of doses from external irradiation have been combined with corresponding estimates of doses from internal irradiation, given in a companion paper (Simon et al.), to assess the cancer risks among the Marshallese population (Land et al.) resulting from exposure to radiation from the nuclear weapons tests.

  8. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    NASA Astrophysics Data System (ADS)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  9. [Splenic infarction after warfarin discontinuation during atrial fibrillation].

    PubMed

    Trappolini, M; Scorzai, A; Loguercio, V; Stoppo, M; Sebastianelli, A; Iannotta, M; Del Porto, F; Proietta, M; Aliberti, G

    2008-01-01

    We describe a case of patient with splenic infarction, admitted to our department for sudden abdominal pain and fever after discontinuation of anticoagulant therapy for atrial fibrillation, complicating a dilated myocardiopathy and mechanical prosthetic valve. Diagnosis of splenic infarction was made by enhanced-contrast computed tomography, while ultrasounds and radiography were negative. Anticoagulant therapy, gold-standard treatment, was followed by fast clinical improvement. Moreover, splenic infarction should be considered in all cases of acute or chronic pain in left hypochondrium and especially in patients with emboligenous cardiopathies or atrial fibrillation, the most common arrhythmia source of peripheral embolism in clinical practice.

  10. Nonoperative Management of Splenic Injury in Combat: 2002-2012

    DTIC Science & Technology

    2015-03-01

    recognized as the defini- tive treatment for splenic injury when Dr. Johnston reported 150 splenectomies for trauma in 1908.4 However, in 1968, Upadhyaya...management safe and effective for all splenic blunt trauma ? A systematic review. Crit Care 2013; 17(5): R185. 6. Joint Theater Trauma System Clinical Practice...2014. 7. Zonies D, Eastridge B: Combat management of splenic injury: trends during a decade of conflict. J Trauma Acute Care Surg 2012; 73(2 Suppl 1

  11. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeg, H.J.; Storb, R.; Weiden, P.L.

    1981-11-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs diedmore » from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors.« less

  12. The sterile insect technique for the management of the spotted wing drosophila, Drosophila suzukii: Establishing the optimum irradiation dose

    PubMed Central

    Brodeur, Jacques; Fournier, François; Martel, Véronique; Vreysen, Marc; Cáceres, Carlos; Firlej, Annabelle

    2017-01-01

    The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae), a pest of berries stone fruits, invaded North America and Europe in 2008. Current control methods rely mainly on insecticides. The sterile insect technique (SIT) has potential as an additional control tactic for the integrated management of D. suzukii. As a step towards the development of the SIT, this study aimed at finding the optimum irradiation dose to sterilize D. suzukii under controlled laboratory conditions. Four-day-old D. suzukii pupae were irradiated 12 to 24 hours prior to adult emergence in a 60Co Gamma Cell 220 and in a 137Cs Gamma Cell 3000 with doses of 30, 50, 70, 80, 90, 100 or 120 Gy. Emergence rate (88.1%), percent of deformed flies (4.0%) and survival curves were not affected by the tested irradiation doses. However, some reproductive parameters of the flies were affected by irradiation. Females irradiated with a dose of 50 Gy or more had almost no fecundity. When non-irradiated females were mated with irradiated males, egg hatch decreased exponentially with irradiation dose from 82.6% for the untreated control males to 4.0% for males irradiated with 120 Gy. Mortality of F1 individuals from the irradiated treatment also occurred during larval and pupal stages, with an egg to adult survival of 0.2%. However, descendants produced by the irradiated generation were fertile. These results are an encouraging first experimental step towards the development of the SIT for the management of D. suzukii populations. PMID:28957331

  13. Effects of xylazine, romifidine, or detomidine on hematology, biochemistry, and splenic thickness in healthy horses

    PubMed Central

    Kullmann, Annie; Sanz, Macarena; Fosgate, Geoffrey T.; Saulez, Montague N.; Page, Patrick C.; Rioja, Eva

    2014-01-01

    Alpha-2 agonist-induced changes in packed cell volume (PCV), total solids (TS), selected biochemical parameters, and splenic thickness were investigated in horses. Four healthy mares were treated in a blinded, randomized, cross-over design with a dose of xylazine (0.5 mg/kg), romifidine (0.04 mg/kg), or detomidine (0.01 mg/kg) IV, and detomidine (0.02 mg/kg) IM. Hematology, TS, colloid osmotic pressure (COP), plasma osmolality; glucose, lactate, urea (BUN) and electrolyte concentrations; venous blood pH and ultrasonographic splenic thickness were evaluated at intervals for 300 min. Repeated measures analysis of variance (ANOVA) were performed with P < 0.05. There was a significant change over time in PCV and TS following each treatment (P < 0.001), with median (range) reductions of 20.9% (12.9% to 27.3%) and 5.8% (3.0% to 10.3%), respectively. Red blood cell count, BUN, and COP decreased while osmolality, glucose, Na+, and splenic thickness increased. Treatments induced clinically significant transient changes in PCV, TS, and other biochemical parameters, which should be considered when assessing horses that received these drugs. PMID:24688132

  14. Effects of low-level chronic irradiation on radiosensitivity of mammals: modeling and experimental studies

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.; Yonezawa, M.

    Effects of low dose rate chronic irradiation on radiosensitivity of mammals mice are studied by experimental and modeling methods Own and reference experiments show that priming chronic low-level short-term and long-term exposures to radiation induce respectively elevated radiosensitivity and lowered radiosensitivity radioresistance in mice The manifestation of these radiosensitization and radioprotection effects are respectively increased and decreased mortality of preirradiated specimens after challenge acute irradiation in comparison with those for previously unexposed ones Taking into account that the reason of the animal death in the experiments was the hematopoietic syndrome the biophysical models of the critical body system hematopoiesis are used to simulate the dynamics of the major hematopoietic lines in mice exposed to challenge acute irradiation following the chronic one Juxtaposition of the modeling results obtained and the relevant experimental data shows that the radiosensitization effect of chronic low-level short-term less than 1 month preirradiation on mice is due to increased radiosensitivity of lymphopoietic granulocytopoietic and erythropoietic systems accompanied by increased or close to the normal level radiosensitivity of thrombocytopoietic system which are induced by the above-indicated exposure In turn the radioprotection effect of chronic low-level long-term more than 1 month preirradiation on mice is caused by decreased radiosensitivity radioresistance of the granulocytopoietic system which

  15. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. [Secondary Splenic Rupture after Initially Inconspicuous CAT Scan].

    PubMed

    Prokop, A; Koll, S; Chmielnicki, M

    2016-04-01

    Splenic injuries occur in 1-5 % of blunt abdominal trauma cases. After initial haemorrhagic compression, secondary delayed spleen rupture can occur with a latency of one day to a month or longer. Mortality is then up to 15 %. The spleen injury is almost always recognisable on CT or ultrasound. In one case from our clinic, secondary splenic rupture occurred in a patient after discharge from hospitalisation, even though the initial CT and ultrasound were unremarkable. The patient survived, and underwent emergent splenectomy 8 days after the trauma. An expert review of the case identified no errors in treatment. No case of secondary splenic rupture after initially unremarkable diagnostic studies and clinical course has previously been published. Secondary splenic rupture has a high mortality rate. Patients should be advised of potential complications after hospital discharge, and should return to the hospital immediately in case of symptoms. Georg Thieme Verlag KG Stuttgart · New York.

  17. Embolization of a large, symptomatic splenic artery pseudoaneurysm

    PubMed Central

    Kukliński, Adam; Batycki, Krzysztof; Matuszewski, Wiesław; Ostrach, Andrzej; Kupis, Zbigniew; Łęgowik, Tomasz

    2014-01-01

    Summary Background Splenic artery aneurysm is the third most common abdominal aneurysm. Most often it is due to pancreatitis. There were only 19 cases of aneurysms larger than 5 cm in diameter described in the literature. Management of splenic artery aneurysms depends on the size and symptoms. Invasive treatment modalities involve open procedures and interventional radiology methods (endovascular). Case Reports A 44-years-old male with chronic pancreatitis, in a gradually worsening general condition due to a large splenic artery aneurysm, was subjected to the procedure. Blood flow through the aneurysm was cut-off by implanting a covered stent between celiac trunk and common hepatic artery. Patient’s general condition rapidly improved, allowing discharge home in good state soon after the procedure. Conclusions Percutaneous embolization appears to be the best method of treatment of large splenic artery aneurysms. Complications of such treatment are significantly less dangerous than those associated with surgery. PMID:25009678

  18. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  19. Recent international regulations: low dose-low rate radiation protection and the demise of reason.

    PubMed

    Okkalides, Demetrios

    2008-01-01

    The radiation protection measures suggested by the International Committee for Radiation Protection (ICRP), national regulating bodies and experts, have been becoming ever more strict despite the decrease of any information supporting the existence of the Linear no Threshold model (LNT) and of any adverse effects of Low Dose Low Rate (LDLR) irradiation. This tendency arises from the disproportionate response of human society to hazards that are currently in fashion and is unreasonable. The 1 mSv/year dose limit for the public suggested by the ICRP corresponds to a 1/18,181 detriment-adjusted cancer risk and is much lower than other hazards that are faced by modern societies such as e.g. driving and smoking which carry corresponding rate risks of 1/2,100 and 1/2,000. Even worldwide deadly work accidents rate is higher at 1/ 8,065. Such excessive safety measures against minimal risks from man made radiation sources divert resources from very real and much greater hazards. In addition they undermine research and development of radiation technology and tend to subjugate science and the quest for understanding nature to phobic practices.

  20. Low-dose strontium-90 irradiation is effective in preventing the recurrence of pterygia: a ten-year study.

    PubMed

    Qin, Xue-jiao; Chen, Hong-mei; Guo, Liang; Guo, Yong-yuan

    2012-01-01

    To study the long-term effects of low-dosage strontium-90 (Sr90) irradiation on the recurrence of pterygium. One hundred twenty eyes from 104 patients with primary or recurrent pterygia were treated with surgery followed by Sr90 irradiation. In brief, starting on the sixth day after surgery, patients were treated with irradiation three times every other day at a total combined dosage of 2000 cGy to 3000 cGy. Corneal topography was used to evaluate ocular surface regularity before and after treatment. Patient follow-up was performed 2 days, 5 days, 2 weeks, 1 month, 3 months, 1 year, 5 years, and 10 years after surgery. Recurrence of pterygium was not observed in any of the patients in this study. Obvious cataract progression was observed in 6 eyes, which may be due to aging. During follow-up studies, only one eye was reported with dryness and foreign-body sensation. Significant pterygium-induced astigmatism was observed in corneal topography, which decreased after surgery. Sr90 irradiation is effective in preventing the recurrence of primary and recurrent pterygia. We recommend delivering a total combined dosage of 2000 cGy to 3000 cGy of Sr90 irradiation administered in three batches every other day starting from the sixth day after surgery. Surgery is important in the rapid recovery of the cornea from pterygium-induced astigmatism.

  1. The effect of low dose rate on metabolomic response to radiation in mice

    PubMed Central

    Goudarzi, Maryam; Mak, Tytus D.; Chen, Congju; Smilenov, Lubomir B.; Brenner, David J.

    2014-01-01

    Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. PMID:25047638

  2. The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    PubMed Central

    2009-01-01

    Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo. PMID:19930543

  3. A method for depth-dose distribution measurements in tissue irradiated by a proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, G.; Birattari, C.; Bartolo, D. de

    1994-12-31

    The use of protons and heavy ions for the treatment of malignant and non-malignant disease has aroused a growing interest in the last decade. The notable advantage of heavy charged particles over photons in external beam radiotherapy lies in the possibility of irradiating a small localized region within the body, keeping a low value for the entrance dose. Owing to this high disuniformity of energy deposition, an essential requirement for treatment planning is a precise evaluation of the spatial distribution of absorbed dose. The proposed method for depth-dose distribution measurements utilizes a chemical dosimeter (ferrous sulphate solution plus sulfuric acidmore » and eventually xylenol orange) incorporated in a gelatine, whose role is the maintenance of spatial information. Ionizing radiation causes a variation in some parameters of the system such as the proton relaxation rates in the solution (measurable by NMR analysis) or the optical absorption of the gel in the visible spectrum (measurable by spectrophotometry).« less

  4. Diagnostic problems with parasitic and non-parasitic splenic cysts.

    PubMed

    Adas, Gokhan; Karatepe, Oguzhan; Altiok, Merih; Battal, Muharrem; Bender, Omer; Ozcan, Deniz; Karahan, Servet

    2009-05-29

    The splenic cysts constitute a very rare clinical entity. They may occur secondary to trauma or even being more seldom due to parasitic infestations, mainly caused by ecchinocccus granulosus. Literature lacks a defined concencus including the treatment plans and follow up strategies, nor long term results of the patients. In the current study, we aimed to evaluate the diagnosis, management of patients with parasitic and non-parasitic splenic cysts together with their long term follow up progresses. Twenty-four patients with splenic cysts have undergone surgery in our department over the last 9 years. Data from eighteen of the twenty-four patients were collected prospectively, while data from six were retrospectively collected. All patients were assessed in terms of age, gender, hospital stay, preoperative diagnosis, additional disease, serology, ultrasonography, computed tomography (CT), cyst recurrences and treatment. In this study, the majority of patients presented with abdominal discomfort and palpable swelling in the left hypochondrium. All patients were operated on electively. The patients included 14 female and 10 male patients, with a mean age of 44.77 years (range 20-62). Splenic hydatid cysts were present in 16 patients, one of whom also had liver hydatid cysts (6.25%). Four other patients were operated on for a simple cyst (16%) two patients for an epithelial cyst, and the last two for splenic lymphangioma. Of the 16 patients diagnosed as having splenic hydatit cysts, 11 (68.7%) were correctly diagnosed. Only two of these patients were administered benzimidazole therapy pre-operatively because of the risk of multicystic disease The mean follow-up period was 64 months (6-108). There were no recurrences of splenic cysts. Surgeons should keep in mind the possibility of a parasitic cyst when no definitive alternative diagnosis can be made. In the treatment of splenic hydatidosis, benzimidazole therapy is not necessary, although it is crucial to perform

  5. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    PubMed

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  6. Severe gastric variceal bleeding successfully treated by emergency splenic artery embolization.

    PubMed

    Sankararaman, Senthilkumar; Velayuthan, Sujithra; Vea, Romulo; Herbst, John

    2013-06-01

    Bleeding from gastric varices due to splenic vein obstruction is extremely rare in children, but it can be catastrophic. Reported herein is the case of a teenager with splenic vein thrombosis and chronic decompensated liver disease from autoimmune hepatitis who presented with massive gastric variceal bleeding. Standard medical management did not control the bleeding. Due to decompensated liver disease and continuous active bleeding, emergency partial splenic artery embolization was preferred over splenectomy or a shunt procedure. Bleeding was successfully controlled by partial splenic artery embolization by decreasing the inflow of blood into the portal system. It is concluded that emergency partial splenic artery embolization is a safer alternative life-saving procedure to manage severe gastric variceal bleeding due to splenic vein obstruction in a patient with high surgical risk. To our knowledge, only one other patient with similar management has been reported in the pediatric age group. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  7. Detection and original dose assessment of egg powders subjected to gamma irradiation by using ESR technique

    NASA Astrophysics Data System (ADS)

    Aydın, Talat

    2015-09-01

    ESR (electron spin resonance) techniques were applied for detection and original dose estimation to radiation-processed egg powders. The un-irradiated (control) egg powders showed a single resonance line centered at g=2.0086±0.0005, 2.0081±0.0005, 2.0082±0.0005 (native signal) for yolk, white and whole egg, respectively. Irradiation induced at least one additional intense singlet overlapping to the control signal and caused a significant increase in signal intensity without any changes in spectral patterns. Responses of egg powders to different gamma radiation doses in the range 0-10 kGy were examined. The stability of the radiation-induced ESR signal of irradiated egg powders were investigated over a storage period of about 5 months. Additive reirradiation of the egg powders produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. The additive dose method gives an estimation of the original dose within ±12% at the end of the 720 h storage period.

  8. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

    PubMed Central

    Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2012-01-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  9. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    PubMed

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  10. Splenic macrophages are required for protective innate immunity against West Nile virus

    PubMed Central

    Bryan, Marianne A.; Giordano, Daniela; Draves, Kevin E.; Green, Richard; Gale, Michael

    2018-01-01

    Although the spleen is a major site for West Nile virus (WNV) replication and spread, relatively little is known about which innate cells in the spleen replicate WNV, control viral dissemination, and/or prime innate and adaptive immune responses. Here we tested if splenic macrophages (MΦs) were necessary for control of WNV infection. We selectively depleted splenic MΦs, but not draining lymph node MΦs, by injecting mice intravenously with clodronate liposomes several days prior to infecting them with WNV. Mice missing splenic MΦs succumbed to WNV infection after an increased and accelerated spread of virus to the spleen and the brain. WNV-specific Ab and CTL responses were normal in splenic MΦ-depleted mice; however, numbers of NK cells and CD4 and CD8 T cells were significantly increased in the brains of infected mice. Splenic MΦ deficiency led to increased WNV in other splenic innate immune cells including CD11b- DCs, newly formed MΦs and monocytes. Unlike other splenic myeloid subsets, splenic MΦs express high levels of mRNAs encoding the complement protein C1q, the apoptotic cell clearance protein Mertk, the IL-18 cytokine and the FcγR1 receptor. Splenic MΦ-deficient mice may be highly susceptible to WNV infection in part to a deficiency in C1q, Mertk, IL-18 or Caspase 12 expression. PMID:29408905

  11. Biological impact of low dose-rate simulated solar particle event radiation in vivo.

    PubMed

    Chang, P Y; Doppalapudi, R; Bakke, J; Wang, A; Menda, S; Davis, Z

    2010-08-01

    C57Bl6-lacZ animals were exposed to a range of low dose-rate simulated solar particle event (sSPE) radiation at the NASA-sponsored Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL). Peripheral blood was harvested from animals from 1 to 12 days after total body irradiation (TBI) to quantify the level of circulating reticulocytes (RET) and micronucleated reticulocytes (MN-RET) as an early indicator of radiation-induced genotoxicity. Bone marrow lymphocytes and hippocampal tissues from each animal were collected at 12 days and up to two months, to evaluate dose-dependent late effects after sSPE exposure. Early hematopoietic changes show that the % RET was reduced up to 3 days in response to radiation exposure but recovered at 12 days postirradiation. The % MN-RET in peripheral blood was temporally regulated and dependant on the total accumulated dose. Total chromosome aberrations in lymphocytes increased linearly with dose within a week after radiation and remained significantly higher than the control values at 4 weeks after exposure. The level of aberrations in the irradiated animals returned to control levels by 8 weeks postirradiation. Measurements of chromosome 2 and 8 specific aberrations indicate that, consistent with conventional giemsa-staining methods, the level of aberrations is also not significantly higher than in control animals at 8 weeks postirradiation. The hippocampus was surveyed for differential transcriptional regulation of genes known to be associated with neurogenesis. Our results showed differential expression of neurotrophin and their associated receptor genes within 1 week after sSPE exposure. Progressive changes in the profile of expressed genes known to be involved in neurogenic signaling pathways were dependent on the sSPE dose. Our results to date suggest that radiation-induced changes in the hematopoietic system, i.e., chromosome aberrations in lymphocytes, are transient and do not persist past 4 weeks after radiation

  12. Dose-time relationships for post-irradiation cutaneous telangiectasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, L.; Ubaldi, S.E.

    1977-01-01

    Seventy-five patients who had received electron beam radiation a year or more previously were studied. The irradiated skin portals were photographed and late reactions graded in terms of the number and severity of telangiectatic lesions observed. The skin dose, number of fractions, overall treatment time and irradiated volume were recorded in each case. A Strandqvist-type iso-effect line was derived for this response. A multi-probit search program also was used to derive best-fitting cell population kinetic parameters for the same data. From these parameters a comprehensive iso-effect table could be computed for a wide range of treatment schedules including daily treatmentmore » as well as fractionation at shorter and longer intervals; this provided a useful set of normal tissue tolerance limits for late effects.« less

  13. Isolated splenic metastasis in a patient with two distinct genitourinary malignancies.

    PubMed

    Zhang, Lulu; Pasquale, Donald; Le, Maithao; Patel, Raina; Mehdi, Syed

    2015-06-01

    Splenic metastasis is rare, occurring in 2.3%- 7.1% of cases, of which 95% are carcinomas.1 The lung is the most common primary tumor site (21% of cases), followed by the gastrointestinal system, breast, ovaries, and skin. In a retrospective study evaluating the clinical and pathological impact of splenic metastases during a 25-year period in China, it was found that about 5.3% of metastases were isolated splenic metastasis.2 Isolated splenic metastasis from kidney cancer is very rare and is often an incidental finding. Here we report a case with isolated splenic metastasis in a patient with both primary renal cell carcinoma and prostate cancer, which turned out to be metastatic renal cell carcinoma in the spleen. ©2015 Frontline Medical Communications.

  14. Splenic Abscess Associated with Endocarditis in a Patient on Hemodialysis: A Case Report

    PubMed Central

    Kim, Hyun Soo; Cho, Min Seok; Hwang, Seung Hwan; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho

    2005-01-01

    Splenic abscess is an unusual condition usually seen in immunocompromised patients or associated with intravenous drug abuses. Several conditions including trauma, immunodeficiency, corticosteroid and/or immunosuppressive therapy and diabetes mellitus have been listed under the predisposing factors for a splenic abscess. Splenic abscess in a patient on hemodialysis is a rare but life-threatening condition if not corrected. We describe a case of splenic abscess with bacterial endocarditis on maintenance hemodialysis. He had staphylococcal septicemia secondary to bacterial endocarditis at the mitral valve from the dialysis accesssite infection. Although hematologic seeding from endocarditis has been the predisposing factor for splenic abscess, we postulate that access-site infections may predispose hemodialysis patients to splenic abscess. Splenic abscess may be considered as one of the causes when patients on hemodialysis develop unexplained fever. PMID:15832007

  15. Percutaneous transcatheter arterial embolization in haemodynamically stable patients with blunt splenic injury

    PubMed Central

    Popovic, Peter; Stanisavljevic, Dragoje; Jeromel, Miran

    2010-01-01

    Background The nonoperative management of the blunt splenic injury in haemodynamically stable patients has become an accepted treatment in recent years. We present a case of the blunt splenic injury successfully treated by supraselective embolization with microspheres. Case report. A young hockey player was brought to the Emergency Department with the history of blunt abdominal trauma 2 h earlier. A Grade III splenic injury with haemoperitoneum was diagnosed on sonographic evaluation and the patient was treated with the selective distal splenic artery embolization with microspheres. Postprocedural ultrasound and computed tomography follow-up a year later revealed only a small area of parenchymal irregularity. Conclusions The percutaneous splenic arterial embolization has a major role in the management of traumatic splenic injuries. Embolization is particularly beneficial in injuries of grade III or higher. PMID:22933888

  16. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    PubMed

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  17. Caries Experience among Adults Exposed to Low to Moderate Doses of Ionizing Radiation in Childhood - The Tinea Capitis Cohort.

    PubMed

    Vered, Yuval; Chetrit, Angela; Sgan-Cohen, Harold D; Amitai, Tova; Mann, Jonathan; Even-Nir, Hadas; Sadetzki, Siegal

    2016-01-01

    While the impact of therapeutic levels of ionizing radiation during childhood on dental defects has been documented, the possible effect of low doses on dental health is unknown. The study aim was to assess the association between childhood exposure to low-moderate doses of therapeutic radiation and caries experience among a cohort of adults 50 years following the exposure. The analysis was based on a sample of 253 irradiated (in the treatment of tinea capitis) and 162 non-irradiated subjects. The decayed, missing, and filled teeth (DMFT) index was assessed during a clinical dental examination and questions regarding dental care services utilization, oral hygiene behavior, current self-perceived mouth dryness, socio-demographic parameters, and health behavior variables were obtained through a face-to-face interview. An ordered multivariate logistic regression model was used to assess the association of the main independent variable (irradiation status) and other relevant independent variables on the increase in DMFT. Mean caries experience levels (DMFT) were 18.6 ± 7.5 for irradiated subjects compared to 16.4 ± 7.2 for the non-irradiated (p = 0.002). Controlling for gender, age, education, income, smoking, dental visit in the last year, and brushing teeth behavior, irradiation was associated with a 72% increased risk for higher DMFT level (95% CI: 1.19-2.50). A quantification of the risk by dose absorbed in the salivary gland and in the thyroid gland showed adjusted ORs of 2.21 per 1 Gy (95% CI: 1.40-3.50) and 1.05 per 1 cGy (95% CI: 1.01-1.09), respectively. Childhood exposure to ionizing radiation (0.2-0.4 Gy) might be associated with late outcomes of dental health. In line with the guidelines of the American Dental Association, these results call for caution when using dental radiographs.

  18. Evaluation of a 15-year experience with splenic injuries in a state trauma system.

    PubMed

    Harbrecht, Brian G; Zenati, Mazen S; Ochoa, Juan B; Puyana, Juan C; Alarcon, Louis H; Peitzman, Andrew B

    2007-02-01

    The management of splenic injuries has evolved with a greater emphasis on nonoperative management. Although several institutions have demonstrated that nonoperative management of splenic injuries can be performed with an increasing degree of success, the impact of this treatment shift on outcome for all patients with splenic injuries remains unknown. We hypothesized that outcomes for patients with splenic injuries have improved as the paradigm for splenic injury treatment has shifted. Consecutive patients from 1987 to 2001 with splenic injuries who were entered into a state trauma registry were reviewed. Demographic variables, injury characteristics, and outcome data were collected. The number of patients who were diagnosed with splenic injuries increased from 1987 through 2001, despite a stable number of institutions submitting data to the registry. The number of minor injuries and severe splenic injuries remained stable, and the number of moderately severe injuries significantly increased over time. Overall mortality rate improved but primarily reflected the decreased mortality rates of moderately severe injuries; the mortality rate for severe splenic injuries was unchanged. Trauma centers are seeing increasing numbers of splenic injuries that are less severe in magnitude, although the number of the most severe splenic injuries is stable. The increased proportion of patients with less severe splenic injuries who are being admitted to trauma centers is a significant factor in the increased use and success rate of nonoperative management.

  19. Management of blunt splenic injuries Retrospective cohort study of early experiences in an Acute Care Surgery Service recently established.

    PubMed

    Occhionorelli, Savino; Morganti, Lucia; Andreotti, Dario; Cappellari, Lorenzo; Stano, Rocco; Portinari, Mattia; Vasquez, Giorgio

    2015-01-01

    To identify patients with splenic injuries, who should benefit from a conservative treatment, and to compare inhospital follow-up and hospital length of stay (LOS), in patients treated by non-operative management (NOM) versus immediate-splenectomy (IS). A retrospective cohort study on consecutive patients, with all grade of splenic injuries, admitted between November 2010 and December 2014 at the Acute Care Surgery Service of the S. Anna University Hospital of Ferrara. Patients were offered NOM or IS. Fifty-four patients were enrolled; 29 (53.7%) underwent IS and 25 (46.3%) were offered NOM. Splenic artery angioembolization was performed in 9 patients (36%) among this latter group. High-grade splenic injuries (IVV) were more represented in IS group (65.5% vs 8%), while low grade (I-II) were more represented in NOM group (64% vs 10.3%). Failure of NOM occurred in 4 patients (16%). Hospital LOS was longer in IS group (p=0.044), while in-hospital and 30-day mortality were not statistically significant different between the two groups. Hemodynamically stable patients, with grade I to III of splenic injuries, without other severe abdominal organ injuries, could benefit from a NOM; the in-hospital follow-up should be done, after a control CECT scan, with US. Observation and strictly monitoring of splenic injuries treated with NOM do not affect patients' hospital los. Non-operative management, Splenic Rupture, Surgery.

  20. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation.

    PubMed

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-09

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  1. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  2. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, weremore » significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.« less

  3. Low-Dose versus Standard-Dose Intravenous Alteplase in Acute Ischemic Stroke.

    PubMed

    Anderson, Craig S; Robinson, Thompson; Lindley, Richard I; Arima, Hisatomi; Lavados, Pablo M; Lee, Tsong-Hai; Broderick, Joseph P; Chen, Xiaoying; Chen, Guofang; Sharma, Vijay K; Kim, Jong S; Thang, Nguyen H; Cao, Yongjun; Parsons, Mark W; Levi, Christopher; Huang, Yining; Olavarría, Verónica V; Demchuk, Andrew M; Bath, Philip M; Donnan, Geoffrey A; Martins, Sheila; Pontes-Neto, Octavio M; Silva, Federico; Ricci, Stefano; Roffe, Christine; Pandian, Jeyaraj; Billot, Laurent; Woodward, Mark; Li, Qiang; Wang, Xia; Wang, Jiguang; Chalmers, John

    2016-06-16

    Thrombolytic therapy for acute ischemic stroke with a lower-than-standard dose of intravenous alteplase may improve recovery along with a reduced risk of intracerebral hemorrhage. Using a 2-by-2 quasi-factorial open-label design, we randomly assigned 3310 patients who were eligible for thrombolytic therapy (median age, 67 years; 63% Asian) to low-dose intravenous alteplase (0.6 mg per kilogram of body weight) or the standard dose (0.9 mg per kilogram); patients underwent randomization within 4.5 hours after the onset of stroke. The primary objective was to determine whether the low dose would be noninferior to the standard dose with respect to the primary outcome of death or disability at 90 days, which was defined by scores of 2 to 6 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]). Secondary objectives were to determine whether the low dose would be superior to the standard dose with respect to centrally adjudicated symptomatic intracerebral hemorrhage and whether the low dose would be noninferior in an ordinal analysis of modified Rankin scale scores (testing for an improvement in the distribution of scores). The trial included 935 patients who were also randomly assigned to intensive or guideline-recommended blood-pressure control. The primary outcome occurred in 855 of 1607 participants (53.2%) in the low-dose group and in 817 of 1599 participants (51.1%) in the standard-dose group (odds ratio, 1.09; 95% confidence interval [CI], 0.95 to 1.25; the upper boundary exceeded the noninferiority margin of 1.14; P=0.51 for noninferiority). Low-dose alteplase was noninferior in the ordinal analysis of modified Rankin scale scores (unadjusted common odds ratio, 1.00; 95% CI, 0.89 to 1.13; P=0.04 for noninferiority). Major symptomatic intracerebral hemorrhage occurred in 1.0% of the participants in the low-dose group and in 2.1% of the participants in the standard-dose group (P=0.01); fatal events occurred within 7 days in 0.5% and 1.5%, respectively

  4. [Isolated splenic metastases from cervical cancer: a rare entity].

    PubMed

    Villalón-López, José Sebastián; Souto-del Bosque, Rosalía; Montañez-Lugo, Juan Ignacio; Chávez-González, Bruno

    2014-01-01

    Splenic metastases from solid tumors are a rare event with an incidence of only 2.9% to 9%. Splenic metastases from cervical cancer are a rare entity. Only a few cases have been reported of isolated spleen metastases from cervical cancer. We present the case of a 76-year-old woman with moderately differentiated endocervical adenocarcinoma stromal and endocervical invasion. Clinical stage was Ib1 and Ca-125 values of 150 U. She was managed with hysterectomy and pelvic lymphadenectomy. She received pelvic radiotherapy (45 Gy) followed 24 Gy of brachytherapy. Two years later she presented with abdominal pain. Abdominal computed tomography showed two splenic parenchymal lesions without disease in the remainder of the abdominal cavity and chest with a Ca-125 of 2,733 U. The patient is submitted to splenectomy. Histopathology demonstrates splenic metastases of well-differentiated adenocarcinoma from the endocervix. Immunohistochemical stain showed positivity from carcinoembryonic antigen; estrogen and progesterone receptors are negative. Ca-125 level 8 weeks after surgery was 16 U/ml. The patient received six cycles of adjuvant chemotherapy with paclitaxel and cisplatin. At 12 months follow-up the patient is alive and without evidence of tumor activity. The spleen is an uncommon site of metastasis. Splenectomy is considered the appropriate treatment in order to avoid complications such as splenic rupture and splenic vein thrombosis as well as to improve pain control from splenomegaly. Twelve months after surgery our patient is alive and without evidence of tumor activity.

  5. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  6. Cherry Irradiation Studies. 1984 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eakin, D.E.; Hungate, F.P.; Tingey, G.L.

    1985-04-01

    Fresh cherries, cherry fruit fly larvae, and codling moth larvae were irradiated using the PNL cobalt-60 facility to determine the efficacy of irradiation treatment for insect disinfestation and potential shelf life extension. Irradiation is an effective disinfestation treatment with no significant degradation of fruit at doses well above those required for quarantine treatment. Sufficient codling moth control was achieved at projected doses of less than 25 krad; cherry fruit fly control, at projected doses of less than 15 krad. Dose levels up to 60 krad did not adversely affect cherry quality factors tested. Irradiation above 60 krad reduced the firmnessmore » of cherries but had no significant impact on other quality factors tested. Irradiation of cherries below 80 krad did not result in any significant differences in sensory evaluations (appearance, flavor, and firmness) in tests conducted at OSU. Irradiation up to 200 krad at a temperature of about 25/sup 0/C (77/sup 0/F) did not measurably extend shelf life. Irradiation at 500 krad at 25/sup 0/C (77/sup 0/F) increased mold and rotting of cherries tested. There is no apparent advantage of irradiation over low-temperature fumigation.« less

  7. Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research.

    PubMed

    Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S

    2018-03-01

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).

  8. Patient dose analysis in total body irradiation through in vivo dosimetry.

    PubMed

    Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J

    2012-10-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol.

  9. Patient dose analysis in total body irradiation through in vivo dosimetry

    PubMed Central

    Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Bhuvaneshwari, N.; Velmurugan, J.

    2012-01-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453

  10. Tissue responses to low protracted doses of high LET radiations or photons: Early and late damage relevant to radio-protective countermeasures

    NASA Astrophysics Data System (ADS)

    Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency

  11. Splenic injury from colonoscopy: a review and management guidelines.

    PubMed

    Ghevariya, Vishal; Kevorkian, Noubar; Asarian, Armand; Anand, Sury; Krishnaiah, Mahesh

    2011-07-01

    Splenic injury is an uncommon complication of colonoscopy. Less than 100 cases are reported in the English language literature. The exact mechanism of injury to the spleen during colonoscopy is unknown; various authors propose several risk factors and possible mechanisms. Splenic injury can be graded or classified according to the extent of laceration and the severity of the resultant hematoma. The management options range from observation to emergency splenectomy. Computed tomography scan is the most important imaging modality to diagnose splenic injury. Early recognition and appropriate management is of paramount importance in the management of this condition. A high index of suspicion in a patient with persistent abdominal pain after colonoscopy is key especially when a perforated viscous is ruled out. This article outlines the clinical presentation of splenic injury after colonoscopy and delineates a management algorithm.

  12. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiman, Norman Jay

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1

  13. Low-Dose Strontium-90 Irradiation Is Effective in Preventing the Recurrence of Pterygia: A Ten-Year Study

    PubMed Central

    Guo, Liang; Guo, Yong-yuan

    2012-01-01

    Background To study the long-term effects of low-dosage strontium-90 (Sr90) irradiation on the recurrence of pterygium. Methodology/Principal Findings One hundred twenty eyes from 104 patients with primary or recurrent pterygia were treated with surgery followed by Sr90 irradiation. In brief, starting on the sixth day after surgery, patients were treated with irradiation three times every other day at a total combined dosage of 2000 cGy to 3000 cGy. Corneal topography was used to evaluate ocular surface regularity before and after treatment. Patient follow-up was performed 2 days, 5 days, 2 weeks, 1 month, 3 months, 1 year, 5 years, and 10 years after surgery. Recurrence of pterygium was not observed in any of the patients in this study. Obvious cataract progression was observed in 6 eyes, which may be due to aging. During follow-up studies, only one eye was reported with dryness and foreign-body sensation. Significant pterygium-induced astigmatism was observed in corneal topography, which decreased after surgery. Conclusions/Significance Sr90 irradiation is effective in preventing the recurrence of primary and recurrent pterygia. We recommend delivering a total combined dosage of 2000 cGy to 3000 cGy of Sr90 irradiation administered in three batches every other day starting from the sixth day after surgery. Surgery is important in the rapid recovery of the cornea from pterygium-induced astigmatism. PMID:22952695

  14. Blunt splenic trauma: Assessment, management and outcomes.

    PubMed

    El-Matbouly, Moamena; Jabbour, Gaby; El-Menyar, Ayman; Peralta, Ruben; Abdelrahman, Husham; Zarour, Ahmad; Al-Hassani, Ammar; Al-Thani, Hassan

    2016-02-01

    The approach for diagnosis and management of blunt splenic injury (BSI) has been considerably shifted towards non-operative management (NOM). We aimed to review the current practice for the evaluation, diagnosis and management of BSI. A traditional narrative literature review was carried out using PubMed, MEDLINE and Google scholar search engines. We used the keywords "Traumatic Splenic injury", "Blunt splenic trauma", "management" between December 1954 and November 2014. Most of the current guidelines support the NOM or minimally approaches in hemodynamically stable patients. Improvement in the diagnostic modalities guide the surgeons to decide the timely management pathway Though, there is an increasing shift from operative management (OM) to NOM of BSI; NOM of high grade injury is associated with a greater rate of failure, prolonged hospital stay, risk of delayed hemorrhage and transfusion-associated infections. Some cases with high grade BSI could be successfully treated conservatively, if clinically feasible, while some patients with lower grade injury might end-up with delayed splenic rupture. Therefore, the selection of treatment modalities for BSI should be governed by patient clinical presentation, surgeon's experience in addition to radiographic findings. About one-fourth of the blunt abdominal trauma accounted for BSI. A high index of clinical suspicion along with radiological diagnosis helps to identify and characterize splenic injuries with high accuracy and is useful for timely decision-making to choose between OM or NOM. Careful selection of NOM is associated with high success rate with a lower rate of morbidity and mortality. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  15. Management of pediatric splenic injuries in Canada.

    PubMed

    McDonald, Lindsay A; Yanchar, Natalie L

    2012-03-01

    Nonoperative management (NOM) of blunt splenic injuries has become the standard of care in hemodynamically stable children. This study compares the management of these injuries between pediatric and nonpediatric hospitals in Canada. Data were obtained from the Canadian Institute of Health Information trauma database on all patients aged 2 to 16 years, admitted to a Canadian hospital with a diagnosis of splenic injury between May 2002 and April 2004. Variables included age, sex, associated major injuries, splenic procedures, intensive care unit (ICU) admissions, blood transfusions, and length of stay. Hospitals were coded as pediatric or nonpediatric. Univariate analysis and logistic regression were used to determine associations between hospital type and outcomes. Of 1284 cases, 654 were managed at pediatric hospitals and 630 at nonpediatric centers. Patients at pediatric centers tended to be younger and more likely to have associated major injuries. Controlling for covariates, including associated major injuries, patients managed at pediatric centers were less likely to undergo splenectomy compared with those managed at nonpediatric centers (odds ratio [OR], 0.2; 95% confidence interval, 0.1-0.4). The risk of receiving blood products, admission to the ICU, and staying in hospital for more than 5 days was associated only with having associated major injuries. Even in the presence of other major injuries, successful NOM of blunt splenic injuries occurs more frequently in pediatric hospitals in Canada. This has policy relevance regarding education of adult surgeons about the appropriateness of NOM in children and developing guidelines on appropriate regional triaging of pediatric patients with splenic injury in Canada. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A secretome analysis reveals that PPARα is upregulated by fractionated-dose γ-irradiation in three-dimensional keratinocyte cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were

  17. Thermal and mechanical properties of gamma-irradiated prevulcanized natural rubber latex/low nitrosamines latex blends

    NASA Astrophysics Data System (ADS)

    Ibrahim, Pairu; Daik, Rusli; Wan Zin, Wan Manshol

    2016-12-01

    Thermal and mechanical properties of blended radiation prevulcanized natural rubber latex (RVNRL) and low nitrosamines latex (LNL) were studied. RVNRL was blended with LNL at various composition ratios. From the tensile test, it was found that the optimum tensile value was attained at a total blending ratio of 70% RVNRL and 30% LNL. Latex blending with optimum tensile strength was then subjected to gamma irradiation at various doses with the presence and absence of methyl methacrylate (MMA) at 10 pphr. It was found that the gamma irradiation of latex blend with the presence of MMA could help increase further the tensile value. Composition of blending at a specific ratio and gamma irradiation at a specific dose has led to a significant improvement in the mechanical properties of the latex blend. The formation of grafting in the latex blend was characterized by Fourier transform infrared spectra (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy confirmed that MMA could be grafted onto blended latex effectively under appropriate irradiation conditions. Two new peaks at 1731 and 1149 cm-1 were observed after irradiation, indicating the presence of an ester group from poly(methyl methacrylate) (PMMA), which was grafted onto rubber chains. This finding was proved by the presence of new Tg in DSC analysis. The increase in new Tg indicates the movement of grafting chains, which are tightly bound onto rubber chains.

  18. Intravascular low-level laser irradiation in the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Shi, Hong-Min; Zhang, Hui-Guo; Zhang, Mei-Jue; Xu, Jian; Zhou, Min; Hu, Guo-Qiang

    1998-11-01

    Liu TCY et al have put forward the biological information model on low intensity laser irradiation (BIML): low intensity laser irradiation couples with intracellular messenger through the chromophore absorption in the cell membrane: hot-color laser irradiation activates cAMP phosphodiestererase through Gi protein, or activates phosphoinositide phospholipase C through G protein, or activates one of receptor-associated kinases: cAMP; cold- color laser irradiation activates adenylate cyclase through Gs protein: cAMP$ARUP. In this paper, under the guidance of BIML, we applied the intravascular low intensity He-He laser irradiation on blood to a patient of idiopathic edema, and succeeded.

  19. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, Emil; Trovati, Stefania; King, Gregory

    Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlomore » and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.« less

  20. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  1. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter

    NASA Astrophysics Data System (ADS)

    Abad, Lucille V.; Aurigue, Fernando B.; Relleve, Lorna S.; Montefalcon, Djowel Recto V.; Lopez, Girlie Eunice P.

    2016-01-01

    Radiation degraded κ-carrageenan (1% solution at absorbed doses of 20 kGy and 30 kGy) were tested for its plant growth promoter (PGP) effect on pechay plants under hydroponics condition. Results revealed that higher PGP effects were found in κ-carrageenan irradiated at an absorbed dose of 30 kGy. Mw of irradiated κ-carrageenan as measured by GPC were determined to be 7362 Da and 6762 Da for 20 kGy and 30 kGy, respectively. Fractionation of the irradiated κ-carrageenan (30 kGy) was done to separate different Mw fractions using Mw cut-off filters of 1 kDa, 3 kDa, and 5 kDa. The PGP effect of the different retentates showed that biological activity in plants followed the order of 5 kDa>3 kDa>1 kDa using hydroponics condition but the reverse was observed in the order of 1 kDa>3 kDa>5 kDa when absorbed in plants by foliar spraying. GPC chromatogram indicated at least three (3) low molecular weight (LMW) fragments from radiation modified κ-carrageenan solution with an Mw<2000 Da. A fragment has also been identified with an Mw of as low as 160 Da which was produced under acidic (un-neutralized) condition. This may be attributed to the formation of 5-hydroxymethylfurfural (5-HMF).

  2. Regulatory Effect of Low-Intensity Optical Radiation on Oxygenation of Blood Irradiated In Vivo and Metabolic Processes

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.

    2016-03-01

    For three series of blood samples, we have studied the effect of therapeutic doses of low-intensity optical radiation (LOR) on oxygenation parameters of blood irradiated in vivo, and also on the levels of some metabolites: lactate, glucose, cholesterol. The quality of blood oxygenation was assessed using three parameters: the partial pressure of oxygen pVO2, the oxygen saturation of hemoglobin SVO2, and the oxygen level in arterial and venous blood, varying under the influence of low-intensity optical radiation due to photodissociation of hemoglobin/ligand complexes. We have established that during photohemotherapy (PHT), including extracorporeal, supravascular, and intravenous blood irradiation, positive changes occur in the oxygenation parameters and the metabolite levels, while after the courses of PHT have been completed, the individual changes in such parameters in individual patients were both positive and negative. The regulatory effect of PHT was apparent in the tendency toward a decrease in high initial values and an increase in low initial values both for the oxygenation parameters and for the metabolites; but at the doses recommended for use, PHT had a regulatory but still not a normalizing effect.

  3. Endovascular Treatment of Splenic Artery Aneurysm With a Stent-Graft: A Case Report.

    PubMed

    Guang, Li-Jun; Wang, Jian-Feng; Wei, Bao-Jie; Gao, Kun; Huang, Qiang; Zhai, Ren-You

    2015-12-01

    Splenic artery aneurysm, one of the most common visceral aneurysms, accounts for 60% of all visceral aneurysm cases. Open surgery is the traditional treatment for splenic artery aneurysm but has the disadvantages of serious surgical injuries, a high risk of complications, and a high mortality rate.We report a case who was presented with splenic artery aneurysm. A 54-year-old woman complained of upper left abdominal pain for 6 months. An enhanced computed tomography scan of the upper abdomen indicated the presence of splenic artery aneurysm. The splenic artery aneurysm was located under digital subtraction angiography and a 6/60 mm stent graft was delivered and released to cover the aneurysm. An enhanced computed tomography scan showed that the splenic artery aneurysm remained well separated, the stent graft shape was normal, and the blood flow was unobstructed after 1 year.This case indicates a satisfactory efficacy proving the minimal invasiveness of stent graft exclusion treatment for splenic artery aneurysm.

  4. Percutaneous Treatment of Congenital Splenic Cysts: Drainage and Sclerotherapy with Polidocanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goktay, A. Yigit, E-mail: yigit.goktay@deu.edu.tr, E-mail: goktayay@superonline.com; Secil, Mustafa; Ozcan, Mehmet Ali

    2006-06-15

    Congenital 'true' splenic cysts are rare lesions. Therapeutic methods for the management of these lesions have been based on preserving splenic function due to the immunologic role of spleen. We report three different cases of congenital splenic cysts treated by percutaneous drainage and polidocanol sclerotherapy. This less invasive treatment appears to be safe and effective after 6 to 36 months of follow-up.

  5. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a ;priming; dose of protons on the cardiac cellular and molecular response to a ;challenge; dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  6. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation.

    PubMed

    Ramadan, Samy S; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan

    2016-02-01

    Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of (56)Fe in a mouse model. Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of (56)Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of (56)Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Exposure to (56)Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before (56)Fe prevented all of the responses to (56)Fe. This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    PubMed Central

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2015-01-01

    Purpose Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a “priming” dose of protons on the cardiac cellular and molecular response to a “challenge” dose of 56Fe in a mouse model. Methods Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. PMID:26948008

  8. Effects of Acute Low-Dose Exposure to the Chlorinated Flame Retardant Dechlorane 602 and Th1 and Th2 Immune Responses in Adult Male Mice

    PubMed Central

    Feng, Yu; Tian, Jijing; Xie, Heidi Qunhui; She, Jianwen; Xu, Sherry Li; Xu, Tuan; Tian, Wenjing; Fu, Hualing; Li, Shuaizhang; Tao, Wuqun; Wang, Lingyun; Chen, Yangsheng; Zhang, Songyan; Zhang, Wanglong; Guo, Tai L.; Zhao, Bin

    2016-01-01

    Background: Although the chlorinated flame retardant Dechlorane (Dec) 602 has been detected in food, human blood, and breast milk, there is limited information on potential health effects, including possible immunotoxicity. Objectives: We determined the immunotoxic potential of Dec 602 in mice by examining the expression of phenotypic markers on thymocyte and splenic lymphocyte subsets, Th1/Th2 transcription factors, and the production of cytokines and antibodies. Methods: Adult male C57BL/6 mice were orally exposed to environmentally relevant doses of Dec 602 (1 and 10 μg/kg body weight per day) for 7 consecutive days. Thymocyte and splenic CD4 and CD8 subsets and splenocyte apoptosis were examined by flow cytometric analysis. Cytokine expression was measured at both the mRNA and the protein levels. Levels of the transcription factors Th1 (T-bet and STAT1) and Th2 (GATA3) were determined using quantitative real-time polymerase chain reaction (qPCR). Serum levels of immunoglobulins IgG1, IgG2a, IgG2b and IgE were measured by enzyme-linked immunosorbent assay (ELISA). Results: Splenic CD4+ and CD8+ T cell subsets were decreased compared with vehicle controls, and apoptosis was significantly increased in splenic CD4+ T cells. Expression (mRNA and protein) of Th2 cytokines [interleukin (IL)-4, IL-10, and IL-13] increased, and that of Th1 cytokines [IL-2, interferon (IFN)-γ and tumor necrosis factor (TNF)-α] decreased. The Th2 transcriptional factor GATA3 increased, whereas the Th1 transcriptional factors T-bet and STAT1 decreased. As additional indicators of the Th2-Th1 imbalance, production of IgG1 was significantly increased, whereas IgG2a was reduced. Conclusions: To our knowledge, we are the first to report evidence of the effects of Dec 602 on immune function in mice, with findings indicating that Dec 602 exposure favored Th2 responses and reduced Th1 function. Citation: Feng Y, Tian J, Xie HQ, She J, Xu SL, Xu T, Tian W, Fu H, Li S, Tao W, Wang L, Chen Y

  9. Gastric dilatation-volvulus after splenic torsion in two dogs.

    PubMed

    Millis, D L; Nemzek, J; Riggs, C; Walshaw, R

    1995-08-01

    Two dogs developed gastric dilatation-volvulus 2 and 17 months, respectively, after splenectomy for treatment of splenic torsion. Splenic displacement and torsion may stretch the gastric ligaments, allowing increased mobility of the stomach. After splenectomy, an anatomic void may be created in the cranioventral part of the abdomen, contributing to the mobility of the stomach. Veterinarians treating dogs with isolated splenic torsion may wish to consider prophylactic gastropexy at splenectomy, to reduce the chance of future gastric dilatation-volvulus. Prophylactic gastropexy should be done only if the dog's hemodynamic status is stable enough to allow for performance of the additional surgery.

  10. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  11. NF-κB deregulation in splenic marginal zone lymphoma.

    PubMed

    Spina, Valeria; Rossi, Davide

    2016-08-01

    Splenic marginal zone lymphoma is a rare mature B-cell malignancy involving the spleen, bone marrow and blood. Over the past years, the rapid expansion of sequencing technologies allowing the genome-wide assessment of genomic, epigenetic and transcriptional changes has revolutionized our understanding of the biological basis of splenic marginal zone lymphoma by providing a comprehensive and unbiased view of the genes/pathways that are deregulated in this disease. NF-κB is a family of transcription factors that plays critical roles in development, survival, and activation of B lymphocytes. Consistent with the physiological involvement of NF-κB signalling in proliferation and commitment of mature B-cells to the marginal zone of the spleen, many oncogenic mutations involved in constitutive activation of the NF-κB pathway were recently identified in splenic marginal zone lymphoma. This review describes the progress in understanding the mechanism of NF-κB activation in splenic marginal zone lymphoma, including molecular, epigenetic and post-transcriptional modifications of NF-κB genes and of upstream pathways, and discusses how information gained from these efforts has provided new insights on potential targets of diagnostic, prognostic and therapeutic relevance for splenic marginal zone lymphoma. Copyright © 2016. Published by Elsevier Ltd.

  12. The lack of cytotoxic effect and radioadaptive response in splenocytes of mice exposed to low level internal β-particle irradiation through tritiated drinking water in vivo.

    PubMed

    Flegal, Matthew; Blimkie, Melinda; Roch-Lefevre, Sandrine; Gregoire, Eric; Klokov, Dmitry

    2013-12-05

    Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO) at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  13. OBSTETRIC-GYNECOLOGICAL STUDY ON WOMEN RECEIVING IRRADIATION IN SMALL DOSES ON THE LOWER ABDOMEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurata, A.

    1961-06-01

    The effects of diagnostic x-ray exposure on reproductive function and on the offspring were investigated in 105 women in comparison with 131 control women who had not received abdominal radiation. The estimated radiation dose applied to the ovaries in hysterosalpingography was 200 to 550 mr (average 400 mr) and in fetal roentgenography about 560 mr. The irradiated women reported a shorter duration and less amount of menstruation after as compared with before irradiation but menstruation parameters were similar in the irradiated and control groups. The average age at menopause was the same in the 2 groups. Pregnancy rate increased markedlymore » after salpingography; it rose to 46% in women who had been infertile before this procedure. The frequency of spontaneous abortion was higher before irradiation (13.2%) than after (8.2%), whereas the frequency of stillbirths was the same in both instances. Although the sample was too small for definite conclusions, irradiation appeared to have no influence on the offspring with respect to sex ratio, weight at birth, and incidence of postnatal death. No malformed infants were born to the irradiated mothers. It was concluded that diagnostic x radiation at the doses employed have no significant effect on gonadal function or on the first generation offspring. (H.H.D.)« less

  14. Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend

    NASA Astrophysics Data System (ADS)

    Abdou, Saleh M.; Elnahas, H. H.; El-Zahed, H.; Abdeldaym, A.

    2016-05-01

    The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.

  15. Radionuclide diagnosis of splenic rupture in infectious mononucleosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vezina, W.C.; Nicholson, R.L.; Cohen, P.

    1984-06-01

    Spontaneous splenic rupture is a rare but serious complication of infectious mononucleosis. Although radionuclide spleen imaging is a well accepted method for diagnosis of traumatic rupture, interpretation can be difficult in the setting of mononucleosis, as tears may be ill-defined and diagnosis hampered by inhomogeneous splenic uptake. Four proven cases of spontaneous rupture are presented, three of which illustrate these diagnostic problems.

  16. Effectiveness and safety of CEUS-guided haemostatic injection for blunt splenic trauma: an animal experiment.

    PubMed

    Li, W; Tang, J; Lv, F; Zhang, H; Zhang, S; An, L

    2010-10-01

    The aim of this study was to investigate whether complications occur after haemostatic agents are injected into blunt splenic injuries. After undergoing ultrasound (US), contrast-enhanced US (CEUS) and contrast-enhanced computed tomography (CECT) examinations, dogs with grade III-IV injury received the minimally invasive therapy. After treatment, CEUS was performed to observe changes in the regions treated. In the immediate group, dogs underwent laparotomy 30 min after treatment to observe the haemostatic effect. In the survival group, animals underwent CEUS and CECT examinations to observe the short-term healing outcome and complications at 3, 7, 14, and 21 days after the injection. After undergoing CEUS and CECT examinations, 12 dogs with grade III-IV injury received the minimally invasive therapy. Before injection, CEUS examinations showed anechoic and/or hypoechoic perfusion defects and active bleeding at the injury sites, and CECT showed traumatic lesions as low-density regions without enhancement. After treatment, CEUS demonstrated the disappearance of active bleeding, and hyperechoic spots emerged at the injury sites. Uneven density regions were displayed on CECT. Treated areas were covered by blood clots and glue membrane in the immediate-group animals. Three weeks later, CEUS showed a decrease of hyperechoic spots in the survival group, and the splenic parenchyma enhanced uniformly on CECT. Laparotomy showed that the greater omentum had moved upwards and partly covered the wound in four animals, and the injury sites had completely healed. Histopathological examination showed that fibrous connective tissue covered the splenic capsule and that the haemostatic glue had degraded. No complication occurred, such as delayed splenic haemorrhage, splenic abscesses, splenic pseudoaneurysms, intestinal obstruction or intestinal adhesions. CEUS-guided haemostatic injection is not only effective in stopping active bleeding immediately, but it is also safe in that no

  17. Methodology for assessment of low level laser therapy (LLLT) irradiation parameters in muscle inflammation treatment

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Several studies in human and animals show the clinical effectiveness of low level laser therapy (LLLT) in reducing some types of pain, treating inflammation and wound healing. However, more scientific evidence is required to prove the effectiveness of LLLT since many aspects of the cellular and molecular mechanisms triggered by irradiation of injured tissue with laser remain unknown. Here, we present a methodology that can be used to evaluate the effect of different LLLT irradiation parameters on the treatment of muscle inflammation on animals, through the quantification of four cytokines (TNF-α, IL-1β, IL-2 and IL-6) in systemic blood and histological analysis of muscle tissue. We have used this methodology to assess the effect of LLLT parameters (wavelength, dose, power and type of illumination) in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats. Results obtained for laser dose evaluation with continuous illumination are presented.

  18. Performance of irradiated CVD diamond micro-strip sensors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S. V.; Thomson, G. B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15/cm 2) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p/ cm2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π/ cm2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  19. Management of Giant Splenic Artery Aneurysm

    PubMed Central

    Akbulut, Sami; Otan, Emrah

    2015-01-01

    Abstract To provide an overview of the medical literature on giant splenic artery aneurysm (SAA). The PubMed, Medline, Google Scholar, and Google databases were searched using keywords to identify articles related to SAA. Keywords used were splenic artery aneurysm, giant splenic artery aneuryms, huge splenic artery aneurysm, splenic artery aneurysm rupture, and visceral artery aneurysm. SAAs with a diameter ≥5 cm are considered as giant and included in this study. The language of the publication was not a limitation criterion, and publications dated before January 15, 2015 were considered. The literature review included 69 papers (62 fulltext, 6 abstract, 1 nonavailable) on giant SAA. A sum of 78 patients (50 males, 28 females) involved in the study with an age range of 27–87 years (mean ± SD: 55.8 ± 14.0 years). Age range for male was 30–87 (mean ± SD: 57.5 ± 12.0 years) and for female was 27–84 (mean ± SD: 52.7 ± 16.6 years). Most frequent predisposing factors were acute or chronic pancreatitis, atherosclerosis, hypertension, and cirrhosis. Aneurysm dimensions were obtained for 77 patients with a range of 50–300 mm (mean ± SD: 97.1 ± 46.0 mm). Aneurysm dimension range for females was 50–210 mm (mean ± SD: 97.5 ± 40.2 mm) and for males was 50–300 mm (mean ± SD: 96.9 ± 48.9 mm). Intraperitoneal/retroperitoneal rupture was present in 15, among which with a lesion dimension range of 50–180 mm (mean ± SD; 100 ± 49.3 mm) which was range of 50–300 mm (mean ± SD: 96.3 ± 45.2 mm) in cases without rupture. Mortality for rupture patients was 33.3%. Other frequent complications were gastrosplenic fistula (n = 3), colosplenic fistula (n = 1), pancreatic fistula (n = 1), splenic arteriovenous fistula (n = 3), and portosplenic fistula (n = 1). Eight of the patients died in early postoperative period while 67 survived. Survival status of the

  20. Irradiate-anneal screening of total dose effects in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    Judicious choice of radiation dose and parameter change acceptance criteria, absence of anomalous anneal phenomena, and absence of anomalous reirradiation effects are recognized as essential for a successful irradiation-anneal (IRAN) screening procedure to ensure that no device will fall, upon reirradiation, above parametric limits assigned for the worst case application. Reirradiation and irradiation-anneal behavior of various semiconductor devices are compared and those that do not lend themselves to IRAN screening are singled out. Information needed to judge the suitability of an IRAN type screening program is detailed. Reasons for success of the limited IRAN screening of flight parts for the Mariner Jupiter/Saturn (MJS '77) spacecraft are indicated.

  1. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  2. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    PubMed

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  3. Effect of gamma-irradiation on degradation of alginate.

    PubMed

    Lee, Dong Wook; Choi, Won Seok; Byun, Myung Woo; Park, Hyun Jin; Yu, Yong-Man; Lee, Chong M

    2003-07-30

    The aqueous solution of alginate was irradiated by 60Co gamma-rays in the dose range of 10-500 kGy. To assess the effect of irradiation on the degradation of alginate, the irradiation-induced changes in the viscosity, molecular weight, color, monomer composition, and sequence were measured. The molecular weight of raw alginate was reduced from 300000 to 25000 when irradiated at 100 kGy. The degradation rate decreased and the chain breaks per molecule increased with increasing irradiation dose. The viscosity of irradiated alginate solution reached a near minimum as low as at 10 kGy. No appreciable color changes were observed in the samples irradiated at up to 100 kGy, but intense browning occurred beyond 200 kGy. The 13C NMR spectra showed that homopolymeric blocks, MM and GG, increased and the M/G ratio decreased with irradiation. Considering both the level of degradation and the color change of alginate, the optimum irradiation dose was found to be 100 kGy.

  4. Infectious mononucleosis presenting as spontaneous splenic rupture without other symptoms.

    PubMed

    Stockinger, Zsolt T

    2003-09-01

    Splenic rupture is an uncommon complication of infectious mononucleosis (IM), occurring in 0.1% to 0.5% of all patients. It remains the most common lethal complication of IM. Rupture of the spleen with no other symptoms of IM is almost unheard of. This is the report of a case of spontaneous splenic rupture requiring splenectomy in a patient with a positive heterophil antibody test and no other signs or symptoms of IM. The diagnosis and management of splenic rupture in IM are discussed.

  5. GONAD DOSES IN THE X IRRADIATION OF SOME SO-CALLED MILD ILLNESSES (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glauner, R.; Messner, D.; Thelen, P.O.

    1958-10-01

    Measurements of gonad doses were carried out on men and women using ionization chambers. In women the measurements were made in the vagina. Gonad doses were measured in patients who received x-ray therapy for puerperal mastitis, sweat gland abscesses in the axilla, and furunculi of the face. The conditions of irradiation, as well as the single and total doses, are briefiy discussed. Various means of reducing gonad dose are discussed in detail. (auth)

  6. Nonsurgical management of complicated splenic rupture in infectious mononucleosis.

    PubMed

    Jenni, Fabienne; Lienhardt, Barbara; Fahrni, Gabriela; Yuen, Bernd

    2013-07-01

    We report on a 35-year-old man who presented to the emergency department with acute abdominal pain, postural hypotension, and tachycardia after having been diagnosed with Epstein-Barr virus infection 1 week before. Abdominal ultrasound and computed tomography revealed splenic rupture, and the patient underwent successful proximal angiographic embolization of the splenic artery. The course was complicated by painful splenic necrosis and respiratory insufficiency due to bilateral pleural effusions. Six weeks later, he additionally developed severe sepsis with Propionibacterium granulosum due to an intrasplenic infected hematoma, which required drainage. All complications were treated without surgical splenectomy, and the patient finally made a full recovery.

  7. Blunt splenic trauma in children: are we too careful?

    PubMed

    De Jong, W J J; Nellensteijn, D R; Ten Duis, H J; Albers, M J I J; Moumni, M El; Hulscher, J B F

    2011-08-01

    There has been a shift from operative treatment (OT) to non-operative treatment (NOT) of splenic injury. We evaluated the outcomes of treatment of pediatric patients with blunt splenic trauma in our hospital, with special focus on the outcomes after NOT. The data of all patients <18 years with radiologically proven blunt splenic injury admitted between 1988 and 2007 were retrospectively analyzed. Mechanism of injury, type of treatment, ICU stay, total hospital stay, morbidity and mortality were assessed. Patients suffering isolated splenic injuries were assessed separately from patients with multiple injuries. Patients were subsequently divided into those admitted before and after 2000. There were 64 patients: 49 males and 15 females with a mean age of 13 years (range 0-18). 3 patients died shortly after admission due to severe neurological injury and were excluded. In the remaining 61 patients concomitant injuries, present in 62%, included long bone fractures (36%), chest injuries (16%), abdominal injuries (33%) and head injuries (30%). Mechanisms of injury were: car accidents (26%), motorcycle (20%), bicycle (19%), fall from height (17%) and pedestrians struck by a moving vehicle (8%). A change in treatment strategy was evident for the pre- and post-2000 periods. Significantly more patients had NOT after 2000 in both the isolated splenic injury group and the multi-trauma group [4/11 (36%) before vs. 10/11 (91%) after (p=0.009); 15/19 (79%) before vs. 8/20 (40%) after 2000 (p=0.03)]. There was also a significant shift to spleen-preserving operations. All life-threatening complications occurred within <24 h after injury. Mortality for the entire cohort was 7%; all of these patients were treated operatively. When comparing the median ICU and hospital stay before and after 2000 it was found to be significantly higher in the isolated injury group and remained statistically the same in the multi-trauma group. Splenic injury in children is associated with substantial

  8. Large splenic volume may be a useful predictor for partial splenic embolization-induced liver functional improvement in cirrhotic patients.

    PubMed

    Hayashi, Hiromitsu; Beppu, Toru; Masuda, Toshiro; Okabe, Hirohisa; Imai, Katsunori; Hashimoto, Daisuke; Ikuta, Yoshiaki; Chikamoto, Akira; Watanabe, Masayuki; Baba, Hideo

    2014-01-01

    Partial splenic embolization (PSE) for cirrhotic patients has been reported not only to achieve an improvement in thrombocytopenia and portal hypertension, but also to induce PSE-associated fringe benefit such as individual liver functional improvement. The purpose of this study was to clarify the predictive marker of liver functional improvement due from PSE in cirrhotic patients. From April 1999 to January 2009, 83 cirrhotic patients with hypersplenism-induced thrombocytopenia (platelet count <10 × 10(4)/μl) underwent PSE. Of them, 71 patients with follow-up for more than one year after PSE were retrospectively investigated. In liver tissues after PSE, proliferating cell nuclear antigen (PCNA)-positive hepatocytes were remarkably increased, speculating that PSE induced liver regenerative response. Indeed, serum albumin and cholinesterase levels increased to 104 ± 14% and 130 ± 65% each of the pretreatment level at one year after PSE. In a multiple linear regression analysis, preoperative splenic volume was extracted as the predictive factor for the improvement in cholinesterase level after PSE. Cirrhotic patients with preoperative splenic volume >600 ml obtained significantly higher serum albumin and cholinesterase levels at one year after PSE compared to those with less than 600 ml (P-values were 0.029 in both). A large preoperative splenic volume was the useful predictive marker for an effective PSE-induced liver functional improvement. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  9. [Spontaneous splenic rupture due to infectious acute mononucleosis: case report].

    PubMed

    Greco, L; De Gennaro, E; Degara, A; Papa, U

    2003-01-01

    Infectious mononucleosis is an acute, viral, illness associated with a high incidence of splenomegaly. Spontaneous splenic rupture is a rare but life-threatening complication of infectious mononucleosis. The authors report the case of a 19-year-old patient with an infectious mononucleosis causing a spontaneous splenic rupture. When rupture occurs the mortality has been significant. The spleen may be vulnerable for the histopathologic changes that occur as a result of this illness. Two thirds of patients with infectious mononucleosis develop an enlarged spleen, but in only 0.5% of all patients will it rupture. Abdominal pain and tachycardia are unusual in uncomplicated infectious mononucleosis and should alert a doctor to the possibility of spontaneous splenic rupture. The diagnosis of splenic rupture may be confirmed in a variety of ways. In this patient ultrasound and Rutkow's criteria may aid in establishing the diagnosis. In patients with infectious mononucleosis suspected of having rupture of the spleen, a rapid but thorough assessment and prompt implementation of appropriate management should minimize the associated morbidity and mortality. On the basis of review of the medical literature and of our own experience, we advocate emergent splenectomy for spontaneous splenic rupture in patients with infectious mononucleosis.

  10. Variation in ICU Utilization and Mortality After Blunt Splenic Injury

    PubMed Central

    Kaufman, Elinore J.; Wiebe, Douglas J.; Martin, Niels D.; Pascual, Jose L.; Reilly, Patrick M.; Holena, Daniel N.

    2016-01-01

    Background While trauma patients are frequently cared for in the ICU, admission triage criteria are unclear and may vary among providers and institutions. The benefits of close monitoring must be weighed against the economic and opportunity costs of an ICU admission. Materials and Methods We conducted a retrospective cohort study of patients treated for blunt splenic injuries at 30 level I and II Pennsylvania trauma centers, 2011–2014. We used multivariable logistic regression to assess the relationship between ICU admission and mortality, adjusting for patient characteristics, injury characteristics, and physiology. We calculated center-level observed-to-expected ratios for ICU utilization and mortality and evaluated correlations with Spearman’s rho. We compared the proportion of patients receiving critical care procedures, such as mechanical ventilation or central line placement, between high- and low-ICU-utilization centers. Results Of 2,587 patients with blunt splenic injuries, 63.9% (1,654) were admitted to the ICU. Median injury severity score (ISS) was 17 overall, 13 for non-ICU patients and 17 for ICU patients (p < 0.001). In multivariable logistic regression, ICU admission was not significantly associated with mortality. Center-level risk-adjusted ICU admission rates ranged from 17.9% to 87.3%. Risk-adjusted mortality rates ranged from 1.2% to 9.6%. There was no correlation between O:E ratios for ICU utilization and mortality (rs = −0.2595, p=0.2103). Proportionately fewer ICU patients at high-utilization centers received critical care procedures than at low-utilization centers. Conclusions Risk-adjusted ICU utilization rates for splenic trauma varied widely among trauma centers, with no clear relationship to mortality. Standardizing ICU admission criteria could improve resource utilization without increasing mortality. PMID:27363642

  11. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  12. Splenic infarction - A rare cause of acute abdominal pain following gastric surgery: A case series.

    PubMed

    Yazici, Pinar; Kaya, Cemal; Isil, Gurhan; Bozkurt, Emre; Mihmanli, Mehmet

    2015-01-01

    The dissection of splenic hilar lymph nodes in gastric cancer surgery is indispensable for treating gastric cancers located in the proximal third of the stomach. Splenic vascular injury is a matter of debate resulting on time or delayed splenectomy. We aimed to share our experience and plausible mechanisms causing this complication in two case reports. Two male patients with gastric cancer were diagnosed with acute splenic infarction following gastric surgery in the early postoperative period. Both underwent emergent exploratory laparotomy. Splenectomy was performed due to splenic infarction. Because we observed this rare complication in recent patients whose surgery was performed using vessel-sealing device for splenic hilar dissection, we suggested that extensive mobilization of the surrounding tissues of splenic vascular structures hilum using the vessel sealer could be the reason. In case of acute abdominal pain radiating to left shoulder, splenic complications should be taken into consideration in gastric cancer patients performed radical gastrectomy. Meticulous dissection of splenic hilar lymph nodes should be carried out to avoid any splenic vascular injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation : Is IMRT more beneficial than VMAT?

    PubMed

    Sakka, Mazen; Kunzelmann, Leonie; Metzger, Martin; Grabenbauer, Gerhard G

    2017-10-01

    Given the reduction in death from breast cancer, as well as improvements in overall survival, adjuvant radiotherapy is considered the standard treatment for breast cancer. However, left-sided breast irradiation was associated with an increased rate of fatal cardiovascular events due to incidental irradiation of the heart. Recently, considerable efforts have been made to minimize cardiac toxicity of left-sided breast irradiation by new treatment methods such as deep-inspiration breath-hold (DIBH) and new radiation techniques, particularly intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). The primary aim of this study was to evaluate the effect of DIBH irradiation on cardiac dose compared with free-breathing (FB) irradiation, while the secondary objective was to compare the advantages of IMRT versus VMAT plans in both the FB and the DIBH position for left-sided breast cancer. In all, 25 consecutive left-sided breast cancer patients underwent CT simulation in the FB and DIBH position. Five patients were excluded with no cardiac displacement following DIBH-CT simulation. The other 20 patients were irradiated in the DIBH position using respiratory gating. Four different treatment plans were generated for each patient, an IMRT and a VMAT plan in the DIBH and in the FB position, respectively. The following parameters were used for plan comparison: dose to the heart, left anterior descending coronary artery (mean dose, maximum dose, D25% and D45%), ipsilateral, contralateral lung (mean dose, D20%, D30%) and contralateral breast (mean dose). The percentage in dose reduction for organs at risk achieved by DIBH for both IMRT and VMAT plans was calculated and compared for each patient by each treatment plan. DIBH irradiation significantly reduced mean dose to the heart and left anterior descending coronary artery (LADCA) using both IMRT (heart -20%; p = 0.0002, LADCA -9%; p = 0.001) and VMAT (heart -23%; p = 0.00003, LADCA -16%; p = 0

  14. Clinical and Radiological Presentations and Management of Blunt Splenic Trauma: A Single Tertiary Hospital Experience

    PubMed Central

    Jabbour, Gaby; Al-Hassani, Ammar; El-Menyar, Ayman; Abdelrahman, Husham; Peralta, Ruben; Ellabib, Mohamed; Al-Jogol, Hisham; Asim, Mohammad; Al-Thani, Hassan

    2017-01-01

    Background Splenic injury is the leading cause of major bleeding after blunt abdominal trauma. We examined the clinical and radiological presentations, management, and outcome of blunt splenic injuries (BSI) in our institution. Material/Methods A retrospective study of BSI patients between 2011 and 2014 was conducted. We analyzed and compared management and outcome of different splenic injury grades in trauma patients. Results A total of 191 BSI patients were identified with a mean (SD) age of 26.9 years (13.1); 164 (85.9%) were males. Traffic-related accident was the main mechanism of injury. Splenic contusion and hematoma (77.2%) was the most frequent finding on initial computerized tomography (CT) scans, followed by shattered spleen (11.1%), blush (11.1%), and devascularization (0.6%). Repeated CT scan revealed 3 patients with pseudoaneurysm who underwent angioembolization. Nearly a quarter of patients were managed surgically. Non-operative management failed in 1 patient who underwent splenectomy. Patients with grade V injury presented with higher mean ISS and abdominal AIS, required frequent blood transfusion, and were more likely to be FAST-positive (p=0.001). The majority of low-grade (I–III) splenic injuries were treated conservatively, while patients with high-grade (IV and V) BSI frequently required splenectomy (p=0.001). Adults were more likely to have grade I, II, and V BSI, blood transfusion, and prolonged ICU stay as compared to pediatric BSI patients. The overall mortality rate was 7.9%, which is mainly association with traumatic brain injury and hemorrhagic shock; half of the deaths occurred within the first day after injury. Conclusions Most BSI patients had grade I–III injuries that were successfully treated non-operatively, with a low failure rate. The severity of injury and presence of associated lesions should be carefully considered in developing the management plan. Thorough clinical assessment and CT scan evaluation are crucial for

  15. Clinical and Radiological Presentations and Management of Blunt Splenic Trauma: A Single Tertiary Hospital Experience.

    PubMed

    Jabbour, Gaby; Al-Hassani, Ammar; El-Menyar, Ayman; Abdelrahman, Husham; Peralta, Ruben; Ellabib, Mohammed; Al-Jogol, Hisham; Asim, Mohammed; Al-Thani, Hassan

    2017-07-12

    BACKGROUND Splenic injury is the leading cause of major bleeding after blunt abdominal trauma. We examined the clinical and radiological presentations, management, and outcome of blunt splenic injuries (BSI) in our institution. MATERIAL AND METHODS A retrospective study of BSI patients between 2011 and 2014 was conducted. We analyzed and compared management and outcome of different splenic injury grades in trauma patients. RESULTS A total of 191 BSI patients were identified with a mean (SD) age of 26.9 years (13.1); 164 (85.9%) were males. Traffic-related accident was the main mechanism of injury. Splenic contusion and hematoma (77.2%) was the most frequent finding on initial computerized tomography (CT) scans, followed by shattered spleen (11.1%), blush (11.1%), and devascularization (0.6%). Repeated CT scan revealed 3 patients with pseudoaneurysm who underwent angioembolization. Nearly a quarter of patients were managed surgically. Non-operative management failed in 1 patient who underwent splenectomy. Patients with grade V injury presented with higher mean ISS and abdominal AIS, required frequent blood transfusion, and were more likely to be FAST-positive (p=0.001). The majority of low-grade (I-III) splenic injuries were treated conservatively, while patients with high-grade (IV and V) BSI frequently required splenectomy (p=0.001). Adults were more likely to have grade I, II, and V BSI, blood transfusion, and prolonged ICU stay as compared to pediatric BSI patients. The overall mortality rate was 7.9%, which is mainly association with traumatic brain injury and hemorrhagic shock; half of the deaths occurred within the first day after injury. CONCLUSIONS Most BSI patients had grade I-III injuries that were successfully treated non-operatively, with a low failure rate. The severity of injury and presence of associated lesions should be carefully considered in developing the management plan. Thorough clinical assessment and CT scan evaluation are crucial for

  16. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  17. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb.

    PubMed

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-05-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.

  18. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb

    PubMed Central

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-01-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays. PMID:23230241

  19. Changing patterns in the management of splenic trauma: the impact of nonoperative management.

    PubMed Central

    Pachter, H L; Guth, A A; Hofstetter, S R; Spencer, F C

    1998-01-01

    OBJECTIVE: The recognition that splenectomy renders patients susceptible to lifelong risks of septic complications has led to routine attempts at splenic conservation after trauma. In 1990, the authors reported that over an 11-year study period involving 193 patients, splenorrhaphy was the most common splenic salvage method (66% overall) noted, with nonoperative management employed in only 13% of blunt splenic injuries. This report describes changing patterns of therapy in 190 consecutive patients with splenic injuries seen during a subsequent 6-year period (1990 to 1996). An algorithmic approach for patient management and pitfalls to be avoided to ensure safe nonoperative management are detailed. METHODS: Nonoperative management criteria included hemodynamic stability and computed tomographic examination without shattered spleen or other injuries requiring celiotomy. RESULTS: Of 190 consecutive patients, 102 (54%) were managed nonoperatively: 96 (65%) of 147 patients with blunt splenic injuries, which included 15 patients with intrinsic splenic pathology, and 6 hemodynamically stable patients with isolated stab wounds (24% of all splenic stab wounds). Fifty-six patients underwent splenectomy (29%) and 32 splenorrhaphy (17%). The mean transfusion requirement was 6 units for splenectomy survivors and 0.8 units for nonoperative therapy (85% received no transfusions). Fifteen of the 16 major infectious complications that occurred followed splenectomy. Two patients failed nonoperative therapy (2%) and underwent splenectomy, and one patient required splenectomy after partial splenic resection. There no missed enteric injuries in patients managed nonoperatively. The overall mortality rate was 5.2%, with no deaths following nonoperative management. CONCLUSIONS: Nonoperative management of blunt splenic injuries has replaced splenorrhaphy as the most common method of splenic conservation. The criteria have been extended to include patients previously excluded from this form

  20. Quantitative assessment of the cataractogenic potential of very low doses of neutrons

    NASA Technical Reports Server (NTRS)

    Worgul, B. V.; Medvedovsky, C.; Huang, Y.; Marino, S. A.; Randers-Pehrson, G.; Brenner, D. J.

    1996-01-01

    We report on the prevalence and relative biological effectiveness (RBE) for various stages of lens opacification in rats induced by very low doses (2 to 250 mGy) of medium-energy (440 keV) neutrons, compared to those for X rays. Neutron doses were delivered either in a single fraction or in four separate fractions and the irradiated animals were followed for over 100 weeks. At the highest observed dose (250 mGy) and at early observation times, there was evidence of an inverse dose-rate effect; i.e., a fractionated exposure was more potent than a single exposure. Neutron RBEs relative to X rays were estimated using a non-parametric technique. The results were only weakly dependent on time postirradiation. At 30 weeks, for example, 80% confidence intervals for the RBE of acutely delivered neutrons relative to X rays were 8-16 at 250 mGy, 10-20 at 50 mGy, 50-100 at 10 mGy and 250-500 at 2 mGy. The results are consistent with the estimated neutron RBEs in Japanese A-bomb survivors, though broad confidence bounds are present in the Japanese results. Our findings are also consistent with data reported earlier for cataractogenesis induced by heavy ions in rats, mice, and rabbits. We conclude from these results that, at very low doses (<10 mGy), the RBE for neutron-induced cataractogenesis is considerably larger than the RBE of 20 commonly used, and use of a significantly larger value for calculating equivalent dose would be prudent.

  1. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control.

    PubMed

    Dilworth, Joshua T; Krueger, Sarah A; Dabjan, Mohamad; Grills, Inga S; Torma, John; Wilson, George D; Marples, Brian

    2013-07-01

    To compare dose-escalated pulsed low-dose radiation therapy (PLRT) and standard radiation therapy (SRT). Intracranial U87MG GBM tumors were established in nude mice. Animals received whole brain irradiation with daily 2-Gy fractions given continuously (SRT) or in ten 0.2-Gy pulses separated by 3-min intervals (PLRT). Tumor response was evaluated using weekly CT and [(18)F]-FDG-PET scans. Brain tissue was subjected to immunohistochemistry and cytokine bead array to assess tumor and normal tissue effects. Median survival for untreated animals was 18 (SE±0.5) days. A significant difference in median survival was seen between SRT (29±1.8days) and PLRT (34.2±1.9days). Compared to SRT, PLRT resulted in a 31% (p<0.01), 38% (p<0.01), and 53% (p=0.01) reduction in normalized tumor volume and a 48% (p<0.01), 51% (p<0.01), and 70% (p<0.01) reduction in tumor growth rate following the administration of 10Gy, 20Gy, and 30Gy, respectively. Compared to untreated tumors, PLRT resulted in similar tumor vascular density, while SRT produced a 40% reduction in tumor vascular density (p=0.05). Compared to SRT, PLRT was associated with a 28% reduction in degenerating neurons in the surrounding brain parenchyma (p=0.05). Compared to SRT, PLRT resulted in greater inhibition of tumor growth and improved survival, which may be attributable to preservation of vascular density. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Increased γ-H2A.X Intensity in Response to Chronic Medium-Dose-Rate γ-Ray Irradiation

    PubMed Central

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    Background The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. Methodology/Principal Findings We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G1 phase, although no significant difference was observed in G2/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G1 phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G1 phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Conclusions Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by

  3. Increased γ-H2A.X intensity in response to chronic medium-dose-rate γ-ray irradiation.

    PubMed

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G(1) phase, although no significant difference was observed in G(2)/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G(1) phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G(1) phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by HDR γ-ray irradiation.

  4. Central nervous system transplantation benefited by low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  5. Low level laser therapy on injured rat muscle: assessment of irradiation parameters

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT wavelengths, using continuous coherent Laser illumination (830 nm and 980 nm) and non-coherent LED illumination (850 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood. We verified that all applied doses of coherent radiation produce an effect on reducing the concentration of pro-inflammatory TNF-α and IL-1β cytokines, while no treatment effect was observed after irradiation with non-coherent radiation. The best results were obtained for 40 mW at 830 nm. The results may suggest an important role of coherence properties of laser in LLLT.

  6. Effect of gamma irradiation on quality of dried potato

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chao, Y.

    2003-03-01

    The objectives of this study were to obtain the effect of gamma irradiation on the quality of dried potato. Experiments were conducted to study the influence of different doses, air temperatures, slice thickness of potatoes on the dehydration rate, appearance quality ( L-values), vitamin C content, and the rehydration ratio of dried potatoes. The greater the dose, the higher the dehydration rate, the lesser the vitamin C content, and the lower the rehydration ratio. The L-values for low-dose irradiation was greater than that for non-irradiated potatoes.

  7. Preliminary experimental study on splenic hemodynamics of radiofrequency ablation for the spleen.

    PubMed

    Baba, Yasutaka; Hayashi, Sadao; Nagasato, Kohei; Higashi, Michiyo; Yoshiura, Takashi

    2017-08-01

    To test the splenic blood flow change after radiofrequency ablation (RFA) of the spleen in a porcine experimental model. Six pigs underwent RFA of the spleen via laparotomy. During the procedure of RFA, clamping of splenic artery (one) and both splenic artery/vein (one) was also performed. Measurement of blood flow of both splenic artery (SA) and splenic vein (SV) with flow-wire at pre- and post-RFA of the spleen was also performed. Ablated splenic lesions were created as estimating ∼50% area of the spleen in all pigs. Resected specimens reveal not only the coagulated necrosis but also the congestion of the spleen. On the SA hemodynamics, maximum peak velocity (MPV) changed from 37 ± 7 to 24 ± 8 cm/s (normal), 11 to 10 cm/s (clamp of the SA), and 12 to 7.5 cm/s (clamp of both SA/SV), respectively. On the SV hemodynamic, MPV changed from 15 ± 5 to 13 ± 4 cm/s (normal), 17 to 15 cm/s (clamp of the SA), and 17 to 26 cm/s (clamp of both SA/SV), respectively. RFA of the spleen could induce coagulation necrosis and reduce the splenic arterial blood flow.

  8. Splenic infarction at low altitude in a child with hemoglobin S-C disease.

    PubMed

    Alvarado, C S; Wyly, B; Buchanan, I; Fajman, W A

    1988-08-01

    We describe a 15-year-old black boy with hemoglobin S-C disease living in Atlanta (altitude 1,034 ft), with no prior history of aircraft or mountain travel, who developed splenic infarction. The clinical picture was characterized by severe left upper quadrant abdominal pain, fever, splenomegaly, and hematologic and scintigraphic evidence of functional asplenia. The diagnosis was suggested by liver/spleen scintigraphy and further confirmed by ultrasonography and computerized tomography (CT) of the spleen. Treatment consisted of analgesics, intravenous fluids, and short-term antibiotic therapy. The child recovered without sequelae.

  9. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less

  10. Very low doses of heavy oxygen ion radiation induce premature ovarian failure.

    PubMed

    Mishra, Birendra; Ripperdan, Ryan; Ortiz, Laura; Luderer, Ulrike

    2017-08-01

    Astronauts are exposed to charged particles during space travel, and charged particles are also used for cancer radiotherapy. Premature ovarian failure is a well-known side effect of conventional, low linear energy transfer (LET) cancer radiotherapy, but little is known about the effects of high LET charged particles on the ovary. We hypothesized that lower LET (16.5 keV/µm) oxygen particles would be less damaging to the ovary than we previously found for iron (LET = 179 keV/µm). Adult female mice were irradiated with 0, 5, 30 or 50 cGy oxygen ions or 50 cGy oxygen plus dietary supplementation with the antioxidant alpha lipoic acid (ALA). Six-hour after irradiation, percentages of ovarian follicles immunopositive for γH2AX, a marker of DNA double strand breaks, 4-HNE, a marker of oxidative lipid damage and BBC3 (PUMA), a proapoptotic BCL-2 family protein, were dose dependently increased in irradiated mice compared to controls. One week after irradiation, numbers of primordial, primary and secondary follicles per ovary were dose dependently decreased, with complete absence of follicles in the 50 cGy groups. The ED 50 for primordial follicle destruction was 4.6 cGy for oxygen compared to 27.5 cGy for iron in our previous study. Serum FSH and LH concentrations were significantly elevated in 50 cGy groups at 8 week. Supplementation with ALA mitigated the early effects, but not the ultimate depletion of ovarian follicles. In conclusion, oxygen charged particles are even more potent inducers of ovarian follicle depletion than charged iron particles, raising concern for premature ovarian failure in astronauts exposed to both particles during space travel. © 2017 Society for Reproduction and Fertility.

  11. Bacteroides (Parabacteroides) distasonis splenic abscess in a sickle cell patient.

    PubMed

    Al-Tawfiq, Jaffar A

    2008-01-01

    Splenic abscess is not an uncommon complication of patients with sickle-cell disease. Here we describe an 18 year-old boy with sickle cell disease and left upper quadrant abdominal pain. Computerized axial tomography revealed left sided free flowing pleural effusion and splenomegaly with liquefaction and possible gas formation. The splenic fluid grew an unusual organism known as Bacteroides distasonis. The patient received antimicrobial therapy and underwent a splenectomy with full recovery. The spleen was cystically infarcted and measured 22 x 16 x 5 cm. The capsule was thickened and covered by fibrinous exudate. Histopathologic examination of the spleen showed complete necrosis with reparative fibrosis. This case presents an unusual cause of splenic abscess due to Bacteroides distasonis with a subacute to chronic course. The presence of fever and left sided pleuritic chest pain in patients with sickle cell disease should raise the suspicion of splenic abscess.

  12. Theoretical models and simulation codes to investigate bystander effects and cellular communication at low doses

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.

    Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose

  13. Effect of dose rate on residual γ-H2AX levels and frequency of micronuclei in X-irradiated mouse lymphocytes.

    PubMed

    Turner, H C; Shuryak, I; Taveras, M; Bertucci, A; Perrier, J R; Chen, C; Elliston, C D; Johnson, G W; Smilenov, L B; Amundson, S A; Brenner, D J

    2015-03-01

    The biological risks associated with low-dose-rate (LDR) radiation exposures are not yet well defined. To assess the risk related to DNA damage, we compared the yields of two established biodosimetry end points, γ-H2AX and micronuclei (MNi), in peripheral mouse blood lymphocytes after prolonged in vivo exposure to LDR X rays (0.31 cGy/min) vs. acute high-dose-rate (HDR) exposure (1.03 Gy/min). C57BL/6 mice were total-body irradiated with 320 kVP X rays with doses of 0, 1.1, 2.2 and 4.45 Gy. Residual levels of total γ-H2AX fluorescence in lymphocytes isolated 24 h after the start of irradiation were assessed using indirect immunofluorescence methods. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to determine apoptotic cell frequency in lymphocytes sampled at 24 h. Curve fitting analysis suggested that the dose response for γ-H2AX yields after acute exposures could be described by a linear dependence. In contrast, a linear-quadratic dose-response shape was more appropriate for LDR exposure (perhaps reflecting differences in repair time after different LDR doses). Dose-rate sparing effects (P < 0.05) were observed at doses ≤2.2 Gy, such that the acute dose γ-H2AX and TUNEL-positive cell yields were significantly larger than the equivalent LDR yields. At the 4.45 Gy dose there was no difference in γ-H2AX expression between the two dose rates, whereas there was a two- to threefold increase in apoptosis in the LDR samples compared to the equivalent 4.45 Gy acute dose. Micronuclei yields were measured at 24 h and 7 days using the in vitro cytokinesis-blocked micronucleus (CBMN) assay. The results showed that MNi yields increased up to 2.2 Gy with no further increase at 4.45 Gy and with no detectable dose-rate effect across the dose range 24 h or 7 days post exposure. In conclusion, the γ-H2AX biomarker showed higher sensitivity to measure dose-rate effects after low-dose LDR X rays compared to MNi formation; however

  14. Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

    NASA Astrophysics Data System (ADS)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.

    2017-09-01

    With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.

  15. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hoursmore » before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for

  16. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}Cmore » to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.« less

  17. Variations of Thickness of Splenic Capsule of Different Age and Sex in Bangladeshi Cadaver.

    PubMed

    Shumi, M S; Khalil, M; Sultana, S Z; Mannan, S; Sultana, J; Farzana, T; Sultana, R

    2016-01-01

    The spleen is the most frequently injured organ in the abdomen. Splenic rupture is usually precipitated by a crushing injury or severe blow. If ruptured the spleen will bleed profusely because its capsule is thin and its parenchyma is soft and pulpy. Such "spontaneous ruptures" never occur in truly normal spleen but rather than from some minor physical insult to a spleen that has been rendered fragile by an underlying condition. The most common predisposing conditions are infectious mononucleosis, malaria, typhoid fever and lymphoid neoplasms. These diverse entities can all cause rapid splenic enlargement, producing a thin, tense splenic capsule that is susceptible to rupture. Understanding of splenic capsular structure may help explain mechanical properties of the normal and diseased spleen. Histological changes are evident in advancing age along with functional capability of the human spleen. This cross sectional descriptive study was done to measure the thickness of splenic capsule to establish the difference between sexes of different age groups in Bangladeshi cadaver. The study was carried out in the department of Anatomy, Mymensingh Medical College, Mymensingh from June 2013 to July 2014. A total 30 human spleen were collected by purposive sampling technique from October 2013 to April 2014, among them 14 were male and 16 were female. The specimens were collected from Bangladeshi cadavers of age ranging from 6 months to 60 years, from autopsy laboratory of the Department of Forensic Medicine of Mymensingh Medical College. For convenience of differentiating the thickness of splenic capsule in relation to age and sex, the collected specimens were divided into three groups like Group A (upto 20 years), Group B (21 to 40 years) & Group C (41 to 60 years). Each group was again divided into male & female groups. In this study 10 slides from each age group were chosen for measuring the thickness of splenic capsule and examined under low power objective. In present

  18. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice.

    PubMed

    Bellés, Montserrat; Gonzalo, Sergio; Serra, Noemí; Esplugas, Roser; Arenas, Meritxell; Domingo, José Luis; Linares, Victoria

    2017-07-01

    Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium ( 137 Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137 Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation ( 137 Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137 Cs). Further investigations are required to clarify the

  19. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  20. Alternative strawberry disease management strategy: combing low UV-C irradiation in dark, disabling pathogen’s UV-C repair mechanism, and preventing pathogen establishment with biocontrol agents

    USDA-ARS?s Scientific Manuscript database

    The limitations of current fungicides necessitate a search for new approaches. Low-dose or sub-lethal UV-C irradiation (12.36 J/m2) alone is not effective in controlling fungal diseases, especially when the plants are exposed to UV-C irradiation during the day. We found, however, that application ...