Science.gov

Sample records for low-frequency mammalian oscillator

  1. [Low-Frequency Flow Oscillation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    1997-01-01

    The results of the research conducted under this grant are presented in detail in three Master theses, by Heinrich, Balow, and Broeren. Additional analysis of the experimental data can be found in two AIAA Journal articles and two conference papers. Citations for all of the studies' publications can be found in the bibliography which is attached. The objective of Heinrich's study was to document the low-frequency flow oscillation on the LRN-1007 airfoil, which had been previously observed at low Reynolds number, to determine its origin, and explore the phenomenon at higher Reynolds number. Heinrich performed detailed flow visualization on the airfoil using surface fluorescent oil and laser-sheet off-body visualization. A large leading-edge separation bubble and trailing-edge separation was identified on the airfoil just prior to the onset of the unsteady stall flow oscillation. From the laser-sheet data, the unsteady flow appeared as a massive boundary-layer separation followed by flow reattachment. Hot-wire data were taken in the wake to identify the presence of the flow oscillation and the dominant frequency. The oscillation was found in the flow from a Reynolds number of 0.3 to 1.3 x 10 exp 6. The Strouhal number based on airfoil projected height was nominally 0.02 and increased slightly with increasing Reynolds number and significantly with increasing airfoil angle of attack. Balow focused his research on the leading-edge separation bubble which was hypothesized to be the origin of the low-frequency oscillation. Initially, experimental measurements in the bubble at the onset of the low-frequency oscillation were attempted to study the characteristics of the bubble and explain possible relationships to the shear-layer-flapping phenomena. Unfortunately, the bubble proved to be extremely sensitive to the probe interference and it drastically reduced the size of the bubble. These detailed measurements were then abandoned by Balow. However, this led to a series of

  2. Low-frequency oscillations in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning

    2015-05-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).

  3. Hemodynamic responses can modulate the brain oscillations in low frequency

    NASA Astrophysics Data System (ADS)

    Lu, Feng-Mei; Wang, Yi-Feng; Yuan, Zhen

    2016-03-01

    Previous studies have showed that the steady-state responses were able to be used as an effective index for modulating the neural oscillations in the high frequency ranges (> 1 Hz). However, the neural oscillations in low frequency ranges (<1 Hz) remain unknown. In this study, a series of fNIRS experimental tests were conducted to validate if the low frequency bands (0.1 Hz - 0.8 Hz) steady-state hemoglobin responses (SSHbRs) could be evoked and modulate the neural oscillation during a serial reaction time (SRT) task.

  4. Improvement of the low frequency oscillation model for Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wang, Chunsheng; Wang, Huashan

    2016-08-01

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  5. Low-frequency oscillations in radiative-convective systems

    NASA Technical Reports Server (NTRS)

    Hu, QI; Randall, David A.

    1994-01-01

    Although eastward propagation has long been considered one of the essential features of the Madden-Julian waves, recent observations have revealed a stationary or quasi-stationary component in the oscillations, particularly in measures of the diabatic heating rate. Wave-CISK theories of the low-frequency oscillations have struggled to explain the observed period and vertical structure of the waves. On the other hand, theoretical and numerical studies have shown that low-frequency waves strongly resembling the observed oscillations can be excited by specified low-frequency oscillations of the convective heating. A problem with the latter set of theories is that the cause of the oscillatory heating has not been satisfactorily explained. It is proposed here that the observed low-frequency wave motions are the response to forcing by an essentially stationary, self-excited oscillating heat source that is produced by nonlinear interactions among radiation, cumulus convection, and the surface fluxes of sensible heat and moisture. Feedback of the large-scale motions on the latent heating is not required. Results from two very different one-dimensional models are presented to support this hypothesis. The physical processes included in the models are essentially the same, that is, radiation, cumulus convection, and the surface fluxes of sensible heat and moisture; the first model is highly simplified, however, while the second includes relatively sophisticated parameterizations of all the relevant physical processes. Results from both models show low-frequency oscillations of the latent heating, temperature, and moisture. Experiments show that the oscillations are favored by a warm sea surface and weak surface wind speeds, consistent with the observed conditions over the Indian Ocean and the tropical western Pacific Ocean.

  6. Stochastic regimes in very-low-frequency fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2016-03-01

    Paper discusses interesting unexpected stochastic regimes discovered in a fluidic oscillator designed for operation at very low oscillation frequencies - without the inconvenience of the long feedback loops needed in standard low-frequency oscillator designs. The new oscillator contains a pair of bistable turn-down active valves operating in anti-parallel — essentially analogous to Abraham & Bloch electric "multibrateur" invented in 1919. Three different self-excited oscillation regimes were found. In the order of increasing supplied flow rate, these regimes are characterised by: (A) generation of stochastic-duration multi-pulse packs, (B) generation of individual pulses with a degree of periodicity, and (C) regime with randomly appearing flow pulses separated by intervals of the order of seconds.

  7. Low-frequency oscillations in radiative-convective models

    SciTech Connect

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  8. Low-frequency oscillations in radiative-convective models

    SciTech Connect

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  9. Analysis of Low Frequency Oscillations in Magnetron Injection Guns

    NASA Astrophysics Data System (ADS)

    Pu, Youlei; Luo, Yong; Yan, Ran; Liu, Guo; Jiang, Wei

    2012-02-01

    In our gyro-TWT experiments, low-frequency oscillations (LFOs) had been observed. LFOs is a physical phenomenon usually caused by the electrons trapped between the magnetron injection guns (MIGs) and the interaction region. In this paper, the formation procedure and physical mechanism of LFOs are reported. Available methods including optimizing the magnetic field distribution in the beam compression region and loading bevel cuts on the second anode are involved to capture the trapped electrons, suppress the LFOs and improve the helical electron beam quality. Simulations and experimental results are in good agreement with each other and also reveal the reasonableness of this means. Finally, the influence of current capture ratio on LFOs and the beam quality are studied. With the current capture ratio increasing, the amplitude of LFOs decreases, the pitch factor maintains a constant about 1.2 and we also demonstrate a low transverse velocity spread about 3%.

  10. Low-frequency oscillations of the level of enclosed sea

    NASA Astrophysics Data System (ADS)

    Korotaev, G. K.

    2015-07-01

    This work studies the variable surface level of a small enclosed basin that is related to the problem of interpreting satellite altimetric data, which assist in observations only of a deviation of a marine basin from unknown average condition needed to be calculated for the reconstruction of the sea-level topography. The reconstruction of unknown average condition becomes especially uncertain for the enclosed basins with significant level oscillations due to a variable water balance and requires the attraction of a priori physical concepts. This work reveals the general principles of response of the sea level to the low-frequency changes of the water exchange through the boundary of the basin with a rather arbitrary morphology.

  11. Endogenous modulation of low frequency oscillations by temporal expectations

    PubMed Central

    Cravo, Andre M.; Rohenkohl, Gustavo; Wyart, Valentin

    2011-01-01

    Recent studies have associated increasing temporal expectations with synchronization of higher frequency oscillations and suppression of lower frequencies. In this experiment, we explore a proposal that low-frequency oscillations provide a mechanism for regulating temporal expectations. We used a speeded Go/No-go task and manipulated temporal expectations by changing the probability of target presentation after certain intervals. Across two conditions, the temporal conditional probability of target events differed substantially at the first of three possible intervals. We found that reactions times differed significantly at this first interval across conditions, decreasing with higher temporal expectations. Interestingly, the power of theta activity (4–8 Hz), distributed over central midline sites, also differed significantly across conditions at this first interval. Furthermore, we found a transient coupling between theta phase and beta power after the first interval in the condition with high temporal expectation for targets at this time point. Our results suggest that the adjustments in theta power and the phase-power coupling between theta and beta contribute to a central mechanism for controlling neural excitability according to temporal expectations. PMID:21900508

  12. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    SciTech Connect

    Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  13. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Liqiu, Wei; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-01

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  14. LOW-FREQUENCY OSCILLATIONS IN XTE J1550-564

    SciTech Connect

    Rao Fengyun; Belloni, Tomaso; Stella, Luigi; Zhang Shuangnan; Li Tipei E-mail: tomaso.belloni@brera.inaf.i

    2010-05-10

    We present the results of a timing analysis of the low-frequency quasi-periodic oscillation (QPO) in the Rossi X-Ray Timing Explorer data of the black hole binary XTE J1550-564 during its 1998 outburst. The QPO frequency is observed to vary on timescales between {approx}100 s and days, correlated with the count rate contribution from the optically thick accretion disk: we studied this correlation and discuss its influence on the QPO width. In all observations, the quality factors ({nu}{sub 0}/FWHM) of the fundamental and second harmonic peaks were observed to be consistent, suggesting that the quasi-periodic nature of the oscillation is due to frequency modulation. In addition to the QPO and its harmonic peaks, a new 1.5{nu} component was detected in the power spectra. This component is broad, with a quality factor of {approx}0.6. From this, we argue that the peak observed at half the QPO frequency, usually referred to as 'sub-harmonic', could be the fundamental frequency, leading to the sequence 1:2:3:4. We also studied the energy dependence of the timing features and conclude that the two continuum components observed in the power spectrum, although both more intense at high energies, show a different dependence on energy. At low energies, the lowest-frequency component dominates, while at high energies the higher-frequency one has a higher fractional rms. An interplay between these two components was also observed as a function of their characteristic frequency. In this source, the transition between the low/hard state and the hard-intermediate state appears to be a smooth process.

  15. Low-frequency combustion oscillations in a model afterburner

    SciTech Connect

    Macquisten, M.A.; Dowling, A.P. )

    1993-08-01

    Low-frequency combustion oscillations, involving the interaction between longitudinal acoustic waves and unsteady combustion, are investigated for a model afterburner. An experimental rig, in which a confined flame is stabilized in the wake of a conical gutter, is run with inlet conditions representative of an engine afterburner. Results are presented for inlet Mach numbers in the range of 0.15--0.27, with inlet temperatures up to 630 K. Comparison is made between theory and experiment. Although the theory was developed from low Mach number data, it is found to apply equally well at these faster flow rates. The theory is able to predict the frequency of the instability and the mode shape, accurately reproducing the changes due to variations in the inlet Mach number and temperature. The effect of altering the downstream boundary condition by replacing the open end by a choked nozzle is also investigated. Such a change is found to be highly destabilizing, both experimentally and theoretically. Again, predictions from the theory are in good agreement with the observations.

  16. Peak luminosity correlated low-frequency oscillations in black holes

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Gao, H. Q.; Zhang, Z.; Zhang, S.; Qu, J. L.; Zhang, C. M.; Song, L. M.

    2014-05-01

    Based on Rossi X-ray Timing Explorer (RXTE) observational data, we study the timing and spectral properties of some peculiar low-frequency (LF) quasi-periodic oscillations (QPOs), which have been found at the peak luminosity of the outburst of some transient black hole (BH) binaries: the 2005 outburst of GRO J1655-40, the 2003 outburst of H1743-322 and the 1998 outburst of XTE J1550-564. Appearing in the ultraluminous state, these QPOs from different sources show some common properties. The amplitude is very weak (less than 1 per cent) and the quality factor is larger than 6. Moreover, these QPOs (about several Hz) sometimes show up simultaneously with another QPO (about 10 Hz), but their frequencies are not harmonically related. We also find that the frequencies of these QPOs are inversely correlated with the mass of the BH, which implies that these QPOs might be correlated with the innermost stable circular orbit. The QPO frequency is also negative correlated with the inner disc radius among BHs. However, its frequency is too low to ascribe it to the Keperlian orbit frequency. Moreover, we discuss the physical origin of these QPOs and we suggest that they are not produced by the viscous variability of the inner disc either.

  17. Effect of preionization in Aton-type Hall thruster on low frequency oscillation

    SciTech Connect

    Yu Daren; Wei Liqiu; Zhao Zuoyang; Han Ke; Yan Guojun

    2008-04-15

    It was found through the experiments made with an Aton-type Hall thruster that some of the propellant was ionized in the buffer chamber by 'quick electrons'. This ionization is called 'preionization' to discriminate it from the ionization in the discharge channel. The effect of preionization on low frequency oscillation was experimentally studied by changing the electric field intensity in the buffer chamber. The relationship between low frequency oscillation and preionization ratio was investigated through numerical simulation using a one-dimensional quasineutrality hydrodynamic model. The results obtained indicate that the amplitude of low frequency oscillation decreases as the preionization ratio increases. It was found through the analysis and numerical simulation of the physical process of low frequency oscillation that the positive feedback of electron density was the main cause of low frequency oscillation. The increase of preionization ratio decreases the amplitude of the feedback variation thereby reducing the amplitude of low frequency oscillation.

  18. Abnormality of low frequency cerebral hemodynamics oscillations in TBI population.

    PubMed

    Chernomordik, Victor; Amyot, Franck; Kenney, Kimbra; Wassermann, Eric; Diaz-Arrastia, Ramon; Gandjbakhche, Amir

    2016-05-15

    Functional Near Infrared Spectroscopy (fNIRS) can non-invasively capture dynamic cognitive activation and underlying physiological processes by measuring changes in oxy- and deoxy-hemoglobin levels, correlated to brain activation. It is a portable, inexpensive and user-friendly device which is easily adapted to the outpatient setting for the assessment of cognitive functions after Traumatic Brain Injury (TBI). Low frequency oscillations in hemodynamic signal, attributed in the literature to cerebral autoregulation, were assessed using recently introduced metrics, Oxygenation Variability (OV Index), obtained from oxy/deoxy-hemoglobin variations in response to mental tasks for a group of healthy control (HC, n=14) and TBI (n=29). Participants responded to an action complexity judgment task (evaluating the complexity of daily life activities by classifying the number of steps as "few" or "many") with a varying degree of cognitive load to produce brain activation. During the task, we measured blood variations with fNIRS and analyzed OV Index changes. Mean OV indices, corresponding to high complexity tasks, are higher than that of low complexity tasks in the HC group, revealing strong parametric effect (0.039±0.017 for low, 0.057±0.036 for high, p-value=0.069). However, no significant difference has been recorded for the OV indexes for two different loads in the TBI group (0.055±0.033 for low, 0.054±0.035 for high, p=0.9). OV index metrics proves to be sensitive to chronic TBI and can potentially be used to separate subpopulations TBI vs. HC. Noticeable differences in OV index spatial distributions between subpopulations have been observed. PMID:26996413

  19. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriguez, Jose

    2003-01-01

    This paper presents viewgraphs on the low frequency high amplitude temperature oscillations observed in loop heat pipe operations. The topics include: 1) Proposed Theory; 2) Test Loop and Test Results; and 3) Effects of Various Parameters. The author also presents a short summary on the conditiions that must be met in order to sustain a low frequency high amplitude temperature oscillation.

  20. Hydrodynamic Force on a Cylinder Oscillating at Low Frequency

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Yao, Minwu; Panzarella, Charles H.

    2007-01-01

    The hydrodynamic force on a cylinder oscillating transversely to its axis is a nonlinear function of the displacement amplitude x0. We report measurements and numerical calculations of the force at frequencies low enough that delta > R, where delta is the viscous penetration length and R is the cylinder radius. For small amplitudes, the numerically calculated Fourier transform of the force per unit length, F(sub small), agrees with Stokes' analytical calculation. For larger amplitudes, the force per unit length found by both calculation and measurement is F = F(sub small)C (x(sub 0)/delta,R/delta). The complex function C depends only weakly on R/delta, indicating that x0/delta is more appropriate as a scaling variable than the Keulegan-Carpenter number KC = pi*x(sub 0)/R. The measurements used a torsion oscillator driven at frequencies from 1 to 12 Hz while immersed in dense xenon. The oscillator comprised cylinders with an effective radius of R = 13.4 micron and oscillation amplitudes as large as x(sub 0)/delta = 4 (corresponding to KC as large as 71). The calculations used similar conditions except that the amplitudes were as large as x0/delta = 28.

  1. Synchronization of low-frequency oscillations in the human cardiovascular system

    NASA Astrophysics Data System (ADS)

    Karavaev, A. S.; Prokhorov, M. D.; Ponomarenko, V. I.; Kiselev, A. R.; Gridnev, V. I.; Ruban, E. I.; Bezruchko, B. P.

    2009-09-01

    We investigate synchronization between the low-frequency oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz. A method is proposed for quantitative estimation of synchronization between these oscillating processes based on calculation of relative time of phase synchronization of oscillations. It is shown that healthy subjects exhibit on average substantially longer epochs of internal synchronization between the low-frequency oscillations in heart rate and blood pressure than patients after acute myocardial infarction.

  2. Seismology and geodesy of the sun: low-frequency oscillations

    SciTech Connect

    Dicke, R.H.

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  3. Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex.

    PubMed

    Du, Congwu; Volkow, Nora D; Koretsky, Alan P; Pan, Yingtian

    2014-10-28

    Spontaneous low-frequency oscillations (LFOs) of blood-oxygen-level-dependent (BOLD) signals are used to map brain functional connectivity with functional MRI, but their source is not well understood. Here we used optical imaging to assess whether LFOs from vascular signals covary with oscillatory intracellular calcium (Ca(2+)i) and with local field potentials in the rat's somatosensory cortex. We observed that the frequency of Ca(2+)i oscillations in tissue (∼0.07 Hz) was similar to the LFOs of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) in both large blood vessels and capillaries. The HbR and HbO2 fluctuations within tissue correlated with Ca(2+)i oscillations with a lag time of ∼5-6 s. The Ca(2+)i and hemoglobin oscillations were insensitive to hypercapnia. In contrast, cerebral-blood-flow velocity (CBFv) in arteries and veins fluctuated at a higher frequency (∼0.12 Hz) and was sensitive to hypercapnia. However, in parenchymal tissue, CBFv oscillated with peaks at both ∼0.06 Hz and ∼0.12 Hz. Although the higher-frequency CBFv oscillation (∼0.12 Hz) was decreased by hypercapnia, its lower-frequency component (∼0.06 Hz) was not. The sensitivity of the higher CBFV oscillations to hypercapnia, which triggers blood vessel vasodilation, suggests its dependence on vascular effects that are distinct from the LFOs detected in HbR, HbO2, Ca(2+)i, and the lower-frequency tissue CBFv, which were insensitive to hypercapnia. Hemodynamic LFOs correlated both with Ca(2+)i and neuronal firing (local field potentials), indicating that they directly reflect neuronal activity (perhaps also glial). These findings show that HbR fluctuations (basis of BOLD oscillations) are linked to oscillatory cellular activity and detectable throughout the vascular tree (arteries, capillaries, and veins). PMID:25313035

  4. Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex

    PubMed Central

    Du, Congwu; Volkow, Nora D.; Koretsky, Alan P.; Pan, Yingtian

    2014-01-01

    Spontaneous low-frequency oscillations (LFOs) of blood-oxygen-level-dependent (BOLD) signals are used to map brain functional connectivity with functional MRI, but their source is not well understood. Here we used optical imaging to assess whether LFOs from vascular signals covary with oscillatory intracellular calcium (Ca2+i) and with local field potentials in the rat’s somatosensory cortex. We observed that the frequency of Ca2+i oscillations in tissue (∼0.07 Hz) was similar to the LFOs of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) in both large blood vessels and capillaries. The HbR and HbO2 fluctuations within tissue correlated with Ca2+i oscillations with a lag time of ∼5–6 s. The Ca2+i and hemoglobin oscillations were insensitive to hypercapnia. In contrast, cerebral-blood-flow velocity (CBFv) in arteries and veins fluctuated at a higher frequency (∼0.12 Hz) and was sensitive to hypercapnia. However, in parenchymal tissue, CBFv oscillated with peaks at both ∼0.06 Hz and ∼0.12 Hz. Although the higher-frequency CBFv oscillation (∼0.12 Hz) was decreased by hypercapnia, its lower-frequency component (∼0.06 Hz) was not. The sensitivity of the higher CBFV oscillations to hypercapnia, which triggers blood vessel vasodilation, suggests its dependence on vascular effects that are distinct from the LFOs detected in HbR, HbO2, Ca2+i, and the lower-frequency tissue CBFv, which were insensitive to hypercapnia. Hemodynamic LFOs correlated both with Ca2+i and neuronal firing (local field potentials), indicating that they directly reflect neuronal activity (perhaps also glial). These findings show that HbR fluctuations (basis of BOLD oscillations) are linked to oscillatory cellular activity and detectable throughout the vascular tree (arteries, capillaries, and veins). PMID:25313035

  5. Analytical theory of low-frequency space charge oscillations in gyrotrons

    SciTech Connect

    Yan Ran; Antonsen, T. M. Jr.; Nusinovich, G. S.

    2008-10-15

    Low-frequency oscillations attributed to reflected electrons bouncing adiabatically between the electron gun and the interaction space have been observed in many gyrotrons. An analytical model is considered which allows one to apply space-charge wave theory to the analysis of these oscillations. In the framework of the small-signal theory, the regions of low-frequency oscillations, the oscillation frequency and the temporal and spatial growth rates of low-frequency oscillations are determined in the relevant parameter space. The mode frequency is determined not only by the particle travel time, but by the travel time of charge waves on the reflected electron beam. This explains the existence of modes with noncommensurate frequencies.

  6. Characterizing low-frequency oscillation of Hall thrusters by dielectric wall temperature variation

    SciTech Connect

    Ning, Guo; Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Yongjie, Ding

    2014-05-15

    The low-frequency oscillation characteristics of a Hall thruster were investigated by varying the dielectric wall temperature. Experimental results indicate that increasing the dielectric wall temperature can result in an increase in the amplitude of low-frequency oscillation and a slight decrease in its frequency. Physical analysis revealed that this change is related to the secondary electron emissions at different dielectric wall temperatures. The evidence suggests that this technique can serve as an effective way for future studies to examine how secondary electron emissions affect a discharging thruster.

  7. Low-frequency quasi-periodic oscillations in black hole and neutron star LMXBs

    NASA Astrophysics Data System (ADS)

    Ingram, Adam

    2016-07-01

    Low-frequency quasi-periodic oscillations (QPOs) are routinely seen in the X-ray flux of accreting black holes and neutron stars. Since the QPO frequency correlates with the low frequency power spectral break in the same manner for both object classes, it is reasonable to believe that these oscillations have the same physical origin in neutron stars as they do in black holes. However, recent successes in modelling black hole low frequency QPOs as Lense-Thirring precession contrast sharply with failures of the same model in neutron stars. This could be attributable to the significant extra complexity, both in the physics and in the observed power spectra, of accreting neutron stars when compared with black holes. Alternatively, the QPO mechanism really is the same for the two object classes, but in that case, why does the Lense-Thirring model work so well for black holes? I will review the current state of this field.

  8. Steady-state BOLD Response to Higher-order Cognition Modulates Low-Frequency Neural Oscillations.

    PubMed

    Wang, Yi-Feng; Dai, Gang-Shu; Liu, Feng; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu

    2015-12-01

    Steady-state responses (SSRs) reflect the synchronous neural oscillations evoked by noninvasive and consistently repeated stimuli at the fundamental or harmonic frequencies. The steady-state evoked potentials (SSEPs; the representative form of the SSRs) have been widely used in the cognitive and clinical neurosciences and brain-computer interface research. However, the steady-state evoked potentials have limitations in examining high-frequency neural oscillations and basic cognition. In addition, synchronous neural oscillations in the low frequency range (<1 Hz) and in higher-order cognition have received a little attention. Therefore, we examined the SSRs in the low frequency range using a new index, the steady-state BOLD responses (SSBRs) evoked by semantic stimuli. Our results revealed that the significant SSBRs were induced at the fundamental frequency of stimuli and the first harmonic in task-related regions, suggesting the enhanced variability of neural oscillations entrained by exogenous stimuli. The SSBRs were independent of neurovascular coupling and characterized by sensorimotor bias, an indication of regional-dependent neuroplasticity. Furthermore, the amplitude of SSBRs may predict behavioral performance and show the psychophysiological relevance. Our findings provide valuable insights into the understanding of the SSRs evoked by higher-order cognition and how the SSRs modulate low-frequency neural oscillations. PMID:26284992

  9. Synchronization of low-frequency oscillations in the cardiovascular system: Application to medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. I.; Prokhorov, M. D.; Karavaev, A. S.; Kiselev, A. R.; Gridnev, V. I.; Bezruchko, B. P.

    2013-10-01

    We investigate synchronization between the low-frequency oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz. A quantitative estimation of this synchronization based on calculation of relative time of phase synchronization of oscillations is proposed. We show that assessment of synchronization between the considered oscillations can be useful for selecting an optimal dose of beta-blocker treatment in patients after acute myocardial infarction. It is found out that low value of synchronization between the low-frequency rhythms in heart rate and blood pressure at the first week after acute myocardial infarction is a sensitive marker of high risk of mortality during the subsequent 5 years.

  10. Low-frequency EEG oscillations associated with information processing in schizophrenia.

    PubMed

    Bates, Alan T; Kiehl, Kent A; Laurens, Kristin R; Liddle, Peter F

    2009-12-01

    Numerous studies have described attenuated event-related potential (ERP) component amplitudes in schizophrenia (e.g., P300, Mismatch Negativity (MMN), Error Negativity/Error-Related Negativity (Ne/ERN)). Functional magnetic resonance imaging (fMRI) studies have typically shown decreased recruitment of diverse brain areas during performance of tasks that elicit the above ERP components. Recent research suggests that phase-resetting of slow-oscillations (e.g., in the delta and theta bands) underlies the potentials observed in ERP averages. Several studies have reported that slow-oscillations are increased in amplitude in people with schizophrenia at rest. Few studies have examined event-related low-frequency oscillations in schizophrenia. We examined event-related evoked and induced delta and theta activity in 17 people with schizophrenia and 17 healthy controls in two go/no-go task variants. We analyzed stimulus-related and response-related oscillations associated with correct-hits, correct-rejects and false-alarms. Our results reveal a pattern of reduced delta and theta activity for task-relevant events in schizophrenia. The findings indicate that while low-frequency oscillations are increased in amplitude at rest, they are not coordinated effectively in schizophrenia during various information processing tasks including target-detection, response-inhibition and error-detection. This slow-oscillation coordination abnormality may help explain the decreased recruitment of brain areas seen in fMRI studies. PMID:19850450

  11. Low-Frequency Quasi-Periodic Oscillations and Iron Line Variability of Discoseismic Corrugation Modes

    NASA Astrophysics Data System (ADS)

    Butsky, Iryna; Tsang, D.

    2013-01-01

    Using a fast semi-analytic raytracing code, we study the variability of iron lines due to discoseismic oscillations concentrated in the inner-most regions of accretion discs around black holes. The dependence of the relativistically broadened line profile on the oscillation-phase is studied for discoseismic corrugation modes. The corrugation mode, or c-mode, is of particular interest as their natural frequency corresponds well to the 0.1-10 Hz range observed for low-frequency quasi-periodic oscillations (LFQPOs) in X-ray binaries. Comparison of the oscillation phase dependent variability and QPO-phase stacked Fe-Kalpha line observations will allow such discoseismic models to be confirmed or ruled out as a source of LFQPOs.

  12. Mechanisms underlying very-low-frequency RR-interval oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Carr, D. L.; Myers, C. W.; Eckberg, D. L.

    1998-01-01

    BACKGROUND: Survival of post-myocardial infarction patients is related inversely to their levels of very-low-frequency (0.003 to 0.03 Hz) RR-interval variability. The physiological basis for such oscillations is unclear. In our study, we used blocking drugs to evaluate potential contributions of sympathetic and vagal mechanisms and the renin-angiotensin-aldosterone system to very-low-frequency RR-interval variability in 10 young healthy subjects. METHODS AND RESULTS: We recorded RR intervals and arterial pressures during three separate sessions, with the patient in supine and 40 degree upright tilt positions, during 20-minute frequency (0.25 Hz) and tidal volume-controlled breathing after intravenous injections: saline (control), atenolol (0.2 mg/kg, beta-adrenergic blockade), atropine sulfate (0.04 mg/kg, parasympathetic blockade), atenolol and atropine (complete autonomic blockade), and enalaprilat (0.02 mg/kg, ACE blockade). We integrated fast Fourier transform RR-interval spectral power at very low (0.003 to 0.03 Hz), low (0.05 to 0. 15 Hz), and respiratory (0.2 to 0.3 Hz) frequencies. Beta-adrenergic blockade had no significant effect on very-low- or low-frequency RR-interval power but increased respiratory frequency power 2-fold. ACE blockade had no significant effect on low or respiratory frequency RR-interval power but modestly (approximately 21%) increased very-low-frequency power in the supine (but not upright tilt) position (P<0.05). The most profound effects were exerted by parasympathetic blockade: Atropine, given alone or with atenolol, abolished nearly all RR-interval variability and decreased very-low-frequency variability by 92%. CONCLUSIONS: Although very-low-frequency heart period rhythms are influenced by the renin-angiotensin-aldosterone system, as low and respiratory frequency RR-interval rhythms, they depend primarily on the presence of parasympathetic outflow. Therefore the prognostic value of very-low-frequency heart period oscillations may

  13. A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Jenkins, Rhonald M.

    1994-10-01

    Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor.

  14. A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1994-01-01

    Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor.

  15. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-01

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  16. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    SciTech Connect

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-15

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  17. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex

    PubMed Central

    CRAVO, André M.; ROHENKOHL, Gustavo; WYART, Valentin; NOBRE, Anna C.

    2013-01-01

    Although it is increasingly accepted that temporal expectation can modulate early perceptual processing, the underlying neural computations remain unknown. In the present study, we combined a psychophysical paradigm with electrophysiological recordings to investigate the putative contribution of low-frequency oscillatory activity in mediating the modulation of visual perception by temporal expectation. Human participants judged the orientation of brief targets (visual Gabor patterns tilted clockwise or counter-clockwise) embedded within temporally regular or irregular streams of noise-patches used as temporal cues. Psychophysical results indicated that temporal expectation enhanced the contrast sensitivity of visual targets. A diffusion model indicated that rhythmic temporal expectation modulated the signal-to-noise gain of visual processing. The concurrent electrophysiological data revealed that the phase of delta oscillations overlying human visual cortex (1 to 4 Hz) was predictive of the quality of target processing only in regular streams of events. Moreover, in the regular condition, the optimum phase of these perception-predictive oscillations occurred in anticipation of the expected events. Together, these results show a strong correspondence between psychophysical and neurophysiological data, suggesting that the phase entrainment of low-frequency oscillations to external sensory cues can serve as an important and flexible mechanism for enhancing sensory processing. PMID:23447609

  18. Measurements of the Plasma Parameters and Low Frequency Oscillations in the Fisk Plasma Source

    NASA Technical Reports Server (NTRS)

    Thomas, Edward, Jr.; Wallace, Kent; Lampkin, Gregory; Watson, Michael

    1998-01-01

    A new plasma device, the Fisk Plasma Source (FPS), has been developed at Fisk University. This plasma device is used to study the physics of low temperature plasmas and plasma-material interactions. The FPS device is a stainless steel vacuum 6-way cross vacuum vessel with at 10-inch inner diameter. Low temperature argon plasmas are generated using DC glow discharge and thermionic filament techniques. Spatial profiles of the plasma density, plasma potential, and electron temperature are measured using Langmuir probes. We present initial experimental measurements of density and temperature profiles in the FPS device. Experimental and theoretical studies of low frequency oscillations observed in the FPS device are also presented.

  19. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)

    2003-01-01

    This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.

  20. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of backrest height.

    PubMed

    Beard, George F; Griffin, Michael J

    2016-05-01

    Backrests influence the comfort of seated people. With 21 subjects sitting with three backrest heights (no backrest, short backrest, high backrest) discomfort caused by lateral, roll, and fully roll-compensated lateral oscillation was investigated at frequencies between 0.25 and 1.0 Hz. With lateral oscillation, the short backrest reduced discomfort at frequencies less than 0.63 Hz and the high backrest reduced discomfort at frequencies less than 1.0 Hz. With roll oscillation, the high backrest reduced discomfort at frequencies less than 0.63 Hz, but increased discomfort at 1.0 Hz. With fully roll-compensated lateral oscillation, the short backrest reduced discomfort at 0.4 Hz and the high backrest reduced discomfort at 0.5 and 0.63 Hz. As predicted by current standards, a backrest can increase discomfort caused by high frequencies of vibration. However, a backrest can reduce discomfort caused by low frequencies, with the benefit depending on the frequency and direction of oscillation and backrest height. PMID:26851464

  1. On The Low Frequency Quasi Periodic Oscillations Of X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Zhang, C. M.

    2005-09-01

    Based on the interpretation of the twin kilohertz Quasi Periodic Oscillations (kHz QPOs) of X-ray spectra of Low Mass X-Ray Binaries (LMXBs) ascribed to the Keplerian and the periastron precession frequencies at the inner disk respectively, we ascribe the low frequency (0.1 10 Hz) Quasi Periodic Oscillations (LFQPO) and HBO (15 60 Hz QPO for Z sources or Atoll sources) to the periastron precession at some outer disk radius. It is assumed that both radii are correlated by a scaling factor of 0.4. The conclusions obtained include: All QPO frequencies increase with increasing accretion rate. The theoretical relations between HBO (LFQPO) frequency and the kHz QPO frequencies are similar to the measured empirical formula.

  2. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    SciTech Connect

    O'Neill, Sean M.; Reynolds, Christopher S.; Coleman Miller, M.; Sorathia, Kareem A.

    2011-08-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global {pi}/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  3. Hemodynamic low-frequency oscillation reflects resting-state neuronal activity in rodent brain

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liu, Peng; Li, James; Pan, Yingtian; Du, Congwu

    2015-03-01

    Brain functional connectivity is mapped using spontaneous low-frequency oscillations (LFOs) in blood-oxygen-leveldependent (BOLD) signals using fMRI. However, the origin of spontaneous BOLD oscillations remains elusive. Specifically, the coupling of regional hemodynamic LFOs to neuronal activity in a resting brain is rarely examined directly. Here we present a method based on instantaneous-frequency (IF) analysis to detect regional LFOs of cerebral blood flow (CBF) along with local-field potential (LFP) changes of neurons in resting state to study neurovascular coupling. CBF and LFP were simultaneously acquired using laser Doppler flowmetry (LDF) and electroencephalography in the rat's somatosensory cortex with high temporal resolution (i.e., 20Hz for CBF and 2kHz for LDF, respectively). Instead of fast Fourier transform analysis, a peak-detection algorithm was used to define the LFP activities and CBF spontaneous oscillations in the time domain and the time lapses were used to calculate the IFs of hemodynamic (i.e., CBF) oscillations and neuronal (i.e., LFP) activities. Our results showed that the CBF mostly oscillated at ~0.1Hz with a full-half-bandwidth of [0.08Hz, 0.15Hz]. In addition, the maximal frequency of LFP firings was also approximately at 0.1Hz, which collaborated with to the frequency of CBF oscillations. Interestingly, CBF increased linearly with the LFP activity up to 0.15Hz (r=0.93), and both signals then decreased rapidly as a function of activity frequency. This indicates the spontaneous hemodynamic LFOs were associated with neuronal activities, thus confirming the neuronal origin of the hemodynamic oscillations.

  4. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  5. The Forgotten Role of Central Volume in Low Frequency Oscillations of Heart Rate Variability

    PubMed Central

    Ferrario, Manuela; Moissl, Ulrich; Garzotto, Francesco; Cruz, Dinna N.; Tetta, Ciro; Signorini, Maria G.; Ronco, Claudio; Grassmann, Aileen; Cerutti, Sergio; Guzzetti, Stefano

    2015-01-01

    The hypothesis that central volume plays a key role in the source of low frequency (LF) oscillations of heart rate variability (HRV) was tested in a population of end stage renal disease patients undergoing conventional hemodialysis (HD) treatment, and thus subject to large fluid shifts and sympathetic activation. Fluid overload (FO) in 58 chronic HD patients was assessed by whole body bioimpedance measurements before the midweek HD session. Heart Rate Variability (HRV) was measured using 24-hour Holter electrocardiogram recordings starting before the same HD treatment. Time domain and frequency domain analyses were performed on HRV signals. Patients were retrospectively classified in three groups according to tertiles of FO normalized to the extracellular water (FO/ECW%). These groups were also compared after stratification by diabetes mellitus. Patients with the low to medium hydration status before the treatment (i.e. 1st and 2nd FO/ECW% tertiles) showed a significant increase in LF power during last 30 min of HD compared to dialysis begin, while no significant change in LF power was seen in the third group (i.e. those with high pre-treatment hydration values). In conclusion, several mechanisms can generate LF oscillations in the cardiovascular system, including baroreflex feedback loops and central oscillators. However, the current results emphasize the role played by the central volume in determining the power of LF oscillations. PMID:25793464

  6. Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG

    PubMed Central

    Moon, Hwasil; Kim, Changki; Kwon, Minhyuk; Chen, Yen Ting; Onushko, Tanya; Lodha, Neha; Christou, Evangelos A.

    2014-01-01

    Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07±2.76 years, 7 women) performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) power spectrum of force below 2 Hz; 3) EMG bursts; 4) power spectrum of EMG bursts below 2 Hz; and 5) power spectrum of the interference EMG from 10–300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R2 = 0.82). For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0–0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68). The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R2 = 0.51). Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35–60 Hz (R2 = 0.95). In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz. PMID:25372038

  7. Systemic Low-Frequency Oscillations in BOLD Signal Vary with Tissue Type

    PubMed Central

    Tong, Yunjie; Hocke, Lia M.; Lindsey, Kimberly P.; Erdoğan, Sinem B.; Vitaliano, Gordana; Caine, Carolyn E.; Frederick, Blaise deB.

    2016-01-01

    Blood-oxygen-level dependent (BOLD) signals are widely used in functional magnetic resonance imaging (fMRI) as a proxy measure of brain activation. However, because these signals are blood-related, they are also influenced by other physiological processes. This is especially true in resting state fMRI, during which no experimental stimulation occurs. Previous studies have found that the amplitude of resting state BOLD is closely related to regional vascular density. In this study, we investigated how some of the temporal fluctuations of the BOLD signal also possibly relate to regional vascular density. We began by identifying the blood-bound systemic low-frequency oscillation (sLFO). We then assessed the distribution of all voxels based on their correlations with this sLFO. We found that sLFO signals are widely present in resting state BOLD signals and that the proportion of these sLFOs in each voxel correlates with different tissue types, which vary significantly in underlying vascular density. These results deepen our understanding of the BOLD signal and suggest new imaging biomarkers based on fMRI data, such as amplitude of low-frequency fluctuation (ALFF) and sLFO, a combination of both, for assessing vascular density. PMID:27445680

  8. Study on Low-Frequency Oscillations in a Gyrotron Using a 3D CFDTD PIC Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2010-11-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. 2D Particle-in-cell simulations quasi-statically model the development of oscillations of the space charge in the adiabatic trap, but the physics of the electron dynamics in the adiabatic trap is only partially understood. Therefore, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a high average power gyrotron. As the CFDTD method exhibits a second order accuracy, complicated structures, such as a magnetron injection gun, can be well described. Employing a highly parallelized computation, the model can be simulated in time domain more realistically.

  9. The signature of low-frequency oceanic forcing in the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    O'Reilly, Christopher H.; Huber, Markus; Woollings, Tim; Zanna, Laure

    2016-03-01

    The Atlantic Multidecadal Oscillation (AMO) significantly influences the climate of the surrounding continents and has previously been attributed to variations in the Atlantic Meridional Overturning Circulation. Recently, however, similar multidecadal variability was reported in climate models without ocean circulation variability. We analyze the relationship between turbulent heat fluxes and sea surface temperatures (SSTs) over the midlatitude North Atlantic in observations and coupled climate model simulations, both with and without ocean circulation variability. SST anomalies associated with the AMO are positively correlated with heat fluxes on decadal time scales in both observations and models with varying ocean circulation, whereas in models without ocean circulation variability the anomalies are negatively correlated when heat flux anomalies lead. These relationships are captured in a simple stochastic model and rely crucially on low-frequency forcing of SST. The fully coupled models that better capture this signature more effectively reproduce the observed impact of the AMO on European summertime temperatures.

  10. Abnormal Excitability and Episodic Low-Frequency Oscillations in the Cerebral Cortex of the tottering Mouse

    PubMed Central

    Cramer, Samuel W.; Popa, Laurentiu S.; Carter, Russell E.; Chen, Gang

    2015-01-01

    The Ca2+ channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca2+ channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca2+ channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca2+ channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations. PMID:25855180

  11. Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse.

    PubMed

    Cramer, Samuel W; Popa, Laurentiu S; Carter, Russell E; Chen, Gang; Ebner, Timothy J

    2015-04-01

    The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations. PMID:25855180

  12. Spells of Low-Frequency Oscillations and Weather Regimes in the Northern Hemisphere.

    NASA Astrophysics Data System (ADS)

    Plaut, Guy; Vautard, Robert

    1994-01-01

    The low-frequency variability in the midlatitudes is described through an analysis of the oscillatory phenomena. In order to isolate nearly periodic components of the atmospheric flow, the multichannel version of the singular spectrum analysis (M-SSA) is developed and applied to an NMC 32-year long set of 700-hPa geopotential heights. In the same way that principal component analysis identifies the spatial patterns dominating the variability, M-SSA identifies dynamically relevant space-time patterns and provides an adaptive filtering technique.Three major low-frequency oscillations (LFOs) are found, with periods of 70 days, 40-45 days, and 30-35 days. The 70-day oscillation consists of fluctuations in both position and amplitude of the Atlantic jet, with a poleward-propagating anomaly pattern. The 40-45-day oscillation is specific to the Pacific sector and has a pronounced Pacific/North American (PNA) structure in its high-amplitude phase. The 30-35-day mode is confined over the Atlantic region, and consists of the retrogression of a dipole pattern. All these oscillations are shown to be intermittently excited, and M-SSA allows the localization of their spells. The two Atlantic oscillations turn out to be frequently phase locked, so that the 30-35-day mode is likely to be a harmonic of the 70-day mode. The phase locking of the Pacific 40-45-day with the Atlantic 30-35-day oscillations is also studied.Next, the relationships between LFOs and weather regimes are studied. It is shown in particular that the occurrence of the Euro-Atlantic blocking regime is strongly favored, although not systematically caused, by particular phases of the 30-35-day mode. The LFOs themselves are able to produce high-amplitude persistent anomalies by interfering with each other.The transition from a zonal regime to a blocking regime is also shown to be highly connected to the life cycle of the 30-35-day mode, indicating that regime transitions do not result only from the random occurrence

  13. 3D CFDTD PIC Simulation Study on Low-Frequency Oscillations in a Gyrotron

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2011-10-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. However, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a magnetron injection gun (MIG) of a high average power gyrotron. Employing a highly parallelized computation, the model can be simulated in time domain more realistically. LFOs have been obtained in a 3D time domain simulation for the first time. From our preliminary simulation studies, it is found that not only magnetic compression profile but initial velocity or velocity ratio play an important role in the operation of a MIG electron gun. In addition, the secondary emission effects on the LFOs are also studied. Detailed results will be presented. Work supported by the U.S. Department of Energy under Grant No. DE-SC0004436.

  14. Respiratory calcium fluctuations in low-frequency oscillating astrocytes in the pre-Bötzinger complex.

    PubMed

    Oku, Yoshitaka; Fresemann, Jens; Miwakeichi, Fumikazu; Hülsmann, Swen

    2016-06-01

    Astrocytes have been found to modulate neuronal activity through calcium-dependent signaling in various brain regions. However, whether astrocytes of the pre-Bötzinger complex (preBötC) exhibit respiratory rhythmic fluctuations is still controversial. Here we evaluated calcium-imaging experiments within preBötC in rhythmically active medullary slices from TgN(hGFAP-EGFP) mice using advanced analyses. 13.8% of EGFP-negative cells, putative neurons, showed rhythmic fluorescent changes that were highly correlated to the respiratory rhythmic fluctuation (cross-correlation coefficient>0.5 and dF/F>0.2%). In contrast, a considerable number of astrocyte somata exhibited synchronized low-frequency (<0.03Hz) calcium oscillations. After band-pass filtering, signals that irregularly preceded the calcium signal of EGFP-negative cells were observed in 10.2% of astrocytes, indicating a functional coupling between astrocytes and neurons in preBötC. A model simulation confirmed that such preinspiratory astrocytic signals can arise from coupled neuronal and astrocytic oscillators, supporting a concept that slow oscillatory changes of astrocytic functions modulate neighboring neuronal activity to add variability in respiratory rhythm. PMID:25747384

  15. Low-Frequency Flow Oscillations on Stalled Wings Exhibiting Cellular Separation Topology

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin James

    One of the most pervasive threats to aircraft controllability is wing stall, a condition associated with loss of lift due to separation of air flow from the wing surface at high angles of attack. A recognized need for improved upset recovery training in extended-envelope flight simulators is a physical understanding of the post-stall aerodynamic environment, particularly key flow phenomena which influence the vehicle trajectory. Large-scale flow structures known as stall cells, which scale with the wing chord and are spatially-periodic along the span, have been previously observed on post-stall airfoils with trailing-edge separation present. Despite extensive documentation of stall cells in the literature, the physical mechanisms behind their formation and evolution have proven to be elusive. The undertaken study has sought to characterize the inherently turbulent separated flow existing above the wing surface with cell formation present. In particular, the question of how the unsteady separated flow may interact with the wing to produce time-averaged cellular surface patterns is considered. Time-resolved, two-component particle image velocimetry measurements were acquired at the plane of symmetry of a single stall cell formed on an extruded NACA 0015 airfoil model at chord Reynolds number of 560,000 to obtain insight into the time-dependent flow structure. The evolution of flow unsteadiness was analyzed over a static angle-of-attack range covering the narrow post-stall regime in which stall cells have been observed. Spectral analysis of velocity fields acquired near the stall angle confirmed a low-frequency flow oscillation previously detected in pointwise surface measurements by Yon and Katz (1998), corresponding to a Strouhal number of 0.042 based on frontal projected chord height. Probability density functions of the streamwise velocity component were used to estimate the convective speed of this mode at approximately half the free-stream velocity, in agreement

  16. The effect of low-frequency oscillations on cardio-respiratory synchronization. Observations during rest and exercise

    NASA Astrophysics Data System (ADS)

    Kenwright, D. A.; Bahraminasab, A.; Stefanovska, A.; McClintock, P. V. E.

    2008-10-01

    We show that the transitions which occur between close orders of synchronization in the cardiorespiratory system are mainly due to modulation of the cardiac and respiratory processes by low-frequency components. The experimental evidence is derived from recordings on healthy subjects at rest and during exercise. Exercise acts as a perturbation of the system that alters the mean cardiac and respiratory frequencies and changes the amount of their modulation by low-frequency oscillations. The conclusion is supported by numerical evidence based on a model of phase-coupled oscillators, with white noise and lowfrequency noise. Both the experimental and numerical approaches confirm that low-frequency oscillations play a significant role in the transitional behavior between close orders of synchronization.

  17. Deep level domain spectroscopy of low frequency oscillations in semi-insulating InP

    NASA Astrophysics Data System (ADS)

    Backhouse, C.; Young, L.

    1992-11-01

    It is known that low frequency current oscillations occur in semi-insulating GaAs due to the formation and transit of high field domains caused by enhanced trapping of hot electrons by deep levels and that power density spectra of the current show peaks whose temperature dependence gives information on deep levels. In the present work Fe-compensated InP was investigated. The peaks rose from an approximately {1}/{f}{3}/{2} background and by estimating and removing this and by averaging many spectra, no less than 14 frequency peaks were resolved which gave straight lines on an Arrhenius plot of log( {T 2}/{2f}) vs{1}/{T}. Although the amplitude of the current oscillations is not so large as to preclude multiple domain propagation, it seems more likely that the domains are caused by hot electron trapping by one level only, rather than that several traps should have the necessary characteristics to launch domains. The multiplicity of peaks could be partly due to harmonics of the basic high field domain oscillation and partly due to conductivity modulation by other levels whose occupancies are changed by the passage of the domains: the task, if so, is to determine which peaks are which. The activation energies from the Arrhenius plots fell into groups close to 0.30, 0.39, 0.41, 0.44 and 0.49 eV. The 14 peaks thus are believed to arise from 5 deep levels. Evidence was found that the 0.49 eV level is iron-related and is responsible for producing the high field domains and for drain current drift in InP metal-insulator-semiconductor field-effect transistors.

  18. Note: An approach to measurement of low frequency oscillation amplitude of discharge current of in-orbit Hall thruster.

    PubMed

    Han, Liang; Ding, Yongjie; Wei, Liqiu; Yu, Daren

    2014-06-01

    This paper provides a method to measure the amplitude of low frequency oscillation under the on-track working condition, and realizes the sampling by means of adding the circuit design of sampling, low pass filtering by 3 dB at 48.2 kHz, detection and integrating in the filtering unit. The experimental results prove that the measuring device of merely 0.8 g can quantitatively reflect the amplitude of low frequency oscillation in Hall thruster and the maximum deviation of experiment data and theory data is 10% FS. PMID:24985877

  19. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    SciTech Connect

    Ryu, S.K.; Kim, Y.K.; Kim, M.K.; Won, S.H.; Chung, S.H.

    2010-01-15

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. (author)

  20. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. PMID:26441146

  1. On the modulation of low-frequency quasi-periodic oscillations in black hole transients

    NASA Astrophysics Data System (ADS)

    Pawar, Devraj D.; Motta, Sara; Shanthi, K.; Bhattacharya, Dipankar; Belloni, Tomaso

    2015-04-01

    We studied the properties of the low-frequency quasi-periodic oscillations detected in a sample of six black hole candidates (XTE J1550-564, H 1743-322, XTE J1859+226, 4U 1630-47, GX 339-4, XTE J1650-500) observed by the Rossi XTE satellite. We analysed the relation between the full width at half-maximum and the frequency of all the narrow peaks detected in power density spectra where a type-C QPO is observed. Our goal was to understand the nature of the modulation of the signal by comparing the properties of different harmonic peaks in the power density spectrum. We find that for the sources in our sample the width of the fundamental and of the first harmonic are compatible with a frequency modulation, while that of the sub-harmonic is independent of frequency, possibly indicating the presence of an additional modulation in amplitude. We compare our results with those obtained earlier from GRS 1915+105 and XTE J1550-564.

  2. Noninvasive optical evaluation of low frequency oscillations in prefrontal cortex hemodynamics during verbal working memory

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Li, Kai; Sun, Yunlong

    2014-03-01

    The low frequency oscillation (LFO) around 0.1 Hz has been observed recently in cerebral hemodynamic signals during rest/sleep, enhanced breathing, and head- up-tilting, showing that cerebral autoregulation can be accessed by LFOs. However, many brain function researches require direct measurement of LFOs during specified brain function activities. This pilot study explored using near-infrared spectroscopy/imaging (NIRS) to noninvasively and simultaneously detect LFOs of prefrontal cerebral hemodynamics (i.e., oxygenated/deoxygenated/total hemoglobin concentration: △[oxy-Hb]/ △[deoxy-Hb]/ △[tot-Hb]) during N-back visual verbal working memory task. The LFOs were extracted from the measured variables using power spectral analysis. We found the brain activation sites struck clear LFOs while other sites did not. The LFO of △[deoxy-Hb] acted as a negative pike and ranged in (0.05, 0.1) Hz, while LFOs of △[oxy-Hb] and △[tot-Hb] acted as a positive pike and ranged in (0.1, 0.15) Hz. The amplitude difference and frequency lag between △[deoxy-Hb] and △[oxy-Hb]/ △[tot-Hb] produced a more focused and sensitive activation map compare to hemodynamic amplitude-quantified activation maps. This study observed LFOs in brain activities and showed strong potential of LFOs in accessing brain functions.

  3. A newly designed experimental system for exposure of mammalian cells to extremely low frequency magnetic fields.

    PubMed

    Miyakoshi, J; Ohtsu, S; Tatsumi-Miyajima, J; Takebe, H

    1994-03-01

    To examine the biological effects of extremely low frequency magnetic field (ELFMF), we have designed and manufactured a new equipment for long-term and high-density exposure of cells to ELFMF. The ELFMF exposure system consists of a generator of magnets with a built-in CO2 incubator, an alternating current (AC) power supply, a gas compressor and a thermocontroller for the incubator, and a cooling unit for the magnets. The CO2 incubator made of acrylic resin is inserted into the inner-space of the silicon steel strip-cores. In this system, the temperature of the incubator is maintained at 37 +/- 0.5 degrees C. The maximum magnetic flux density on the exposure area of the incubator is 500 mT (T; tesla) at a current of 556 Arms (rms; root mean square) at 50 Hz. The long-term (up to 120 hr) exposure of 400 mT ELFMF did not affect the growth of both HL60RG and CCRF-CEM cells originated from human leukemia. The post-X-irradiation exposure of 400 mT ELFMF for 2 hr also did not affect the radiation sensitivity of GM0637 and TAT2SF cells originated from a normal human and an ataxia telangiectasia patient. PMID:8057268

  4. Neonatal total liquid ventilation: is low-frequency forced oscillation technique suitable for respiratory mechanics assessment?

    PubMed

    Bossé, Dominick; Beaulieu, Alexandre; Avoine, Olivier; Micheau, Philippe; Praud, Jean-Paul; Walti, Hervé

    2010-08-01

    This study aimed to implement low-frequency forced oscillation technique (LFFOT) in neonatal total liquid ventilation (TLV) and to provide the first insight into respiratory impedance under this new modality of ventilation. Thirteen newborn lambs, weighing 2.5 + or - 0.4 kg (mean + or - SD), were premedicated, intubated, anesthetized, and then placed under TLV using a specially design liquid ventilator and a perfluorocarbon. The respiratory mechanics measurements protocol was started immediately after TLV initiation. Three blocks of measurements were first performed: one during initial respiratory system adaptation to TLV, followed by two other series during steady-state conditions. Lambs were then divided into two groups before undergoing another three blocks of measurements: the first group received a 10-min intravenous infusion of salbutamol (1.5 microg x kg(-1) x min(-1)) after continuous infusion of methacholine (9 microg x kg(-1) x min(-1)), while the second group of lambs was chest strapped. Respiratory impedance was measured using serial single-frequency tests at frequencies ranging between 0.05 and 2 Hz and then fitted with a constant-phase model. Harmonic test signals of 0.2 Hz were also launched every 10 min throughout the measurement protocol. Airway resistance and inertance were starkly increased in TLV compared with gas ventilation, with a resonant frequency < or = 1.2 Hz. Resistance of 0.2 Hz and reactance were sensitive to bronchoconstriction and dilation, as well as during compliance reduction. We report successful implementation of LFFOT to neonatal TLV and present the first insight into respiratory impedance under this new modality of ventilation. We show that LFFOT is an effective tool to track respiratory mechanics under TLV. PMID:20538848

  5. Motor dysfunction in the tottering mouse is linked to cerebellar spontaneous low frequency oscillations revealed by flavoprotein autofluorescence optical imaging

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Popa, Laurentiu S.; Wang, Xinming; Gao, Wangcai; Barnes, Justin; Hendrix, Claudia M.; Hess, Ellen J.; Ebner, Timothy J.

    2009-02-01

    Flavoprotein autofluorescence optical imaging is developing into a powerful research tool to study neural activity, particularly in vivo. In this study we used this imaging technique to investigate the neuronal mechanism underlying the episodic movement disorder that is characteristic of the tottering (tg) mouse, a model of episodic ataxia type 2. Both EA2 and the tg mouse are caused by mutations in the gene encoding Cav2.1 (P/Q-type) voltage-gated Ca2+ channels. These mutations result in a reduction in P/Q Ca2+ channel function. Both EA2 patients and tg mice have a characteristic phenotype consisting of transient motor attacks triggered by stress, caffeine or ethanol. The neural events underlying these episodes of dystonia are unknown. Flavoprotein autofluorescence optical imaging revealed spontaneous, transient, low frequency oscillations in the cerebellar cortex of the tg mouse. Lasting from 30 - 120 minutes, the oscillations originate in one area then spread to surrounding regions over 30 - 60 minutes. The oscillations are reduced by removing extracellular Ca2+ and blocking Cav 1.2/1.3 (L-type) Ca2+ channels. The oscillations are not affected by blocking AMPA receptors or by electrical stimulation of the parallel fiber - Purkinje cell circuit, suggesting the oscillations are generated intrinsically in the cerebellar cortex. Conversely, L-type Ca2+ agonists generate oscillations with similar properties. In the awake tg mouse, transcranial flavoprotein imaging revealed low frequency oscillations that are accentuated during caffeine induced attacks of dystonia. The oscillations increase during the attacks of dystonia and are coupled to oscillations in face and hindlimb EMG activity. These transient oscillations and the associated cerebellar dysfunction provide a novel mechanism by which an ion channel disorder results in episodic motor dysfunction.

  6. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    PubMed

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. PMID:26028433

  7. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent

    PubMed Central

    Alagapan, Sankaraleengam; Schmidt, Stephen L.; Lefebvre, Jérémie; Hadar, Eldad; Shin, Hae Won; Frӧhlich, Flavio

    2016-01-01

    Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1) stimulation enhanced the targeted oscillation power, (2) this enhancement outlasted stimulation, and (3) the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms. PMID:27023427

  8. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent.

    PubMed

    Alagapan, Sankaraleengam; Schmidt, Stephen L; Lefebvre, Jérémie; Hadar, Eldad; Shin, Hae Won; Frӧhlich, Flavio

    2016-03-01

    Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1) stimulation enhanced the targeted oscillation power, (2) this enhancement outlasted stimulation, and (3) the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms. PMID:27023427

  9. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: effect of seat cushion.

    PubMed

    Beard, George F; Griffin, Michael J

    2014-11-01

    The discomfort caused by lateral oscillation, roll oscillation, and fully roll-compensated lateral oscillation has been investigated at frequencies between 0.25 and 1.0 Hz when sitting on a rigid seat and when sitting on a compliant cushion, both without a backrest. Judgements of vibration discomfort and the transmission of lateral and roll oscillation through the seat cushion were obtained with 20 subjects. Relative to the rigid seat, the cushion increased lateral acceleration and roll oscillation at the lower frequencies and also increased discomfort during lateral oscillation (at frequencies less than 0.63 Hz), roll oscillation (at frequencies less than 0.4 Hz), and fully roll-compensated lateral oscillation (at frequencies between 0.315 and 0.5 Hz). The root-sums-of-squares of the frequency-weighted lateral and roll acceleration at the seat surface predicted the greater vibration discomfort when sitting on the cushion. The frequency-dependence of the predicted discomfort may be improved by adjusting the frequency weighting for roll acceleration at frequencies between 0.25 and 1.0 Hz. PMID:24947003

  10. Amplitude of low-frequency oscillations associated with emotional conflict control.

    PubMed

    Xue, Song; Wang, Xu; Chang, Jingjing; Liu, Jia; Qiu, Jiang

    2016-09-01

    Previous fMRI studies related to emotional conflict focused on task activation during the specific experimental paradigm. Yet, the underlying spontaneous neural activity was largely unknown. Here, this was the first study using resting-state fMRI to explore the spontaneous neural activity related to emotional conflict. We used the whole-brain analysis to investigate the association between emotional conflict and amplitude of low-frequency fluctuations (ALFF) in a large sample. We found that the emotional conflict effect was negatively correlated with ALFF in the right AMY. These findings implied that AMY was the key region which plays a crucial role in emotional conflict. PMID:27142051

  11. Resonance condition and low-frequency quasi-periodic oscillations of the outbursting source H1743-322

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mondal, Santanu; Debnath, Dipak

    2015-10-01

    It has long been proposed that low-frequency quasi-periodic oscillations (QPOs) in stellar-mass black holes or their equivalents in supermassive black holes are the result of resonances between infall and cooling timescales. We explicitly compute these two timescales in a generic situation to show that resonances are easily achieved. During an outburst of a transient black hole candidate, the accretion rate of the Keplerian disc as well as the geometry of the Comptonizing cloud change very rapidly. During some period, a resonance condition between the cooling timescale (predominantly by Comptonization) and the infall timescale of the Comptonizing cloud is roughly satisfied. This leads to low-frequency quasi-periodic oscillations (LFQPOs) of the Compton cloud and the consequent oscillation of hard X-rays. In this paper, we explicitly follow black hole candidate H1743-322 during its 2010 outburst. We compute the Compton cooling time and infall time over several days and show that QPOs take place when these two roughly agree within ˜50 per cent, i.e., the resonance condition is generally satisfied. We also confirm that for the sharper LFQPOs (i.e. higher Q-factors) the ratio of the two timescales is very close to 1.

  12. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection

    PubMed Central

    Litvak, Vladimir; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.

    2015-01-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. PMID:25878159

  13. Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation.

    PubMed

    Vass, Lindsay K; Copara, Milagros S; Seyal, Masud; Shahlaie, Kiarash; Farias, Sarah Tomaszewski; Shen, Peter Y; Ekstrom, Arne D

    2016-03-16

    Low-frequency (delta/theta band) hippocampal neural oscillations play prominent roles in computational models of spatial navigation, but their exact function remains unknown. Some theories propose they are primarily generated in response to sensorimotor processing, while others suggest a role in memory-related processing. We directly recorded hippocampal EEG activity in patients undergoing seizure monitoring while they explored a virtual environment containing teleporters. Critically, this manipulation allowed patients to experience movement through space in the absence of visual and self-motion cues. The prevalence and duration of low-frequency hippocampal oscillations were unchanged by this manipulation, indicating that sensorimotor processing was not required to elicit them during navigation. Furthermore, the frequency-wise pattern of oscillation prevalence during teleportation contained spatial information capable of classifying the distance teleported. These results demonstrate that movement-related sensory information is not required to drive spatially informative low-frequency hippocampal oscillations during navigation and suggest a specific function in memory-related spatial updating. PMID:26924436

  14. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    SciTech Connect

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  15. Low-frequency oscillations in precipitation, temperature, and runoff on a west facing mountain front: A hydrogeologic interpretation

    NASA Astrophysics Data System (ADS)

    Shun, Tongying; Duffy, Christopher J.

    1999-01-01

    This paper examines the space-time patterns of annual, interannual, and decadal components of precipitation, temperature, and runoff (P-T-R) using long-record time series across the steep topographic gradient of the Wasatch Front in northern Utah. This region forms the major drainage area to the Great Salt Lake. The approach is to use multichannel singular spectrum analysis as a means of detecting dominant oscillations and spatial patterns in the data and to discuss the relation to the unique mountain and basin hydrologic setting. Results of the analysis show that high-elevation runoff is dominated by the annual and seasonal harmonics, while low-elevation runoff exhibits strong interannual and decadal oscillations. For precipitation and temperature, only the annual/seasonal spectral peaks were found to be significantly different from the underlying noise floor, and these components increase with altitude similar to the mean orographic pattern. Spectral peaks in runoff show a more complex pattern with altitude, with increasing low-frequency components at intermediate and lower elevation. This pattern is then discussed in terms of basin storage effects and groundwater-stream interaction. A conceptual hydrogeologic model for the mountain and basin system proposes how losing streams and deep upwelling groundwater in the alluvial aquifer could explain the strong low-frequency component in streams entering the Great Salt Lake. The phase-plane trajectories of the dominant components for P-T-R are reconstructed as a function of altitude showing the relation of hydrogeologic conditions to the strongest oscillations in mountain runoff and discharge to the Great Salt Lake. The paper shows that weak interannual and decadal oscillations in the climate signal are strengthened where groundwater discharge dominates streamflow.

  16. Spontaneous low-frequency voltage oscillations in frog saccular hair cells

    PubMed Central

    Catacuzzeno, Luigi; Fioretti, Bernard; Perin, Paola; Franciolini, Fabio

    2004-01-01

    Spontaneous membrane voltage oscillations were found in 27 of 130 isolated frog saccular hair cells. Voltage oscillations had a mean peak-to-peak amplitude of 23 mV and a mean oscillatory frequency of 4.6 Hz. When compared with non-oscillatory cells, oscillatory cells had significantly greater hyperpolarization-activated and lower depolarization-activated current densities. Two components, the hyperpolarization-activated cation current, Ih, and the K+-selective inward-rectifier current, IK1, contributed to the hyperpolarization-activated current, as assessed by the use of the IK1-selective inhibitor Ba2+ and the Ih-selective inhibitor ZD-7288. Five depolarization-activated currents were present in these cells (transient IBK, sustained IBK, IDRK, IA, and ICa), and all were found to have significantly lower densities in oscillatory cells than in non-oscillatory cells (revealed by using TEA to block IBK, 4-AP to block IDRK, and prepulses at different voltages to isolate IA). Bath application of either Ba2+ or ZD-7288 suppressed spontaneous voltage oscillations, indicating that Ih and IK1 are required for generating this activity. On the contrary, TEA or Cd2+ did not inhibit this activity, suggesting that IBK and ICa do not contribute. A mathematical model has been developed to test the interpretation derived from the pharmacological and biophysical data. This model indicates that spontaneous voltage oscillations can be generated when the electrophysiological features of oscillatory cells are used. The oscillatory behaviour is principally driven by the activity of IK1 and Ih, with IA playing a modulatory role. In addition, the model indicates that the high densities of depolarization-activated currents expressed by non-oscillatory cells help to stabilize the resting membrane potential, thus preventing the spontaneous oscillations. PMID:15489251

  17. Short Meditation Trainings Enhance Non-REM Sleep Low-Frequency Oscillations

    PubMed Central

    Dentico, Daniela; Ferrarelli, Fabio; Riedner, Brady A.; Smith, Richard; Zennig, Corinna; Lutz, Antoine; Tononi, Giulio; Davidson, Richard J.

    2016-01-01

    Study Objectives We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity. Design High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention. Setting Sound-attenuated sleep research room. Patients or Participants Twenty-four long-term meditators and twenty-four meditation-naïve controls. Interventions Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation. Measurements and Results We found an increase in EEG low-frequency oscillatory activities (1–12 Hz, centered around 7–8 Hz) over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25–40 Hz). There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience. Conclusions This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior

  18. Low-frequency Intensity Variation of the South Asian High and its relationship to Boreal Summer Intraseasonal Oscillation

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Ren, Xuejuan

    2016-04-01

    The South Asian High (SAH) is an important member among the Asian summer monsoon circulations in the upper troposphere located over the Tibean Plateau and its surrounding areas during boreal summer. This research attempts to study the characteristics and mechanisms of low-frequency oscillation of SAH, using daily ERA-Interim reanalysis dataset and NECP/NCAR OLR data. The empirical orthogonal function (EOF)analysis is performed on 200hPa geopotential height low-frequency anomalies over the 20°-35°N, 35°-110°E for June, July and August from 1979 to 2013. The first EOF mode shows a monopole pattern capturing the strengthening or weakening of the SAH's body. The power spectrum analysis of the corresponding principal component (PC1) time series shows that the first mode has a period about 10-30 days. Positive anomalies appear in the 200hPa geopotential height and negative anomalies appear in their north side when SAH is in positive low-frequency phase. A band with negative outgoing longwave radiation (OLR) anomalies presents from the Arabian Sea, north of Indian Peninsula to Southeast China and Japan Island. Correspondingly, positive anomalous rainfall are contiguous in the north of Indian Peninsula, south of Tibetan Plateau, Southeast China and Japan Island. The lead-lag regression analysis demonstrates that from day -12 to day 0, negative OLR anomalies band move northward and northwest from the equatorial Indian Ocean, the Bay of Bengals, the South China sea and Western North Pacific to the Arabian Sea, north of Indian Peninsula, south of Tibetan Plateau, Southeast China and Japan Island. Corresponding to OLR anomalies, positive rainfall anomalies band have the similar evolution. The spatial pattern of anomalies in integrated apparent heat source and integrated apparent moisture sink resemble that of rainfall and OLR, which correspond more anomalous condensation heat release. The lead-lag regression analysis also shows that the OLR band moving northward

  19. Application of the floating-potential probe for studies of low frequency oscillations in a plasma

    NASA Technical Reports Server (NTRS)

    Dzhakov, B. Y.

    1973-01-01

    The proper interpretation of the results obtained from measurements of the floating potential of an electrostatic probe may cause difficulties in time varying plasmas. The following limitations of the method are considered: the charge separation in the plasma, the influence of the input capacity of the measuring circuit, and the influence of the layer capacity near the probe. A detailed analysis is carried out in the cases of moving striations and ion acoustic waves. A simple measuring technique is suggested for ion acoustic studies, giving detailed information about ion density oscillations.

  20. Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number

    NASA Astrophysics Data System (ADS)

    Cranch, G. A.; Lane, J. E.; Miller, G. A.; Lou, J. W.

    2013-05-01

    The motion of submerged cantilevers driven by viscous fluids is experimentally investigated and a previously published theoretical model is verified over a broad range of Reynolds number covering 4×10-3≤Re≤2000 at frequencies up to 1 kHz. Both planar and cylindrical cantilevers are implemented using short length (few centimeters) fiber lasers, which are also used to measure the deflections. The driving forces are analyzed in detail illustrating how the dominant force transitions from a pressure related force to a viscous force depending on the Reynolds number of the fluid flow around the cantilever. Simplified, approximate expressions for the tip displacement of cantilevers oscillating in the highly viscous regime are also presented. These results will enable accurate, a priori, calculation of the motion of driven cantilevers over a range of dimensions, geometries, and fluid properties.

  1. The quasi-periodic oscillations and very low frequency noise of Scorpius X-1 as transient chaos - A dripping handrail?

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Steiman-Cameron, Thomas; Young, Karl; Donoho, David L.; Crutchfield, James P.; Imamura, James

    1993-01-01

    We present evidence that the quasi-periodic oscillations (QPO) and very low frequency noise (VLFN) characteristic of many accretion sources are different aspects of the same physical process. We analyzed a long, high time resolution EXOSAT observation of the low-mass X-ray binary (LMXB) Sco X-1. The X-ray luminosity varies stochastically on time scales from milliseconds to hours. The nature of this variability - as quantified with both power spectrum analysis and a new wavelet technique, the scalegram - agrees well with the dripping handrail accretion model, a simple dynamical system which exhibits transient chaos. In this model both the QPO and VLFN are produced by radiation from blobs with a wide size distribution, resulting from accretion and subsequent diffusion of hot gas, the density of which is limited by an unspecified instability to lie below a threshold.

  2. A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods.

    PubMed

    Khanbareh, H; Schelen, J B J; van der Zwaag, S; Groen, W A

    2015-10-01

    Pyroelectric properties of materials can be accurately determined by applying a new digital signal processing method on the discrete sampled data obtained with a temperature oscillation technique. The pyroelectric coefficient is calculated from the component of the generated current 90° out of phase with respect to the sinusoidal temperature wave. The novelty of the proposed approach lies in the signal analysis procedure which implements a simple Fast Fourier transform that filters residual noise through convolution, and calculates the phase difference between the peaks of the temperature and current waves. The new idea requires relatively simple hardware and enables very accurate measurement of the pyroelectric coefficient of materials at ultra low frequencies, 1-250 mHz, without using costly lock-in amplifiers. PMID:26520988

  3. A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods

    NASA Astrophysics Data System (ADS)

    Khanbareh, H.; Schelen, J. B. J.; van der Zwaag, S.; Groen, W. A.

    2015-10-01

    Pyroelectric properties of materials can be accurately determined by applying a new digital signal processing method on the discrete sampled data obtained with a temperature oscillation technique. The pyroelectric coefficient is calculated from the component of the generated current 90∘ out of phase with respect to the sinusoidal temperature wave. The novelty of the proposed approach lies in the signal analysis procedure which implements a simple Fast Fourier transform that filters residual noise through convolution, and calculates the phase difference between the peaks of the temperature and current waves. The new idea requires relatively simple hardware and enables very accurate measurement of the pyroelectric coefficient of materials at ultra low frequencies, 1-250 mHz, without using costly lock-in amplifiers.

  4. Alleviation SSR and Low Frequency Power Oscillations in Series Compensated Transmission Line using SVC Supplementary Controllers

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Kumar, Narendra

    2016-07-01

    In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.

  5. Low Frequency Oscillations in Assimilated Global Datasets Using TRMM Rainfall Observations

    NASA Technical Reports Server (NTRS)

    Tao, Li; Yang, Song; Zhang, Zhan; Hou, Arthur; Olson, William S.

    2004-01-01

    Global datasets for the period May-August 1998 from the Goddard Earth Observing System (GEOS) data assimilation system (DAS) with/without assimilated Tropical Rainfall Measuring Mission (TRMM) precipitation are analyzed against European Center for Medium-Range Weather Forecast (ECMWF) output, NOAA observed outgoing longwave radiation (OLR) data, and TRMM measured rainfall. The purpose of this study is to investigate the representation of the Madden-Julian Oscillation (MJO) in GEOS assimilated global datasets, noting the impact of TRMM observed rainfall on the MJO in GEOS data assimilations. A space-time analysis of the OLR data indicates that the observed OLR exhibits a spectral maximum for eastward-propagating wavenumber 1-3 disturbances with periods of 20-60 days in the 0deg-30degN latitude band. The assimilated OLR has a similar feature but with a smaller magnitude. However, OLR spectra from assimilations including TRMM rainfall data show better agreement with observed OLR spectra than spectra from assimilations without TRMM rainfall. Similar results are found for wavenumber 4-6 disturbances. There is a spectral peak for eastward-propagating wavenumber 4-6 disturbances with periods of 20-40 days near the equator, while for westward-moving disturbances, a spectral peak is noted for periods of 30-50 days near 25degN. To isolate the MJO, a 30-50 day band filter is selected for this study. It was found that the eastward-propagating waves from the band-filtered observed OLR between 10degs- 10degN are located in the eastern hemisphere. Similar patterns are evident in surface rainfall and the 850 hPa wind field. Assimilation of TRMM-observed rainfall reveals more distinct MJO features in the analysis than without rainfall assimilation. Similar analyses are also conducted over the Indian summer monsoon and East Asia summer monsoon regions, where the MJO is strongly related to the summer monsoon active-break patterns.

  6. Reduced Amplitude of Low-Frequency Brain Oscillations in the Psychosis Risk Syndrome and Early Illness Schizophrenia.

    PubMed

    Fryer, Susanna L; Roach, Brian J; Wiley, Katherine; Loewy, Rachel L; Ford, Judy M; Mathalon, Daniel H

    2016-08-01

    Low-frequency oscillations (LFOs) of the blood oxygen level-dependent (BOLD) signal are gaining interest as potential biomarkers sensitive to neuropsychiatric pathology. Schizophrenia has been associated with alterations in intrinsic LFOs that covary with cognitive deficits and symptoms. However, the extent to which LFO dysfunction is present before schizophrenia illness onset remains unknown. Resting-state FMRI data were collected from clinical high-risk (CHR; n=45) youth, early illness schizophrenia (ESZ; n=74) patients, and healthy controls (HCs; n=85) aged 12-35 years. Age-adjusted voxelwise fractional amplitude of low-frequency fluctuations (fALFF; 0.01-0.08 Hz) of the BOLD signal was compared among the three groups. Main effects of Group (p<0.005 height threshold, familywise error cluster-level corrected p<0.05) were followed up via Tukey-corrected pairwise comparisons. Significant main effects of Group (p<0.05) revealed decreased fALFF in ESZ and CHR groups relative to HCs, with values in the CHR group falling between those of ESZ and HC groups. These differences were identified primarily in posterior cortex, including temporoparietal regions, extending into occipital and cerebellar lobes. Less LFO activity was related to greater symptom severity in both CHR and ESZ groups in several of these posterior cortical regions. These data support an intermediate phenotype of reduced posterior cortical LFO amplitude in CHR individuals, with resting fALFF values smaller than in HCs but higher than in ESZ patients. Findings indicate that LFO magnitude alterations relate to clinical symptoms and predate psychosis onset but are more pronounced in the early stages of schizophrenia. PMID:27067126

  7. Correlations between Kilohertz Quasi-periodic Oscillations and Low-Frequency Features Attributed to Radial Oscillations and Diffusive Propagation in the Viscous Boundary Layer around a Neutron Star

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Osherovich, Vladimir

    1999-06-01

    We present a dimensional analysis of two characteristic timescales in the boundary layer where the disk adjusts to the rotating neutron star (NS). The boundary layer is treated as a transition region between the NS surface and the first Keplerian orbit. The radial transport of the angular momentum in this layer is controlled by a viscous force defined by the Reynolds number, which in turn is related to the mass accretion rate. We show that the observed low-Lorentzian frequency is associated with radial oscillations in the boundary layer, where the observed break frequency is determined by the characteristic diffusion time of the inward motion of the matter in the accretion flow. Predictions of our model regarding relations between those two frequencies and the frequencies of kilohertz quasi-periodic oscillations (kHz QPOs) compare favorably with recent observations of the source 4U 1728-34. This Letter contains a theoretical classification of kHz QPOs in NS binaries and the related low-frequency features. Thus, results concerning the relationship between the low-Lorentzian frequency of viscous oscillations and the break frequency are presented in the framework of our model of kHz QPOs viewed as Keplerian oscillations in a rotating frame of reference.

  8. The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Jiabao; Wen, Zhiping; Wu, Renguang; Guo, Yuanyuan; Chen, Zesheng

    2015-08-01

    The East Asia-Pacific (EAP) pattern is a well-known meridional teleconnection over East Asia during boreal summer. In this study, the mechanism for growth of the EAP on intraseasonal timescale is investigated through a vorticity budget. It is found that the beta-effect and high-frequency transient eddies have primary contributions to the growth of the low-frequency EAP. The former leads to a westward shift of disturbances associated with the low-frequency EAP and the latter favors an amplification of disturbances, respectively. The interaction between low-frequency disturbances and zonal flow has a damping effect by dragging disturbances eastward. The impact of boreal summer intraseasonal oscillation (BSISO) on the triggering of the low-frequency EAP is also examined in this study based on observational analysis and a linear model experiment. It is shown that an elongated anomalous convection band located in the vicinity of Philippines associated with the dominant mode of BSISO has a significant impact on the initiation of low-frequency EAP via Rossby wave propagation, whereas anomalous convection located over the North Indian Ocean has a limited impact. Based on the results of present study, the low-frequency EAP could be a self-sustained mode, and the BSISO plays a substantial role in triggering the low-frequency EAP.

  9. The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Jiabao; Wen, Zhiping; Wu, Renguang; Guo, Yuanyuan; Chen, Zesheng

    2016-06-01

    The East Asia-Pacific (EAP) pattern is a well-known meridional teleconnection over East Asia during boreal summer. In this study, the mechanism for growth of the EAP on intraseasonal timescale is investigated through a vorticity budget. It is found that the beta-effect and high-frequency transient eddies have primary contributions to the growth of the low-frequency EAP. The former leads to a westward shift of disturbances associated with the low-frequency EAP and the latter favors an amplification of disturbances, respectively. The interaction between low-frequency disturbances and zonal flow has a damping effect by dragging disturbances eastward. The impact of boreal summer intraseasonal oscillation (BSISO) on the triggering of the low-frequency EAP is also examined in this study based on observational analysis and a linear model experiment. It is shown that an elongated anomalous convection band located in the vicinity of Philippines associated with the dominant mode of BSISO has a significant impact on the initiation of low-frequency EAP via Rossby wave propagation, whereas anomalous convection located over the North Indian Ocean has a limited impact. Based on the results of present study, the low-frequency EAP could be a self-sustained mode, and the BSISO plays a substantial role in triggering the low-frequency EAP.

  10. Motor Network Plasticity and Low-Frequency Oscillations Abnormalities in Patients with Brain Gliomas: A Functional MRI Study

    PubMed Central

    Niu, Chen; Zhang, Ming; Min, Zhigang; Rana, Netra; Zhang, Qiuli; Liu, Xin; Li, Min; Lin, Pan

    2014-01-01

    Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC) and supplementary motor area (SMA). Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD) of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05). We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01–0.02 Hz; middle: 0.02–0.06 Hz; and high: 0.06–0.1 Hz), at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors. PMID:24806463

  11. Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans.

    PubMed

    Pueyo, Esther; Orini, Michele; Rodríguez, José F; Taggart, Peter

    2016-08-01

    Ventricular repolarization dynamics are crucial to arrhythmogenesis. Low-frequency oscillations of repolarization have recently been reported in humans and the magnitude of these oscillations proposed to be a strong predictor of sudden cardiac death. Available evidence suggests a role of the sympathetic nervous system. We have used biophysically detailed models integrating ventricular electrophysiology, calcium dynamics, mechanics and β-adrenergic signaling to investigate the underlying mechanisms. The main results were: (1) Phasic beta-adrenergic stimulation (β-AS) at a Mayer wave frequency between 0.03 and 0.15Hz resulted in a gradual decrease of action potential (AP) duration (APD) with concomitant small APD oscillations. (2) After 3-4minutes of phasic β-AS, the mean APD adapted and oscillations of APD became apparent. (3) Phasic changes in haemodynamic loading at the same Mayer wave frequency (a known accompaniment of enhanced sympathetic nerve activity), simulated as variations in the sarcomere length, also induced APD oscillations. (4) The effect of phasic β-AS and haemodynamic loading on the magnitude of APD oscillations was synergistic. (5) The presence of calcium overload and reduced repolarization reserve further enhanced the magnitude of APD oscillations and was accompanied by afterdepolarizations and/or spontaneous APs. In conclusion, low-frequency oscillations of repolarization recently reported in humans were induced by phasic β-AS and phasic mechanical loading, which acted synergistically, and were greatly enhanced by disease-associated conditions, leading to arrhythmogenic events. PMID:27178727

  12. LOW-FREQUENCY (11 mHz) OSCILLATIONS IN H1743-322: A NEW CLASS OF BLACK HOLE QUASI-PERIODIC OSCILLATIONS?

    SciTech Connect

    Altamirano, D.; Strohmayer, T.

    2012-08-01

    We report the discovery of quasi-periodic oscillations (QPOs) at {approx}11 mHz in two RXTE and one Chandra observations of the black hole candidate H1743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard color and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with X-ray intensity on timescales of a day, in successive outbursts eight months apart, we measure a QPO frequency that differs by less than Almost-Equal-To 2.2 mHz while the intensity had changed significantly. We show that this {approx}11 mHz QPO is different from the so-called Type C QPOs seen in black holes and that the mechanisms that produce the two flavors of variability are most probably independent. After comparing this QPO with other variability phenomena seen in accreting black holes and neutron stars, we conclude that it best resembles the so-called 1 Hz QPOs seen in dipping neutron star systems, although having a significantly lower (1-2 orders of magnitude) frequency. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the {approx}11 mHz QPO, we also speculate whether these oscillations could instead be related to the radio jets observed in H1743-322. A systematic search for this type of low-frequency QPOs in similar systems is needed to test this speculation. In any case, it remains unexplained why these QPOs have only been seen in the last two outbursts of H1743-322.

  13. Fluidic low-frequency oscillator consisting of load-switched diverter and a pair of vortex chambers

    NASA Astrophysics Data System (ADS)

    Tesař, Václav; Peszynski, Kazimierz; Smyk, Emil

    2016-03-01

    Paper discusses a new configuration of fluidic oscillators, a subject of recent Patent application. There is some similarity with the standard Warren oscillator with its bistable jet-deflection diverter and two feedbacks - which is not suitable for situations demanding very low oscillation frequency. For these conditions the new design replaces jet-deflection switching in the diverter by load-switching effects, with the gradually increased loading by spin-up of fluid in the vortex chambers. The spin-up time also provides the needed time delays. Behaviour is characterised by the oscillation frequency increasing with increasing fluid flow rate - for which was derived a surprisingly simple theoretical solution.

  14. Relation between the quasi-periodic oscillations and the low-frequency noise of GX 5-1 in the horizontal branch

    NASA Technical Reports Server (NTRS)

    Mitsuda, Kazuhisa; Dotani, Tadayasu; Yoshida, Atsumasa; Vaughan, Brian; Norris, Jay P.

    1991-01-01

    Ginga observations of quasi-periodic oscillations (QPOs) and the low-frequency noise (LFN) from GX 5-1 in its horizontal-branch spectral state are presented. Power spectral fits were attempted using model functions based on simple oscillating shot models. A clear second-harmonic peak of QPO was detected. Variations in the powers of QPO and LFN on timescales of 8-256 s were also studied. These variations were significant for all of the timescales studied, and were uncorrelated with each other on timescales shorter than a few tens of seconds, and correlated on longer timescales. From simulations based on a simple shot model, it was found that the variation amplitude and the lack of correlation on short timescales are not inconsistent with the oscillating shot models. A more complex model is necessary to fully explain the observed properties.

  15. Catalog of low frequency oscillations of the earth's magnetic field as observed at ATS-1 during January 1968

    NASA Technical Reports Server (NTRS)

    Cummings, W. D.; Lyons, D.

    1974-01-01

    A catalog of ATS-1 observed magnetic field oscillations is presented. The catalog holds only those events with a duration of at least ten minutes and with a frequency that remains roughly constant. Events are distinguished on the basis of the frequency of oscillations. A comparison was made between ATS-1 data and other ground and satellite magnetometer data.

  16. Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs

    PubMed Central

    Wakai, Takuya; Zhang, Nan; Vangheluwe, Peter; Fissore, Rafael A.

    2013-01-01

    Summary Changes in the intracellular concentration of free calcium ([Ca2+]i) regulate diverse cellular processes including fertilization. In mammalian eggs, the [Ca2+]i changes induced by the sperm unfold in a pattern of periodical rises, also known as [Ca2+]i oscillations. The source of Ca2+ during oscillations is the endoplasmic reticulum ([Ca2+]ER), but it is presently unknown how [Ca2+]ER is regulated. Here, we show using mouse eggs that [Ca2+]i oscillations induced by a variety of agonists, including PLCζ, SrCl2 and thimerosal, provoke simultaneous but opposite changes in [Ca2+]ER and cause differential effects on the refilling and overall load of [Ca2+]ER. We also found that Ca2+ influx is required to refill [Ca2+]ER, because the loss of [Ca2+]ER was accelerated in medium devoid of Ca2+. Pharmacological inactivation of the function of the mitochondria and of the Ca2+-ATPase pumps PMCA and SERCA altered the pattern of oscillations and abruptly reduced [Ca2+]ER, especially after inactivation of mitochondria and SERCA functions. We also examined the expression of SERCA2b protein and found that it was expressed throughout oocyte maturation and attained a conspicuous cortical cluster organization in mature eggs. We show that its overexpression reduces the duration of inositol-1,4,5-trisphosphate-induced [Ca2+]i rises, promotes initiation of oscillations and enhances refilling of [Ca2+]ER. Collectively, our results provide novel insights on the regulation of [Ca2+]ER oscillations, which underlie the unique Ca2+-signalling system that activates the developmental program in mammalian eggs. PMID:24101727

  17. Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations.

    PubMed

    McCairn, Kevin W; Turner, Robert S

    2009-04-01

    Competing theories seek to account for the therapeutic effects of high-frequency deep brain stimulation (DBS) of the internal globus pallidus (GPi) for medically intractable Parkinson's disease. To investigate this question, we studied the spontaneous activity of 102 pallidal neurons during GPiDBS in two macaques rendered parkinsonian by administration of MPTP. Stimulation through macroelectrodes in the GPi (> or =200 microA at 150 Hz for 30 s) reduced rigidity in one animal and increased spontaneous movement in both. Novel artifact subtraction methods allowed uninterrupted single-unit recording during stimulation. GPiDBS induced phasic (78% of cells) or sustained (22%) peristimulus changes in firing in both pallidal segments. A subset of cells responded at short latency (<2 ms) in a manner consistent with antidromic driving. Later phasic increases clustered at 3- to 5-ms latency. Stimulation-induced decreases were either phasic, clustered at 1-3 ms, or sustained, showing no peristimulus modulation. Response latency and magnitude often evolved over 30 s of stimulation, but responses were relatively stable by the end of that time. GPiDBS reduced mean firing rates modestly and only in GPi (-6.9 spikes/s). Surprisingly, GPiDBS had no net effect on the prevalence or structure of burst firing. GPiDBS did reduce the prevalence of synchronized low-frequency oscillations. Some cell pairs became synchronized instead at the frequency of stimulation. Suppression of low-frequency oscillations did not require high-frequency synchronization, however, or even the presence of a significant peristimulus response. In summary, the therapeutic effects of GPiDBS may be mediated by an abolition of low-frequency synchronized oscillations as a result of phasic driving. PMID:19164104

  18. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  19. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  20. Circadian Redox and Metabolic Oscillations in Mammalian Systems

    PubMed Central

    Feeney, Kevin A.

    2014-01-01

    Abstract Significance: A substantial proportion of mammalian physiology is organized around the day/night cycle, being regulated by the co-ordinated action of numerous cell-autonomous circadian oscillators throughout the body. Disruption of internal timekeeping, by genetic or environmental perturbation, leads to metabolic dysregulation, whereas changes in metabolism affect timekeeping. Recent Advances: While gene expression cycles are essential for the temporal coordination of normal physiology, it has become clear that rhythms in metabolism and redox balance are cell-intrinsic phenomena, which may regulate gene expression cycles reciprocally, but persist in their absence. For example, a circadian rhythm in peroxiredoxin oxidation was recently observed in isolated human erythrocytes, fibroblast cell lines in vitro, and mouse liver in vivo. Critical Issues: Mammalian timekeeping is a cellular phenomenon. While we understand many of the cellular systems that contribute to this biological oscillation's fidelity and robustness, a comprehensive mechanistic understanding remains elusive. Moreover, the formerly clear distinction between “core clock components” and rhythmic cellular outputs is blurred since several outputs, for example, redox balance, can feed back to regulate timekeeping. As with any cyclical system, establishing causality becomes problematic. Future Directions: A detailed molecular understanding of the temporal crosstalk between cellular systems, and the coincidence detection mechanisms that allow a cell to discriminate clock-relevant from irrelevant stimuli, will be essential as we move toward an integrated model of how this daily biological oscillation works. Such knowledge will highlight new avenues by which the functional consequences of circadian timekeeping can be explored in the context of human health and disease. Antioxid. Redox Signal. 20, 2966–2981. PMID:24063592

  1. Low Frequency (11 mHz) Oscillations in H1743-322: A New Class of Black Hole QPOs?

    NASA Technical Reports Server (NTRS)

    Altamirano, D.; Strohmayer, T.

    2012-01-01

    We report the discovery of quasi-periodic oscillations (QPO) at approx 11 mHz in two RXTE observations and one Chandra observation of the black hole candidate HI743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard color and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with Xray intensity on timescales of a day, in successive outbursts eight months apart we measure a QPO frequency that differs by less than approximately equals 0.0015 Hz while the intensity had changed significantly. We show that this 11 mHz QPO is different from the so-called Type-C QPOs seen in black holes and that the mechanisms that produce the two flavors of variability are most probably independent. We compare the 11 mHz QPO with other variability phenomena seen in accreting black holes and neutron stars and conclude that although at 1-2 orders of magnitude lower in frequency, they best resemble the so-called "1 Hz" QPOs seen in dipping neutron star systems. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the 11 mHz QPO, we speculate that these oscillations might instead be related to the radio jets observed in HI743-322. It remains unexplained, however, why similar QPOs have not yet been identified in other black holes and why they have only been seen in the last two outbursts of HI743-322.

  2. Discovery of a low-frequency broad quasi-periodic oscillation peak in the power density spectrum of Cygnus X-1 with Granat/SIGMA

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A.; Churazov, E.; Gilfanov, M.; Sunyaev, R.; Dyachkov, A.; Khavenson, N.; Kremnev, R.; Sukhanov, K.; Ballet, J.; Laurent, P.; Salotti, L.; Claret, A.; Olive, J. F.; Denis, M.; Mandrou, P.; Roques, J. P.

    1994-03-01

    A transient broad (delta(f)/f = 0.8 approximately 1) very low frequency (approximately 0.04-0.07 Hz) and strong (fractional rms variations are at the level of approximately 10-15% of total source intensity) quasi-periodic oscillations (QPO) feature was discovered by the SIGMA telescope onboard the Granat observatory in the power density spectra of Cygnus X-1; the source was during all the observations carried out in 1990-1992 in its standard (low or hard) spectral state (Sunyaev & Truemper 1979) with average 40-150 keV flux, corresponding appproximately to the 'nominal' gamma2 level of the source (Ling et al. 1979). The power density spectra, obtained in the 4 x 10-4-10 Hz frequency range, typically exhibit strong very low frequency noise below a few millihertz increasing toward lower frequencies, a nearly flat region from a few millihertz up to a break frequency fbr = 0.04 approximately 0.1 Hz and a power-law spectrum as f-1 above the break frequency. The QPO feature, when observed, was centered below or near the break frequency fbr.

  3. The energy dependence of the three types of low-frequency quasi-periodic oscillations in the black hole candidate H1743-322

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Zhang, S.; Qu, J. L.; Gao, H. Q.; Zhao, H. H.; Huang, C. P.; Song, L. M.

    2013-07-01

    We investigate the properties of the centroid frequency of low-frequency quasi-periodic oscillation (LF QPOs, 0.1-30 Hz) during the 2003 outburst of H1743-322, by using the observational data of the Rossi X-ray Timing Explorer. We find that the frequency shows different energy dependences for each of the sub-classes of LF QPOs: the QPO frequency is proportional to photon energy for the type C QPOs while it is ambiguous for the type A and B QPOs. For type C QPOs, the slope of the frequency-energy relation versus frequency plot can be well described by a power law with frequency till ˜7.5 Hz. Beyond ˜7.5 Hz the slope goes down. The LF QPO amplitude decreases monotonically with the frequency for the type C but increases for the other two types. These properties provide a joint diagnostic for discriminating the different types of LF QPO.

  4. Removing entorhinal cortex input to the dentate gyrus does not impede low frequency oscillations, an EEG-biomarker of hippocampal epileptogenesis

    PubMed Central

    Meyer, Martin; Kienzler-Norwood, Friederike; Bauer, Sebastian; Rosenow, Felix; Norwood, Braxton A.

    2016-01-01

    Following prolonged perforant pathway stimulation (PPS) in rats, a seizure-free “latent period” is observed that lasts around 3 weeks. During this time, aberrant neuronal activity occurs, which has been hypothesized to contribute to the generation of an “epileptic” network. This study was designed to 1) examine the pathological network activity that occurs in the dentate gyrus during the latent period, and 2) determine whether suppressing this activity by removing the main input to the dentate gyrus could stop or prolong epileptogenesis. Immediately following PPS, continuous video-EEG monitoring was used to record spontaneous neuronal activity and detect seizures. During the latent period, low frequency oscillations (LFOs), occurring at a rate of approximately 1 Hz, were detected in the dentate gyrus of all rats that developed epilepsy. LFO incidence was apparently random, but often decreased in the hour preceding a spontaneous seizure. Bilateral transection of the perforant pathway did not impact the incidence of hippocampal LFOs, the latency to epilepsy, or hippocampal neuropathology. Our main findings are: 1) LFOs are a reliable biomarker of hippocampal epileptogenesis, and 2) removing entorhinal cortex input to the hippocampus neither reduces the occurrence of LFOs nor has a demonstrable antiepileptogenic effect. PMID:27160925

  5. Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals

    NASA Astrophysics Data System (ADS)

    Tong, Yunjie; Hocke, Lia Maria; Licata, Stephanie C.; deB. Frederick, Blaise

    2012-10-01

    Low-frequency oscillations (LFOs) in the range of 0.01-0.15 Hz are commonly observed in functional imaging studies, such as blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) and functional near-infrared spectroscopy (fNIRS). Some of these LFOs are nonneuronal and are closely related to autonomic physiological processes. In the current study, we conducted a concurrent resting-state fMRI and NIRS experiment with healthy volunteers. LFO data was collected simultaneously at peripheral sites (middle fingertip and big toes) by NIRS, and centrally in the brain by BOLD fMRI. The cross-correlations of the LFOs collected from the finger, toes, and brain were calculated. Our data show that the LFOs measured in the periphery (NIRS signals) and in the brain (BOLD fMRI) were strongly correlated with varying time delays. This demonstrates that some portion of the LFOs actually reflect systemic physiological circulatory effects. Furthermore, we demonstrated that NIRS is effective for measuring the peripheral LFOs, and that these LFOs and the temporal shifts between them are consistent in healthy participants and may serve as useful biomarkers for detecting and monitoring circulatory dysfunction.

  6. Spontaneous Low-Frequency Cerebral Hemodynamics Oscillations in Restless Legs Syndrome with Periodic Limb Movements During Sleep: A Near-Infrared Spectroscopy Study

    PubMed Central

    Byun, Jung-Ick; Lee, Gwan-Taek; Kim, Choong-Ki

    2016-01-01

    Background and Purpose Periodic limb movements (PLM) during sleep (PLMS) are associated with cortical and cardiovascular activation. Changes in cerebral hemodynamics caused by cortical activity can be measured using near-infrared spectroscopy (NIRS). We investigated oscillatory components of cerebral hemodynamics during PLM and different sleep stages in restless legs syndrome (RLS) patients with PLMS. Methods Four female RLS patients with PLMS, and four age- and sex-matched normal controls were included. PLM and sleep stages were scored using polysomnography, while the spontaneous cerebral hemodynamics was measured by NIRS. The phase and amplitude of the cerebral oxyhemoglobin concentration [HbO] and the deoxyhemoglobin concentration [Hb] low-frequency oscillations (LFOs) were evaluated during each sleep stage [waking, light sleep (LS; stages N1 and N2), slow-wave sleep (stage N3), and rapid eye movement (REM) sleep]. In RLS patients with PLMS, the cerebral hemodynamics during LS was divided into LS with and without PLM. Results The cerebral hemodynamics activity varied among the different sleep stages. There were changes in phase differences between [HbO] and [Hb] LFOs during the different sleep stages in the normal controls but not in the RLS patients with PLMS. The [HbO] and [Hb] LFO amplitudes were higher in the patient group than in controls during both LS with PLM and REM sleep. Conclusions The present study has demonstrated the presence of cerebral hemodynamics disturbances in RLS patients with PLMS, which may contribute to an increased risk of cerebrovascular events. PMID:26754783

  7. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

    PubMed

    Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z

    2013-12-19

    Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. PMID:24042040

  8. Energy dependence of r.m.s amplitude of low frequency broadband noise and kHz quasi periodic oscillations in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Mandal, Soma

    2016-07-01

    The neutron star low mass X-ray binary 4U 1608-52 is known to show kHz QPOs as well as low frequency broad band noise. The energy dependence of the fractional r.m.s of these variations reflect the underlying radiative mechanism responsible for the phenomena. In this work we compute the energy depedence for 26 instances of kHz QPO observed by RXTE. We typically find as reported before, that the r.m.s increases with energy with slope of ˜0.5. This indicates that the variation is in the hot thermal compotonization component and in particular the QPO is likely to be driven by variation in the thermal heating rate of the hot plasma. For the same data, we compute the energy dependent r.m.s variability of the low frequency broad band noise component by considering the light curves. In contrast to the behaviour seen for the kHz QPO, the energy dependence is nearly flat i.e. the r.m.s. is energy independent. This indicates that the driver here may be the soft photon source. Thus the radiative mechanism driving the low frequency broad band noise and the high frequency QPO are different in nature.

  9. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.

    PubMed

    Drexl, Markus; Otto, Larissa; Wiegrebe, Lutz; Marquardt, Torsten; Gürkov, Robert; Krause, Eike

    2016-02-01

    Intense, low-frequency sound presented to the mammalian cochlea induces temporary changes of cochlear sensitivity, for which the term 'Bounce' phenomenon has been coined. Typical manifestations are slow oscillations of hearing thresholds or the level of otoacoustic emissions. It has been suggested that these alterations are caused by changes of the mechano-electrical transducer transfer function of outer hair cells (OHCs). Shape estimates of this transfer function can be derived from low-frequency-biased distortion product otoacoustic emissions (DPOAE). Here, we tracked the transfer function estimates before and after triggering a cochlear Bounce. Specifically, cubic DPOAEs, modulated by a low-frequency biasing tone, were followed over time before and after induction of the cochlear Bounce. Most subjects showed slow, biphasic changes of the transfer function estimates after low-frequency sound exposure relative to the preceding control period. Our data show that the operating point changes biphasically on the transfer function with an initial shift away from the inflection point followed by a shift towards the inflection point before returning to baseline values. Changes in transfer function and operating point lasted for about 180 s. Our results are consistent with the hypothesis that intense, low-frequency sound disturbs regulatory mechanisms in OHCs. The homeostatic readjustment of these mechanisms after low-frequency offset is reflected in slow oscillations of the estimated transfer functions. PMID:26706707

  10. Low frequency cultural noise

    NASA Astrophysics Data System (ADS)

    Sheen, Dong-Hoon; Shin, Jin Soo; Kang, Tae-Seob; Baag, Chang-Eob

    2009-09-01

    Abnormal cultural seismic noise is observed in the frequency range of 0.01-0.05 Hz. Cultural noise generated by human activities is generally observed in frequencies above 1 Hz, and is greater in the daytime than at night. The low-frequency noise presented in this paper exhibits a characteristic amplitude variation and can be easily identified from time domain seismograms in the frequency range of interest. The amplitude variation is predominantly in the vertical component, but the horizontal components also show variations. Low-frequency noise is markedly periodic, which reinforces its interpretation as cultural noise. Such noise is observed world-wide, but is limited to areas in the vicinity of railways. The amplitude variation in seismograms correlates strongly with railway timetables, and the waveform shows a wavelength shift associated with the Doppler effect, which indicates that the origin of seismic background noise in the frequency range 0.01-0.05 Hz is railways.

  11. Noncontact imaging of plethysmographic pulsation and spontaneous low-frequency oscillation in skin perfusion with a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Hoshi, Akira; Aoki, Yuta; Nakano, Kazuya; Niizeki, Kyuichi; Aizu, Yoshihisa

    2016-03-01

    A non-contact imaging method with a digital RGB camera is proposed to evaluate plethysmogram and spontaneous lowfrequency oscillation. In vivo experiments with human skin during mental stress induced by the Stroop color-word test demonstrated the feasibility of the method to evaluate the activities of autonomic nervous systems.

  12. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome

    PubMed Central

    Vollmers, Christopher; Schmitz, Robert J.; Nathanson, Jason; Yeo, Gene; Ecker, Joseph R.; Panda, Satchidananda

    2012-01-01

    In the mouse liver, circadian transcriptional rhythms are necessary for metabolic homeostasis. Whether dynamic epigenomic modifications are associated with transcript oscillations has not been systematically investigated. We found in addition to mRNAs, several antisense-, linc- and micro-RNA transcripts showed circadian oscillations in adult mouse livers. Robust transcript oscillations were often accompanied by temporally correlated rhythmic histone modifications in promoters, gene bodies or enhancers, although promoter DNA methylation levels were relatively stable. Such integrative analyses identified oscillating expression of a previously undetected antisense transcript (asPer2) to the gene encoding the circadian oscillator component Per2. Robustness of transcript oscillations often accompanied rhythms in multiple histone modifications and recruitment of multiple chromatin-associated clock components. In summary, coupling of the locations of cycling histone modifications with one or more oscillating transcripts within their proximity enabled establishment of a temporal relationship between enhancers, genes and transcripts on a genome-wide, base-resolution scale in a mammalian liver. The results offer a framework to understand intricate dynamic regulation among metabolism, circadian clock, and chromatin modifications to maintain metabolic homeostasis. PMID:23217262

  13. Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Evoked-Gamma Frequency Oscillations in Autism Spectrum Disorder (ASD)

    PubMed Central

    Baruth, Joshua M.; Casanova, Manuel F.; El-Baz, Ayman; Horrell, Tim; Mathai, Grace; Sears, Lonnie; Sokhadze, Estate

    2010-01-01

    Introduction It has been reported that individuals with Autism Spectrum Disorder (ASD) have abnormal reactions to the sensory environment and visuo-perceptual abnormalities. Electrophysiological research has provided evidence that gamma band activity (30-80 Hz) is a physiological indicator of the co-activation of cortical cells engaged in processing visual stimuli and integrating different features of a stimulus. A number of studies have found augmented and indiscriminative gamma band power at early stages of visual processing in ASD; this may be related to decreased inhibitory processing and an increase in the ratio of cortical excitation to inhibition. Low frequency or ‘slow’ (≤1HZ) repetitive transcranial magnetic stimulation (rTMS) has been shown to increase inhibition of stimulated cortex by the activation of inhibitory circuits. Methods We wanted to test the hypothesis of gamma band abnormalities at early stages of visual processing in ASD by investigating relative evoked (i.e. ~ 100 ms) gamma power in 25 subjects with ASD and 20 age-matched controls using Kanizsa illusory figures. Additionally, we wanted to assess the effects of 12 sessions of bilateral ‘slow’ rTMS to the dorsolateral prefrontal cortex (DLPFC) on evoked gamma activity using a randomized controlled design. Results In individuals with ASD evoked gamma activity was not discriminative of stimulus type, whereas in controls early gamma power differences between target and non-target stimuli were highly significant. Following rTMS individuals with ASD showed significant improvement in discriminatory gamma activity between relevant and irrelevant visual stimuli. We also found significant improvement in the responses on behavioral questionnaires (i.e., irritability, repetitive behavior) as a result of rTMS. Conclusion We proposed that ‘slow’ rTMS may have increased cortical inhibitory tone which improved discriminatory gamma activity at early stages of visual processing. rTMS has the

  14. Transport in GaAs/Al{sub x}Ga{sub 1-x}As superlattices with narrow forbidden minibands: Low-frequency negative differential conductivity and current oscillations

    SciTech Connect

    Andronov, A. A. Dodin, E. P.; Zinchenko, D. I.; Nozdrin, Yu. N.

    2009-02-15

    Current-voltage characteristics have been measured and low-frequency current instabilities have been studied for GaAs/Al{sub x}Ga{sub 1-x}As superlattices with narrow forbidden minibands. At relatively low electric fields, a saw-like structure for current-voltage characteristics with alternating portions of positive and negative differential conductivity and spontaneous generation of low-frequency current oscillations with a complex frequency spectrum (varying from discrete to continuous) are observed. It is shown that the observed specific features of electron transport are caused by the spatial-temporal dynamics of electric-field domains (dipoles and monopoles). The effects of the bifurcation, hysteresis, and multistability of current-voltage characteristics are also observed. At high fields, regular features are observed and identified in the current-voltage characteristics; these features are caused by resonance tunneling of electrons between the levels of the Wannier-Stark ladders belonging to quantum wells separated by several periods.

  15. Low Frequency Sky Surveys

    NASA Astrophysics Data System (ADS)

    Lubin, Philip M.

    2015-08-01

    We propose to survey the sky from 10-100 GHz covering greater than 50% of the sky in intensity and polarizatiton. This will allow us to mep out the synchrotron and free - free background as well as the spinning dust component to sufficient sensitivity to allow detailed modeling and removal of the galactic foregrounds allowing for deeper polarization surveys searching for signatures of inflation. While most measurements have concentrated on the region above 100 GHz this reggion is more complex in dust contmination that originally thought. Dust is best measured at high frequencies but the atmosphere greatly hinders extremely deep dust surveys due to water vapor. Surveys ar low frequency will be complimentary to the higher frequency measurements.

  16. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.

    PubMed

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-01-01

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. PMID:25028488

  17. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells

    PubMed Central

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-01-01

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. PMID:25028488

  18. Low-Frequency Radioastronomy Basics

    NASA Astrophysics Data System (ADS)

    Zarka, P.

    2011-04-01

    With the many large instruments in construction or in project, the present epoch corresponds to a renewal of low-frequency radioastronomy. The field will attract new researchers and students not expert of the radioastronomy techniques. With this audience in mind, we present here a very brief introduction to radioastronomy basics, including propagation and polarization of low-frequency radio waves as well as instrumental aspects. Basic formulas are given. The references and internet links will allow the interested reader to go further.

  19. LOFAR, the low frequency array

    NASA Astrophysics Data System (ADS)

    Vermeulen, R. C.

    2012-09-01

    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  20. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  1. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  2. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  3. Ionospheric very low frequency transmitter

    SciTech Connect

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HF heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach

  4. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, Periasamy K.; Joshi, Bhal Chandra; Naidu, Arun Kumar

    High temporal and frequency resolution observations of solar generated disturbances below 15 MHz in the near-Sun region and at Sun-Earth distances in conjunction with optical and high energy observations of Sun are essential to understand the structure and evolution of eruptions, such as, flares, coronal mass ejections (CMEs), and their associated solar wind disturbances at heights above the photosphere and their consequences in the interplanetary medium. This talk presents a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii below 30 MHz. The LORE, although not part of Aditya-L1 mission, can be complimentary to planned Aditya-L1 coronagraph and its other on-board payloads as well as synergistic to ground based observations, which are routinely carried out by Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and it is particularly suitable for providing data on the detailed time and frequency structure of fast drifting Type-III and slow drifting Type-II radio bursts with unprecedented time and frequency resolution as well as goniopolarimetry, made possible with better designed antennas and state-of-art electronics, employing FPGAs and an intelligent data management system. This would enable wide ranging studies such as studies of nonlinear plasma processes, CME in-situ radio emission, CME driven phenomena, interplanetary CME driven shocks, ICMEs driven by decelerating IP shocks and space weather effects of Solar Wind interaction regions. The talk will highlight the science objectives as well as the proposed technical design features.

  5. Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea

    PubMed Central

    Buhr, Ethan D.; Yue, Wendy W. S.; Ren, Xiaozhi; Jiang, Zheng; Liao, Hsi-Wen Rock; Mei, Xue; Vemaraju, Shruti; Nguyen, Minh-Thanh; Reed, Randall R.; Lang, Richard A.; Yau, King-Wai; Van Gelder, Russell N.

    2015-01-01

    The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to short-wavelength light but that this photoentrainment requires neither the short-wavelength–sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor encephalopsin (OPN3). However, retinas lacking neuropsin (OPN5) fail to photoentrain, even though other visual functions appear largely normal. Initial evidence suggests that OPN5 is expressed in select retinal ganglion cells. Remarkably, the mouse corneal circadian rhythm is also photoentrainable ex vivo, and this photoentrainment likewise requires OPN5. Our findings reveal a light-sensing function for mammalian OPN5, until now an orphan opsin. PMID:26392540

  6. Low frequency dynamical stabilisation in optical tweezers

    NASA Astrophysics Data System (ADS)

    Richards, Christopher J.; Smart, Thomas J.; Jones, Philip H.; Cubero, David

    2015-08-01

    It is well known that a rigid pendulum with minimal friction will occupy a stable equilibrium position vertically upwards when its suspension point is oscillated at high frequency. The phenomenon of the inverted pendulum was explained by Kapitza by invoking a separation of timescales between the high frequency modulation and the much lower frequency pendulum motion, resulting in an effective potential with a minimum in the inverted position. We present here a study of a microscopic optical analogue of Kapitza's pendulum that operates in different regimes of both friction and driving frequency. The pendulum is realized using a microscopic particle held in a scanning optical tweezers and subject to a viscous drag force. The motion of the optical pendulum is recorded and analyzed by digital video microscopy and particle tracking to extract the trajectory and stable orientation of the particle. In these experiments we enter the regime of low driving frequency, where the period of driving is comparable to the characteristic relaxation time of the radial motion of the pendulum with finite stiffness. In this regime we find stabilization of the pendulum at angles other than the vertical (downwards) is possible for modulation amplitudes exceeding a threshold value where, unlike the truly high frequency case studied previously, both the threshold amplitude and equilibrium position are found to be functions of friction. Experimental results are complemented by an analytical theory for induced stability in the low frequency driving regime with friction.

  7. Free electron maser experiments in the low-frequency limit

    SciTech Connect

    Drori, R.; Jerby, E.; Shahadi, A.

    1995-12-31

    Table-top free-electron maser (FEM) experiments operating in the low-frequency (< 1 GHz) low-energy ({approximately} 1 keV) limit are reported. These FEM devices employ parallel-stripline non-dispersive waveguides (which support TEM-modes), and planar folded-foil wigglers. Thermionic cathodes and carbon-fiber cold-cathodes are used in these experiments. Results of oscillator and amplifier experiments are presented and compared with theory.

  8. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  9. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system

    PubMed Central

    Margrie, Troy W; Schaefer, Andreas T

    2003-01-01

    Theoretical work carried out almost a decade ago proposed that subthreshold oscillations in membrane potential could be used to convert synaptic current strength into a code reliant on action potential (AP) latencies. Using whole-cell recordings we present experimental evidence for the occurrence of prominent network-driven subthreshold theta oscillations in mitral cells of the mouse olfactory bulb. Activity induced by both injected current and sensory input was accurately reflected in initial AP latency from the beginning of each oscillation cycle. In a network model we found that an AP latency code rather than AP number or instantaneous firing rate provided computational speed and high resolution, and was easily implemented. This coding strategy was also found to be invariant to the total input current as long as the relative input intensities to glomeruli remained constant. However, it was highly sensitive to changes in the ratios of the input currents and improved by lateral inhibitory mechanisms. Since the AP latency-based coding scheme was dependent on the subthreshold oscillation we conclude that the theta rhythm serves a functional role in temporally reformatting the strengths and patterns of synaptic input in this sensory system. PMID:12527724

  10. Energy scavenging from low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno V.

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54--19.6m/s 2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163microW and an average power of 13.6microW from an input acceleration of 9.8m/s 2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25microW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical

  11. Sensitivity Measures for Oscillating Systems: Application to Mammalian Circadian Gene Network

    PubMed Central

    Taylor, Stephanie R.; Gunawan, Rudiyanto; Petzold, Linda R.; Doyle, Francis J.

    2009-01-01

    Vital physiological behaviors exhibited daily by bacteria, plants, and animals are governed by endogenous oscillators called circadian clocks. The most salient feature of the circadian clock is its ability to change its internal time (phase) to match that of the external environment. The circadian clock, like many oscillators in nature, is regulated at the cellular level by a complex network of interacting components. As a complementary approach to traditional biological investigation, we utilize mathematical models and systems theoretic tools to elucidate these mechanisms. The models are systems of ordinary differential equations exhibiting stable limit cycle behavior. To study the robustness of circadian phase behavior, we use sensitivity analysis. As the standard set of sensitivity tools are not suitable for the study of phase behavior, we introduce a novel tool, the parametric impulse phase response curve (pIPRC). PMID:19593456

  12. The influence of cochlear shape on low-frequency hearing

    PubMed Central

    Manoussaki, Daphne; Chadwick, Richard S.; Ketten, Darlene R.; Arruda, Julie; Dimitriadis, Emilios K.; O'Malley, Jen T.

    2008-01-01

    The conventional theory about the snail shell shape of the mammalian cochlea is that it evolved essentially and perhaps solely to conserve space inside the skull. Recently, a theory proposed that the spiral's graded curvature enhances the cochlea's mechanical response to low frequencies. This article provides a multispecies analysis of cochlear shape to test this theory and demonstrates that the ratio of the radii of curvature from the outermost and innermost turns of the cochlear spiral is a significant cochlear feature that correlates strongly with low-frequency hearing limits. The ratio, which is a measure of curvature gradient, is a reflection of the ability of cochlear curvature to focus acoustic energy at the outer wall of the cochlear canal as the wave propagates toward the apex of the cochlea. PMID:18413615

  13. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    PubMed

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  14. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    PubMed Central

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  15. Understanding the low-frequency variability in hydroclimatic attributes over the southeastern US

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Sankarasubramanian, A.; Ranjithan, R. S.

    2015-02-01

    Most studies on evaluating the potential in developing seasonal to interannual hydroclimatic forecasts have focused on associating low-frequency climatic conditions with basin-level precipitation/streamflow. The motivation of this study is to provide an understanding on how land surface characteristics modulate the low-frequency (interannual to decadal) variability in precipitation to develop low-frequency signal in streamflow. For this purpose, we consider basins with minimum anthropogenic impacts over southeastern United States and apply Singular Spectrum Analysis (SSA), a data-driven spectrum analysis tool, on annual precipitation and streamflow time series for detecting the dominant frequencies and for estimating the associated variability with them. Hypothesis test against an AR(1) process is carried out via Monte Carlo SSA for detecting significant (at 90% confidence level) low-frequency oscillations. Thus, the study investigates how the observed low-frequency oscillations in precipitation/streamflow vary over the southeastern United States and also their associations with climatic conditions. For most study basins, precipitation exhibits higher low-frequency oscillations than that of streamflow primarily due to reduction in variability by basin storage. Investigating this further, we found that the percentage variance accounted by low-frequency oscillations in streamflow being higher for larger basins which primarily indicates the increased role of climate and basin storage. To develop a fundamental understanding on how basin storage controls the low-frequency oscillations in streamflow, a simple annual hydrological model is employed to explore how the given low-frequency signal in precipitation being modified under different baseflow index conditions and groundwater residence time. Implications of these analyses relating to streamflow predictions and model calibration are also discussed.

  16. Low-frequency cosmology from the moon

    NASA Astrophysics Data System (ADS)

    Klein Wolt, M.; Aminaei, A.; Pourshaghaghi, H.; Koopmans, L.; Falcke, H.

    2013-09-01

    From a low-frequency point of view, the moon provides excess to the virtually unexplored radio frequency domain below 30 MHz that is not accessible from Earth due to the atmospheric cutoff and interference from man-made RFI. We show that with a single low-frequency radio antenna the detection of the 21-cm Dark Ages signal is possible within integration times of months, and address the size and integration times required for a future low-frequency array to perform detailed tomography and power spectral analysis of the Dark Ages signal.

  17. Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics.

    PubMed

    Guerrier, Claire; Hayes, John A; Fortin, Gilles; Holcman, David

    2015-08-01

    How might synaptic dynamics generate synchronous oscillations in neuronal networks? We address this question in the preBötzinger complex (preBötC), a brainstem neural network that paces robust, yet labile, inspiration in mammals. The preBötC is composed of a few hundred neurons that alternate bursting activity with silent periods, but the mechanism underlying this vital rhythm remains elusive. Using a computational approach to model a randomly connected neuronal network that relies on short-term synaptic facilitation (SF) and depression (SD), we show that synaptic fluctuations can initiate population activities through recurrent excitation. We also show that a two-step SD process allows activity in the network to synchronize (bursts) and generate a population refractory period (silence). The model was validated against an array of experimental conditions, which recapitulate several processes the preBötC may experience. Consistent with the modeling assumptions, we reveal, by electrophysiological recordings, that SF/SD can occur at preBötC synapses on timescales that influence rhythmic population activity. We conclude that nondeterministic neuronal spiking and dynamic synaptic strengths in a randomly connected network are sufficient to give rise to regular respiratory-like rhythmic network activity and lability, which may play an important role in generating the rhythm for breathing and other coordinated motor activities in mammals. PMID:26195782

  18. Characterization of Low-Frequency Combustion Stability of the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Jones, Preston (Technical Monitor)

    2002-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.

  19. Online detection of low-frequency functional connectivity

    NASA Astrophysics Data System (ADS)

    Peltier, Scott J.; LaConte, Stephen M.; Hu, Xiaoping

    2004-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (<0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a pontential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states (such as cocaine injection). Thus, detection of these functional connectivity patterns may help to serve as a guage of normal brain activity. Currently, functional connectivity detection is applied only in offline post-processing analysis. Online detection methods have been applied to detect task activation in functional MRI. This allows real-time analysis of fMRI results, and could be important in detecting short-term changes in functional states. In this work, we develop an outline algorithm to detect low frequency resting state functional connectivity in real time. This will extend connectivity analysis to allow online detection of changes in "resting state" brain networks.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: A new mammalian circadian oscillator model including the cAMP module

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Wei; Zhou, Tian-Shou

    2009-12-01

    In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light-dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα-/--mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα-/- mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell.

  1. Improved low frequency stability of bolometric detectors

    NASA Technical Reports Server (NTRS)

    Wilbanks, T.; Devlin, M.; Lange, A. E.; Beeman, J. W.; Sato, S.

    1990-01-01

    An ac bridge readout system has been developed that greatly improves the low-frequency stability of bolometric detectors. The readout can be implemented with a simple circuit appropriate for use in space applications. A matched pair of detectors was used in the readout to achieve system noise within a factor of two of the fundamental noise limit of the detectors at frequencies as low as 10 mHz. The low-frequency stability of the readout system allows slower, more sensitive detectors to be used in many applications, and it facilitates observing strategies that are well suited to spaceborne observations.

  2. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1986-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  3. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1983-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k(2) log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  4. Hearing Foreign Languages through Low Frequencies.

    ERIC Educational Resources Information Center

    Roberge, Claude

    A study to assess the feasibility of the use of low frequencies for teaching foreign language to the hearing impaired is described. The subjects were unimpaired Japanese students, aged 18 and 19, in beginning French language study. Recorded sentences translated into English, French, and Mandarin Chinese were combined in various ways and presented…

  5. Is low frequency ocean sound increasing globally?

    PubMed

    Miksis-Olds, Jennifer L; Nichols, Stephen M

    2016-01-01

    Low frequency sound has increased in the Northeast Pacific Ocean over the past 60 yr [Ross (1993) Acoust. Bull. 18, 5-8; (2005) IEEE J. Ocean. Eng. 30, 257-261; Andrew, Howe, Mercer, and Dzieciuch (2002) J. Acoust. Soc. Am. 129, 642-651; McDonald, Hildebrand, and Wiggins (2006) J. Acoust. Soc. Am. 120, 711-717; Chapman and Price (2011) J. Acoust. Soc. Am. 129, EL161-EL165] and in the Indian Ocean over the past decade, [Miksis-Olds, Bradley, and Niu (2013) J. Acoust. Soc. Am. 134, 3464-3475]. More recently, Andrew, Howe, and Mercer's [(2011) J. Acoust. Soc. Am. 129, 642-651] observations in the Northeast Pacific show a level or slightly decreasing trend in low frequency noise. It remains unclear what the low frequency trends are in other regions of the world. In this work, data from the Comprehensive Nuclear-Test Ban Treaty Organization International Monitoring System was used to examine the rate and magnitude of change in low frequency sound (5-115 Hz) over the past decade in the South Atlantic and Equatorial Pacific Oceans. The dominant source observed in the South Atlantic was seismic air gun signals, while shipping and biologic sources contributed more to the acoustic environment at the Equatorial Pacific location. Sound levels over the past 5-6 yr in the Equatorial Pacific have decreased. Decreases were also observed in the ambient sound floor in the South Atlantic Ocean. Based on these observations, it does not appear that low frequency sound levels are increasing globally. PMID:26827043

  6. Analyzing low frequency waves associated with plasma sheet flow channels

    NASA Astrophysics Data System (ADS)

    Xing, X.; Liang, J.; Wang, C. P.; Lyons, L. R.; Angelopoulos, V.

    2014-12-01

    Low frequency (0.006~0.02 Hz) magnetic oscillations are frequently observed to be associated with the substorm-related dipolarization in the near-Earth plasma sheet. It has been suggested that these oscillations are possibly triggered by ballooning instability in the transition region. However, our multi-point observations using THEMIS spacecraft have shown that similar oscillations are observed to be associated with the earthward moving flow channels as they penetrate from middle tail to the transition region. Linear MHD wave analysis suggested that these oscillations ahead of the dipolarization front are magnetosonic waves. For most of the cases, the thermal pressure and magnetic pressures variations are anti-phase, indicating slow mode waves. However, by taking advantage of the spacecraft located very close in X-Y plane and slightly away from the central plasma sheet, we found that for many events the phase relation between the thermal and magnetic pressure variations is Z-dependent, which suggests that the observational evidence for slow mode may not be applicable. In order to further examine these waves, we performed a MHD analysis in inhomogeneous plasma sheet. The calculation shows that for Harris Sheet configuration, the thermal and magnetic pressures variations can be anti-phase for any wave other than slow mode waves where the vertical velocity disturbance reaches its maximum, thus this phase relation may not be used as an identifier of magnetosonic wave modes. We will show the dispersion relation and wave generated disturbances obtained from the numerical calculations.

  7. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  8. Extreme low frequency acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2013-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  9. The AKR emission cone at low frequencies

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    It is noted that certain of the ISEE-1 observations between the plasmasphere and the auroral zone have revealed the emission cone of auroral kilometric radiation (AKR) unaffected by plasmaspheric refraction. At some distance from the source, the cone produced a sharp low-frequency boundary in the AKR signals, which was displaced above the cyclotron frequency. The variation of this boundary, together with other aspects of the AKR signals, suggested that the AKR emission cone closed toward a hollow, roughly 45 deg limit cone with decreasing frequency, duplicating the behavior previously found with ISIS-1 at the opposite end of the AKR spectrum. It is pointed out that the hollow limit cone at low frequencies is a new feature, not previously reported.

  10. Low-Frequency Electromagnetic Backscattering from Tunnels

    SciTech Connect

    Casey, K; Pao, H

    2007-01-16

    Low-frequency electromagnetic scattering from one or more tunnels in a lossy dielectric half-space is considered. The tunnel radii are assumed small compared to the wavelength of the electromagnetic field in the surrounding medium; a tunnel can thus be modeled as a thin scatterer, described by an equivalent impedance per unit length. We examine the normalized backscattering width for cases in which the air-ground interface is either smooth or rough.

  11. Low frequency propagation in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Dennison, Brian; Ananthakrishnan, S.; Desch, M.; Kaiser, M. L.; Weiler, K. W.

    1990-01-01

    Using a model to simulate wave propagation, estimates were obtained on the effect of the earth's magnetosphere on the imaging potential of the Low-Frequency Space Array mission for observations above the ionosphere at frequencies below about 10 MHz. Results of this simulation show that, for imaging at 1.5 MHz, large orbital radii will be required. It is concluded that successful imaging from within the plasmasphere may depend upon the feasibility of correction schemes.

  12. LOFAR: The LOw-Frequency ARray

    NASA Astrophysics Data System (ADS)

    van Haarlem, M. P.; Wise, M. W.; Gunst, A. W.; Heald, G.; McKean, J. P.; Hessels, J. W. T.; de Bruyn, A. G.; Nijboer, R.; Swinbank, J.; Fallows, R.; Brentjens, M.; Nelles, A.; Beck, R.; Falcke, H.; Fender, R.; Hörandel, J.; Koopmans, L. V. E.; Mann, G.; Miley, G.; Röttgering, H.; Stappers, B. W.; Wijers, R. A. M. J.; Zaroubi, S.; van den Akker, M.; Alexov, A.; Anderson, J.; Anderson, K.; van Ardenne, A.; Arts, M.; Asgekar, A.; Avruch, I. M.; Batejat, F.; Bähren, L.; Bell, M. E.; Bell, M. R.; van Bemmel, I.; Bennema, P.; Bentum, M. J.; Bernardi, G.; Best, P.; Bîrzan, L.; Bonafede, A.; Boonstra, A.-J.; Braun, R.; Bregman, J.; Breitling, F.; van de Brink, R. H.; Broderick, J.; Broekema, P. C.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; van Cappellen, W.; Ciardi, B.; Coenen, T.; Conway, J.; Coolen, A.; Corstanje, A.; Damstra, S.; Davies, O.; Deller, A. T.; Dettmar, R.-J.; van Diepen, G.; Dijkstra, K.; Donker, P.; Doorduin, A.; Dromer, J.; Drost, M.; van Duin, A.; Eislöffel, J.; van Enst, J.; Ferrari, C.; Frieswijk, W.; Gankema, H.; Garrett, M. A.; de Gasperin, F.; Gerbers, M.; de Geus, E.; Grießmeier, J.-M.; Grit, T.; Gruppen, P.; Hamaker, J. P.; Hassall, T.; Hoeft, M.; Holties, H. A.; Horneffer, A.; van der Horst, A.; van Houwelingen, A.; Huijgen, A.; Iacobelli, M.; Intema, H.; Jackson, N.; Jelic, V.; de Jong, A.; Juette, E.; Kant, D.; Karastergiou, A.; Koers, A.; Kollen, H.; Kondratiev, V. I.; Kooistra, E.; Koopman, Y.; Koster, A.; Kuniyoshi, M.; Kramer, M.; Kuper, G.; Lambropoulos, P.; Law, C.; van Leeuwen, J.; Lemaitre, J.; Loose, M.; Maat, P.; Macario, G.; Markoff, S.; Masters, J.; McFadden, R. A.; McKay-Bukowski, D.; Meijering, H.; Meulman, H.; Mevius, M.; Middelberg, E.; Millenaar, R.; Miller-Jones, J. C. A.; Mohan, R. N.; Mol, J. D.; Morawietz, J.; Morganti, R.; Mulcahy, D. D.; Mulder, E.; Munk, H.; Nieuwenhuis, L.; van Nieuwpoort, R.; Noordam, J. E.; Norden, M.; Noutsos, A.; Offringa, A. R.; Olofsson, H.; Omar, A.; Orrú, E.; Overeem, R.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A.; Rafferty, D.; Rawlings, S.; Reich, W.; de Reijer, J.-P.; Reitsma, J.; Renting, G. A.; Riemers, P.; Rol, E.; Romein, J. W.; Roosjen, J.; Ruiter, M.; Scaife, A.; van der Schaaf, K.; Scheers, B.; Schellart, P.; Schoenmakers, A.; Schoonderbeek, G.; Serylak, M.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Spreeuw, H.; Steinmetz, M.; Sterks, C. G. M.; Stiepel, H.-J.; Stuurwold, K.; Tagger, M.; Tang, Y.; Tasse, C.; Thomas, I.; Thoudam, S.; Toribio, M. C.; van der Tol, B.; Usov, O.; van Veelen, M.; van der Veen, A.-J.; ter Veen, S.; Verbiest, J. P. W.; Vermeulen, R.; Vermaas, N.; Vocks, C.; Vogt, C.; de Vos, M.; van der Wal, E.; van Weeren, R.; Weggemans, H.; Weltevrede, P.; White, S.; Wijnholds, S. J.; Wilhelmsson, T.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.; van Zwieten, J.

    2013-08-01

    LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.

  13. Low Frequency Seiche in a Large Bay

    NASA Astrophysics Data System (ADS)

    MacMahan, J. H.; Thornton, E. B.; Gallagher, E. L.; Reniers, A.

    2014-12-01

    Short-term observations of sea surface elevations (η) along the 10m isobath, and long-term observations inside and outside of a large bay (Monterey Bay, CA) were obtained to describe the nodal structure of the mode 0-3 seiches within the bay and the low frequency (<346 cpd) seiche forcing mechanism. The measured nodal pattern validates previous numerical estimates associated with a northern amplitude bias, though variability exists across the modal frequency band, particularly for mode 0 and 1. Low frequency oceanic η white noise within seiche frequency bands (24-69 cpd) provides a continuous forcing of the bay seiche with a η2 (variance) amplification of 16-40 for the different modes. The temporal variation of the oceanic η white noise is significantly correlated (R2=0.86) at the 95% confidence interval with the bay seiche η that varies seasonally. The oceanic η white noise is hypothesized as being from low frequency, free, infragravity waves that are forced by short waves. This work was funded by NPS, ONR, & NSF.

  14. Transient Modeling of Hybrid Rocket Low Frequency Instabilities

    NASA Technical Reports Server (NTRS)

    Karabeyoglu, M. Arif; DeZilwa, Shane; Cantwell, Brian; Zilliac, Greg

    2003-01-01

    A comprehensive dynamic model of a hybrid rocket has been developed in order to understand and predict the transient behavior including instabilities. A linearized version of the transient model predicted the low-frequency chamber pressure oscillations that are commonly observed in hybrids. The source of the instabilities is based on a complex coupling of thermal transients in the solid fuel, wall heat transfer blocking due to fuel regression rate and the transients in the boundary layer that forms on the fuel surface. The oscillation frequencies predicted by the linearized theory are in very good agreement with 43 motor test results obtained from the hybrid propulsion literature. The motor test results used in the comparison cover a very wide spectrum of parameters including: 1) four separate research and development programs, 2) three different oxidizers (LOX, GOX, N2O), 3) a wide range of motor dimensions (i.e. from 5 inch diameter to 72 inch diameter) and operating conditions and 4) several fuel formulations. A simple universal scaling formula for the frequency of the primary oscillation mode is suggested.

  15. Low-frequency ac electro-flow-focusing microfluidic emulsification

    NASA Astrophysics Data System (ADS)

    He, Peng; Kim, Haejune; Luo, Dawei; Marquez, Manuel; Cheng, Zhengdong

    2010-04-01

    Applications of electric field, using either dc or high-frequency ac field, have shown many advantages in emulsification. We further develop this technique by a detailed study on low-frequency ac electro-flow-focusing (EFF) microfluidic emulsification. Counter-intuitively, the droplet size variation is not monotonic with the electric field, in contrary to the dc-EFF emulsification. This phenomenon originates from a relaxation oscillation of flow rate through the Taylor cone. Particularly, a continuous droplet size decrease was obtained at the voltage ramp-up stage. This emulsification process was modeled in analog to the accumulation and release of charges in an RC electric circuit with an adjustable resistor.

  16. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  17. Experimental study of low frequency drift instability

    SciTech Connect

    Ioffe, M.S.; Kanaev, B.I.; Pastukhov, V.P.

    1994-05-01

    Experimental studies of nondissipative low frequency drift instability are reported; the plasma of a long mirror trap with edge casp anchors was investigated. The instability growth was found to take place only in a limited number of operation modes even in the case of all the growth requirements being satisfied. Furthermore, the instability development is rather moderate, and the associated anomalous losses appear to be small compared to the classical Coulomb losses. Possible factors accounting for the {open_quotes}soft{close_quotes} instability evolution are discussed. 13 refs., 6 figs.

  18. Low-frequency vibrational modes of glutamine

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Ning; Wang, Guo; Zhang, Yan

    2011-12-01

    High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.

  19. Minimization of nanosatellite low frequency magnetic fields.

    PubMed

    Belyayev, S M; Dudkin, F L

    2016-03-01

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones. PMID:27036801

  20. Minimization of nanosatellite low frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyayev, S. M.; Dudkin, F. L.

    2016-03-01

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.

  1. Gauribidanur Low-Frequency Solar Spectrograph

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Kathiravan, C.; Ramesh, R.; Rajalingam, M.; Barve, Indrajit V.

    2014-10-01

    A new radio spectrograph, dedicated to observe the Sun, has been recently commissioned by the Indian Institute of Astrophysics (IIA) at the Gauribidanur Radio Observatory, about 100 km North of Bangalore. The instrument, called the Gauribidanur Low-frequency Solar Spectrograph (GLOSS), operates in the frequency range≈40 - 440 MHz. Radio emission in this frequency range originates close to the Sun, typically in the radial distance range r≈1.1 - 2.0 R⊙. This article describes the characteristics of the GLOSS and the first results.

  2. Predictability and Diagnosis of Low Frequency Climate Processes in the Pacific, Final Technical Report

    SciTech Connect

    Niklas Schneider

    2009-06-17

    The report summarized recent findings with respect to Predictability and Diagnosis of Low Frequency Climate Processes in the Pacific, with focus on the dynamics of the Pacific Decadal Oscillation, oceanic adjustments and the coupled feedback in the western boundary current of the North and South Pacific, decadal dynamics of oceanic salinity, and tropical processes with emphasis on the Indonesian Throughflow.

  3. Generation of unusually low frequency plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Li, Wen; Horne, Richard B.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Blake, J. B.; Fennell, J. F.

    2014-08-01

    It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on 30 September 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ˜20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave raypaths via the HOTRAY ray tracing code with measured plasma density and calculating raypath-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm-injected electrons is positive but rather weak, leading to small wave gain (˜10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low-frequency waves to undergo cyclic raypaths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise.

  4. Low Frequency Interstellar Scattering and Pulsar Observations

    NASA Technical Reports Server (NTRS)

    Cordes, James M.

    1992-01-01

    Radio astronomy at frequencies from 2 to 30 MHz challenges time tested methods for extracting usable information from observations. One fundamental reason for this is that propagation effects due to the magnetoionic ionosphere, interplanetary medium, and interstellar matter (ISM) increase strongly with wavelength. The problems associated with interstellar scattering off of small scale irregularities in the electron density are addressed. What is known about interstellar scattering is summarized on the basis of high frequency observations, including scintillation and temporal broadening of pulsars and angular broadening of various galactic and extragalactic radio sources. Then those high frequency phenomena are addressed that are important or detectable at low frequencies. The radio sky becomes much simpler at low frequencies, most pulsars will not be seen as time varying sources, intensity variations will be quenched or will occur on time scales much longer than a human lifetime, and many sources will be angularly broadened and/or absorbed into the noise. Angular broadening measurements will help delineate the galactic distribution and power spectrum of small scale electron density irregularities.

  5. Low-Frequency Waves in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  6. Low-frequency cloud-radiation interactions

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    The observed 30 to 60 day oscillation of the tropical winds, often referred to as the Madden Julian (MJ) oscillation, has excited lots of interest in recent years, because its existence suggests the possibility that the behavior of the atmosphere is at least partially predictable on such relatively long time scales. Most theories of the MJ oscillation have been based on the wave instability theories, such as wave-CISK (conditional instability of second kind). As discussed by Hu and Stevens (HS), these theories have not yet satisfactorily explained the observations. Recently, HS have suggested that the MJ oscillation is actually a forced response to periodic heating. They suggest that the forced oscillations originates in the hydrologic cycle, without the active participation of large scale dynamics. According to their model, the oscillation originates in a progressive build up of atmospheric water vapor, which continues until a (prescribed) threshold is reached, after which precipitation begins and rapidly dries the atmosphere. The drying due to a precipitation episode is followed by renewed gradual moistening, and the cycle continues indefinitely in this way. Preliminary results are presented from a 1-D version of the Randall et al. GCM, which lends further support to the ideas of HS. The present 1-D results also differ in important ways from those of HS, however. In particular, cloud radiation effects are essential for the oscillatory behavior of the model, although they are not essential in the model of HS.

  7. Extremely Low Frequency Electromagnetic Investigation on Mars

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, Joanna; Kulak, Andrzej; Kubisz, Jerzy; Zietara, Krzysztof

    2016-07-01

    Natural electromagnetic (EM) signals of extremely low frequencies (ELF, 3 Hz-3 kHz) can be used to study many of the electromagnetic processes and properties occurring in the Martian environment. Sources of these signals, related to electrical activity in the atmosphere, are very significant since they can influence radio wave propagation on the planet, the atmospheric composition, and the ionospheric structure. In addition, such EM signals can be employed in many purposes such as: surveying the subsurface of Mars or studying the impact of the space weather on the Martian ionosphere. As ELF waves propagate on very long distances, it is possible to explore properties of the entire planet using single-station recordings. In this study, we propose an experiment that allows measuring ELF signals from the Martian surface. Such measurements can be used for detection of electric discharges in the atmosphere and water reservoirs in the planetary subsurface.

  8. Model helicopter rotor low frequency broadband noise

    NASA Technical Reports Server (NTRS)

    Humbad, N. G.; Harris, W. L.

    1982-01-01

    The results of an experimental investigation of low frequency broadband noise (LFBN) radiated from model helicopter rotors are presented. The results up to tip Mach number of 0.50 suggest that the peak sound pressure level (SPL) of LFBN appears to follow tip Mach number to a fourth power law and rms velocity of turbulence to a second power law. The experimental results on the effect of tip speed and advance ratio on the peak SPL of LFBN can be explained on the basis of a simple scaling law. However, the experimental results on the effect of blade loading on the peak SPL of LFBN is still not clearly understood. A simple peak SPL scaling law for noise from a helicopter in forward flight encountering a sinusoidal gust is also developed. The trends predicted by the scaling law with the experimental results are found satisfactory for the cases of variation of the peak SPL of LFBN with tip speed and advance ratio.

  9. On helicopter rotor low frequency broadband noise

    NASA Technical Reports Server (NTRS)

    Williams, Morgan; Harris, Wesley L.

    1985-01-01

    The effect of shear-layer-type inflow turbulence on the low-frequency broadband noise of a model helicopter rotor is experimentally studied. The measurements and the one-dimensional energy spectral density indicate that the upstream airfoil wake turbulence is nonisotropic, but approaches isotropy at high wavenumbers. Turbulence measurements also indicate that the wake turbulence is weak. The effect of the inflow turbulence intensity on the peak sound pressure level follows an intensity-velocity squared scaling law. A number of length scales and turbulence intensities exist which can be measured in the airfoil wake depending on the position at which the measurements are taken. Comparison of experimental and theoretical sound pressure power spectral densities indicates that the initial anisotropy of the inflow turbulence does not invalidate the isotropic turbulence assumption made in noise prediction models as long as measured turbulence intensities and length scales are used.

  10. Low-frequency radio navigation system

    NASA Technical Reports Server (NTRS)

    Wallis, D. E. (Inventor)

    1983-01-01

    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver.

  11. Low Frequency Electromagnetic Pulse and Explosions

    SciTech Connect

    Sweeney, J J

    2011-02-01

    This paper reviews and summarizes prior work related to low frequency (< 100 Hz) EMP (ElectroMagnetic Pulse) observed from explosions. It focuses on how EMP signals might, or might not, be useful in monitoring underground nuclear tests, based on the limits of detection, and physical understanding of these signals. In summary: (1) Both chemical and nuclear explosions produce an EMP. (2) The amplitude of the EMP from underground explosions is at least two orders of magnitude lower than from above ground explosions and higher frequency components of the signal are rapidly attenuated due to ground conductivity. (3) In general, in the near field, that is distances (r) of less than 10s of kilometers from the source, the amplitude of the EMP decays approximately as 1/r{sup 3}, which practically limits EMP applications to very close (<{approx}1km) distances. (4) One computational model suggests that the EMP from a decoupled nuclear explosion may be enhanced over the fully coupled case. This has not been validated with laboratory or field data. (5) The magnitude of the EMP from an underground nuclear explosion is about two orders of magnitude larger than that from a chemical explosion, and has a larger component of higher frequencies. In principle these differences might be used to discriminate a nuclear from a chemical explosion using sensors at very close (<{approx}1 km) distances. (6) Arming and firing systems (e.g. detonators, exploding bridge wires) can also produce an EMP from any type of explosion. (7) To develop the understanding needed to apply low frequency EMP to nuclear explosion monitoring, it is recommended to carry out a series of controlled underground chemical explosions with a variety of sizes, emplacements (e.g. fully coupled and decoupled), and arming and firing systems.

  12. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock

    PubMed Central

    Yoshitane, Hikari; Oyama, Masaaki; Kozuka-Hata, Hiroko; Lanjakornsiripan, Darin; Fukada, Yoshitaka

    2016-01-01

    Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP) associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43), an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork. PMID:27123980

  13. Interim prediction method for low frequency core engine noise

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Clark, B. J.; Dorsch, R. G.

    1974-01-01

    A literature survey on low-frequency core engine noise is presented. Possible sources of low frequency internally generated noise in core engines are discussed with emphasis on combustion and component scrubbing noise. An interim method is recommended for predicting low frequency core engine noise that is dominant when jet velocities are low. Suggestions are made for future research on low frequency core engine noise that will aid in improving the prediction method and help define possible additional internal noise sources.

  14. Imaging Jupiter Radiation Belts At Low Frequencies

    NASA Astrophysics Data System (ADS)

    Girard, J. N.; de Pater, I.; Zarka, P.; Santos-Costa, D.; Sault, R.; Hess, S.; Cecconi, B.; Fender, R.; Pewg, Lofar

    2014-04-01

    , at different epochs only provided, each time, glimpses of the spectral content in different observational configurations. As the synchrotron emission frequency peaks at Vmax / E2B (with Vmax in MHz, E, the electron energy in MeV and B, the magnetic field in Gauss), the low frequency content of this emission is associated with low energy electron populations inside the inner belt and the energetic electrons located in regions of weaker magnetic field (at few jovian radii). Therefore, there is much interest in extending and completing the current knowledge of the synchrotron emission from the belts, with low frequency resolved observations. LOFAR, the LOw Frequency ARray (LOFAR) [6], is a giant flexible and digital ground-based radio interferometer operating in the 30-250 MHz band. It brings very high time (~ μs), frequency (~ kHz) and angular resolutions (~1") and huge sensitivity (mJy). In November 2011, a single 10-hour track enabled to cover an entire planetary rotation and led to the first resolved image of the radiation belts between 127- 172 MHz [7,8]. In Feb 2013, an 2×5h30 joint LOFAR/ WSRT observing campaign seized the state of the radiation belts from 45 MHz up to 5 GHz. We will present the current state of the study (imaging, reconstruction method and modeling) of the radiation belts dynamic with this current set of observations. LOFAR can contribute to the understanding of the physics taking place in the inner belt as well as possibly providing a fast and a systematic "diagnostic" of the state of the belts. The latter represents an opportunity to give context and ground-based support for the arrival of JUNO (NASA) scheduled in July 2016 and also for future missions, such as JUICE (ESA), at the vicinity of Jupiter by the exploration of its icy satellites.

  15. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca2+ oscillations in mammalian eggs at fertilization

    PubMed Central

    Theodoridou, Maria; Nomikos, Michail; Parthimos, Dimitris; Gonzalez-Garcia, J. Raul; Elgmati, Khalil; Calver, Brian L.; Sideratou, Zili; Nounesis, George; Swann, Karl; Lai, F. Anthony

    2013-01-01

    Phospholipase C-zeta (PLCζ) is a sperm-specific protein believed to cause Ca2+ oscillations and egg activation during mammalian fertilization. PLCζ is very similar to the somatic PLCδ1 isoform but is far more potent in mobilizing Ca2+ in eggs. To investigate how discrete protein domains contribute to Ca2+ release, we assessed the function of a series of PLCζ/PLCδ1 chimeras. We examined their ability to cause Ca2+ oscillations in mouse eggs, enzymatic properties using in vitro phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and their binding to PIP2 and PI(3)P with a liposome interaction assay. Most chimeras hydrolyzed PIP2 with no major differences in Ca2+ sensitivity and enzyme kinetics. Insertion of a PH domain or replacement of the PLCζ EF hands domain had no deleterious effect on Ca2+ oscillations. In contrast, replacement of either XY-linker or C2 domain of PLCζ completely abolished Ca2+ releasing activity. Notably, chimeras containing the PLCζ XY-linker bound to PIP2-containing liposomes, while chimeras containing the PLCζ C2 domain exhibited PI(3)P binding. Our data suggest that the EF hands are not solely responsible for the nanomolar Ca2+ sensitivity of PLCζ and that membrane PIP2 binding involves the C2 domain and XY-linker of PLCζ. To investigate the relationship between PLC enzymatic properties and Ca2+ oscillations in eggs, we have developed a mathematical model that incorporates Ca2+-dependent InsP3 generation by the PLC chimeras and their levels of intracellular expression. These numerical simulations can for the first time predict the empirical variability in onset and frequency of Ca2+ oscillatory activity associated with specific PLC variants. PMID:24152875

  16. The LWA1 Low Frequency Sky Survey

    NASA Astrophysics Data System (ADS)

    Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration

    2015-01-01

    The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST

  17. The Challenge of Low-Frequency ENSO Variability (Invited)

    NASA Astrophysics Data System (ADS)

    Cole, J. E.; Ault, T. R.; Thompson, D. M.

    2010-12-01

    The tropical Pacific is connected to patterns of drought and flooding throughout the world. Global climate models give ambiguous projections about changes in this region, yet anticipating these changes will be crucial to adaptation strategies during the coming decades. Here, we use proxy, observational, and climate model data to address two fundamental questions that are not resolved in our view. First, what is the relationship between frequency and variance in the tropical Pacific? And, second, do observations, climate models, and proxy records provide a consistent view of tropical Pacific SST variability across interannual, decadal, and centennial timescales? To explore these questions, we analyze the power spectra of proxy records from the tropical Pacific as well as observational and climate model data from the same region. Observations suggest that variance is concentrated within the canonical 2-7 year window, but results are ambiguous on longer timescales due to the shortness of the records and other limitations of instrumental data. High-resolution coral δ18O records suggest that the window of ENSO variance extends through multidecadal periods, with exceptionally strong variability concentrated in the decadal band during the late 19th century. Lower-resolution proxy records imply a continuum of variance that increases at lower frequencies through the multicentury time scale. These paleoclimatic analyses suggest that the 20th century does not capture the full range of ENSO variability, even in the last millennium. Climate models, in contrast, support ENSO variability at timescales of 2-5 years, with many models exhibiting overly regular oscillations between El Niño and La Niña conditions. Proxies and observations argue for more energetic low-frequency variability than is seen in the variance spectra of simulated tropical Pacific SST, suggesting that GCMs may be missing key low-frequency behaviors in their internal variability. GCMs that do not capture the

  18. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

  19. Low-Frequency Earthquakes in Cascadia

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Creager, K. C.; Ghosh, A.; Vidale, J. E.

    2009-12-01

    Low-frequency earthquakes (LFEs) are a recently identified class of earthquakes that have been observed to occur coincidentally with non-volcanic tremor in time and space. These LFEs also have a frequency spectra that is nearly identical to that of tremor—implying a common source for these two phenomena. Indeed, it has been proposed that tremor may simply be a superposition of many individual LFEs (Shelly et al., 2006, 2007, Nature). As such, LFEs have been used to constrain the location of tremor. We first reported LFEs in Cascadia last year, following the deployment of an 80-station, 1-km aperture seismic array on the Olympic Peninsula of western Washington State. This past year we have deployed 8 small aperture, 3-component seismic arrays across the northern Olympic Peninsula in the hopes of recording and locating additional tremor and LFEs. These arrays are composed of 10 3-component and 10 vertical component EarthScope seismometers. We use a combination of methods to identify and locate LFEs in our new, expanded dataset. Potential LFEs are first flagged by searching for peaks in the cross correlation of vertical and horizontal components that correspond to S minus P times of arriving energy (La Rocca, 2009, Science). These targets are then used as template events and are cross correlated with several hours of continuous data to find matching events. Using stacking and correlation we obtain accurate S minus P times for some arrays, and differential S and P times between arrays. We use these times to obtain robust estimates of LFE hypocenters. Unfortunately none of the 2009 data from the array of arrays covers a period of Episodic Tremor and Slip (ETS), but several smaller tremor bursts were recorded.

  20. Investigating Low-Frequency Earthquake Properties

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Creager, K. C.

    2013-12-01

    Low-frequency earthquakes (LFEs) have been associated with tectonic tremor and slow slip on the deep extension of subduction zones faults and major strike-slip faults. These tiny earthquakes are thought to represent small amounts of slip on the plate interface in places with high pore fluid pressure and low effective stress. Some tectonic tremor has been shown to consist of the superposition of many LFEs occurring at nearly the same time [Shelly et al., 2007]. In northern Cascadia, we use data from the Array of Arrays and CAFE experiments to detect and study properties of a curious LFE family on the downdip extension of the transition zone. This family--the deepest we've yet discovered in Cascadia--occurs in small swarms of ~1 hour duration every 1 to 2 weeks. Over our 6-year dataset we have identified ~9000 individual repeats of this LFE. Using double-difference techniques on one swarm, we have found that the LFEs lie on a dipping plane (<300m thick) that locates on the inferred plate interface [McCrory et al., 2012; Preston et al., 2003]. Individual LFE locations have errors of order 100m. Interestingly, we also find that over the course of an hour the LFEs migrate updip over a distance of ~2km in a narrow channel parallel to the plate convergence direction. We suggest this migration represents the movement of a slow slip front, and may be similar to previously described tremor streaks, also seen in Cascadia [Ghosh et al., 2010]; however our migration velocity of 2km/hr would be intermediate between the slower reported velocities of rapid tremor reversals [Houston et al., 2010] and the much faster tremor streaks. We find that amplitudes for this LFE family occupy a relatively narrow range, with louder events equally likely to occur at the beginning, middle, or end of a swarm of LFEs. We estimate LFE magnitudes of -0.8 to +0.8 by comparing peak-to-peak amplitudes and PNSN assigned magnitudes for 8 small earthquakes within 10km of the LFEs. Amplitudes below about

  1. Extremely Low Frequency Signal Acquisition, Recording and Analysis

    NASA Astrophysics Data System (ADS)

    Zantis, Franz P.; Hribik, Ján; Ďuračková, Daniela

    2016-05-01

    Our environment is permeated by electrical and magnetic alternating waves in the frequency range above the AC voltage of 50 Hz and also in the radio frequency range. Much attention from the public is given to these waves. Through numerous studies and publications about this type of oscillations and waves it is largely known from which sources they occur and which impact they have. However, very little information could be found about electrical and magnetic alternating waves in the frequency range below 50 Hz. The aim of this research is to demonstrate that these signals exist and also to show how the signals look like and where and when they occur. This article gives an overview of the occurrence of these ELF (Extremely Low Frequencies) signals, their specific properties in view of the time domain and in view of the frequency domain and of the possible sources of these waves. Precise knowledge of the structures of the ELF signals allows conclusions about their potential to cause electromagnetic interference in electronic systems. Also other effects in our environment, eg on flora and fauna could be explained.

  2. Modeling low frequency vibrational modes of large biomolecules

    NASA Astrophysics Data System (ADS)

    Sankey, Otto; Dykeman, Eric

    2008-03-01

    Mechanical oscillations of proteins in their native state are relevant to understanding the flexibility of the protein assembly, the binding of substrates, the mechanical action involved in enzymatic activity, and the vibrational response to light scattering. Often, only the low frequency modes are of interest and coarse grained methods or other approximations are used due to the large size of the dynamical matrix. We introduce a computational approach, which exploits the methodology from electronic structure Order N methods, to find the vibrational modes below some frequency threshold (analogous to a Fermi-level in electronic structure theory). The approach allows systems to be described in atomistic detail. We use a generalized Born force field to model the interactions. Examples of normal modes for icosahedral viruses (e.g. satellite tobacco necrosis virus), tubular viruses (e.g. M13), and enzymes (e.g. lysozyme, HIV-protease, alpha-lytic protease) will be discussed. This effort is motivated by recent experimental work to produce high amplitude vibrations of viruses from impulsive stimulated Raman scattering.

  3. Examining Low Frequency Molecular Modulations from the High Frequency Vantage Point: Anharmonically-Coupled Low Frequency Modes in PCET Model Systems

    NASA Astrophysics Data System (ADS)

    Reynolds, Anthony

    Proton-coupled electron transfer model systems (PCET) are examined using polarization selective femtosecond infrared pump-probe spectroscopy to determine how the structural modes are coupled to the OH/OD stretching vibrational mode by monitoring low frequency oscillations in the OH/OD vibrational mode using pump-probe techniques. For all of the systems discussed in this dissertation, low frequency modes are anharmonically coupled to the OH/OD stretching vibration. The OH/OD stretching vibration discussed in this dissertation have complex and broad lineshapes in the infrared region (IR) that are difficult to decipher. A broadband IR (BBIR) source, when used as part of a third order nonlinear infrared pump-probe spectroscopy, gains access into the electronic ground state potential energy surface. This information reveals the molecular dynamics that give rise to the complex structure in an IR spectra. The BBIR used for these experiments is generated by focusing 800 nm/400 nm pulses into compressed air and is tunable from 2 -- 5 microns with a FWHM greater than 1200 wavenumbers. The BBIR is a crucial mid-IR source in subsequent chapters for examining the broad lineshapes of the OH/OD stretching mode, which often exceeds 200 wavenumbers. The coupling of low frequency structural modulations to hydrogen bonding dynamics in PCET systems is explored by using the OH/OD stretching vibration in CCl4 or CHCl3. Third order nonlinear ultrafast infrared pump-probe spectroscopy is used to gather information on the high frequency OH/OD stretching vibrational modes in the ground state such as vibrational relaxation time and anharmonic vibrational coupling to low frequency structural modulations. At least one anharmonically coupled low frequency mode between 120 and 250 wavenumbers has been observed in all systems. To better understand and visualize how the low frequency mode may contribute to the PCET chemistry, we calculated the fundamental frequencies and third order coupling

  4. Electroporation of mammalian cells by nanosecond electric field oscillations and its inhibition by the electric field reversal

    PubMed Central

    Gianulis, Elena C.; Lee, Jimo; Jiang, Chunqi; Xiao, Shu; Ibey, Bennet L.; Pakhomov, Andrei G.

    2015-01-01

    The present study compared electroporation efficiency of bipolar and unipolar nanosecond electric field oscillations (NEFO). Bipolar NEFO was a damped sine wave with 140 ns first phase duration at 50% height; the peak amplitude of phases 2–4 decreased to 35%, 12%, and 7% of the first phase. This waveform was rectified to produce unipolar NEFO by cutting off phases 2 and 4. Membrane permeabilization was quantified in CHO and GH3 cells by uptake of a membrane integrity marker dye YO-PRO-1 (YP) and by the membrane conductance increase measured by patch clamp. For treatments with 1–20 unipolar NEFO, at 9.6–24 kV/cm, 10 Hz, the rate and amount of YP uptake were consistently 2-3-fold higher than after bipolar NEFO treatments, despite delivering less energy. However, the threshold amplitude was about 7 kV/cm for both NEFO waveforms. A single 14.4 kV/cm unipolar NEFO caused a 1.5–2 times greater increase in membrane conductance (p < 0.05) than bipolar NEFO, along with a longer and less frequent recovery. The lower efficiency of bipolar NEFO was preserved in Ca2+-free conditions and thus cannot be explained by the reversal of electrophoretic flows of Ca2+. Instead, the data indicate that the electric field polarity reversals reduced the pore yield. PMID:26348662

  5. The Low-Frequency Variability of the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.

  6. Does Cooling Magma Drive Deep Low-Frequency Earthquakes?

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ide, S.; Tsai, V. C.

    2013-12-01

    = Introduction = One major type of deep low-frequency earthquakes (LFEs) is tectonic LFEs that locate around plate boundaries, and are thought to be slip events. Another type of LFEs is volcanic LFEs that locate around the Moho mostly beneath active or Quaternary volcanoes, and their physical mechanism is not well established. We recently suggested that the volcanic LFEs in eastern Shimane can be interpreted as a resonant oscillation within an old magma conduit of 1600 m in length, which produces a focal mechanism that is equivalent to a compensated linear vector dipole (CLVD) oriented in the direction of the conduit [Aso et al., in prep. for re-submission]. However, a remaining question is what excites the resonance. In the present study, we suggest that cooling magma acts as a trigger for the resonant oscillation of volcanic LFEs, with the idea that thermal contraction of magma produces an anisotropic strain rate and the resulting brittle failure would trigger oscillation. To verify this, we calculated strain rates produced by this effect both analytically and numerically. = Model Setting and Method = We set the initial extent of magma as a 1600-m-long 400-m-wide pipe as is inferred from the distribution of hypocenters in eastern Shimane. The initial perturbation is set to be 400 K uniformly within the pipe. Thermal strain rate is calculated using the thermal stress potential of Timoshenko and Goodier [1970]. First, we estimated the strain rate without the effect of latent heat release. Assuming a cuboid pipe, it can be solved easily analytically. Next, to account for latent heat release, we use the enthalpy method [Eyres et al., 1946] to numerically solve the problem, assuming a cylindrical pipe. = Results = For the case without latent heat release, the strain rate remains higher than than 10-14/s for 600 years at the center of the pipe. For the case with latent heat release, although the latent heat delays the thermal evolution and decreases the strain rate, it

  7. Low-frequency VLBI in space and interstellar refraction

    SciTech Connect

    Dennison, B.; Booth, R.S.

    1986-08-01

    The proposed orbiting Quasat antenna, equipped with a low-frequency capability (e.g. 327 MHz), would be uniquely suited for studying refractive focusing (slow scintillation) in the interstellar medium, which is suspected of being responsible for at least some apparent low-frequency variability of extragalactic sources. The authors consider in some detail various technical considerations, including the decorrelating effects of the ionosphere and interplanetary medium, and conclude that low-frequency VLBI observations involving Quasat and Earth-based antennas would be feasible, particularly if sources are observed when they are in the anti-solar hemisphere.

  8. Assessing Low Frequency Climate Signals in Global Circulation Models using an Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.

    2010-12-01

    Climate signals with periodicities of approximately one decade are pervasive in long-term streamflow records for streams in the western United States that receive significant baseflow. The driver of these signals is unknown but hypotheses have been presented, such as variations in solar input to the Earth, or harmonics of internal (i.e., processes in the ocean and troposphere) forcings like the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO). Climate signals of about 1 decade are important for several reasons, including their relation to climate extremes (i.e., droughts and floods), and because the drivers of these climate signals are clearly important for projecting future climate conditions. Furthermore, identifying the drivers of these climate signals is important for separating the relative impacts of human production of greenhouse gases on global warming verses external drivers of climate change, such as sunspot cycles. Studies using Global Circulation Models (GCMs) that do not incorporate solar forcings associated with sun spots have identified oscillations of about a decade long in certain model output. However, these oscillations can be difficult to identify in simulated precipitation data due to high frequency variations (less than 1 year) that obscure low frequency (decade) signals. We have found that simulations using an integrated hydrologic model (IHM) called GSFLOW reproduce decade-long oscillations in streamflow when driven by measured precipitation records, and that these oscillations are also present in simulated streamflow when driven by temperature and precipitation data projected by GCMs. Because the IHM acts as a low-pass filter that reveals low frequency signals (i.e. decadal oscillations), they can be used to assess GCMs in terms of their ability to reproduce important low-frequency climate oscillations. We will present results from GSFLOW applied to three basins in the eastern Sierra Nevada driven by 100 years of

  9. Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Cai, Anjiang

    2016-07-01

    In this paper, the low-frequency band gap mechanism of torsional vibration is investigated for a kind of light elastic metamaterial (EM) shafts architecture comprised of a radial double-period element periodically as locally resonant oscillators with low frequency property. The dispersion relations are calculated by a method combining the transfer matrix and a lumped-mass method. The theoretical results agree well with finite method simulations, independent of the density of the hard material ring. The effects of the material parameters on the band gaps are further explored numerically. Our results show that in contrast to the traditional EM shaft, the weight of our proposed EM shaft can be reduced by 27% in the same band gap range while the vibration attenuation is kept unchanged, which is very convenient to instruct the potential engineering applications. Finally, the band edge frequencies of the lower band gaps for this light EM shaft are expressed analytically using physical heuristic models.

  10. The low frequency 2D vibration sensor based on flat coil element

    SciTech Connect

    Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli

    2012-06-20

    Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.

  11. 7. Survivable low frequency communication system pathway, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Survivable low frequency communication system pathway, looking east - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  12. Low-frequency broadband noise generated by a model rotor

    NASA Technical Reports Server (NTRS)

    Aravamudan, K. S.; Harris, W. L.

    1979-01-01

    Low-frequency broadband noise generated by model rotors is attributed to the interaction of ingested turbulence with the rotor blades. The influence of free-stream turbulence in the low-frequency broadband noise radiation from model rotors has been experimentally investigated. The turbulence was generated in the M.I.T. anechoic wind tunnel facility with the aid of bipolar grids of various sizes. The spectra and the intensity of the low-frequency broadband noise have been studied as a function of parameters which characterize the turbulence and of helicopter performance parameters. The location of the peak intensity was observed to be strongly dependent on the rotor-tip velocity and on the longitudinal integral scale of turbulence. The size scale of turbulence had negligible effect on the intensity of low-frequency broadband noise. The experimental data show good agreement with an ad hoc model based on unsteady aerodynamics.

  13. The Vestibular System Mediates Sensation of Low-Frequency Sounds in Mice

    PubMed Central

    Jones, Gareth P.; Lukashkina, Victoria A.; Lukashkin, Andrei N.

    2010-01-01

    The mammalian inner ear contains sense organs responsible for detecting sound, gravity and linear acceleration, and angular acceleration. Of these organs, the cochlea is involved in hearing, while the sacculus and utriculus serve to detect linear acceleration. Recent evidence from birds and mammals, including humans, has shown that the sacculus, a hearing organ in many lower vertebrates, has retained some of its ancestral acoustic sensitivity. Here we provide not only more evidence for the retained acoustic sensitivity of the sacculus, but we also found that acoustic stimulation of the sacculus has behavioral significance in mammals. We show that the amplitude of an elicited auditory startle response is greater when the startle stimuli are presented simultaneously with a low-frequency masker, including masker tones that are outside the sensitivity range of the cochlea. Masker-enhanced auditory startle responses were also observed in otoconia-absent Nox3 mice, which lack otoconia but have no obvious cochlea pathology. However, masker enhancement was not observed in otoconia-absent Nox3 mice if the low-frequency masker tones were outside the sensitivity range of the cochlea. This last observation confirms that otoconial organs, most likely the sacculus, contribute to behavioral responses to low-frequency sounds in mice. PMID:20821033

  14. Searching for Low-Frequency Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Tsai-Wei, Jr.; Cutchin, Sean; Kothari, Manthan; Schmitt, Christian; Kavic, Michael; Simonetti, John

    2011-10-01

    Supernovae events may be accompanied by prompt emission of a low-frequency electromagnetic transient. These transient events are created by the interaction of a shock wave of charged particles created by SN core-collapse with a stars ambient magnetic field. Such events can be detected in low-frequency radio array. Here we discuss an ongoing search for such events using two radio arrays: the Long Wavelength Array (LWA) and Eight-meter-wavelength Transient Array (ETA).

  15. Compensation Low-Frequency Errors in TH-1 Satellite

    NASA Astrophysics Data System (ADS)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin

    2016-06-01

    The topographic mapping products at 1:50,000 scale can be realized using satellite photogrammetry without ground control points (GCPs), which requires the high accuracy of exterior orientation elements. Usually, the attitudes of exterior orientation elements are obtained from the attitude determination system on the satellite. Based on the theoretical analysis and practice, the attitude determination system exists not only the high-frequency errors, but also the low-frequency errors related to the latitude of satellite orbit and the time. The low-frequency errors would affect the location accuracy without GCPs, especially to the horizontal accuracy. In SPOT5 satellite, the latitudinal model was proposed to correct attitudes using approximately 20 calibration sites data, and the location accuracy was improved. The low-frequency errors are also found in Tian Hui 1 (TH-1) satellite. Then, the method of compensation low-frequency errors is proposed in ground image processing of TH-1, which can detect and compensate the low-frequency errors automatically without using GCPs. This paper deal with the low-frequency errors in TH-1: First, the analysis about low-frequency errors of the attitude determination system is performed. Second, the compensation models are proposed in bundle adjustment. Finally, the verification is tested using data of TH-1. The testing results show: the low-frequency errors of attitude determination system can be compensated during bundle adjustment, which can improve the location accuracy without GCPs and has played an important role in the consistency of global location accuracy.

  16. Low-Frequency Combustion Instability Induced by the Combustion Time Lag of Liquid Oxidizer in Hybrid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Morita, Takakazu; Kitagawa, Koki; Yuasa, Saburo; Yamaguchi, Shigeru; Shimada, Toru

    This paper deals with a theoretical analysis of the low-frequency combustion instability induced by the combustion time lag of liquid oxidizer in small-scale hybrid rocket motors. We obtained the determined linear stability limit using the following parameters: the combustion time delay of liquid oxidizer, the residence time of a combustion chamber, injector pressure, chamber pressure, mass flux exponent, O/F, and the polytropic exponent of mixture gas in a combustion chamber. Kitagawa and Yuasa sometimes observed low-frequency oscillations, such as chugging, in their swirling-oxidizer-flow-type hybrid rocket engine. The obtained theoretical stability limit was compared with these experimental data.

  17. Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Li, P.; Huang, M.; Sage, J. T.; Champion, P. M.

    1994-01-01

    Femtosecond laser pulses, resonant with the Soret bands of myoglobin (Mb) and cytochrome c, are used to probe coherent low frequency nuclear motion of the heme group. The time domain analysis is in good agreement with frequencies obtained independently using spontaneous resonance Raman spectroscopy. The deoxyMb data reveal a strong oscillation near 300 fs (~ 100 cm-1) and a persistent feature also appears near 50 cm-1. This is near the frequency expected for heme doming motion, which has been associated with the ligand binding reaction coordinate of Mb.

  18. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Chakrabarti, Nikhil

    2016-08-01

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev-Petviashvili solitons.

  19. Universal low-frequency asymptotes of dynamic conic nanopore rectification: An ionic nanofluidic inductor

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2015-12-01

    We report the first nanofluidic inductor (L) to complement the known nanofluidic capacitors (C), resistors (R), and diodes for ion currents. Under negative bias, the nanopore behaves like a parallel RC circuit at low frequencies; however, under positive bias, the asymptotic dynamics is that of a serial RL circuit. This new ionic circuit element can lead to nanofluidic RLC or diode-inductor oscillator circuits and new intrapore biosensing/rapid sequencing strategies. A universal theory, with explicit estimates for the capacitance and inductance at opposite biases, is derived to collapse the rectified dynamics of all conic nanopores to facilitate design of this new nanofluidic circuit.

  20. Universal low-frequency asymptotes of dynamic conic nanopore rectification: An ionic nanofluidic inductor.

    PubMed

    Yan, Yu; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2015-12-14

    We report the first nanofluidic inductor (L) to complement the known nanofluidic capacitors (C), resistors (R), and diodes for ion currents. Under negative bias, the nanopore behaves like a parallel RC circuit at low frequencies; however, under positive bias, the asymptotic dynamics is that of a serial RL circuit. This new ionic circuit element can lead to nanofluidic RLC or diode-inductor oscillator circuits and new intrapore biosensing/rapid sequencing strategies. A universal theory, with explicit estimates for the capacitance and inductance at opposite biases, is derived to collapse the rectified dynamics of all conic nanopores to facilitate design of this new nanofluidic circuit. PMID:26671394

  1. Low-frequency sound affects active micromechanics in the human inner ear.

    PubMed

    Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2014-10-01

    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536

  2. Low-frequency otolith and semicircular canal interactions after canal inactivation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Merfeld, D. M.; Hess, B. J.

    2000-01-01

    During sustained constant velocity and low-frequency off-vertical axis rotations (OVAR), otolith signals contribute significantly to slow-phase eye velocity. The adaptive plasticity of these responses was investigated here after semicircular canal plugging. Inactivation of semicircular canals results in a highly compromised and deficient vestibulo-ocular reflex (VOR). Based on the VOR enhancement hypothesis, one could expect an adaptive increase of otolith-borne angular velocity signals due to combined otolith/canal inputs after inactivation of the semicircular canals. Contrary to expectations, however, the steady-state slow-phase velocity during constant velocity OVAR decreased in amplitude over time. A similar progressive decrease in VOR gain was also observed during low-frequency off-vertical axis oscillations. This response deterioration was present in animals with either lateral or vertical semicircular canals inactivated and was limited to the plane(s) of the plugged canals. The results are consistent with the idea that the low-frequency otolith signals do not simply enhance VOR responses. Rather, the nervous system appears to correlate vestibular sensory information from the otoliths and the semicircular canals to generate an integral response to head motion.

  3. Low-frequency sound affects active micromechanics in the human inner ear

    PubMed Central

    Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2014-01-01

    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536

  4. Minimal basilar membrane motion in low-frequency hearing.

    PubMed

    Warren, Rebecca L; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M; Petrie, Tracy; Wang, Ruikang K; Jacques, Steven L; Reichenbach, Tobias; Nuttall, Alfred L; Fridberger, Anders

    2016-07-26

    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea. PMID:27407145

  5. Minimal basilar membrane motion in low-frequency hearing

    PubMed Central

    Warren, Rebecca L.; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M.; Petrie, Tracy; Wang, Ruikang K.; Jacques, Steven L.; Reichenbach, Tobias; Nuttall, Alfred L.; Fridberger, Anders

    2016-01-01

    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea. PMID:27407145

  6. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  7. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    NASA Astrophysics Data System (ADS)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  8. Directivity and prediction of low frequency rotor noise

    NASA Technical Reports Server (NTRS)

    Burley, C. L.; Marcolini, M. A.; Jones, H. E.; Splettstoesser, W. R.

    1991-01-01

    Acoustic data obtained over a large horizontal plane under the model rotor and digitally filtered in order to determine the low-frequency content near the blade passage frequency is analyzed. Focus is placed on the directivity of low-frequency noise, and the changes in directivity as a function of the descent glide slope angle and advance ratio are presented and compared with predicted directivity results. The differences between the data and prediction are discussed for two observer positions, one below and on the rotor axis, and the other 60 degrees down from the horizontal. It is demonstrated that for the latter position, blade-vortex interaction noise is strong when it occurs, and the loading at the low frequencies is significantly affected during blade-vortex interactions.

  9. Present and Future Modes of Low Frequency Climate Variability

    SciTech Connect

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  10. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices

    PubMed Central

    Kennett, Steffan; Driver, Jon

    2012-01-01

    Selective attention allows us to focus on particular sensory modalities and locations. Relatively little is known about how attention to a sensory modality may relate to selection of other features, such as spatial location, in terms of brain oscillations, although it has been proposed that low-frequency modulation (α- and β-bands) may be key. Here, we investigated how attention to space (left or right) and attention to modality (vision or touch) affect ongoing low-frequency oscillatory brain activity over human sensory cortex. Magnetoencephalography was recorded while participants performed a visual or tactile task. In different blocks, touch or vision was task-relevant, whereas spatial attention was cued to the left or right on each trial. Attending to one or other modality suppressed α-oscillations over the corresponding sensory cortex. Spatial attention led to reduced α-oscillations over both sensorimotor and occipital cortex contralateral to the attended location in the cue-target interval, when either modality was task-relevant. Even modality-selective sensors also showed spatial-attention effects for both modalities. The visual and sensorimotor results were generally highly convergent, yet, although attention effects in occipital cortex were dominant in the α-band, in sensorimotor cortex, these were also clearly present in the β-band. These results extend previous findings that spatial attention can operate in a multimodal fashion and indicate that attention to space and modality both rely on similar mechanisms that modulate low-frequency oscillations. PMID:22323628

  11. Listening to the low-frequency gravitational-wave band

    NASA Astrophysics Data System (ADS)

    Hughes, Scott

    2016-03-01

    Ground-based gravitational-wave detectors are beginning to explore the high-frequency band of roughly 10 to 1000 Hz. These three decades in frequency represent one of several astrophysically important wavebands. In this talk, I will focus on the astrophysics of the low-frequency band, from roughly 30 microhertz to 0.1 Hz. This band is expected to be particularly rich with very loud sources. I will survey what we expect to be important sources of low-frequency gravitational waves, and review the scientific payoff that would come from measuring them.

  12. Excitation of low-frequency waves by auroral electron beams

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Wong, H. K.; Koga, J.; Burch, J. L.

    1989-01-01

    The electron distribution functions measured by the Dynamics Explorer 1 satellite during an auroral pass in 1981 are used in a linear instability analysis of low-frequency electromagnetic and electrostatic waves near and below the hydrogen gyrofrequency. It is suggested that the low-frequency electric and magnetic noise in the auroral zone might be explained by O and H electromagnetic ion cyclotron waves excited by energetic electron beams. An instability analysis suggests that upward and downward streaming electrons throughout the central plasma sheet region provide the free energy for heating oxygen ion through oxygen electrostatic ion cyclotron waves.

  13. Low-frequency vibrational modes of riboflavin and related compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi; Nishizawa, Jun-ichi; Ito, Hiromasa

    2005-01-01

    The low-frequency vibrations of riboflavin and related compounds (alloxazine, lumichrome, lumiflavin as the ring system and D-mannitol as the side-chain system) were observed by far-infrared (terahertz) spectroscopy. Vibrational mode assignments in this spectrally congested range were made using high precision quantum chemical calculations. These resonance frequencies located below 200 cm -1 indicate the existence of motions important for biological reactions. The observed absorption bands in the low-frequency region of riboflavin are assigned to the in-plane and out-of-plane-ring deformations of pyrimidine and isoalloxazine, and to the torsion modes of the ribityl chain.

  14. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  15. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    NASA Astrophysics Data System (ADS)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  16. Search for solar normal modes in low-frequency seismic spectra

    NASA Astrophysics Data System (ADS)

    Caton, Ross C.

    We use seismic array processing methods to attempt to enhance very low frequency harmonic signals (0-400 microhertz, also ?Hz or uHz) recorded on broadband seismic arrays. Since the discovery of this phenomenon in the 1990s, harmonic signals at these very low frequencies have come to be known as the Earth's "hum." A number of hypotheses have been suggested for the Earth's hum, including forcing by atmospheric turbulence, ocean waves, and, most recently, the Sun. We test the solar hypothesis by searching for statistically significant harmonic lines that correlate with independently observed solar free oscillations. The solar model assumes that free oscillations of the sun modulate the solar wind, producing pure harmonic components of Earth's magnetic field that are postulated to couple to the ground by electromagnetic induction. In this thesis we search the multitaper spectrum of stacks of seismic instruments for solar normal frequencies. We use a median stack instead of the more conventional mean because a more robust estimate of center is required for these low signal-to-noise data with occasional transients. A key advantage of a stack is that data gaps are easily ignored when computing the beam. Results from a stack of 18 Transportable Array stations show multiple possible g-mode detections at the 95-99% confidence level. We are presently applying this method to data from the Homestake Mine array, and may also do so with data from a broadband borehole array currently operating at Pinon Flats, California.

  17. Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design.

  18. Long range downwind propagation of low-frequency sound

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.

    1985-01-01

    The propagation of low-frequency noise outdoors was studied using as the source a large (80-m diameter) 4-megawatt horizontal axis wind turbine. Acoustic measurements were made with low-frequency microphone systems placed on the ground at five downwind sites ranging from 300 m to 10,000 m (6.3 mile) away from the wind turbine. The wind turbine fundamental was 1 Hz and the wind speed was generally 12 - 15 m/s at the hub height (80 m). The harmonic levels, when plotted versus propagation distance, exhibit a 3 dB per doubling of distance divergence. Two plausible explanations identified for this cylindrical spreading behavior were propagation of the low frequency wind turbine noise via a surface wave and downwind refraction. Surface was amplitude predictions were found to be more than 20 dB smaller than the measured levels. Ray-tracing results were used to qualitatively explain measured trends. A normal mode approach was identified as a candidate method for low-frequency acoustic refraction prediction.

  19. Intrinsic low-frequency variability of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Quattrocchi, G.; Pierini, S.; Dijkstra, H. A.

    2012-03-01

    In this paper a process study aimed at analyzing the low-frequency variability of intrinsically oceanic origin of the Gulf Stream (GS) and GS extension (GSE) is presented. An eddy-permitting reduced-gravity nonlinear shallow water model is implemented in an idealized North Atlantic Ocean, with schematic boundaries including the essential geometric features of the coastline and a realistic zonal basin width at all latitudes. The forcing is provided by a time-independent climatological surface wind stress obtained from 41 years of monthly ECMWF fields. The model response yields strong intrinsic low-frequency fluctuations on the interannual to decadal time scales. The modelled time-averaged GS/GSE flows are found to exhibit several features that can also be deduced from satellite altimeter data, such as the Florida Current seaward deflection, the GS separation at Cape Hatteras, and the overall structure of the GSE. The intrinsic low-frequency variability yields two preferred states of the GSE differing in latitudinal location that also have their counterpart in the altimeter data. A preliminary analysis of the variability in terms of dynamical systems theory is carried out by using the lateral eddy viscosity as the control parameter. A complex transition sequence from a steady state to irregular low-frequency variability emerges, in which Hopf and global bifurcations can be identified.

  20. Low-frequency scattering from two-dimensional perfect conductors

    NASA Astrophysics Data System (ADS)

    Hansen, Thorkild B.; Yaghjian, Arthur D.

    1992-11-01

    Exact expressions are derived for the leading terms in the low-frequency expansions of the far field scattered by an arbitrarily shaped cylinder with finite cross section, an arbitrarily shaped cylindrical bump on a ground plane, and arbitrarily shaped cylindrical dent in a ground plane. For the cylinder with finite cross section, an expression that is independent of the cylinder shape is derived to describe the leading term in the low-frequency expansion of the TM scattered far field. The explicit expression for the low-frequency TE scattered far field is based on three constants that depend only on the shape of the cylinder. The explicit expressions for the low-frequency diffracted fields of a bump or dent contain one constant that depends only on the shape of the bump or dent. It is noted, that this single constant is the same for both TM and TE polarization and can be derived from the solution to either electrostatic or magnetostatic problem.

  1. Low Frequency Guided Plate Waves Propagation in Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Lih, S-S.; Bar-Cohen, Y.

    1995-01-01

    Conventional destructive techniques for the determination of the elastic stiffness constants of composite materials can be costly and often inaccurate. Reliable nondestructive evaluation methods for monitoring the integrity of composite materials and structures are needed. Guided wave propagation in isotropic plate have been studied. Studies on the low frequency symmetric guide waves are presented.

  2. Is Reaction Time Variability in ADHD Mainly at Low Frequencies?

    ERIC Educational Resources Information Center

    Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.

    2013-01-01

    Background: Intraindividual variability in reaction times (RT variability) has garnered increasing interest as an indicator of cognitive and neurobiological dysfunction in children with attention deficit hyperactivity disorder (ADHD). Recent theory and research has emphasized specific low-frequency patterns of RT variability. However, whether…

  3. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

    PubMed

    Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R

    2015-02-01

    We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception. PMID:25537133

  4. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  5. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  6. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  7. Computer simulation of low-frequency electromagnetic data acquisition

    SciTech Connect

    SanFilipo, W.A.; Hohmann, G.W.

    1982-02-01

    Computer simulation of low frequency electromagnetic (LFEM) digital data acquisition in the presence of natural field noise demonstrates several important limitations and considerations. Without the use of a remote reference noise removal scheme it is difficult to obtain an adequate ratio of signal to noise below 0.1 Hz for frequency domain processing and below 0.3 Hz base frequency for time domain processing for a typical source-receiver configuration. A digital high-pass filter substantially facilitates rejection of natural field noise above these frequencies but, at lower frequencies where much longer stacking times are required, it becomes ineffective. Use of a remote reference to subtract natural field noise extends these low-frequency limits a decade, but this technique is limited by the resolution and dynamic range of the instrumentation. Gathering data in short segments so that natural field drift can be offset for each segment allows a higher gain setting to minimize dynamic range problems.

  8. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  9. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  10. Diatom response to extremely low-frequency magnetic fields

    SciTech Connect

    Parkinson, W.C.; Sulik, G.L. )

    1992-06-01

    Reports that extremely low-frequency magnetic fields can interfere with normal biological cell function continue to stimulate experimental activity as well as investigations into the possible mechanism of the interaction. The cyclotron resonance' model of Liboff has been tested by Smith et al. using as the biological test system the diatom Amphora coffeiformis. They report enhanced motility of the diatom in response to a low-frequency electromagnetic field tuned to the cyclotron resonance condition for calcium ions. We report here an attempt to reproduce their results. Following their protocol diatoms were seeded onto agar plates containing varying amounts of calcium and exposed to colinear DC and AC magnetic fields tuned to the cyclotron resonant condition for frequencies of 16, 30, and 60 Hz. The fractional motility was compared with that of control plates seeded at the same time from the same culture. We find no evidence of a cyclotron resonance effect.

  11. The very low frequency power spectrum of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.

    1988-01-01

    The long-term variability of Cen X-3 on time scales ranging from days to years has been examined by combining data obtained by the HEAO 1 A-4 instrument with data from Vela 5B. A simple interpretation of the data is made in terms of the standard alpha-disk model of accretion disk structure and dynamics. Assuming that the low-frequency variance represents the inherent variability of the mass transfer from the companion, the decline in power at higher frequencies results from the leveling of radial structure in the accretion disk through viscous mixing. The shape of the observed power spectrum is shown to be in excellent agreement with a calculation based on a simplified form of this model. The observed low-frequency power spectrum of Cen X-3 is consistent with a disk in which viscous mixing occurs about as rapidly as possible and on the largest scale possible.

  12. Theory of low frequency noise transmission through turbines

    NASA Technical Reports Server (NTRS)

    Matta, R. K.; Mani, R.

    1979-01-01

    Improvements of the existing theory of low frequency noise transmission through turbines and development of a working prediction tool are described. The existing actuator-disk model and a new finite-chord model were utilized in an analytical study. The interactive effect of adjacent blade rows, higher order spinning modes, blade-passage shocks, and duct area variations were considered separately. The improved theory was validated using the data acquired in an earlier NASA program. Computer programs incorporating the improved theory were produced for transmission loss prediction purposes. The programs were exercised parametrically and charts constructed to define approximately the low frequency noise transfer through turbines. The loss through the exhaust nozzle and flow(s) was also considered.

  13. An evolutionary sequence of low frequency radio astronomy missions

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1990-01-01

    Many concepts for space-based low frequency radio astronomy missions are being developed, ranging from simple single-satellite experiments to large arrays on the far side of the moon. Each concept involves a different tradeoff between the range of scientific questions it can answer and the technical complexity of the experiment. Since complexity largely determines the development time, risk, launch vehicle requirements, cost, and probability of approval, it is important to see where the ability to expand the scientific return justifies a major increase in complexity. An evolutionary series of increasingly capable missions, similar to the series of missions for infrared or X-ray astronomy, is advocated. These would range from inexpensive 'piggy-back' experiments on near-future missions to a dedicated low frequency array in earth orbit (or possibly on the lunar nearside) and eventually to an array on the lunar farside.

  14. TorPeDO: A Low Frequency Gravitational Force Sensor

    NASA Astrophysics Data System (ADS)

    McManus, D. J.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.

    2016-05-01

    Second generation gravitational wave detectors are likely to be limited by Newtonian Noise at low frequencies. A dual torsion pendulum sensor aimed at exploring low- frequency gravitational-force noise is being studied at the ANU. This sensor is designed to measure local gravitational forces to high precision and will be limited by Newtonian noise. We report on a controls prototype which has been constructed and suspended, along with initial characterisation and testing of the two torsion pendulums. Large weights at the end of each bar reposition the centres of mass to the same point in space external to both bars. Since both bars have a common suspension point, resonant frequency (≈33.4 mHz), and centre of mass, mechanical disturbances and other noise will affect both bars in the same manner, providing a large mechanical common mode rejection.

  15. A lunar far-side very low frequency array

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Duric, Nebojsa (Editor); Johnson, Stewart (Editor); Taylor, G. Jeffrey (Editor)

    1989-01-01

    Papers were presented to consider very low frequency (VLF) radio astronomical observations from the moon. In part 1, the environment in which a lunar VLF radio array would function is described. Part 2 is a review of previous and proposed low-frequency observatories. The science that could be conducted with a lunar VLF array is described in part 3. The design of a lunar VLF array and site selection criteria are considered, respectively, in parts 4 and 5. Part 6 is a proposal for precursor lunar VLF observations. Finally, part 7 is a summary and statement of conclusions, with suggestions for future science and engineering studies. The workshop concluded with a general consensus on the scientific goals and preliminary design for a lunar VLF array.

  16. Low-frequency computational electromagnetics for antenna analysis

    SciTech Connect

    Miller, E.K. ); Burke, G.J. )

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  17. Low-frequency noise assessment metrics -- What do we know?

    SciTech Connect

    Broner, N.

    1994-12-31

    The issue of sound quality in offices and other occupied spaces has been of continuing interest since the 1950s. Existing assessment methods do not adequately account for the low-frequency background sound (< 250 Hz) produced by operating heating, ventilating, and air-conditioning (HVAC) systems, in particular, low-frequency rumble. This paper discusses the results of ASHRAE-sponsored research in which more than 75 HVAC noise samples were collected, normalized, and categorized in terms of sound quality. The results support previous findings that a neutral curve has a slope of approximately {minus}5 decibels (dB) per octave. There is also support for the contention that the balanced noise criterion B (NCB) curves are overly conservative in the region from 63 to 500 Hz and overly permissive below 63 Hz when compared with the room criteria (RC) curves. A modified set of room sound quality (RSQ) curves -- the room sound quality (RSQ) curves -- is proposed.

  18. Low Frequency Waves at and Upstream of Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Wilson, L. B.

    2016-02-01

    This chapter focuses on the range of low frequency electromagnetic modes observed at and upstream of collisionless shocks in the heliosphere. It discusses a specific class of whistler mode wave observed immediately upstream of collisionless shock ramps, called a whistler precursor. Though these modes have been (and are often) observed upstream of quasi-parallel shocks, the authors limit their discussion to those observed upstream of quasi-perpendicular shocks. The chapter discusses the various ion velocity distributions observed at and upstream of collisionless shocks. It also introduces some terminology and relevant instabilities for ion foreshock waves. The chapter discusses the most common ultra-low frequency (ULF) wave types, their properties, and their free energy sources. It discusses modes that are mostly Alfvénic (i.e., mostly transverse but can be compressive) in nature.

  19. Anomalous low frequency dissipation processes in metal springs

    NASA Astrophysics Data System (ADS)

    DeSalvo, Riccardo; Di Cintio, Arianna; Marchesoni, Fabio; Bhawal, Abhik

    2010-05-01

    The dissipation processes of leaf springs used in seismic isolation chains of Gravitational Wave detectors have been studied. A low frequency phase transition from visco us-like to fractal-like dissipation, controlled by Self Organized Criticality of dislocations, was observed. The new understandings suggest different best practices for the operations of the seismic isolation chains of the second generation of Gravitational Wave observatories and require new techniques and materials for the third generation.

  20. The reduction of low frequency fluctuations in RFP experiments

    SciTech Connect

    Phillips, J.A.; Baker, D.A.; Gribble, R.F.

    1998-09-01

    The low frequency fluctuations seen in RFP experiments are found to be correlated with changes in the toroidal flux measured by diamagnetic loops surrounding the discharge. The correlation of the onset of impurity radiation and x-rays with the crash seen in experiments is caused by plasma bombarding the metal liner associated with this loss of flux. Efforts should be made to design improved stabilizing shells that will reduce the loss of flux and give improved RFP energy confinement times.

  1. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the

  2. Low Frequency Electromagnetic Background Radiation From Electron Acceleration Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Mezentsev, Andrew; Soula, Serge; van der Velde, Oscar; Farges, Thomas

    2013-04-01

    It was recently proposed that the acceleration of electrons during the growth and branching of streamers above thunderclouds initiated by intense lightning discharges could result in detectable low frequency electromagnetic radiation from several tens of kHz up to several hundreds of kHz (Qin et al., GRL, 2012). The intensity of the predicted radiation scales with the streamer density which is particularly large during spectacular sprite occurrences such as jellyfish sprites and/or dancing sprites. Dancing sprites are up to one second long sequences of consecutive sprites or sprite groups which are typically separated by some hundreds of milliseconds and which tend to follow the spatial development of large scale intracloud lightning discharges. A particularly spectacular series of 10 dancing sprite events over a Mediterranean mesoscale convective system was recorded with a low light video camera in south-eastern France during the early morning hours of August 31, 2012. Each dancing sprite event was composed of ~3-4 consecutive sprites or groups of sprites. All of these sprite occurrences were associated with a sudden enhancement ~2 uV/m/Hz-1/2 of the low frequency electromagnetic background radiation as measured with a radio receiver in south-west England. It is estimated that ~1000 streamers at a height of ~40 km are necessary to epxlain the observed electric field strengths. These sudden enhancements are superimposed on a more continuous low frequency electromagnetic background radiation which accompanies each dancing sprite event. It is speculated that this low frequency 'radio glow' results from filamentary streamers near the cloud top as a result of the large scale electrostatic charging of the thundercloud and that it may be used as an indicator for sprite occurrences in future studies.

  3. Propagation of a low-frequency rectangular pulse in seawater

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1993-05-01

    As a necessary preliminary to the determination of the electromagnetic field scattered by a metal cylinder submerged in the ocean, the propagation of a low frequency pulse with a rectangular envelope is evaluated numerically as a function of the distance of travel. Graphs of the three component terms and their sum are shown for four distances. The very significant changes in shape and amplitude of the pulse are discussed.

  4. Length sensing and control for Einstein Telescope Low Frequency

    NASA Astrophysics Data System (ADS)

    Adya, Vaishali; Leavey, Sean; Lück, Harald; Gräf, Christian; Hild, Stefan

    2016-05-01

    In this paper we describe a feasible length sensing and control scheme for the low frequency interferometers of the Einstein Telescope (ET-LF) along with the techniques used to optimise several optical parameters, including the length of the recycling cavities and the modulation frequencies, using two numerical interferometer simulation packages: Optickle and Finesse. The investigations have suggested the use of certain combinations of sidebands to obtain independent information about the different degrees of freedom.

  5. Spatial structure of low-frequency wind noise.

    PubMed

    Wilson, D Keith; Greenfield, Roy J; White, Michael J

    2007-12-01

    The distinguishing spatial properties of low-frequency microphone wind noise (turbulent pressure disturbances) are examined with a planar, 49-element array. Individual, propagating transient pressure disturbances are imaged by wavelet processing to the array data. Within a given frequency range, the wind disturbances are much smaller and less spatially coherent than sound waves. Conventional array processing techniques are particularly sensitive to wind noise when sensor separations are small compared to the acoustic wavelengths of interest. PMID:18247645

  6. Low-frequency noise in hot-carrier detectors

    NASA Astrophysics Data System (ADS)

    Ivanov, N. I.; Petko, G. V.

    1981-01-01

    The low-frequency noise of hot-carrier detectors has been studied theoretically and experimentallyywith reference to the contributions of each of the following noise sources: thermal noise, shot effect, flicker noise, and noise generated in the input waveguide which is converted to thermoelectromotive force during detection. It is shown that hot-carrier detectors can be used for low-noise detection of electromagnetic radiation in the centimeter and millimeter ranges for various radioelectronic and measurements applications.

  7. A kinetic-MHD model for low frequency phenomena

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  8. Loads and low frequency dynamics - An ENVIRONET data base

    NASA Technical Reports Server (NTRS)

    Garba, John A.

    1988-01-01

    The loads and low frequency dynamics data base, part of Environet, is described with particular attention given to its development and contents. The objective of the data base is to provide the payload designer with design approaches and design data to meet STS safety requirements. Currently the data base consists of the following sections: abstract, scope, glossary, requirements, interaction with other environments, summary of the loads analysis process, design considerations, guidelines for payload design loads, information data base, and references.

  9. Impact of low-frequency sound on historic structures

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Horonjeff, Richard D.

    2005-09-01

    In common usage, the term soundscape usually refers to portions of the sound spectrum audible to human observers, and perhaps more broadly other members of the animal kingdom. There is, however, a soundscape regime at the low end of the frequency spectrum (e.g., 10-25 Hz), which is inaudible to humans, where nonindigenous sound energy may cause noise-induced vibrations in structures. Such low frequency components may be of sufficient magnitude to pose damage risk potential to historic structures and cultural resources. Examples include Anasazi cliff and cave dwellings, and pueblo structures of vega type roof construction. Both are susceptible to noise induced vibration from low-frequency sound pressures that excite resonant frequencies in these structures. The initial damage mechanism is usually fatigue cracking. Many mechanisms are subtle, temporally multiphased, and not initially evident to the naked eye. This paper reviews the types of sources posing the greatest potential threat, their low-frequency spectral characteristics, typical structural responses, and the damage risk mechanisms involved. Measured sound and vibration levels, case history studies, and conditions favorable to damage risk are presented. The paper concludes with recommendations for increasing the damage risk knowledge base to better protect these resources.

  10. Low-frequency sea waves generated by atmospheric convection cells

    NASA Astrophysics Data System (ADS)

    de Jong, M. P. C.; Battjes, J. A.

    2004-01-01

    The atmospheric origin of low-frequency sea waves that cause seiches in the Port of Rotterdam is investigated using hydrological and meteorological observations. These observations, combined with weather charts, show that all significant seiche events coincide with the passage of a low-pressure area and a cold front. Following these front passages, increased wind speed fluctuations occur with periods on the order of 1 hour. The records show that enhanced low-frequency wave energy at sea and the seiche events in the harbor occur more or less simultaneously with these strong wind speed fluctuations. These oscillatory wind speed changes are due to convection cells that arise in an unstable lower atmosphere in the area behind a cold front, where cold air moves over the relatively warm sea surface. It is shown that the moving system of a cold front and trailing convection cells generates forced low-frequency waves at sea that can cause seiche events inside the harbor. The occurrence of such events may be predictable operationally on the basis of a criterion for the difference in temperature between the air in the upper atmosphere and the water at the sea surface.

  11. Relativistic runaway breakdown in low-frequency radio

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  12. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  13. High Efficiency Mode Converter for Low-Frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Minami, Ryutaro; Kariya, Tsuyoshi; Imai, Tsuyoshi; Mitsunaka, Yoshika; Sakamoto, Keishi

    2011-03-01

    A high efficiency quasi-optical (QO) mode converter for high-power, low-frequency gyrotron have been designed and tested. For low-frequency gyrotrons, the scales of the mode converter are comparatively small on the wavelength scale, thus causing significant diffraction losses. Over-1 MW power gyrotron with TE8,3 cavity at 28 GHz have been developed, which has a high efficiency mode converter designed by the use of numerical methods for launcher optimization. This calculation is sufficiently optimized to maximize the fractional Gaussian content of the far field. The total transmission efficiency from the mode converter to output window is 94.7%. For the experimental result of first tube, the output power of more than 1 MW has been obtained with about 40% efficiency and output burn pattern agrees fairly with the calculated profiles, which imply the design appropriateness. Besides, the frequency dependence for diffraction loss is discussed, and these results give the guiding design principle of the mode converter for high-power, low-frequency and long-pulse gyrotrons.

  14. Measurement of Flux Density of Cas A at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Patil, Ajinkya; Fisher, R.

    2012-01-01

    Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.

  15. Low frequency signals analysis from broadband seismometers records

    NASA Astrophysics Data System (ADS)

    Hsu, Po-Chin

    2016-04-01

    Broadband seismometers record signals over a wide frequency band, in which the high-frequency background noise is usually associated with human activities, such as cars, trains and factory-related activities. Meanwhile, the low-frequency signals are generally linked to the microseisms, atmospheric phenomena and oceanic wave movement. In this study, we selected the broadband seismometer data recorded during the pass of the typhoons with different moving paths, such as Doksuri in 2012, Trami and Kong-Rey in 2013, Hagibis and Matmo in 2014. By comparing the broadband seismic data, the meteorological information, and the marine conditions, we attempt to understand the effect of the meteorological conditions on the low-frequency noise. The result shows that the broadband station located along the southwestern coast of Taiwan usually have relatively higher background noise value, while the inland stations were characterized by lower noise energy. This rapid decay of the noise energy with distance from the coastline suggest that the low frequency noise could be correlated with the oceanic waves. In addition, the noise energy level increases when the distance from the typhoon and the station decreases. The enhanced frequency range is between 0.1~0.3 Hz, which is consistent with the effect caused by the interference of oceanic waves as suggested by the previous studies. This observation indicates that when the pass of typhoon may reinforce the interaction of oceanic waves and caused some influence on the seismic records. The positive correlation between the significant wave height and the noise energy could also give evidence to this observation. However, we found that the noise energy is not necessarily the strongest when the distance from typhoon and the station is the shortest. This phenomenon seems to be related to the typhoon path. When the typhoon track is perpendicular to the coastline, the change of noise energy is generally more significantly; whereas less energy

  16. Mobilization of colloidal particles by low-frequency dynamic stress stimulation

    SciTech Connect

    Beckham, Richard Edward; Amr, Abdel - Fattah I; Peter, Roberts M; Reem, Ibrahim; Tarimala, Sowmitri

    2009-01-01

    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hertz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern - especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. While the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and mobilization of in-situ colloidal particles. This paper explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1-mm borosilicate beads and loaded with polystyrene microspheres demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microspheres. Increasing the amplitude of the oscillations increases the number of microspheres released and can also result in cyclical spikes in effluent microsphere concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data, and continue at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes to the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed microspheres. These

  17. Mobilization of colloidal particles by low-frequency dynamic stress stimulation.

    PubMed

    Beckham, Richard E; Abdel-Fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sowmitri

    2010-01-01

    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern, especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. Although the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and the mobilization of in situ colloidal particles. This article explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1 mm borosilicate beads and loaded with polystyrene microparticles demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microparticles. Increasing the amplitude of the oscillations increases the number of microparticles released and can also result in cyclical spikes in effluent microparticle concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data and continued at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes in the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low-frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed

  18. Low-frequency elastic waves alter pore-scale colloid mobilization

    SciTech Connect

    Beckham, Richard Edward; Abdel-fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sownitri

    2009-01-01

    Naturally occurring seismic events and artificially generated low-frequency elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of water wells. TEe decreases in production are of particular concern - especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. While the underlying environment is certainly complex, the observed increase in water well turbidity after seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and mobilization of in-situ colloidal particles. This paper explores the macroscopic and microscopic effects of elastic wave stimulations on the release of colloidal particles and investigates the microscopic mechanism of particle release during stimulation. Experiments on a column packed with 1-mm borosilicate beads loaded with polystyrene microspheres demonstrate that low-frequency elastic wave stimulations enhance the mobilization of captured microspheres. Increasing the intensity of the stimulations increases the number of microspheres released and can also result in cyclical variations in effluent microsphere concentration during and after stimulations. Under a prolonged period of stimulation, the cyclical effluent variations coincided with fluctuations in the column pressure data. This behavior can be attributed to flow pathways fouling and/or rearrangements of the beads in the column. Optical microscopy observations of the beads during low frequency oscillations reveal that the individual beads rotate, thereby rubbing against each other and scraping off portions of the adsorbed microspheres. These results support the theory that mechanical interactions between soil grains are important mechanisms in flow path alteration and the mobilization of naturally

  19. Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation

    NASA Astrophysics Data System (ADS)

    Haroun, Ahmed; Yamada, Ichiro; Warisawa, Shin`ichi

    2015-08-01

    This paper presents study of an electromagnetic vibration energy harvesting configuration that can work effectively at low frequencies. Unlike the conventional form of vibration energy harvesters in which the mass is directly connected to a vibrating frame with spring suspension, in the proposed configuration a permanent magnet mass is allowed to move freely within a certain distance inside a frame-carrying coil and make impacts with spring end stops. The free motion distance allows matching lower vibration frequencies with an increase in the relative amplitude at resonance. Hence, significant power could be generated at low frequencies. A nonlinear mathematical model including impact and electromagnetic induction is derived. Study of the dynamic behaviour and investigation of the system performance is carried out with the aid of case study simulation. The proposed harvester shows a unique dynamic behaviour in which different ways of response of the internal relative oscillation appear over the range of input frequencies. A mathematical condition for the response type at which the higher relative amplitude appears is derived, followed by an investigation of the system resonant frequency and relative amplitude. The resonant frequency shows a dependency on the free motion distance as well as the utilized mass and spring stiffness. Simulation and experimental comparisons are carried out between the proposed harvester and similar conventional one tuned at the same input frequency. The power generated by the proposed harvesting configuration can reach more than 12 times at 11 Hz in the simulation case and about 10 times at 10 Hz in the experimental case. Simulation comparison also shows that this power magnification increases by matching lower frequencies which emphasize the advantages of the proposed configuration for low frequency operation.

  20. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. I

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    A consistent kinetic theory is developed for the description of electrons under conditions of a low-frequency two-stream {bold E}{times}{bold B} instability in collisionally dominated, weakly ionized plasmas. Starting from the Boltzmann collision integral, a simplified kinetic equation for the electron distribution function has been derived, which takes into account strong pitch-angle scattering of electrons by neutrals, velocity dependence of the electron--neutral collision frequency, etc. Linearized equations describing small oscillations of the electron distribution function and ion density are presented. For the asymptotic case of short waves, the dispersion relation of the {bold E}{times}{bold B} instability has been obtained and analyzed under conditions typical for the lower ionosphere. Under certain conditions, the rigorous kinetic consideration yields substantial changes in results compared to previous theories. The general approach may be applied to other linear and nonlinear low-frequency processes in a weakly ionized plasma. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. A high figure of merit vibrational energy harvester for low frequency applications

    NASA Astrophysics Data System (ADS)

    Nico, V.; Boco, E.; Frizzell, R.; Punch, J.

    2016-01-01

    Small-scale vibration energy harvesters that respond efficiently at low frequencies are challenging to realize. This paper describes the design and implementation of one such harvester, which achieves a high volumetric Figure of Merit (FoMv = 2.6% at 11.50 Hz) at the scale of a C-type battery and outperforms other state-of-the-art devices in the sub 20 Hz frequency range. The device employs a 2 Degree-of-Freedom velocity-amplified approach and electromagnetic transduction. The harvester comprises two masses oscillating one inside the other, between four sets of magnetic springs. Collisions between the two masses transfer momentum from the heavier to the lighter mass, exploiting velocity amplification. The paper first presents guidelines for designing and optimizing the transduction mechanism, before a nonlinear numerical model for the system dynamics is developed. Experimental characterisation of the harvester design is then presented to validate both the transducer optimization and the dynamics model. The resulting high FoMV demonstrates the effectiveness of the device for low frequency applications, such as human motion.

  2. Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1997-01-01

    Past experience with hybrid rockets has shown that certain motor operating conditions are conducive to the formation of low frequency pressure oscillations, or flow instabilities, within the motor. Both past and present work in the hybrid propulsion community acknowledges deficiencies in the understanding of such behavior, though it seems probable that the answer lies in an interaction between the flow dynamics and the combustion heat release. Knowledge of the fundamental flow dynamics is essential to the basic understanding of the overall stability problem. A first step in this direction was a study conducted at NASA Marshall Space Flight Center (MSFC), centered around a laboratory-scale two dimensional water flow model of a hybrid rocket motor. Principal objectives included: (1) visualization of flow and measurement of flow velocity distributions: (2) assessment of the importance of shear layer instabilities in driving motor pressure oscillations; (3) determination of the interactions between flow induced shear layers with the mainstream flow, the secondary (wall) throughflow, and solid boundaries; (4) investigation of the interactions between wall flow oscillations and the mainstream flow pressure distribution.

  3. Low frequency wave at the meniscus of a continuous caster generated by a DC magnetic field

    NASA Astrophysics Data System (ADS)

    Etay, J.; Delannoy, Y.

    2003-12-01

    A continuous casting system for steel has been studied under a continuous magnetic field with the help of physical and numerical models. The behaviour of the free surface and the internal flow has been investigated experimentally on a mercury model, representing at the scale one third a typical casting head. A specific numerical model has been used to describe the effect of the horizontal magnetic field on the mean flow. For experiments with a magnetic field, a wave was observed at the mercury surface, travelling from one side of the mould to the other. With the help of a numerical model, this low frequency instability was related to the recirculating flow created by the nozzle. An analysis is proposed, based on the bidimensionalisation generated by the magnetic field and by self sustained oscillations of the upper recirculating flow. All other fluctuations of the free surface level are damped by the magnetic field. Tables 2, Figs 5, Refs 8.

  4. A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation.

    PubMed

    Hall, Thomas M; de Carvalho, Felipe; Jackson, Andrew

    2014-09-01

    Upper-limb movements are often composed of regular submovements, and neural correlates of submovement frequencies between 1 and 4 Hz have been found in the motor cortex. The temporal profile of movements is usually assumed to be determined by extrinsic factors such as limb biomechanics and feedback delays, but another possibility is that an intrinsic rhythmicity contributes to low frequencies in behavior. We used multielectrode recordings in monkeys performing an isometric movement task to reveal cyclic activity in primary motor cortex locked to submovements, and a distinct oscillation in premotor cortex. During ketamine sedation and natural sleep, cortical activity traversed similar cycles and became synchronized across areas. Because the same cortical dynamics are coupled to submovements and also observed in the absence of behavior, we conclude that the motor networks controlling the upper limb exhibit an intrinsic periodicity at submovement frequencies that is reflected in the speed profile of movements. PMID:25132467

  5. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    SciTech Connect

    Li, Pengwei Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong; Liu, Ying; Liu, Wei

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  6. Coherence between Great Basin precipitation and low frequency Pacific Ocean variability in CMIP5

    NASA Astrophysics Data System (ADS)

    Smith, K.; Strong, C.; Wang, S.

    2013-12-01

    Precipitation over the northern Wasatch Range of the Great Basin provides water for millions of people, and observations indicate its sensitivity to Pacific sea surface temperature (SST) modes including a 3-7 year El Nino-like pattern and a multidecadal pattern in the north Pacific resembling the Pacific Decadal Oscillation (PDO). We assessed the fidelity of this precipitation-SST connectivity for models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by using historical (1900-2005) monthly model output. Coherence analyses at various lags indicated that the observed precipitation-SST connectivity was best captured by the NCAR Community Climate System Model (CCSM). We show how these results are being used to incorporate low-frequency variations in a nonstationary daily stochastic weather generator suitable for hydrology and ecosystem impact studies out to the year 2100.

  7. Mechanical properties of granular media, including snow, investigated by a low-frequency forced torsion pendulum

    PubMed

    D'Anna

    2000-07-01

    The oscillating probe of a low-frequency forced torsion pendulum is immersed into various granular media, such as natural sand, glass beads, and granular snow. A first layer of particles is in general solidly bound to the probe surface. The principle of operation and a rheological model are presented. The measured dynamic moduli systematically show a peak of the loss factor and a step in the absolute modulus. The effect of moisture-induced aging in glass beads of small size and the effect of sintering of ice grains in snow are investigated. The response of the pendulum is determined by the long-range statistical properties of force chains opposing the rotation of the pendulum, and by the tribological processes that take place at the grain contacts. PMID:11088555

  8. Low-frequency source parameters of twelve large earthquakes

    NASA Astrophysics Data System (ADS)

    Harabaglia, Paolo

    1993-06-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  9. Low-Frequency Electromagnetic Exploration for Groundwater on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    2002-01-01

    Water with even a small amount of dissolved solids has an electrical conductivity orders of magnitude higher than dry rock and is therefore a near-ideal exploration target on Mars for low frequency, diffusive electromagnetic methods. Models of the temperature- and frequency-dependent electrical properties of rock-ice-water mixtures are used to predict the electromagnetic response of the Martian subsurface. Detection of ice is difficult unless it is massively segregated. In contrast, liquid water profoundly affects soundings, and even a small amount of adsorbed water in the cryosphere can be detected. Subcryospheric water is readily distinguishable at frequencies as low as 100 Hz for fresh water to 10 mHz for brines. These responses can be measured using either natural or artificial sources. Ultra low frequency signals from solar wind and diurnal-heating perturbations of the ionosphere are likely, and disturbances of regional crustal magnetic fields may also be observable. Spherics, or extremely to very low frequency signals from lightning discharge, would provide optimal soundings; however, lightning may be the least likely of the possible natural sources. Among the active techniques, only the time-domain electromagnetic (TDEM) method can accommodate a closely spaced transmitter and receiver and sound to depths of hundreds of meters or more. A ground- or aircraft-based TDEM system of several kilograms can detect water to a depth of several hundred meters, and a system of tens of kilograms featuring a large, fixed, rover- or ballistically deployed loop can detect water to several kilometers depth.

  10. Low Frequency Radio Astronomical Antennas for the Lunar Environment

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Lazio, J.; ROLSS DALI Teams

    2009-01-01

    Low radio frequencies ( MHz) represent the last of the relatively unexplored wavebands in the electromagnetic spectrum for astrophysics. Such observations are very challenging from the surface of the Earth because of an abundance of human-made radio interference (e.g., FM bands, TV channels) and because of ionospheric refraction. The lunar farside presents a unique opportunity to fully open this cosmic window because of the demonstrated radio-quiet environment. The ultimate science goal of a lunar farside low frequency telescope is to explore a new frontier in cosmology, the so-called Dark Ages. This era occurs between Recombination (at z 1100) when the universe first becomes transparent (producing what we observe today as the CMB) and Reionization when the first stars and galaxies form (at z 10-20). During the Dark Ages, the universe was unlit by any star and the only detectable signal is likely to arise from neutral hydrogen absorption against the CMB (from the collapse of the first structures). Observing this absorption signal would be a powerful probe of fundamental cosmology. During the Dark Ages (z 20 - 150), when the 21-cm (1.4 GHz) neutral hydrogen line is redshifted into the low frequency radio band (10-30 MHz, 10-30 m), the absorption signal has the potential to be the richest of all cosmological data sets. In this poster, we will discuss the opportunities and options for low frequency radio antennas in both lunar orbit and on the lunar surface. We are investigating a novel concept to deploy a large number of low-mass antennas deposited on sheets of polyimide film. We will also describe results of laboratory vacuum testing at U. Colorado on polyimide film cycled between -150 C and 100 C, and exposed to far-ultraviolet light, with conditions like those on the lunar surface.

  11. Compton interaction of free electrons with intense low frequency radiation

    NASA Technical Reports Server (NTRS)

    Illarionov, A. F.; Kompaneyets, D. A.

    1978-01-01

    Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.

  12. On apparent temperature in low-frequency Alfvenic turbulence

    SciTech Connect

    Nariyuki, Yasuhiro

    2012-08-15

    Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.

  13. Low frequency sound radiation from finite stiffened plates

    NASA Astrophysics Data System (ADS)

    Keltie, Richard F.

    1993-07-01

    The purpose of the research effort reported herein was to assess the feasibility of developing efficient low frequency acoustic radiators using flexural vibration of submerged stiffened plates. Candidate radiator geometries were identified at NUWC using an infinite plate model. A finite plate implementation of these models was then examined by the author using an analysis capability previously developed. The purpose of this examination was to study the extent to which infinite plate results could be achieved by a finite radiator, and to obtain an estimate of the effects of plate size and number of attached ribs on the radiation characteristics.

  14. Low frequency hybrid instability in quantum magneto semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Rasheed, A.; Jamil, M.; Areeb, F.; Siddique, M.; Salimullah, M.

    2016-05-01

    The excitation of electrostatic, comparatively low frequency, lower-hybrid waves (LHWs) induced by electron beam in semiconductor plasma is examined using a quantum hydrodynamic model. Various quantum effects are taken into account including the recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The effects of different parameters like the electron-to-hole number density ratio, scaled electron beam temperature and streaming speed, propagation angle and cyclotron frequency over the growth, and phase speed of LHWs are investigated. It is noticed that an increase in the electron number density and streaming speed enhance the instability. Similar effects are observed on decreasing the propagation angle with magnetic field.

  15. Access to Strain and Other Low Frequency Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Prescott, W.; Hodgkinson, K.; Neuhauser, D.; Silverman, S.; Stites, N. P.; Zuzlewski, S.

    2001-12-01

    With National Earthquake Hazards Program (NEHRP) funding, the U.S. Geological Survey (USGS ) has supported various fault monitoring efforts. In addition to monitoring at seismic frequency bands, the USGS also has supported strain, creep, water level and other instrumental systems operating at "low frequency". Principal investigators include both USGS and academic scientists. The typical observation interval for these data sets is 10 minutes (0.00167 hz). Raw data from most of these instruments are now available at the Northern California Earthquake Data Center (NCEDC). NCEDC is a joint effort of the University of California, Berkeley and the USGS. Raw low frequency data at NCEDC are stored in the SEED format, a standard format adopted for seismic data. And the raw low frequency data can be accessed with seismic querying tools. In a companion effort, the USGS is improving access to processed versions of these data. The raw low frequency data are processed to remove obvious instrumental offsets and spurious outliers. In the case of dilatometer data, the effects of air pressure variations are also removed from the time series. The resulting processed time series are available as plots (most recent week, most recent month, most recent year, and complete time series) and as downloadable files in either a tabular file or an eXtensible Markup Language (XML) file. XML is a standard format containing markup "tags" to identify the fields. The XML file contains all of the information known about the sensors as well as the observations. For example, in addition to the date, time and value, the XML file may contain investigator name and contact information, latitude, longitude, elevation, instrument manufacturer, serial number, digitizer manufacturer, serial number, orientation, and scale factors. The tabular file is a simple space-delimited file containing just the date, time and observed value fields. The XML file is large, but compresses well. For 10 minutes samples, XML

  16. Low-frequency fluid waves in fractures and pipes

    SciTech Connect

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  17. High-. beta. theory of low-frequency magnetic pulsations

    SciTech Connect

    Migliuolo, S.

    1983-03-01

    The theory of low-frequency (compared to ion cyclotron) arbitrary-..beta.. modes is developed for the following system: a two-component (hot and cold) inhomogeneous plasma, and a straight inhomogeneous magnetic field. This system is taken to model the magnetosphere, near the geomagnetic equator. The stability properties of three modes are presented in detail: the drift-compressional mode (driven by pressure gradients) the firehose mode (driven by T/sub parallel/>T/sub perpendicular/), and the drift mirror mode (driven by T/sub perpendicular/>T/sub parallel/). Comparisons to earlier models and to one observed event are also presented.

  18. Locally resonant periodic structures with low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Cheng, Zhibao; Shi, Zhifei; Mo, Y. L.; Xiang, Hongjun

    2013-07-01

    Presented in this paper are study results of dispersion relationships of periodic structures composited of concrete and rubber, from which the frequency band gap can be found. Two models with fixed or free boundary conditions are proposed to approximate the bound frequencies of the first band gap. Studies are conducted to investigate the low-frequency and directional frequency band gaps for their application to engineering. The study finds that civil engineering structures can be designed to block harmful waves, such as earthquake disturbance.

  19. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  20. Nonlinear behavior of electrodynamic loudspeaker suspension at low frequencies

    NASA Astrophysics Data System (ADS)

    Feng, ZiXin; Shen, Yong; Heng, Wei; Liu, YunFeng

    2013-07-01

    The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.

  1. Low-frequency fluctuations in the Indonesian throughflow through Lombok Strait

    NASA Astrophysics Data System (ADS)

    Arief, Dharma; Murray, Stephen P.

    1996-05-01

    A significant component of the Indonesian throughflow, apparently about 25%, passes through the Lombok Strait. Direct observations in 1985 reported a ˜2 Sv annual average, with an annual cycle of amplitude ˜2 Sv. There are also significant fluctuations in this transport in the 0.01-0.1 cpd frequency band. Shallow pressure gauge data (sea level) inside the strait during the current meter observations were of limited use in explaining the large fluctuations in currents. Sea level data at Cilacap, 720 km west (upcoast), however, overlap the current observations for 5 months and correlate exceedingly well (r = 0.87) with the observations inside the strait at these frequencies. These sea level oscillations in the Indian Ocean force fluctuations in the Lombok throughflow that reach 50-70 cm/s, equivalent to 2-3 Sv. Lagged regression analysis indicates Cilacap sea level leads Lombok currents by 1-2 days, suggesting a low-frequency, progressive wave. Simultaneous data in 1989 from four stations extending from the near-equatorial station at Padang at 1°S to Benoa in the Lombok Strait (2000 km downcoast) clearly show the persistent propagation of low-frequency waves of 20- to 40-cm range along this coast. Lagged correlation on station pairs indicates a phase speed consistent with coastally trapped internal Kelvin waves. We speculate that further eastward progression of these waves to the Timor Passage of Ombai Strait will further modulate the throughflow. The forcing of these waves is not yet identified, but it appears likely that intraseasonal oscillations in the equatorial Indian Ocean winds, as demonstrated by Enfield [1987] for the Pacific, are a probable mechanism. Improved wind data quality in 1991 due to the assimilation of satellite data (special sensor microwave/imager) will allow investigation of remote forcing on more recent data sets.

  2. Representing low-frequency variability in continuous rainfall simulations: A hierarchical random Bartlett Lewis continuous rainfall generation model

    NASA Astrophysics Data System (ADS)

    Wasko, Conrad; Pui, Alexander; Sharma, Ashish; Mehrotra, Rajeshwar; Jeremiah, Erwin

    2015-12-01

    Low-frequency variability, in the form of the El Niño-Southern Oscillation, plays a key role in shaping local weather systems. However, current continuous stochastic rainfall models do not account for this variability in their simulations. Here a modified Random Pulse Bartlett Lewis stochastic generation model is presented for continuous rainfall simulation exhibiting low-frequency variability. Termed the Hierarchical Random Bartlett Lewis Model (HRBLM), the model features a hierarchical structure to represent a range of rainfall characteristics associated with the El Niño-Southern Oscillation with parameters conditioned to vary as functions of relevant climatic states. Long observational records of near-continuous rainfall at various locations in Australia are used to formulate and evaluate the model. The results indicate clear benefits of using the hierarchical climate-dependent structure proposed. In addition to accurately representing the wet spells characteristics and observed low-frequency variability, the model replicates the interannual variability of the antecedent rainfall preceding the extremes, which is known to be of considerable importance in design flood estimation applications.

  3. Study of Low-Frequency Earth motions from Earthquakes and a Hurricane using a Modified Standard Seismometer

    NASA Astrophysics Data System (ADS)

    Peters, R. D.

    2004-12-01

    The modification of a WWSSN Sprengnether vertical seismometer has resulted in significantly improved performance at low frequencies. Instead of being used as a velocity detector as originally designed, the Faraday subsystem is made to function as an actuator to provide a type of force feedback. Added to the instrument to detect ground motions is an array form of the author's symmetric differential capacitive (SDC) sensor. The feedback circuit is not conventional, but rather is used to eliminate long-term drift by placing between sensor and actuator an operational amplifier integrator having a time constant of several thousand seconds. Signal to noise ratio at low frequencies is increased, since the modified instrument does not suffer from the 20dB/decade falloff in sensitivity that characterizes conventional force-feedback seismometers. A Hanning-windowed FFT algorithm is employed in the analysis of recorded earthquakes, including that of the very large Indonesia earthquake (M 7.9) of 25 July 2004. The improved low frequency response allows the study of the free oscillations of the Earth that accompany large earthquakes. Data will be provided showing oscillations with spectral components in the vicinity of 1 mHz, that frequently have been observed with this instrument to occur both before as well as after an earthquake. Additionally, microseisms and other interesting data will be shown from records collected by the instrument as Hurricane Charley moved across Florida and up the eastern seaboard.

  4. The Low Frequency Aeroacoustics of Buried Nozzle Systems

    NASA Astrophysics Data System (ADS)

    Taylor, M. V.; Crighton, D. G.; Cargill, A. M.

    1993-05-01

    A simplified model of a "buried nozzle" aeroengine system is considered. The primary flow issues into a co-annular flow within a mixing chamber, and then the co-annular flow issues into the ambient medium from a secondary nozzle. Within the mixing chamber only fine scale mixing takes place, and shear layers within the mixing chamber and downstream of the secondary nozzle are assumed to sustain large scale instability waves. Excitation of this system is provided by low frequency plane waves, incident from upstream on the primary nozzle (and emanating from combustion processes in the hot core of an aeroengine). The response of this system, in the acoustic far field and in the mixing chamber, is obtained analytically from the asymptotic solution, at low frequency, of model sub-problems the solutions of which determine the wave reflection and transmission processes at the primary and secondary nozzles. In these sub-problems the shear layers are represented by vortex sheets and the nozzle walls by semi-infinite circular ducts, with Kutta conditions imposed on the unsteady flow at the primary and secondary nozzle lips. Analytical descriptions are given of the various wave modes (quasi-plane acoustic waves, and instability waves localized on the primary and secondary shear layers), of the acoustic field strength and directivity (essentially monopole, dipole and quadrupole fields), and of the conditions under which near-resonant response may occur, with large amplitudes of the perturbations in the mixing chamber and in the acoustic field.

  5. Dielectric behavior of some ferrofluids in low-frequency fields.

    PubMed

    Malaescu, I; Marin, C N

    2002-07-01

    The dielectric behavior of a ferrofluid with magnetite particles dispersed in kerosene was analyzed taking into account the Schwarz model, concerning the low-frequency dielectric behavior in systems consisting of colloidal particles suspended in electrolytes. For this reason, the complex dielectric permittivity and dielectric loss factor, in the frequency range of 10 Hz-500 kHz, at different temperatures between 20 degrees C and 100 degrees C were measured. Based on these experimental results, the experimental dependencies on both temperature of the relaxation time and activation energy of the relaxation process were analyzed. The obtained results show that the Schwarz model can be applied, in order to explain the low-frequency dielectric behavior of a ferrofluid with magnetite particles in kerosene, if the change of counterion concentration at the surface of colloidal particles is taken into account. Consequently, it is shown that the dielectric spectroscopy can be used in order to analyze the presence of particle agglomerations within ferrofluids. PMID:16290703

  6. Low-Frequency Electromagnetic Thermal Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.; Yoon, P. H.; Ziebell, L. F.; Pavan, J.

    2012-12-01

    It is well known that the solar wind proton temperature anisotropy is constrained in the temperature ratio vs. beta parameter space by the mirror/proton-cyclotron and parallel/oblique firehose instability threshold conditions (Hellinger et al., 2006). However, the actual solar wind is found in the parameter regime stable to these instabilities (Bale et al., 2009). Since no waves can be generated in the purely collisionless and stable plasma, the source of the low-frequency electromagnetic fluctuations in the solar wind must be owing to spontaneous thermal effects. The problem of the spontaneously emitted electromagnetic waves from magnetized plasmas is generally poorly understood (Araneda et al., 2011). In the present paper, we formulate the theory of spontaneous thermal emission of electromagnetic radiation in the vicinity of the low-frequency modes of Alfvén, ion-cyclotron, and whistler modes. We carry out a statistical analysis by varying the temperature anisotropy and parallel beta and compare the theoretical fluctuation intensity against the observation such as that reported by Bale et al. (2009). Hellinger et al., GRL, 33, L09101 (2006). Bale et al., PRL, 103, 211101 (2009). Araneda et al., Space Sci. Rev., DOI:10.1007/s11214-011-9773-0 (2011).

  7. Characterizing low frequency plasma waves at Mars with MAVEN

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, Suranga; Halekas, Jasper; Connerney, Jack; Espley, Jared; Larson, Davin; Mitchell, David L.

    2015-04-01

    We use the measurements from the Solar Wind Ion Analyzer (SWIA) and the magnetometer (MAG) instruments aboard the MAVEN spacecraft to characterize plasma waves in the Martian magnetosphere. SWIA is a toroidal energy analyzer that measures 3-d ion velocity distributions, and we use it for measuring ion moment fluctuations. MAG instrument, on the other hand, is a fluxgate magnetometer, and we use it for measuring magnetic field fluctuations. Mars is unique in the solar system because of two characteristics: it only has an induced magnetosphere with strong crustal fields at low altitudes, and it has an extended atmosphere due to its lower gravity. Due to these two characteristics, Mars presents a unique environment to study the interaction of a planetary magnetosphere and an exosphere with the solar wind. One consequence of this interaction is the excitation of low frequency plasma waves which have highest power near and below the proton gyrofrequency. Studying these waves is of interest because they can play a vital role in the mass and energy transport in the Martian magnetosphere. In this investigation, we use both ion moment fluctuations (density and velocity) and the magnetic field fluctuations to characterize these low frequency plasma waves.

  8. Low-frequency terrestrial tensor gravitational-wave detector

    NASA Astrophysics Data System (ADS)

    Paik, Ho Jung; Griggs, Cornelius E.; Vol Moody, M.; Venkateswara, Krishna; Lee, Hyung Mok; Nielsen, Alex B.; Majorana, Ettore; Harms, Jan

    2016-04-01

    Terrestrial gravitational-wave (GW) detectors are mostly based on Michelson-type laser interferometers with arm lengths of a few km and signal bandwidths of tens of Hz to a few kHz. Many conceivable sources would emit GWs below 10 Hz. A low-frequency tensor GW detector can be constructed by combining six magnetically levitated superconducting test masses. Seismic noise and Newtonian gravity noise are serious obstacles in constructing terrestrial GW detectors at such low frequencies. By using the transverse nature of GWs, a full tensor detector, which can in principle distinguish GWs from near-field Newtonian gravity, can be constructed. Such a tensor detector is sensitive to GWs coming from any direction with any polarization; thus a single antenna is capable of resolving the source direction and polarization. We present a design concept of a tensor GW detector that could reach a strain sensitivity of 10-19-10-20 Hz-1/2 at 0.2-10 Hz, compute its intrinsic detector noise, and discuss procedures of mitigating the seismic and Newtonian noise.

  9. Low-frequency 1/f noise in graphene devices.

    PubMed

    Balandin, Alexander A

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined. PMID:23912107

  10. Sintering of ceramics using low frequency rf power

    SciTech Connect

    Caughman, J.B.O.; Hoffman, D.J.; Baity, F.W.; Akerman, M.A.; Forrester, S.C.; Kass, M.D.

    1995-07-01

    Sintering with low frequency rf power ({approximately}50 MHz) is a new technique with unique capabilities that has been used to sinter a variety of ceramic materials, including zirconia-toughened alumina, alumina, silicon carbide, and boron carbide. Processing with low frequencies offers many advantages compared to processing with conventional microwave frequencies (915 MHz and 2.45 GHz). Because of the longer wavelength, the rf electric field penetrates materials more than microwaves. This effect allows the processing of a wider variety of materials and allows for an increase in the physical size of the material being processed. In addition, the material is heated in a single mode cavity with a uniform electric field, which reduces the occurrence of hot-spot generation and thermal runaway effects. This technique has been used to sinter large crack-free alumina samples (3 inch square) to > 97% density. The sintering and/or annealing of a number of carbide materials has been demonstrated as well, including silicon carbide, boron carbide, tungsten carbide, and titanium carbide.

  11. Sintering of ceramics using low frequency RF powder

    SciTech Connect

    Caughman, J.B.O.; Hoffman, D.J.; Baity, F.W.; Akerman, M.A.

    1995-12-31

    Sintering with low frequency rf power ({approximately}50 MHz) is a new technique with unique capabilities that has been used to sinter a variety of ceramic materials, including zirconia-toughened alumina, alumina, silicon carbide, and boron carbide. Processing with low frequencies offers many advantages compared to processing with conventional microwave frequencies (915 MHz and 2.45 GHz). Because of the longer wavelength, the rf electric field penetrates materials more than microwaves. This effect allows the processing of a wider variety of materials and allows for an increase in the physical size of the material being processed. In addition, the material is heated in a single mode cavity with a uniform electric field, which reduces the occurrence of hot-spot generation and thermal runaway effects. This technique has been used to sinter large crack-free alumina samples (3 inches square) to >97% density. The sintering and/or annealing of a number of carbide materials has been demonstrated as well, including silicon carbide, boron carbide, tungsten carbide, and titanium carbide.

  12. Powerful Low-Frequency Vibrators for Active Seismology

    SciTech Connect

    Alekseev, A.S.; Chichinin, I.S.; Korneev, V.A.

    2003-12-01

    In the past two decades, active seismology studies in Russia have made use of powerful (40- and 100-ton) low-frequency vibrators. These sources create a force amplitude of up to 100 tons and function in the 1.5 3, 3 6, and 5 10 Hz frequency bands. The mobile versions of the vibrator have a force amplitude of 40 tons and a 6 12 Hz frequency band. Recording distances for the 100-ton vibrator are as large as 350 km, enabling the refracted waves to penetrate down to 50 km depths. Vibrator operation sessions are highly repeatable, having distinct summer or winter spectral patterns. A long profile of seismic records allows estimation of fault zone depths using changes in recorded spectra. Other applications include deep seismic profiling, seismic hazard mapping, structural testing, stress-induced anisotropy studies, seismic station calibration, and large-structure integrity testing. The theoretical description of the low-frequency vibrator is given in the appendices, which contain numerical examples.

  13. A Digital Backend for the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Dartez, L. P.

    2014-04-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. The primary science goals of LoFASM are the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council's decadal survey. LoFASM consists of antennas and front-end electronics that were originally developed for the Long Wavelength Array (LWA) by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of four stations, each consisting of 12 dual-polarization dipole antennas. In a single station, RF signals from each of the individual LoFASM dipoles are combined in phase in order to synthesize LoFASM's beam. The LoFASM RF signals are phased up so that the resulting beam is sensitive to radio emission that originates from the zenith and RF signals approaching from the horizon are attenuated. Digitally, this is achieved using a full Stokes 100MHz correlating spectrometer constructed using field programmable gate array (FPGA) technology. In this thesis I will describe the design and usage of the LoFASM Correlator.

  14. Low frequency mechanical actuation accelerates reperfusion in-vitro

    PubMed Central

    2013-01-01

    Background Rapid restoration of vessel patency after acute myocardial infarction is key to reducing myocardial muscle death and increases survival rates. Standard therapies include thrombolysis and direct PTCA. Alternative or adjunctive emergency therapies that could be initiated by minimally trained personnel in the field are of potential clinical benefit. This paper evaluates a method of accelerating reperfusion through application of low frequency mechanical stimulus to the blood carrying vessels. Materials and method We consider a stenosed, heparinized flow system with aortic-like pressure variations subject to direct vessel vibration at the occlusion site or vessel deformation proximal and distal to the occlusion site, versus a reference system lacking any form of mechanical stimulus on the vessels. Results The experimental results show limited effectiveness of the direct mechanical vibration method and a drastic increase in the patency rate when vessel deformation is induced. For vessel deformation at occlusion site 95% of clots perfused within 11 minutes of application of mechanical stimulus, for vessel deformation 60 centimeters from the occlusion site 95% percent of clots perfused within 16 minutes of stimulus application, while only 2.3% of clots perfused within 20 minutes in the reference system. Conclusion The presented in-vitro results suggest that low frequency mechanical actuation applied during the pre-hospitalization phase in patients with acute myocardial infarction have potential of being a simple and efficient adjunct therapy. PMID:24257116

  15. Low-Frequency, Low-G MEMS Piezoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Xu, R.; Kim, S. G.

    2015-12-01

    This paper reports the design, modeling and fabrication of a novel MEMS device for low-frequency, low-g vibration energy harvesting. The new design is based on bi-stable buckled beam structure. To implement the design at MEMS scale, we further proposed to employ residual stress in micro-fabricated thin films. With an electromechanical lumped model, the multi-layer beam could be designed to achieve bi-stability with desired frequency range and excitation amplitude. A macro-scale prototype has been built and tested to verifies the prediction of the performance enhancement of the bi-stable beam at low frequencies. A MEMS scale prototype has been fabricated and tested to verify the frequency range at low excitation amplitude. The MEMS device shows wide operating frequency range from 50Hz to 150Hz at 0.2g without external proof mass. The same device with external proof mass has lower frequency range (< 10Hz) with boosted deflection amplitude.

  16. A new era for low frequency Galactic center transient monitoring

    NASA Astrophysics Data System (ADS)

    Kassim, N. E.; Hyman, S. D.; Intema, H.; Lazio, T. J. W.

    2014-05-01

    An upgrade of the low frequency observing system of the VLA developed by NRL and NRAO, called low band (LB), will open a new era of Galactic center (GC) transient monitoring. Our previous searches using the VLA and GMRT have revealed a modest number of radio-selected transients, but have been severely sensitivity and observing time limited. The new LB system, currently accessing the 236--492 MHz frequency range, promises ≥5 × improved sensitivity over the legacy VLA system. The new system is emerging from commissioning in time to catch any enhanced sub-GHz emission from the G2 cloud event, and we review existing limits based on recent observations. We also describe a proposed 24/7 commensal system, called the LOw Band Observatory (LOBO). LOBO offers over 100 VLA GC monitoring hours per year, possibly revealing new transients and helping validate ASTRO2010's anticipation of a new era of transient radio astronomy. A funded LOBO pathfinder called the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) is under development. Finally, we consider the impact of LB and LOBO on our GC monitoring program.

  17. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  18. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  19. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  20. Ultra low frequency electromagnetic fire alarm system for underground mines

    SciTech Connect

    Not Available

    1991-01-01

    During an underground mine fire, air can be rapidly depleted of oxygen and contaminated with smoke and toxic fire gases. Any delay in warning miners could have disastrous consequences. Unfortunately, present mine fire alarm systems, such as stench, audible or visual alarms, telephones, and messengers, are often slow, unreliable, and limited in mine area coverage. Recent research by the U.S. Bureau of Mines has demonstrated that ultra-low-frequency electromagnetic signaling can be used for an underground mine fire alarm. In field tests of prototype equipment at five mines, electromagnetic signals from 630 to 2,000 Hz were transmitted through mine rock for distances as great as 1,645 m to an intrinsically safe receiver. The prototype system uses off-the-shelf components and state-of-the-art technology to ensure high reliability and low cost. When utilized, this technology would enable simultaneous and instantaneous warning of all underground personnel, regardless of their location or work activity, thereby increasing the likelihood of their successfully escaping a mine disaster. This paper presents the theoretical basis for through-the-rock ultra-low-frequency electromagnetic transmission, design of the prototype transmitter and receiver, and the results of in-mine tests of the prototype system.

  1. Very low frequency earthquakes in Cascadia migrate with tremor

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Huesca-Pérez, Eduardo; Brodsky, Emily; Ito, Yoshihiro

    2015-05-01

    We find very low frequency earthquakes (VLFEs) in Cascadia under northern Washington during 2011 episodic tremor and slip event. VLFEs are rich in low-frequency energy (20-50 s) and depleted in higher frequencies (higher than 1 Hz) compared to local earthquakes. Based on a grid search centroid moment tensor inversion, we find that VLFEs are located near the plate interface in the zone where tremor and slow slip are observed. In addition, they migrate along strike with tremor activity. Their moment tensor solutions show double-couple sources with shallow thrust mechanisms, consistent with shear slip at the plate interface. Their magnitude ranges between Mw 3.3 and 3.7. Seismic moment released by a single VLFE is comparable to the total cumulative moment released by tremor activity during an entire episodic tremor and slip event. The VLFEs contribute more seismic moment to this episodic tremor and slip event than cumulative tremor activity and indicate a higher seismic efficiency of slow earthquakes in Cascadia than previously thought. Spatiotemporal correlation of VLFE and tremor activity suggests that they are the results of the same physical processes governing slow earthquakes.

  2. Low-frequency electromagnetic technique for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Dalichaouch, Yacine; Singsaas, Alan L.; Putris, Firas; Perry, Alexander R.; Czipott, Peter V.

    2000-05-01

    We have developed a low frequency electromagnetic technique using sensitive room temperature magnetoresistive (MR) sensors for a variety of nondestructive evaluation (NDE) applications. These applications include the NDE of medical implants and aircraft structures, the detection of cracks and corrosion in metals, the detection of ferromagnetic foreign objects in the eye and the brain, and the noninvasive determination of iron content in the liver. Our technique consists of applying a low frequency ac magnetic field to the sample and detecting the sample response. The low excitation frequency enables us to probe deep into metal structures; the sensitivity of the MR sensor allows us to detect weak responses from the sample without applying too large an excitation field, particularly in the case of human tissue. The MR sensors are small and relatively inexpensive compared to other sensitive magnetic field sensors such as fluxgates and superconducting quantum interference devices or SQUIDs; hence the resulting NDE instrument will be compact and cost-efficient, enabling its commercialization for practical applications. In this paper, we focus primarily on NDE of orthopedic implants.

  3. Mechanically-tunable composite filter at low frequencies

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2010-04-01

    Previous studies into the possibility of a plasmonic medium of a coiled conductor array in air have shown promise. This work serves to evaluate the possibility of creating a mechanically-tunable composite filter at low frequencies. Copper springs were created with varying starting pitches using a coil winder. These springs were then embedded into a flexible host polymer. The mechanical and electromagnetic properties of each spring design were predicted and tested. Two horn antennas were used to characterize the overall electromagnetic (EM) properties of the composite. The pitch of each spring was increased mechanically through application of force to the entire polymermetal composite at equal intervals, with an EM test completed at each step. Using an Agilent 8510C Vector Network Analyzer (VNA), the frequency spectrum within the microwave range was scanned. Relative amplitude and phase measurements were taken at equal frequency and pitch steps. With no polymer surrounding the springs, plasmon turn-on frequencies were observed to span the microwave bands as the pitch of the springs were increased. Similar results are expected with the springs embedded in a polymeric matrix. These results suggest a method of creating a mechanically-tunable composite filter for use at low frequencies.

  4. Low Frequency noise of nanowire bioFETs

    NASA Astrophysics Data System (ADS)

    Rajan, Nitin; Chen, Jin; Routenberg, David; Reed, Mark

    2010-03-01

    In this study we characterize the low frequency noise of top-down fabricated silicon nanowire FETs with exposed channels used as biological sensors. Understanding their low frequency noise behavior is important because signal-to-noise ratio limits the sensitivity of these devices when attempting to detect low analyte concentrations. Using noise spectroscopy we quantitatively demonstrate that a wet orientation dependent etch (ODE) using tetramethylammonium hydroxide yields a lower surface state density and thus better noise performance that common plasma-based etch processes. To thoroughly characterize and accurately model the noise of fabricated silicon nanowires using the wet ODE, we carry out 1/f noise measurements from subthreshold to strong inversion as well as noise measurements at different temperatures. We observe an increase in the noise amplitude at lower temperatures, the increase being more pronounced in the subthreshold region. We also observe a change in the noise profile, indicating a change in the dominant mechanism giving rise to 1/f noise, as the temperature is lowered.

  5. Low-frequency 1/f noise in graphene devices

    NASA Astrophysics Data System (ADS)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  6. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For

  7. Role of Low-Frequency Boundary Waves in the Dynamics of the Dayside Magnetopause and the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Hwang, K.-J.; Sibeck, D. G.

    2016-02-01

    This chapter reviews the role of the low-frequency waves in the dynamics of the magnetopause and the inner magnetosphere, focusing on those waves often simultaneously or subsequently occurring in the two regions. The authors organize the chapter in terms of proposed mechanisms capable of linking outer boundary waves (upstream bow shock-origin or magnetopause oscillations) to inner magnetospheric waves: global modes; KH waves/vortices; solar wind or bow-shock-origin perturbations; and reconnection/FTE-driven processes. As in the case of cavity and waveguide modes discussed in the chapter, the detection of KH-driven global mode and its coupling to FLRs is rather evasive due to the difficulty in separating various internal and external FLR triggers, together with the difficulty in correctly determining fundamental frequencies. The chapter explains how low-frequency waves processed by the bow shock or generated in the magnetosheath impact the magnetopause and the inner magnetosphere.

  8. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.

  9. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    NASA Astrophysics Data System (ADS)

    Ghizzo, A.; Palermo, F.

    2015-08-01

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.

  10. In vivo Recordings from Low-Frequency Nucleus Laminaris in the Barn Owl.

    PubMed

    Palanca-Castan, Nicolas; Köppl, Christine

    2015-01-01

    Localization of sound sources relies on 2 main binaural cues: interaural time differences (ITD) and interaural level differences. ITD computing is first carried out in tonotopically organized areas of the brainstem nucleus laminaris (NL) in birds and the medial superior olive (MSO) in mammals. The specific way in which ITD are derived was long assumed to conform to a delay line model in which arrays of systematically arranged cells create a representation of auditory space, with different cells responding maximally to specific ITD. This model conforms in many details to the particular case of the high-frequency regions (above 3 kHz) in the barn owl NL. However, data from recent studies in mammals are not consistent with a delay line model. A new model has been suggested in which neurons are not topographically arranged with respect to ITD and coding occurs through assessment of the overall response of 2 large neuron populations – 1 in each brainstem hemisphere. Currently available data comprise mainly low-frequency (<1,500 Hz) recordings in the case of mammals and higher-frequency recordings in the case of birds. This makes it impossible to distinguish between group-related adaptations and frequency-related adaptations. Here we report the first comprehensive data set from low-frequency NL in the barn owl and compare it to data from other avian and mammalian studies. Our data are consistent with a delay line model, so differences between ITD processing systems are more likely to have originated through divergent evolution of different vertebrate groups. PMID:26182962

  11. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74

  12. Low-Frequency Electromagnetic Sounding for Planetary Volatiles (Invited)

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.

    2013-12-01

    EM sounding is divided by loss tangent << 1 (surface-penetrating radars) and >> 1 (inductive methods). The former have high resolution and responses dominated by dielectric permittivity. They have been useful for sounding the polar caps of Mars and are very promising to image the shells of icy satellites as well as the uppermost crusts of silicate bodies. The latter have poorer resolution but greater penetration depth, responses dominated by electrical conductivity, and are the subject of this talk. Low-frequency inductive methods are further divided by comparing the source-receiver separation to the skin depth. Large separations are parametric in frequency so that the variation of EM response with frequency is translated to change in conductivity with depth. Parametric soundings can exploit natural sources from the solar wind, magnetosphere, ionosphere, or atmosphere. Small source-sensor separations are geometric with transmitter-receiver positions: both conductivity and permittivity can be recovered as a function of frequency (a dielectric spectrum), but at greater resource requirements. Subsurface liquid water is an optimal low-frequency EM target because even small quantities of dissolved ions make it a powerful electrical conductor compared to dry, resistive, silicate crusts. Water at kms or even tens of kms can be detected using the magnetotelluric, geomagnetic-depth sounding, or wave-tilt methods: these are all natural-source soundings using different combinations of field components and receiver geometries. If natural sources are weak or absent, a transmitter can be used to obtain high SNR; the time-domain EM (TDEM) method has been used extensively for terrestrial groundwater exploration. Using a ballistically deployed 200-m diameter transmitter loop, TDEM can detect groundwater at depths of several km. If landed in a region of strong local crustal magnetism, the characteristic Larmor frequency of liquid water can be detected with a TDEM-like setup using

  13. Physiological and content considerations for a second low frequency channel for bass management, subwoofers, and low frequency enhancement (LFE)

    NASA Astrophysics Data System (ADS)

    Miller, Robert E. (Robin)

    2005-04-01

    Perception of very low frequencies (VLF) below 125 Hz reproduced by large woofers and subwoofers (SW), encompassing 3 octaves of the 10 regarded as audible, has physiological and content aspects. Large room acoustics and vibrato add VLF fluctuations, modulating audible carrier frequencies to >1 Hz. By convention, sounds below 90 Hz produce no interaural cues useful for spatial perception or localization, therefore bass management redirects the VLF range from main channels to a single (monaural) subwoofer channel, even if to more than one subwoofer. Yet subjects claim they hear a difference between a single subwoofer channel and two (stereo bass). If recordings contain spatial VLF content, is it possible physiologically to perceive interaural time/phase difference (ITD/IPD) between 16 and 125 Hz? To what extent does this perception have a lifelike quality; to what extent is it localization? If a first approximation of localization, would binaural SWs allow a higher crossover frequency (smaller satellite speakers)? Reported research supports the Jeffress model of ITD determination in brain structures, and extending the accepted lower frequency limit of IPD. Meanwhile, uncorrelated very low frequencies exist in all tested multi-channel music and movie content. The audibility, recording, and reproduction of uncorrelated VLF are explored in theory and experiments.

  14. Negative feedback system reduces pump oscillations

    NASA Technical Reports Server (NTRS)

    Rosenmann, W.

    1967-01-01

    External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.

  15. Space applications of superconductivity - Low frequency superconducting sensors

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.

    1980-01-01

    Although this paper deals with several low-frequency instruments and devices, most of the discussion relates to SQUID (Superconducting QUantum Interference Device) magnetometers and gradiometers, since these are perceived as the instruments with the greatest potential for space applications. The discussion covers SQUID for magnetic field measurements; present state of the art of SQUID technology; ultimate potential performance; applications to magnetic measurements in space; SQUID galvanometers, voltage and current sensors, and wide-band amplifiers; magnetic shielding, and superconducting dc transformer. SQUIDS are superior to all other magnetic sensors in sensitivity, frequency response, range, and linearity. It is suggested that SQUID instruments, both magnetometers and gradiometers, would be valuable in studies of the dynamics of interplanetary and planetary fields. SQUID gradiometers are useful for detection and mapping of magnetic anomalies at short to moderate ranges.

  16. Do GCM's Predict the Climate.... Or the Low Frequency Weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varon, D.; Schertzer, D. J.

    2011-12-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply

  17. Low frequency drift instabilities in a dusty plasma

    SciTech Connect

    Rosenberg, M.; Krall, N.A.

    1996-02-01

    Low frequency drift instabilities are investigated in a dusty magnetized plasma with negatively charged grains in which locally there is an electron density gradient which is opposite in sign to a dust density gradient. Frequencies less than the ion gyrofrequency but much larger than the dust gyrofrequency are considered. Two different equilibria are considered that are characterized by {rho}{sub {ital d}}{lt_or_gt}{ital L}{sub {ital nd}}, where {rho}{sub {ital d}} is the dust gyroradius and {ital L}{sub {ital nd}} is the dust density scale length. Instabilities analogous to the universal instability and to the lower-hybrid-drift instability (with the lower-hybrid frequency in this case associated with the dust) are investigated. Possible applications to dusty space plasmas such as the spoke regions of Saturn{close_quote}s B-ring are discussed. {copyright} {ital 1996 American Institute of Physics.}

  18. Low frequency mechanical modes of viruses with atomic detail

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric; Sankey, Otto

    2008-03-01

    The low frequency mechanical modes of viruses can provide important insights into the large global motions that a virus may exhibit. Recently it has been proposed that these large global motions may be excited using impulsive stimulated Raman scattering producing permanent damage to the virus. In order to understand the coupling of external probes to the capsid, vibrational modes with atomic detail are essential. The standard approach to find the atomic modes of a molecule with N atoms requires the formation and diagonlization of a 3Nx3N matrix. As viruses have 10^5 or more atoms, the standard approach is difficult. Using ideas from electronic structure theory, we have developed a method to construct the mechanical modes of large molecules such as viruses with atomic detail. Application to viruses such as the cowpea chlorotic mottle virus, satellite tobacco necrosis virus, and M13 bacteriophage show a fairly complicated picture of the mechanical modes.

  19. Studies of the propagation of Low Frequency (LF) radio waves

    NASA Astrophysics Data System (ADS)

    Warrington, E. M.; Jones, T. B.

    1993-05-01

    Low frequency (30-300 kHz) radio waves can propagate to great distances with little attenuation in the cavity formed by the earth and the ionosphere. Because of the relatively high frequency at LF, many active propagation modes can occur between the transmitter and receiver. Changes in the ionospheric conductivity or reflection height can influence the phase and amplitude of these modes and, hence, produce mutual interference. Because of these interference effects, the propagation is less stable than at VLF and the received field strength becomes more difficult to predict. In the present investigation, the WAVEHOP program was employed in conjunction with a range of ionospheric models to estimate the receiver field strength over a number of experimental paths. The predicted values were compared with those measured in an attempt to validate the ionospheric models and the method of calculation.

  20. Characterisation of wind farm infrasound and low-frequency noise

    NASA Astrophysics Data System (ADS)

    Zajamšek, Branko; Hansen, Kristy L.; Doolan, Con J.; Hansen, Colin H.

    2016-05-01

    This paper seeks to characterise infrasound and low-frequency noise (ILFN) from a wind farm, which contains distinct tonal components with distinguishable blade-pass frequency and higher harmonics. Acoustic measurements were conducted at dwellings in the vicinity of the wind farm and meteorological measurements were taken at the wind farm location and dwellings. Wind farm ILFN was measured frequently under stable and very stable atmospheric conditions and was also found to be dependent on the time of year. For noise character assessment, wind farm ILFN was compared with several hearing thresholds and also with the spectra obtained when the wind farm was not operating. Wind farm ILFN was found to exceed the audibility threshold at distances up to 4 km from the wind farm and to undergo large variations in magnitude with time.

  1. Characterization of microstructure with low frequency electromagnetic techniques

    SciTech Connect

    Cherry, Matthew R.; Sathish, Shamachary; Pilchak, Adam L.; Blodgett, Mark P.; Cherry, Aaron J.

    2014-02-18

    A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.

  2. Low-frequency Electrical Response to Microbial Induced Sulfide Precipitation

    SciTech Connect

    Ntarlagiannis, Dimitrios; Williams, Kenneth H.; Slater, Lee D.; Hubbard, Susan S.

    2005-11-19

    We investigated the sensitivity of low-frequency electrical measurements to microbeinduced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base.

  3. Low-frequency microwave radiometer for N-ROSS

    NASA Technical Reports Server (NTRS)

    Hollinger, J. P.; Lo, R. C.

    1985-01-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  4. A new low-frequency backward mode in inhomogeneous plasmas

    SciTech Connect

    Vranjes, J.

    2014-07-15

    When an electromagnetic transverse wave propagates through an inhomogeneous plasma so that its electric field has a component in the direction of the background density gradient, there appears a disbalance of charge in every plasma layer, caused by the density gradient. Due to this, some additional longitudinal electric field component appears in the direction of the wave vector. This longitudinal field may couple with the usual electrostatic longitudinal perturbations like the ion acoustic, electron Langmuir, and ion plasma waves. As a result, these standard electrostatic waves are modified and in addition to this a completely new low-frequency mode appears. Some basic features of the coupling and modification of the ion acoustic wave, and properties of the new mode are discussed here, in ordinary electron-ion and in pair plasmas.

  5. Resonant interactions between cometary ions and low frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  6. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  7. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  8. Pulsar timing sensitivity to very-low-frequency gravitational waves

    SciTech Connect

    Jenet, Fredrick A.; Armstrong, J. W.; Tinto, Massimo

    2011-04-15

    We compute the sensitivity, constrained by instrumental, propagation, and other fundamental noises, of pulsar timing to very-low-frequency gravitational waves (GWs). Reaching predicted GW signal strengths will require suppression of time-of-arrival fluctuations caused by interstellar plasma turbulence and a reduction of white rms timing noise to < or approx. 100 ns. Assuming negligible intrinsic pulsar rotational noise, perfect time transfer from time standard to observatory, and stable pulse profiles, the resulting single-pulsar signal-to-noise ratio=1 sensitivity is limited by terrestrial time standards at h{sub rms}{approx}2x10{sup -16} [f/ (1 cycle/year)]-1/2 for f<3x10{sup -8} Hz, where f is the Fourier frequency and a bandwidth of 1 cycle/(10 years) is assumed. Since this sensitivity is comparable to predicted GW signal levels, a reliable detection will require substantial signal-to-noise ratio improvement via pulsar timing array.

  9. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  10. Quantification of Low Frequency Magnetic Fields Generated by Household Appliances

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenji; Mizuno, Yukio; Naito, Katsuhiko

    Resultant low frequency magnetic field generated was measured as a function of distance from them over broadband range (40-800Hz) and harmonic range (100-800Hz) on eleven kinds and more than two hundred recent household appliances in total. The relationship between magnetic filed measured and the power consumption of household appliances was also examined. As a result, it is verified that magnetic field from appliances is drastically reduced as the distance goes. And, any clear dependence of what on the power consumption of appliances is not recognized. Furthermore, from harmonic component analysis by using FFT for current flowing in appliances, it is assumed that relatively large amount of harmonic components with odd numbers is contained in the magnetic field.

  11. A very low frequency radio astronomy observatory on the Moon

    NASA Technical Reports Server (NTRS)

    Douglas, James N.; Smith, Harlan J.

    1988-01-01

    Because of terrestrial ionospheric absorption, very little is known of the radio sky beyond 10 m wavelength. An extremely simple, low cost very low frequency radio telescope is proposed, consisting of a large array of short wires laid on the lunar surface, each wire equipped with an amplifier and a digitizer, and connected to a common computer. The telescope could do simultaneous multifrequency observations of much of the visible sky with high resolution in the 10 to 100 m wavelength range, and with lower resolution in the 100 to 1000 m range. It would explore structure and spectra of galactic and extragalactic point sources, objects, and clouds, and would produce detailed quasi-three-dimensional mapping of interstellar matter within several thousand parsecs of the Sun.

  12. Multimode guidance project low frequency ECM simulator: Hardware description

    NASA Astrophysics Data System (ADS)

    Kaye, H. M.

    1982-10-01

    The Multimode Guidance(MMG) Project, part of the Army/Navy Area Defense SAM Technology Prototyping Program, was established to conduct a feasibility demonstration of multimode guidance concepts. Prototype guidance units for advanced, long range missiles are being built and tested under MMG Project sponsorship. The Johns Hopkins University Applied Physics Laboratory has been designated as Government Agent for countermeasures for this project. In support of this effort, a family of computer-controlled ECM simulators is being developed for validation of contractor's multimode guidance prototype designs. The design of the Low Frequency ECM Simulator is documented in two volumes. This report, Volume A, describes the hardware design of the simulator; Volume B describes the software design. This computer-controlled simulator can simulate up to six surveillance frequency jammers in B through F bands and will be used to evaluate the performance of home-on-jamming guidance modes in multiple jammer environments.

  13. Low Frequency Thermal Conductivity in Micro Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Anjos, Virgilio; Arantes, Alison

    2015-03-01

    We study theoretically the cumulative thermal conductivity of a micro phononic crystal at low temperature regime. The phononic crystal considered presents carbon microtubes inclusions arranged periodically in a two-dimensional square lattice embebed in soft elastic matrix. Moderate and high impedance mismatch are considered concerning the material composition. The low frequency phonon spectra (up to tens of GHz) are obtained solving the generalized wave equation for inhomogeneous media within the Plane Wave Expansion method. We consider low temperatures in order to increase the participation of GHz thermal phonons. We observed suppression in the cumulative thermal conductivity at the band gap region and thus a reduction of thermal conductivity of the phononic crystal when compared with the bulk matrix. The authors would like to thank the Brazilian agencies, National Council of Technological and Scientific Development (CNPq), Foundation for Research Support of Minas Gerais (FAPEMIG) and CAPES for their support.

  14. Dielectric dispersion of Y-type hexaferrites at low frequencies

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.

    2003-02-01

    A series of polycrystalline Y-type hexaferrites with composition Ba 2Ni 2- xZn xFe 12O 22 (where 0.0⩽ x⩽2.0) were prepared by the standard ceramic method to study the effect of the frequency, temperature and composition on their AC electrical conductivity σ' AC, and dielectric properties. It was found that, the AC conductivity shows dispersion at high frequencies. This dispersion was attributed to the interfacial polarization arising from the inhomogeneous structure of the material. At low frequencies the dielectric constant, ɛ', is abnormally high and decreases rapidly with increasing frequency. Dielectric relaxation peaks were observed on the tan δ( F) curves. The results of the dielectric constant and dielectric loss were explained on the basis of the assumption that the mechanism of dielectric polarization is similar to that of the conduction process.

  15. Pulsar timing sensitivity to very-low-frequency gravitational waves

    NASA Astrophysics Data System (ADS)

    Jenet, Fredrick A.; Armstrong, J. W.; Tinto, Massimo

    2011-04-01

    We compute the sensitivity, constrained by instrumental, propagation, and other fundamental noises, of pulsar timing to very-low-frequency gravitational waves (GWs). Reaching predicted GW signal strengths will require suppression of time-of-arrival fluctuations caused by interstellar plasma turbulence and a reduction of white rms timing noise to ≲100ns. Assuming negligible intrinsic pulsar rotational noise, perfect time transfer from time standard to observatory, and stable pulse profiles, the resulting single-pulsar signal-to-noiseratio=1 sensitivity is limited by terrestrial time standards at hrms˜2×10-16[f/(1cycle/year)]-1/2 for f<3×10-8Hz, where f is the Fourier frequency and a bandwidth of 1 cycle/(10 years) is assumed. Since this sensitivity is comparable to predicted GW signal levels, a reliable detection will require substantial signal-to-noise ratio improvement via pulsar timing array.

  16. Modeling and investigative studies of Jovian low frequency emissions

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Green, James L.; Six, N. Frank; Gulkis, S.

    1986-01-01

    Jovian decametric (DAM) and hectometric (HOM) emissions were first observed over the entire spectrum by the Voyager 1 and 2 flybys of the planet. They display unusual arc-like structures on frequency-versus-time spectrograms. Software for the modeling of the Jovian plasma and magnetic field environment was performed. In addition, an extensive library of programs was developed for the retrieval of Voyager Planetary Radio Astronomy (PRA) data in both the high and low frequency bands from new noise-free, recalibrated data tapes. This software allows the option of retrieving data sorted with respect to particular sub-Io longitudes. This has proven to be invaluable in the analyses of the data. Graphics routines were also developed to display the data on color spectrograms.

  17. The effect of islands on low frequency equatorial motions

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Du Penhoat, Y.

    1982-01-01

    A complete analytic solution is presented for the influence of equatorial islands on steady low-frequency waves. If the island is small (the meridional extent is much less than the equatorial radius of deformation, R), the waves pass it almost undisturbed, with the mass flux incident on the upstream side flowing around it nearly equally to the north and to the south and continuing on downstream in the lee of the island. For large islands (comparable in extent with R or larger), the principal response is organized as it would be if the island barrier were meridionally infinite. An incident Kelvin wave is largely reflected as long Rossby waves; symmetric long Rossby waves are reflected as equatorial Kelvin waves, while antisymmetric ones stop at the island barrier. In all cases, a boundary current composed of short Rossby waves forms at the eastern side of the island and accomplishes the required meridional redistribution of the zonal mass flux.

  18. Infrasonic and low-frequency insert earphone hearing threshold.

    PubMed

    Kuehler, Robert; Fedtke, Thomas; Hensel, Johannes

    2015-04-01

    Low-frequency and infrasonic pure-tone monaural hearing threshold data down to 2.5 Hz are presented. These measurements were made by means of a newly developed insert-earphone source. The source is able to generate pure-tone sound pressure levels up to 130 dB between 2 and 250 Hz with very low harmonic distortions. Behavioral hearing thresholds were determined in the frequency range from 2.5 to 125 Hz for 18 otologically normal test persons. The median hearing thresholds are comparable to values given in the literature. They are intended for stimulus calibration in subsequent brain imaging investigations. PMID:25920888

  19. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  20. Low-frequency earthquakes at the southern Cascadia margin

    NASA Astrophysics Data System (ADS)

    Plourde, Alexandre P.; Bostock, Michael G.; Audet, Pascal; Thomas, Amanda M.

    2015-06-01

    We use seismic waveform data from the Mendocino Experiment to detect low-frequency earthquakes (LFEs) beneath Northern California during the April 2008 tremor-and-slip episode. In southern Cascadia, 59 templates were generated using iterative network cross correlation and stacking and grouped into 34 distinct LFE families. The main front of tremor epicenters migrates along strike at 9 km d-1; we also find one instance of rapid tremor reversal, observed to propagate in the opposite direction at 10-20 km h-1. As in other regions of Cascadia, LFE hypocenters from this study lie several kilometers above a recent plate interface model. South of Cascadia, LFEs were discovered on the Maacama and Bucknell Creek faults. The Bucknell Creek Fault may be the youngest fault yet observed to host LFEs. These fault zones also host shallow earthquake swarms with repeating events that are distinct from LFEs in their spectral and recurrence characteristics.

  1. Interaction of extremely low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1990-04-01

    Public concern has grown in recent years concerning the possible health effects of extremely low-frequency (ELF) electromagnetic fields to which we are exposed in all aspects of everyday life. By definition ELF refers to the range of electromagnetic field frequencies below 300 Hz, which includes the power transmission and distribution frequencies used throughout the world. In materials with the electrical and magnetic properties of living tissues, these fields have a long wavelength (5000 m) and skin depth (150 m). As a consequence, in their interactions with humans and other living organisms ELF fields behave as though they are composed of independent electric and magnetic fields components. This paper discusses ELF fields and their interactions with humans and other living organisms as well as their biological effects.

  2. The Noisiness of Low Frequency Bands of Noise

    NASA Technical Reports Server (NTRS)

    Lawton, B. W.

    1975-01-01

    The relative noisiness of low frequency 1/3-octave bands of noise was examined. The frequency range investigated was bounded by the bands centered at 25 and 200 Hz, with intensities ranging from 50 to 95 db (SPL). Thirty-two subjects used a method of adjustment technique, producing comparison band intensities as noisy as 100 and 200 Hz standard bands at 60 and 72 db. The work resulted in contours of equal noisiness for 1/3-octave bands, ranging in intensity from approximately 58 to 86 db (SPL). These contours were compared with the standard equal noisiness contours; in the region of overlap, between 50 and 200 Hz, the agreement was good.

  3. Low Frequency Radiophysics of the Sun and Heliosphere

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.

    2006-08-01

    The solar corona and heliosphere offer rich environments for exploration via low frequency radio techniques. Recent progress in observing and understanding both direct and indirect radio phenomena associated with flares and coronal mass ejections is discussed. In the case of flares, radio diagnostics of coronal energy release and particle acceleration are discussed. In the case of coronal mass ejections (CMEs), direct and indirect signatures of their initiation and acceleration are discussed. Magnetic field measurements of CMEs using direct measurements of their incoherent synchrotron radiation, or using observations of Faraday rotation via trans-illumination of the CME using background sidereal sources or spacecraft beacons, is also discussed. Finally, recent work on theory and observations of type II radio bursts, signatures of interplanetary shocks driven by CMEs , is briefly reviewed.

  4. Man-induced low-frequency seismic events in Italy

    NASA Astrophysics Data System (ADS)

    Latorre, Diana; Amato, Alessandro; Cattaneo, Marco; Carannante, Simona; Michelini, Alberto

    2014-12-01

    Unconventional seismic events in Italy are detected by scanning three years of continuous waveforms recorded by the Italian National Seismic Network. Cross correlation of signal templates with continuous seismic records has evidenced unusual events with similar low-frequency characteristics in several Italian regions. Spectral analysis and spatiotemporal distribution of these events, some of which are previously interpreted as tectonic long-period transients, suggest that they are not natural, but produced by huge cement factories. Since there are at least 57 full-cycle cement plants operating in Italy, each affecting areas of about 1250 to 2800 km2, we argue that significant portions of the Italian territory (23% to 51%) can be affected by this man-made noise. Seismic noise analyses, such as those used for microzonation or crustal structure investigations, as well as data mining techniques used to retrieve anomalous transient signals, should thus take into account this peculiar and pervasive source of seismic waves.

  5. An autocorrelation method to detect low frequency earthquakes within tremor

    USGS Publications Warehouse

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  6. Low-Frequency Waves in the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Goldstein, M. L.

    2013-12-01

    The outer heliosphere beyond some 10 AU is dominated by mass by interstellar neutral Hydrogen (H). Neutral H is coupled to the background solar wind plasma by charge exchange processes, which leads to the creation of a suprathermal pickup ion (PUI) population. The initially unstable ring beam PUI distribution is isotropized to form a filled shell distribution. The PUI contribution to the thermal solar wind pressure/temperature is sizable and in fact can dominate that of the colder thermal solar wind protons. Furthermore, the PUI distribution does not equilibrate or thermalize with the background solar wind plasma, and should therefore be regarded as a distinct distribution. Based on an elaboration of a three-fluid model, we investigate the effect of PUIs on the low-frequency wave properties of the outer heliosphere. To maintain tractability initially, we neglect the electron mass and obtain a 10th-order dispersion relation (compared to the 6th-order two-fluid dispersion relation). Our analysis reveals the existence of several wave modes that do not have a standard solar wind two-fluid plasma counterpart. For the zero angle case, of the 10 solutions, it is possible to obtain 6 analytic solutions for a general value of the ratio of electron number density to the thermal proton number density, four of which are dispersive Alfven waves (left and right polarized, two forward and two backward). Two other solutions are finite frequency modes, and the remaining four modes are magnetoacoustic modes (2 forward, 2 backward). One solution is a (magneto)acoustic wave with the usual 2-fluid sound speed, and the second is a (magneto)acoustic mode with a sound speed associated with the PUI distribution. Both (magneto)acoustic modes couple to the 'other fluids.' We present an analysis of the full dispersion relation for wave modes in the outer heliosphere, clarifying the role of PUIs in determining the properties of low-frequency fluctuations.

  7. Remote tracking of a magnetic receiver using low frequency beacons

    NASA Astrophysics Data System (ADS)

    Sheinker, Arie; Ginzburg, Boris; Salomonski, Nizan; Frumkis, Lev; Kaplan, Ben-Zion

    2014-10-01

    Low frequency magnetic fields feature high penetration ability, which allows communication, localization, and tracking in environments where radio or acoustic waves are blocked or distorted by multipath interferences. In the present work, we propose a method for tracking a magnetic receiver using beacons of low frequency magnetic field, where the receiver includes a tri-axial search-coil magnetometer. Measuring the beacons’ magnetic fields and calculating the total-field signals enables localization without restrictions on magnetometer orientation, allowing on-the-move tracking. The total-field signals are used by a global search method, e.g., simulated annealing (SA) algorithm, to localize the receiver. The magnetic field produced by each beacon has a dipole structure and is governed by the beacon’s position and magnetic moment. We have investigated two different methods for estimating beacons’ magnetic moments prior to localization. The first method requires directional measurements, whereas for the second method the total-field signal is used. Effectiveness of these methods has been proved in numerous field tests. In the present work, we introduce a method for tracking a moving receiver by successive localizations. Using previous localization as a starting point of the search method for the next localization can reduce execution time and chances for divergence. The proposed method has been tested using numerous computer simulations. Successful system operation has been verified in field conditions. The good tracking capability together with simple implementation makes the proposed method attractive for real-time, low power field applications, such as mobile robots navigation.

  8. Concealed weapons detection using low-frequency magnetic imaging

    NASA Astrophysics Data System (ADS)

    Zollars, Byron G.; Sallee, Bradley; Durrett, Michael G.; Cruce, Clay; Hallidy, William

    1997-02-01

    Military personnel, law-enforcement officers, and civilians face ever-increasing dangers from persons carrying concealed handguns and other weapons. In direct correspondence with this danger is a need for more sophisticated means of detecting concealed weapons. We have developed a novel concealed-weapons detector based on the principle of low- frequency magnetic imaging. The detector is configured as a portal, and constructs an image of electrically conductive objects transported through it with a potential spatial resolution of approximately 1 inch. Measurements on a breadboard version of the weapons detector have, to date, yielded a resolution of 2 inches. In operation, magnetic dipole radiation, emitted by transmitting antennas in the perimeter of the portal, is scattered from conductive objects and is picked up by receive antennas, also positioned around the portal. With sufficient measurements, each with a different geometry, a solution to the inverse scattering problem can be found. The result is an image of conductive objects in the detector. The detector is sensitive to all metals, semiconductors, and conductive composites. The measured conductivity image formed by the detector is combined with the video signal from a visible CCD camera to form a composite image of persons transiting the detector portal and the conductive objects they are carrying. Accompanying image recognition software could be used to determine the threat level of objects based upon shape, conductivity, and placement on the person of the carrier, and provide cueing, logging, or alarm functions to the operator if suspect weapons are identified. The low- power, low-frequency emissions from the detector are at levels considered safe to humans and medical implants..

  9. Numerical and experimental characterizations of low frequency MEMS AE sensors

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Ozevin, Didem

    2013-04-01

    In this paper, new MEMS Acoustic Emission (AE) sensors are introduced. The transduction principle of the sensors is capacitance due to gap change. The sensors are numerically modeled using COMSOL Multiphysics software in order to estimate the resonant frequencies and capacitance values, and manufactured using MetalMUMPS process. The process includes thick metal layer (20 μm) made of nickel for freely vibration layer and polysilicon layer as the stationary layer. The metal layer provides a relatively heavy mass so that the spring constant can be designed high for low frequency sensor designs in order to increase the collapse voltage level (proportional to the stiffness), which increases the sensor sensitivity. An insulator layer is deposited between stationary layer and freely vibration layer, which significantly reduces the potential of stiction as a failure mode. As conventional AE sensors made of piezoelectric materials cannot be designed for low frequencies (<300 kHz) with miniature size, the MEMS sensor frequencies are tuned to 50 kHz and 200 kHz. The each sensor contained several parallel-connected cells with an overall size of approximately 250μm × 500 μm. The electromechanical characterizations are performed using high precision impedance analyzer and compared with the numerical results, which indicate a good fit. The initial mechanical characterization tests in atmospheric pressure are conducted using pencil lead break simulations. The proper sensor design reduces the squeeze film damping so that it does not require any vacuum packaging. The MEMS sensor responses are compared with similar frequency piezoelectric AE sensors.

  10. Low frequency entrainment of oscillatory bursts in hair cells.

    PubMed

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W F; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-16

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  11. Low Frequency Entrainment of Oscillatory Bursts in Hair Cells

    PubMed Central

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W.F.; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  12. Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility

    PubMed Central

    Park, Hyojin; Kayser, Christoph; Thut, Gregor; Gross, Joachim

    2016-01-01

    During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker’s lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker’s lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing. DOI: http://dx.doi.org/10.7554/eLife.14521.001 PMID:27146891

  13. QASER: how a low frequency drive can pump energy into atomic and photon oscillators simultaneously

    NASA Astrophysics Data System (ADS)

    Rostovtsev, Yuri V.; Lanier, Steven; Scully, Marlan O.

    2016-01-01

    We present a study of the interaction of coherent field effects on population of two bound atomic states of a dense atomic gas interacting in a cooperative regime. We provide a theoretical description of this phenomenon using density matrix equations. We discuss the implications and applications of the present studies to quantum amplification by superradiant emission of radiation action. A classical model is developed to gain physical insights into qaser physics.

  14. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  15. Oscillations of a vertically stratified dissipative atmosphere. II. Low frequency trapped modes

    NASA Astrophysics Data System (ADS)

    Rudenko, G. V.; Dmitrienko, I. S.

    2016-05-01

    Trapped atmosphere waves, such as IGW waveguide modes and Lamb modes, are described using dissipative solution above source (DSAS) (Dmitrienko and Rudenko, 2016). According to this description, the modes are disturbances penetrating without limit in the upper atmosphere and dissipating their energy throughout the atmosphere; leakage from a trapping region to the upper atmosphere is taken into consideration. The DSAS results are compared to those based on both accurate and WKB approximated dissipationless equations. It is shown that the spatial and frequency characteristics of modes in the upper atmosphere calculated by any of the methods are close to each other and are in good agreement with the observed characteristics of traveling ionospheric disturbances.

  16. Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility.

    PubMed

    Park, Hyojin; Kayser, Christoph; Thut, Gregor; Gross, Joachim

    2016-01-01

    During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker's lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker's lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing. PMID:27146891

  17. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    SciTech Connect

    Escobar, D.; Ahedo, E.

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  18. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    NASA Astrophysics Data System (ADS)

    Escobar, D.; Ahedo, E.

    2015-10-01

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  19. Viscometer for low frequency, low shear rate measurements

    NASA Technical Reports Server (NTRS)

    Berg, R. F.; Moldover, M. R.

    1986-01-01

    A computer-controlled torsion-oscillator viscometer with low 0.5 Hz frequency and very low 0.05/s shear rate is designed to precisely study shear-sensitive fluids such as microemulsions, gels, polymer solutions and melts, colloidal solutions undergoing coagulation, and liquid mixtures near critical points. The viscosities are obtained from measurements of the logarithmic decrement of an underdriven oscillator. The viscometer is found to have a resolution of 0.2 percent when used with liquid samples and a resolution of 0.4 percent when used with a dense gaseous sample. The design is compatible with submillikelvin temperature control.

  20. Investigations of the Low Frequency Spectral Density of Cytochrome c upon Equilibrium Unfolding

    PubMed Central

    Sun, Yuhan; Karunakaran, Venugopal; Champion, Paul M.

    2013-01-01

    The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model35 which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low frequency heme modes that are sensitive to cytochrome c unfolding: γa (~50 cm−1), γb (~80cm−1), γc (~100cm−1), and vs(His-Fe-His) at 205 cm−1. These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20°C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γb~80 cm−1 remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent. PMID:23863217

  1. Low-Frequency Fluctuations of the Resting Brain: High Magnitude Does Not Equal High Reliability

    PubMed Central

    Jia, Wenbin; Liao, Wei; Li, Xun; Huang, Huiyuan; Yuan, Jianhua; Zang, Yu-Feng; Zhang, Han

    2015-01-01

    The amplitude of low-frequency fluctuation (ALFF) measures low-frequency oscillations of the blood-oxygen-level-dependent signal, characterizing local spontaneous activity during the resting state. ALFF is a commonly used measure for resting-state functional magnetic resonance imaging (rs-fMRI) in numerous basic and clinical neuroscience studies. Using a test-retest rs-fMRI dataset consisting of 21 healthy subjects and three repetitive scans, we found that several key brain regions with high ALFF intensities (or magnitude) had poor reliability. Such regions included the posterior cingulate cortex, the medial prefrontal cortex in the default mode network, parts of the right and left thalami, and the primary visual and motor cortices. The above finding was robust with regard to different sample sizes (number of subjects), different scanning parameters (repetition time) and variations of test-retest intervals (i.e., intra-scan, intra-session, and inter-session reliability), as well as with different scanners. Moreover, the qualitative, map-wise results were validated further with a region-of-interest-based quantitative analysis using “canonical” coordinates as reported previously. Therefore, we suggest that the reliability assessments be incorporated in future ALFF studies, especially for the brain regions with a large ALFF magnitude as listed in our paper. Splitting single data into several segments and assessing within-scan “test-retest” reliability is an acceptable alternative if no “real” test-retest datasets are available. Such evaluations might become more necessary if the data are collected with clinical scanners whose performance is not as good as those that are used for scientific research purposes and are better maintained because the lower signal-to-noise ratio may further dampen ALFF reliability. PMID:26053265

  2. Low-Frequency Electromagnetic Backscatter from Buried Tunnels

    SciTech Connect

    Casey, K; Pao, H

    2006-06-21

    This progress report is submitted under a contract between the Special Project Office of DARPA and Lawrence Livermore National Laboratory. The Project Manager at DARPA is Dr. Michael Zatman. Our purpose under this contract is to investigate interactions between electromagnetic waves and a class of buried targets located in multilayered media with rough interfaces. In this report, we investigate three preliminary problems. In each case our specific goal is to understand various aspects of the electromagnetic wave interaction mechanisms with targets in layered media. The first problem, discussed in Section 2, is that of low-frequency electromagnetic backscattering from a tunnel that is cut into a lossy dielectric half-space. In this problem, the interface between the upper (free space) region and the lower (ground) region is smooth. The tunnel is assumed to be a cylindrical free-space region of infinite extent in its axial direction and with a diameter that is small in comparison to the free-space wavelength. Because its diameter is small, the tunnel can be modeled as a buried ''wire'' described by an equivalent impedance per unit length. In Section 3 we extend the analysis to include a statistically rough interface between the air and ground regions. The interface is modeled as a random-phase screen. Such a screen reduces the coherent power in a plane wave that is transmitted through it, scattering some of the total power into an incoherent field. Our analysis of this second problem quantifies the reduction in the coherent power backscattered from the buried tunnel that is caused by the roughness of the air-ground interface. The problem of low-frequency electromagnetic backscattering from two buried tunnels, parallel to each other but at different locations in the ground, is considered in Section 4. In this analysis, we wish to determine the conditions under which the presence of more than one tunnel can be detected via backscattering. Section 5 concludes the report

  3. Recreational scuba divers' aversion to low-frequency underwater sound.

    PubMed

    Fothergill, D M; Sims, J R; Curley, M D

    2001-01-01

    Increasing use of active low-frequency sonar by submarines and ships raises the risk of accidental exposure of recreational divers to low-frequency underwater sound (LFS). This study aimed to characterize the subjective responses of recreational scuba divers to LFS to ascertain the extent to which LFS may impact their enjoyment, comfort, or time spent underwater. Seventeen male and nine female recreational scuba divers participated. Diving was conducted in an acoustically transparent tank located within a larger anechoic pool. Subjects wore scuba gear and were positioned I m below the surface in a prone position. The sound transducer was located 4 m directly below the diver's head. Sound exposures consisted of three signal types (pure tone, 30 Hz hyperbolic sweep up, and 30 Hz hyperbolic sweep down) each presented at six center frequencies from 100 to 500 Hz and six sound pressure levels(SPL) ranging from 130 to 157 dB re 1 microPa. The duration of each sound exposure was 7 s. Subjects responded via an underwater console to rate aversion to LFS on a category-ratio scale, and to indicate the presence or absence of vibration of any body part. Aversion to LFS and the percent incidence of vibration increased as the SPL increased. The percent incidence of vibration decreased linearly with increasing frequency. At the highest SPL the probability that an aversion rating would exceed Very Severe (7 on the category-ratio scale) was predicted to be 19%. There was no significant difference in aversion among signal types. The 100 Hz frequency was the most aversive frequency (P < 0.05). A plot of aversion vs. frequency showed a U-shaped function with minimum aversion at 250 Hz. In conclusion, diver aversion to LFS is dependent upon SPL and center frequency. The highest aversion rating was given for 100 Hz, this frequency corresponded with the greatest probability of detecting vibration. Factors other than vibration seem to account for aversion to the highest frequencies. Our

  4. Songbirds use pulse tone register in two voices to generate low-frequency sound.

    PubMed

    Jensen, Kenneth K; Cooper, Brenton G; Larsen, Ole N; Goller, Franz

    2007-11-01

    The principal physical mechanism of sound generation is similar in songbirds and humans, despite large differences in their vocal organs. Whereas vocal fold dynamics in the human larynx are well characterized, the vibratory behaviour of the sound-generating labia in the songbird vocal organ, the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously or by alternating between the two sides. Vocal fry-like dynamics therefore represent a common production mechanism for low-frequency sounds in songbirds. These results also illustrate that complex vibration patterns can emerge from the mechanical properties of the coupled sound generators in the syrinx. The use of vocal fry-like dynamics in the songbird syrinx extends the similarity to this unusual vocal register with mammalian sound production mechanisms. PMID:17725979

  5. Motoneuron firing patterns underlying fast oscillations in phrenic nerve discharge in the rat

    PubMed Central

    Marchenko, Vitaliy; Ghali, Michael G. Z.

    2012-01-01

    Fast oscillations are ubiquitous throughout the mammalian central nervous system and are especially prominent in respiratory motor outputs, including the phrenic nerves (PhNs). Some investigators have argued for an epiphenomenological basis for PhN high-frequency oscillations because phrenic motoneurons (PhMNs) firing at these same frequencies have never been recorded, although their existence has never been tested systematically. Experiments were performed on 18 paralyzed, unanesthetized, decerebrate adult rats in which whole PhN and individual PhMN activity were recorded. A novel method for evaluating unit-nerve time-frequency coherence was applied to PhMN and PhN recordings. PhMNs were classified according to their maximal firing rate as high, medium, and low frequency, corresponding to the analogous bands in PhN spectra. For the first time, we report the existence of PhMNs firing at rates corresponding to high-frequency oscillations during eupneic motor output. The majority of PhMNs fired only during inspiration, but a small subpopulation possessed tonic activity throughout all phases of respiration. Significant time-varying PhMN-PhN coherence was observed for all PhMN classes. High-frequency, early-recruited units had significantly more consistent onset times than low-frequency, early/middle-recruited and medium-frequency, middle/late-recruited PhMNs. High- and medium-frequency PhMNs had significantly more consistent offset times than low-frequency units. This suggests that startup and termination of PhMNs with higher firing rates are more precisely controlled, which may contribute to the greater PhMN-PhN coherence at the beginning and end of inspiration. Our findings provide evidence that near-synchronous discharge of PhMNs firing at high rates may underlie fast oscillations in PhN discharge. PMID:22815408

  6. Low-frequency fluctuations in the magnetosheath near the magnetopause

    NASA Technical Reports Server (NTRS)

    Denton, Richard E.; Gary, S. Peter; Li, Xinlin; Anderson, Brian J.; Labelle, James W.; Lessard, Marc

    1995-01-01

    There are four low-frequency modes which may propagate in a high-beta nearly bi-Maxwellian plasma. These are the magnetosonic, Alfven, ion acoustic, and mirror modes. This manuscript defines a procedure based on linear Vlasov theory for the unique identification of these modes by use of transport ratios, dimensionless ratios of the fluctuating field and plasma quantities. A single parameter, the mode deviation is calculated using the plasma and magnetic field data gathered by the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) spacecraft to identify the modes observed in the terrestial magnetosheath near the magnetopause. As well as determining the mode which best describes the observed fluctuations, it gives us a measure of whether or not the resulting identification is unique. Using 17 time periods temporally close to a magnetopause crossing, and confining our study to the frequency range from 0.01 to 0.04 Hz, we find that the only clearly identified mode in this frequency range is the mirror mode. Most commonly, the quasi-perpendicular mirror mode (with wave vector k roughly perpendicular to the background magnetic field B(sub zero) is observed. In two events the quasi-parallel mirror mode k parallel B(sub zero) was identified.

  7. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Murray, James; Jenet, Fredrick; Craig, Joseph; Creighton, Teviet David; Percy Dartez, Louis; Ford, Anthony J.; Hernandez, Andrés; Hicks, Brian; Hinojosa, Jesus; Jaramillo, Ricardo; Kassim, Namir E.; Lazio, Joseph; Lunsford, Grady; Miller, Rossina B.; Ray, Paul S.; Rivera, Jesus; Taylor, Gregory B.; Teitelbaum, Lawrence; CenterAdvanced Radio Astronomy, University of Texas at Brownsville, University of New Mexico, Naval Research Laboratory, Jet Propulsion Laborator

    2015-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 10-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array (LWA) project (cf. Hicks et al. PASP 124, 1090 (2012)). All four stations are currently operational and in the commissioning stage . Over the last 3 years, undergraduate and graduate students from the University of Texas at Brownsville's Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and the Goldstone Deep Space Communications Complex, California. In combination with the establishment of these sites was the development of the analog hardware, which consists of custom RF splitter/combiners and a custom amplifier and filter chain designed at Center for Advanced Radio Astronomy (CARA). This poster will expound on progress in site installation and the development of the analog signal chain, specifically the redesigned analog receiving system.

  8. New observations of the low frequency interplanetary radio emissions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Recent Voyager 1 observations reveal reoccurrences of the low frequency interplanetary radio emissions. Three of the new events are weak transient events which rise in frequency from the range of 2-2.5 kHz to about 3 kHz with drift rates of approximately 1.5 kHz/year. The first of the transient events begins in mid-1989 and the more recent pair of events both were first detected in late 1991. In addition, there is an apparent onset of a 2-kHz component of the emission beginning near day 70 of 1991. The new transient emissions are barely detectable on Voyager 1 and are below the threshold of detectability on Voyager 2, which is less sensitive than Voyager 1. The new activity provides new opportunities to test various theories of the triggering, generation, and propagation of the outer heliospheric radio emissions and may signal a response of the source of the radio emissions to the increased solar activity associated with the recent peak in the solar cycle.

  9. Planck early results. V. The Low Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Zacchei, A.; Maino, D.; Baccigalupi, C.; Bersanelli, M.; Bonaldi, A.; Bonavera, L.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Zotti, G.; Dick, J.; Frailis, M.; Galeotta, S.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Keihänen, E.; Keskitalo, R.; Knoche, J.; Kurki-Suonio, H.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; López-Caniego, M.; Mandolesi, N.; Maris, M.; Matthai, F.; Meinhold, P. R.; Mennella, A.; Morgante, G.; Morisset, N.; Natoli, P.; Pasian, F.; Perrotta, F.; Polenta, G.; Poutanen, T.; Reinecke, M.; Ricciardi, S.; Rohlfs, R.; Sandri, M.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Valiviita, J.; Villa, F.; Zonca, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Bedini, L.; Bennett, K.; Binko, P.; Borrill, J.; Bouchet, F. R.; Bremer, M.; Cabella, P.; Cappellini, B.; Chen, X.; Colombo, L.; Cruz, M.; Curto, A.; Danese, L.; Davies, R. D.; Davis, R. J.; de Gasperis, G.; de Rosa, A.; de Troia, G.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Dörl, U.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Franceschi, E.; Gaier, T. C.; Gasparo, F.; Génova-Santos, R. T.; Giardino, G.; Gómez, F.; Gruppuso, A.; Hansen, F. K.; Hell, R.; Herranz, D.; Hovest, W.; Huynh, M.; Jewell, J.; Juvela, M.; Kisner, T. S.; Knox, L.; Lähteenmäki, A.; Lamarre, J.-M.; Leonardi, R.; León-Tavares, J.; Lilje, P. B.; Lubin, P. M.; Maggio, G.; Marinucci, D.; Martínez-González, E.; Massardi, M.; Matarrese, S.; Meharga, M. T.; Melchiorri, A.; Migliaccio, M.; Mitra, S.; Moss, A.; Nørgaard-Nielsen, H. U.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pearson, D.; Pettorino, V.; Pietrobon, D.; Prézeau, G.; Procopio, P.; Puget, J.-L.; Quercellini, C.; Rachen, J. P.; Rebolo, R.; Robbers, G.; Rocha, G.; Rubiño-Martín, J. A.; Salerno, E.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Silk, J. I.; Smoot, G. F.; Sternberg, J.; Stivoli, F.; Stompor, R.; Tofani, G.; Toffolatti, L.; Tuovinen, J.; Türler, M.; Umana, G.; Vielva, P.; Vittorio, N.; Vuerli, C.; Wade, L. A.; Watson, R.; White, S. D. M.; Wilkinson, A.

    2011-12-01

    We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cleaned, calibrated, time-ordered data (TOD) and frequency maps. Data are continuously calibrated using the modulation of the temperature of the cosmic microwave background radiation induced by the motion of the spacecraft. Noise properties are estimated from TOD from which the sky signal has been removed using a generalized least square map-making algorithm. Measured 1/f noise knee-frequencies range from ~100 mHz at 30 GHz to a few tens of mHz at 70GHz. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices required to compute statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the ≈-10dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane. Corresponding author: A. Zacchei, e-mail: zacchei@oats.inaf.it

  10. Low-frequency Stoneley energy for stratigraphic evaluation

    SciTech Connect

    Hlaing, K.K.; Lemoy, C.; Maret, J.P.; Kremer, Y.; Borland, W.H.; Maw, M.

    1994-07-01

    Conventional sonic measurements of shear and compressional slowness are body waves that travel within the formation and are commonly used for petrophysical analysis of a well. Low-frequency Stoneley waves travel within the well bore and are traditionally used to interpret fractures and formation permeability, usually by analyzing the energy losses and, to a lesser extent, the slowness. The authors have found that Stoneley energy has been very useful in the identification of vuggy carbonate facies linked to paleokarstic surfaces in the Upper Burman limestone reservoir of Miocene age, in the YADANA gas deposit, offshore Myanmar. One good example is seen in well YAD-1 where the carbonate reservoir has been cored, allowing precise facies and porosity type determination. Matching Stoneley energy and core description show a striking correlation between loss of energy and vuggy carbonate facies due to karstic diagenetic processes, always in relation with reefal or near reefal facies. Accordingly, facies interpretation has tentatively been done in the deeper, noncored reservoir zone, where losses of energy are important and considered as indicating karstic influence and the specific environment.

  11. Unusual Low-frequency Magnetic Perturbations in TFTR

    SciTech Connect

    H. Takahashi; E.D. Fredrickson; M.S. Chance

    2001-02-12

    Low-frequency magnetic perturbations (less than or equal to 30 kHz) observed in the Tokamak Fusion Test Reactor (TFTR) tokamak do not always conform to expectations from Magneto-Hydro-Dynamic (MHD) modes. The discrepancy between observations and expectations arises from the existence of three classes of magnetic perturbations in TFTR: (1) 'Edge Originated Magnetic Perturbations' (EOMP's), (2) 'Kink-like Modes' (KLM's), and (3) Tearing Modes (TM's). The EOMP class has unusual magnetic phenomenon including up/down asymmetry in poloidal intensity variation that MHD modes alone cannot generate. The contributions of MHD modes in plasma edge regions are too small to explain the magnitude of observed EOMP perturbations. At least two-thirds, possibly nearly all, of magnetic perturbations in a typical EOMP originate from sources other than MHD modes. An EOMP has a unity toroidal harmonic number and a poloidal harmonic number close to a discharge's edge q-value. It produces little temperature fluctuations, except possibly in edge regions. The KLM class produces temperature fluctuations, mostly confined within the q=1 surface with an ideal-mode-like structure, but generates little external magnetic perturbations. The TM class conforms generally to expectations from MHD modes. We propose that current flowing in the Scrape-off-layer (SOL) plasma is a possible origin of EOMP's.

  12. Low-frequency dielectric dispersion of bacterial cell suspensions.

    PubMed

    Asami, Koji

    2014-07-01

    Dielectric spectra of Escherichia coli cells suspended in 0.1-10 mM NaCl were measured over a frequency range of 10 Hz to 10 MHz. Low-frequency dielectric dispersion, so-called the α-dispersion, was found below 10 kHz in addition to the β-dispersion, due to interfacial polarization, appearing above 100 kHz. When the cells were killed by heating at 60°C for 30 min, the β-dispersion disappeared completely, whereas the α-dispersion was little influenced. This suggests that the plasma (or inner) membranes of the dead cells are no longer the permeability barrier to small ions, and that the α-dispersion is not related to the membrane potential due to selective membrane permeability of ions. The intensity of the α-dispersion depended on both of the pH and ionic strength of the external medium, supporting the model that the α-dispersion results from the deformation of the ion clouds formed outside and inside the cell wall containing charged residues. PMID:24835050

  13. Low-frequency meandering piezoelectric vibration energy harvester.

    PubMed

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint. PMID:22622969

  14. A Statistical Approach to Autocorrelation Detection of Low Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Aguiar, A. C.; Beroza, G. C.

    2012-12-01

    We have analyzed tremor data during the April, 2006 tremor episode in the Nankai Trough in SW Japan using the auto-correlation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise matching. We have found that the statistical behavior of the autocorrelations of each station is different and for this reason we have based our LFE detection method on the autocorrelation of each station individually. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Once detections are found on each station individually, using a low detection threshold based on a Gaussian distribution of the correlation coefficients, the results are compared within stations and declared a detection if they are found in a statistically significant number of the stations, following multinomial statistics. We have compared our detections using the single station method to the detections found by Shelly et al. (2007) for the 2006 April 16 events and find a significant number of similar detections as well as many new detections that were not found using templates from known LFEs. We are working towards developing a sound statistical basis for event detection. This approach should improve our ability to detect LFEs within weak tremor signals where they are not already identified, and should be applicable to earthquake swarms and sequences in general.

  15. Extremely Low Frequency Magnetic Field Modulates the Level of Neurotransmitters

    PubMed Central

    Chung, Yoon Hee; Lee, Young Joo; Lee, Ho Sung; Chung, Su Jin; Lim, Cheol Hee; Oh, Keon Woong; Sohn, Uy Dong

    2015-01-01

    This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and γ -aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized. PMID:25605992

  16. WFC3 Low-Frequency Flat Field Corrections

    NASA Astrophysics Data System (ADS)

    Mack, Jennifer

    2010-07-01

    Multiple dithered observations of the globular cluster Omega Centauri (NGC 5139) have been used to measure inflight corrections to the WFC3 UVIS and IR ground flat fields for a subset of key filters. To obtain an adequate characterization of the flat field over the detector field of view (FOV), 9 pointings were obtained for each filter using a 3x3 box dither pattern with steps of approximately 25% of the FOV. By measuring relative changes in the brightness of a star over different portions of the detector, low-frequency spatial variations in the detector response (L-flats) have been used to correct the flat fields obtained during ground testing. The broad wavelength range covered by these observations allow an interpolation of the L-flat correction for the remaining wide, medium and narrow-band filters, assuming a simple linear dependence with pivot wavelength. Initial results indicate that the required L-flat corrections are ±1.5% (standard deviation) in the IR and ±1.0% in the UVIS, and that the photometric response for a given star after applying the L-flat correction is now stable to better than 1% for any position in the field of view. Followup observations of the same field at multiple orientations will be used to verify the accuracy of the L-flat solutions and to quantify any temporal changes in the detector response while in orbit.

  17. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Ford, Anthony; Jenet, F.; Craig, J.; Creighton, T. D.; Dartez, L. P.; Hicks, B.; Hinojosa, J.; Jaramillo, R.; Kassim, N. E.; Lunsford, G.; Miller, R. B.; Murray, J.; Ray, P. S.; Rivera, J.; Taylor, G. B.

    2013-01-01

    The Low Frequency All Sky Monitor is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 5-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array project. Over the last year, undergraduate students from the University of Texas at Brownsville’s Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and NASA’s Goldstone tracking complex in California. In combination with the establishment of these sites was the development of the analog hardware, which consists of commercial off-the-shelf RF splitter/combiners and a custom amplifier and filter chain designed by colleagues at the University of New Mexico. This poster will expound on progress in site installation and development of the analog signal chain.

  18. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  19. A Study of Low Frequency Earthquakes in Washington State

    NASA Astrophysics Data System (ADS)

    Royer, A. A.; Bostock, M. G.

    2012-12-01

    In the past decade, studies have shown that non-volcanic tremor in southwest Japan can be explained by swarms of low frequency earthquakes (LFEs). More recently LFEs have been identified and documented in southern Vancouver Island. Here we extend study of LFEs to Washington state by exploiting data from the IRIS-PASCAL CAFE experiment. We use network autocorrelation to detect LFEs within 4 different tremor episodes (2007,2008,2010 and 2011). We separate the dataset into 2 components, one involving stations between the Olympic Peninsula and Puget Sound (North Group) and the other involving stations to the south of Puget Sound (South Group). For the South Group, only the 2007 and 2008 tremor episodes are available. From an initial 4915 (North Group) and 3306 (South Group) detections of LFEs using a set of 7 3-components stations, we use iterative network cross-correlation to register further detections and stack to improve signal-to-noise ratio of LFE family templates. On the basis of progress to date, we anticipate the assembly of ~150 and ~50 LFE family templates for the North and South Groups, respectively. We plan to locate these LFE family templates, determine representative focal mechanisms and investigate LFE occurrence relative to regular seismicity for comparison with previous results from southern Vancouver Island and southwest Japan.

  20. Extremely low frequency electromagnetic fields and cancer: the epidemiologic evidence.

    PubMed Central

    Bates, M N

    1991-01-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be a cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk. PMID:1821368

  1. Energy harvesting from low frequency applications using piezoelectric materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  2. Planck 2013 results. II. Low Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Robbers, G.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44, and 70 GHz. In particular, we discuss the various steps involved in reducing the data, from telemetry packets through to the production of cleaned, calibrated timelines and calibrated frequency maps. Data are continuously calibrated using the modulation induced on the mean temperature of the cosmic microwave background radiation by the proper motion of the spacecraft. Sky signals other than the dipole are removed by an iterative procedure based on simultaneous fitting of calibration parameters and sky maps. Noise properties are estimated from time-ordered data after the sky signal has been removed, using a generalized least squares map-making algorithm. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices, required to compute statistical uncertainties on LFI and Planck products, are also produced. Main beams are estimated down to the ≈- 20 dB level using Jupiter transits, which are also used for the geometrical calibration of the focal plane.

  3. Very Low Frequency Remote Sensing of the Ionosphere and Magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    2013-05-01

    This review talk will explore the technique of Very Low Frequency (VLF, 3-30 kHz) remote sensing of the ionosphere and magnetosphere, in which ground-based transmitter beacons (nominally for submarine communications) are used as a probe wave to study the D-region of the ionosphere (60-90 km), a layer is too low for satellites and too high for balloons. Guided efficiently by the Earth-ionosphere waveguide, VLF waves can be used on a global level, to sensitively quantify any ionospheric disturbance in the D-region. These include the impacts of solar flares, lightning heating (both the EMP and the quasi-static field changes), electron precipitation from lightning, and cosmic gamma-ray bursts. We will review many experimental and modeling efforts that have been made over the past several decades, including recent work on the transionospheric absorption of VLF waves from transmitters and lightning radio emissions. We will also review recent international efforts to build a global network of VLF receivers under the umbrella of the United Nations Basic Space Science Initiative.

  4. Low-frequency sound level in the Southern Indian Ocean.

    PubMed

    Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Leroy, Emmanuelle C

    2015-12-01

    This study presents long-term statistics on the ambient sound in the Southern Indian Ocean basin based on 2 years of data collected on six widely distributed autonomous hydrophones from 47°S to 4°S and 53°E to 83°E. Daily mean power spectra (10-100 Hz) were analyzed in order to identify the main sound sources and their space and time variability. Periodic signals are principally associated with the seasonal presence of three types of blue whales and fin whales whose signatures are easily identified at specific frequencies. In the low frequencies, occurrence of winter lows and summer highs in the ambient noise levels are well correlated with iceberg volume variations at the southern latitudes, suggesting that icebergs are a major sound source, seasonally contributing to the ambient noise, even at tropical latitudes (26°S). The anthropogenic contribution to the noise spectrum is limited. Shipping sounds are only present north and west of the study area in the vicinity of major traffic lanes. Acoustic recordings from the southern sites may thus be representative of the pristine ambient noise in the Indian Ocean. PMID:26723301

  5. The VLA Low Frequency Sky Survey Redux (VLSSr)

    NASA Astrophysics Data System (ADS)

    Peters, Wendy M.; Cotton, W. D.; Kassim, N. E.

    2014-01-01

    We present the Very Large Array (VLA) Low-frequency Sky Survey Redux (VLSSr), which covers the sky above declinations δ > -30 degrees at a frequency of 74 MHz with 75" resolution and an average RMS noise of 0.1 Jy/beam. The theoretical largest angular size imaged is 36', and there are approximately 95,000 cataloged sources. We have completely re-imaged all data from the original VLSS survey leading to improvements in a number of areas. These include the application of a more accurate primary beam correction which removes substantial radially dependent flux errors present in the VLSS, and smart-windowing to reduce the clean bias by half. We look ahead to the possibility of an expanded, "VLSS generation 2", made by piggybacking observations of the planned VLA Sky Survey (VLASS) using a proposed 24/7 commensal system, called the LOw Band Observatory (LOBO). Catalogs and images for the VLSSr are available at .

  6. Suppression of Leidenfrost effect via low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Ng, Boon Thiam; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Leidenfrost effect occurs when vapor layer forms in between the coolant and the hot surface above Leidenfrost point, which dramatically reduces the cooling efficiency due to low thermal conductivity of the vapor layer. To prevent surface overheating, there have been number of reported methods to suppress the Leidenfrost effect that were mainly based on functionalization of the substrate surface and application of electric field across the droplet and substrate. In this work, we induce low frequency vibrations (f ~ 100 Hz) to the heated substrate to suppress the Leidenfrost effect. Three distinct impact dynamics are observed based on different magnitudes of surface acceleration and surface temperature. In gentle film boiling regime, formation of thin spreading lamella around the periphery of the impinged droplet is observed; in film boiling regime, due to thicker vapor cushion, rebound of the impinged droplet is observed; in contact boiling regime, due to the direct contact between the impinged droplet and heated substrate, ejection of the tiny droplet is observed. Also, estimated cooling enhancement ratio for contact boiling regime shows an improvement from 95% to 105%.

  7. A perceived low-frequency sound in Taos, New Mexico

    SciTech Connect

    Mullins, J.H. ); Poteet, H. )

    1994-11-01

    Persistent complaints of an annoying low-frequency sound in Northern New Mexico, particularly in the vicinity of Taos, led to a request by members of the Congressional delegation of NM for an investigation. During the summer of 1993, in Taos, extensive simultaneous measurements were carried out of acoustic, seismic, electric, magnetic, and electromagnetic signals by a team from Sandia and Los Alamos National Laboratories, the Air Force Phillips Laboratory, and the University of New Mexico. Since anecdotal evidence and signal matching tests by the hearers implicated the frequencies between 30 to 100 Hz, special attention was given to that range. However, no signals were found matching the description, and in particular no airborne audio signals in this range were found other than background, even though the acoustical detector was capable of measuring signals less than [minus]50 dB SPL. Subsequent complaints of similar sounds from widely distributed areas in the U.S., and a long history of these in the U.K. [R. N. Vasudevan and C. G. Gordon, Appl. Acoust. [bold 10], 57--69 (1977)] have focused attention on human hearing in the 20--100 Hz range. New instruments are being developed and controlled clinical tests are planned with hearers and nonhearers in the Taos area.

  8. Low-frequency electromagnetic exploration for groundwater on Mars

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.

    2002-02-01

    Water with even a small amount of dissolved solidshas an electrical conductivity orders of magnitude higher than dry rock andis therefore a near-ideal exploration target on Mars for low-frequency, diffusiveelectromagnetic methods. Models of the temperature- and frequency-dependentelectrical properties of rock-ice-water mixtures are used to predict the electromagneticresponse of the Martian subsurface. Detection of ice is difficult unless itis massively segregated. In contrast, liquid water profoundly affects soundings,and even a small amount of adsorbed water in the cryosphere can be detected.Subcryospheric water is readily distinguishable at frequencies as low as 100Hz for fresh water to 10 mHz for brines. These responses can be measured usingeither natural or artificial sources. ULF signals from solar wind and diurnal-heatingperturbations of the ionosphere are likely, and disturbances of regional crustalmagnetic fields may also be observable. Spherics, or ELF-VLF signals fromlightning discharge, would provide optimal soundings; however, lightning maybe the least likely of the possible natural sources. Among the active techniques,only the time-domain electromagnetic (TDEM) method can accommodate a closelyspaced transmitter and receiver and sound to depths of hundreds of metersor more. A ground- or aircraft-based TDEM system of several kilograms candetect water to a depth of several hundred meters, and a system of tens ofkilograms featuring a large, fixed, rover- or ballistically deployed loopcan detect water to several kilometers depth.

  9. Office worker exposure to extremely low frequency magnetic fields

    SciTech Connect

    Hiebert, D.G.

    1994-05-01

    A study of office worker exposure to extremely low frequency magnetic fields (ELF MF) was conducted at Los Alamos National Laboratory. The main purpose of this study was to quantitatively assess ELF MF exposures. A secondary objective was to determine whether or not exposures to ELF MF can be reduced by implementing administrative controls and educating workers on the sources of such fields. EMDEX dosimeters were used to determine full shift personal exposures for 12 volunteers from two personnel sections and one training section. In addition, using the EMDEX meter in survey mode, office area evaluations were conducted. Administrative controls and training were implemented in an attempt to reduce exposures. Post control monitoring was conducted to determine if a reduction in ELF MF occurred among the workers. On average, baseline office worker exposures to ELF MF were 2.3 mG, ranging from 0.6 to 9.7 mG. The post control exposures averaged 1.1 mG with a range from 0.5 to 2.2 mG. A reduction of 53% overall was seen after implementation of administrative controls and training. The office area survey indicated that many sources of ELF MF influence exposure and that magnetic field strengths vary not only from one type of equipment to another, but also vary between two similar pieces of equipment.

  10. Low frequency radioastronomy of the inner heliosphere: the way forward.

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Zarka, Philippe; Bergman, Jan; Falcke, Heino; Boonstra, Albert-Jan; Briand, Carine; Girard, Julien; Klein Wolt, Marc; Baan, Willem; Segret, Boris; Maksimovic, Milan

    Low frequency radioastronomy observatories for the heliosphere have been using similar instrumentation for decades. The Cassini, STEREO, and the future Solar Orbiter mission are embarking goniopolarmetric radio receiver connected to 3 electric antennas. Such instrument provides the spectral matrix (or part of it) from which the wave parameters can be derived. With a point source assumption (plane wave), we derive the direction of arrival of the wave, the polarization and the flux density. In case of a spatially extended source (disk shaped, with a given radial profile), the source centroid direction and the apparent source size is provided. This type of instrumentation cannot provide much more parameters, as there is a maximum of to 9 independent measurements for each time-frequency step. We propose a concept of radioastronomy instrumentation using a swarm of small satellites (possibly cubesats) with sensitive radio receivers measuring the wave front and phase of the radio waves on each spacecraft. This instrument will also provide 3-dimensional interferometric measurement. Such resolved imaging capabilities of the inner heliosphere would be a real step forward to better understand the radio emissions mechanisms and the propagation processes. We will present the various existing projects and the roadmap to reach the goal.

  11. Collagen and component polypeptides: Low frequency and amide vibrations

    NASA Astrophysics Data System (ADS)

    Fontaine-Vive, F.; Merzel, F.; Johnson, M. R.; Kearley, G. J.

    2009-01-01

    Collagen is a fibrous protein, which exists widely in the human body. The biomechanical properties of collagen depend on its triple helix structure and the corresponding low frequency vibrations. We use first-principles, density functional theory methods and analytical force fields to investigate the molecular vibrations of a model collagen compound, the results being validated by comparison with published, inelastic neutron scattering data. The results from these atomistic simulations are used at higher frequency to study the Amide I and V vibrations and therefore the vibrational signature of secondary and tertiary structure formation. In addition to collagen, its component homopolymers, poly-glycine and poly-proline are also studied. The Amide V vibration of glycine is strongly modified in going from the single helix of poly-glycine II to the triple helix of collagen. The collagen models are hydrated and this work allows us to discuss the relative merits of density functional theory and force field methods when tackling complex, partially crystalline systems.

  12. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement.

    PubMed

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning. PMID:18681722

  13. Low-frequency earthquakes in the Mexican Sweet Spot

    NASA Astrophysics Data System (ADS)

    Frank, William B.; Shapiro, Nikolaï M.; Kostoglodov, Vladimir; Husker, Allen L.; Campillo, Michel; Payero, Juan S.; Prieto, GermáN. A.

    2013-06-01

    We use data from the Meso-America Subduction Experiment to detect and locate low-frequency earthquakes (LFEs) in the Mexican subduction zone. We use visually-identified templates to perform a network waveform correlation search that produced ~17,000 robustly detected LFEs that form 15 distinct families. Stacking an LFE family's corresponding detections results in seismograms with high signal-to-noise ratios and clear P and S wave arrivals; we use these travel times to locate the sources. The resulting locations superpose a previously identified region of permanent non-volcanic tremor (NVT) activity. Husker et al. (2012) called this region a Sweet Spot, suggesting that the local conditions are adequate to continuously generate NVT. The LFE hypocenters have been located at a depth of 40-45 km in an area that is surrounding the upper slab-plate interface. We characterize their focal mechanisms by comparing their stacked seismograms to synthetic seismograms. This analysis reveals a common low-dipping focal mechanism.

  14. DOUBLE COMPACT OBJECTS AS LOW-FREQUENCY GRAVITATIONAL WAVE SOURCES

    SciTech Connect

    Belczynski, Krzysztof; Bulik, Tomasz; Benacquista, Matthew

    2010-12-10

    We study the Galactic field population of double compact objects (DCOs; NS-NS, BH-NS, BH-BH binaries) to investigate the number (if any) of these systems that can potentially be detected with the Laser Interferometer Space Antenna (LISA) at low gravitational wave frequencies. We calculate the Galactic numbers and physical properties of these binaries and show their relative contributions from the disk, bulge, and halo. Although the Galaxy hosts {approx}10{sup 5} DCO binaries emitting low-frequency gravitational waves, only a handful of these objects in the disk will be detectable with LISA, but none from the halo or bulge. This is because the bulk of these binaries are NS-NS systems with high eccentricities and long orbital periods (weeks/months) causing inefficient signal accumulation (a small number of signal bursts at periastron passage in one year of LISA observations) and rendering them undetectable in the majority of these cases. We adopt two evolutionary models that differ in their treatment of the common envelope (CE) phase that is a major (and still mostly unknown) process in the formation of close DCOs. Depending on the evolutionary model adopted, our calculations indicate the likely detection of about four NS-NS binaries and two BH-BH systems (model A; likely survival of progenitors through CE) or only a couple of NS-NS binaries (model B; suppression of the DCO formation due to CE mergers).

  15. Proud elastic target discrimination using low-frequency sonar signatures

    NASA Astrophysics Data System (ADS)

    Mallen, Brenton

    This thesis presents a comparative analysis of various low-frequency sonar signature representations and their ability to discriminate between proud targets of varying physical parameters. The signature representations used include: synthetic aperture sonar (SAS) beamformed images, acoustic color plot images, and bispectral images. A relative Mean-Square Error (rMSE) performance metric and an effective Signal-to-Noise Ratio (SNReff) performance metric have been developed and implemented to quantify the target differentiation. The analysis is performed on a subset of the synthetic sonar stave data provided by the Naval Surface Warfare Center -- Panama City Division (NSWC-PCD). The subset is limited to aluminum and stainless steel, thin-shell, spherical targets in contact with the seafloor (proud). It is determined that the SAS signature representation provides the best, least ambiguous, target differentiation with a minimum mismatch difference of 14.5802 dB. The acoustic color plot and bispectrum representations resulted in a minimum difference of 9.1139 dB and 1.8829 dB, respectively.

  16. Universality of Slow Earthquakes in the Very Low Frequency Band

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.

    2014-12-01

    Deep tectonic tremors have been observed together with signals in the very low frequency (VLF) band from 0.02 to 0.05 Hz, which have been identified as VLF events in limited regions of subduction zones. By stacking broadband seismograms relative to the timing of tremors, we can detect similar signals in all regions where tremors occur in western Japan. These signals are inverted to obtain the moment tensor, and the fault-normal and slip vectors are generally consistent with the geometry of the plate interface and the direction of plate motion. Therefore, these signals are probably radiated by shear slip on the plate interface. The ratio between the seismic energy rate estimated from the tremors and seismic moment rate in the VLF band is almost proportional, with a proportionality constant (i.e., scaled energy) of around 10-10. The spatial distribution of scaled energy may reflect spatial variations in the frequency-dependent characteristics of slow deformation. This method is broadly applicable if abundant data are available. We demonstrate that focal mechanisms can be determined using VLF signals for Cascadia and Mexican subduction zones.

  17. Model rotor low frequency broadband noise at moderate tip speeds

    NASA Technical Reports Server (NTRS)

    Humbad, N. G.; Harris, W. L.

    1980-01-01

    The results of an experimental investigation of low frequency broadband noise (LFBN) radiated from model helicopter rotors are presented. The results are for a range of tip Mach numbers (Mt) up to 0.50. The effect of rotor blade loading, advance ratio, tip speed, number of blades and free stream turbulence on the sound pressure level (SPL) and the spectrum of LFBN have been investigated. The peak SPL of LFBN appears to follow an M(4) law if the effect of rms turbulence velocity is removed. The peak SPL of LFBN seems to saturate with increases in advance ratio and with blade loading, and is proportional to the square of the turbulence integral scale when the effect of rms turbulence velocity and Mt are removed. Also, a simple peak SPL scaling law for noise from a helicopter rotor in forward flight due to convected sinusoidal gust is developed. The trend predicted by this scaling law is found to be satisfactory for the variation of the peak SPL of LFBN with tip speed.

  18. Extremely low frequency fields and cancer: laboratory studies

    SciTech Connect

    Anderson, Larry E.)

    1998-10-01

    There is now convincing evidence from a large number of laboratories, that exposure to extremely low frequency (ELF) magnetic and electric fields produces biological responses in animals. However, no animal studies clearly demonstrate deleterious effects of ELF fields, although several are suggestive of potential health impacts. A major current emphasis in laboratory research is to determine whether or not the reported epidemiological studies that suggest an association between EMF exposure and risk of cancer are supported in studies using animal models. Several approaches are outlined in the experimental approach to this question. With specific reference to the radiofrequencies (RF) associated with wireless technology, even less research has been carried out than with ELF. Particularly, in regard to research on carcinogenesis and RF exposure in animals, little is known This section addresses laboratory studies in animals exposed to extremely low-power-frequency EMF, the relevance of which, to RF, is unknown. However, the approaches used with ELF may be useful in guiding laboratory research on the issue of RF exposure and cancer. From the perspective of laboratory animal studies, this paper will discuss studies investigating the potential relationship between ELF magnetic and/or electric field exposure and the risk of cancer.

  19. Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves

    PubMed Central

    Agapiou, John P.; McAlpine, David

    2008-01-01

    Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and the dorsal nucleus of the lateral lemniscus. Noise-delay functions showed asymmetries not predicted from a linear dependence on interaural correlation: a stretching along the firing-rate dimension (rate asymmetry), and a skewing along the interaural-delay dimension (delay asymmetry). These asymmetries were produced by an envelope-sensitive component to the response that could not entirely be accounted for by monaural or binaural nonlinearities, instead indicating an enhancement of envelope sensitivity at or after the level of the superior olivary complex. In IC, the skew-like asymmetry was consistent with intermediate-type responses produced by the convergence of ipsilateral peak-type inputs and contralateral trough-type inputs. This suggests a stereotyped pattern of input to the IC. In the course of this analysis, we were also able to determine the contribution of time and phase components to neurons' internal delays. These findings have important consequences for the neural representation of interaural timing differences and interaural correlation—cues critical to the perception of acoustic space. PMID:18753329

  20. Imaging the Subduction Plate Interface Using Low-Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Plourde, A. P.; Bostock, M. G.

    2015-12-01

    Low-frequency Earthquakes (LFEs) in subduction zones are commonly thought to represent slip on the plate interface. They have also been observed to lie near or within a zone of low shear-wave velocity, which is modelled as fluid-rich upper oceanic crust. Due to relatively large depth uncertainties in absolute hypocenters of most LFE families, their location relative to an independently imaged subucting plate and, consequently, the nature of the plate boundary at depths between 30-45 km have not been precisely determined. For a selection of LFE families in northern Washington, we measure variations in arrival time of individual LFE detections using multi-channel cross-correlation incorporating both arrivals at the same station and different events (cross-detection data), and the same event but different stations (cross-station data). Employing HypoDD, these times are used to generate relative locations for individual LFE detections. After creating templates from spatial subgroups of detections, network cross-correlation techniques will be used to search for new detections in neighbouring areas, thereby expanding the local catalogue and enabling further subdivision. By combining the source ``arrays'' and the receiver arrays from the Array of Arrays experiment we plan to interrogate plate boundary structure using migration of scattered waves from the subduction complex as previously documented beneath southern Vancouver Island.

  1. Recent developments in thermoacoustically-driven low-frequency projectors

    SciTech Connect

    Ward, W.C.; Merrigan, M.A.

    1992-01-01

    Thermoacoustic engines are a recent class of devices that can efficiently convert heat to acoustic energy without moving parts or intervening mechanisms. These engines have a natural potential for powering low-frequency sonar projectors with high reliability and efficiencies that cannot be matched by conventional technologies. A recent design study has produced thermoacoustic projector configurations that can execute standard projector performance requirements such as FM sweep and velocity magnitude and phase control in array environments for a wide range of positive and negative radiation resistances. The thermoacoustic driver is a vertically oriented, helium-filled resonator that contains a movable tuning element to vary the resonator frequency. It is coupled to a variable length water column that is tunable by a similar means to adjust the effective source impedance of the device. Modeling results indicate a sweep range of at least an octave for a single device, and maximum overall (heat-to-acoustic) conversion efficiencies of 25% at 50 Hz. Efficiency increases slightly at lower frequencies, and the lowest operational frequency is limited only by the size of the projector. Output power increases linearly with mean pressure, and at depths of 200 m or more, power densities in excess of 500 kW/m{sup 2} are achievable. Control aspects have been investigated, including rapid startup and shutdown that can be performed by manipulating the water tuning column. Future trends and development prospects are discussed. 4 refs.

  2. Recent developments in thermoacoustically-driven low-frequency projectors

    SciTech Connect

    Ward, W.C.; Merrigan, M.A.

    1992-05-01

    Thermoacoustic engines are a recent class of devices that can efficiently convert heat to acoustic energy without moving parts or intervening mechanisms. These engines have a natural potential for powering low-frequency sonar projectors with high reliability and efficiencies that cannot be matched by conventional technologies. A recent design study has produced thermoacoustic projector configurations that can execute standard projector performance requirements such as FM sweep and velocity magnitude and phase control in array environments for a wide range of positive and negative radiation resistances. The thermoacoustic driver is a vertically oriented, helium-filled resonator that contains a movable tuning element to vary the resonator frequency. It is coupled to a variable length water column that is tunable by a similar means to adjust the effective source impedance of the device. Modeling results indicate a sweep range of at least an octave for a single device, and maximum overall (heat-to-acoustic) conversion efficiencies of 25% at 50 Hz. Efficiency increases slightly at lower frequencies, and the lowest operational frequency is limited only by the size of the projector. Output power increases linearly with mean pressure, and at depths of 200 m or more, power densities in excess of 500 kW/m{sup 2} are achievable. Control aspects have been investigated, including rapid startup and shutdown that can be performed by manipulating the water tuning column. Future trends and development prospects are discussed. 4 refs.

  3. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Murray, James; Jenet, F.; Craig, J.; Creighton, T. D.; Dartez, L. P.; Ford, A. J.; Hicks, B.; Hinojosa, J.; Jaramillo, R.; Kassim, N. E.; Lunsford, G.; Miller, R. B.; Ray, P. S.; Rivera, J.; Taylor, G. B.

    2014-01-01

    The Low Frequency All Sky Monitor is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 crossed dipole antennas designed to operate between 10 - 88 MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array project. Over the past year undergraduate students from the University of Texas at Brownsville have established LoFASM stations in Port Mansfield, Texas, at the LWA1 North Arm site in New Mexico, at the National Radio Astronomy Observatory in Green Bank, West Virginia, and NASA’s Goldstone tracking complex in California. In combination with the establishment of these stations was the development of the analog hardware, which consists of custom RF power dividers/combiners, and a new custom amplifier and filter receiving system, which was developed and built in house. This poster will expound on progress in site installation and development of the analog signal chain, specifically the redesigned analog receiving system.

  4. Low-frequency losses at high fields in multifilamentary superconductors

    SciTech Connect

    Zaleski, A.J.; Orlando, T.P.; Zieba, A.; Schwartz, B.B.; Foner, S.

    1984-12-01

    Low-frequency (approx.1 Hz) ac loss measurements were made at applied fields up to 20 T with field modulation amplitudes of up to 1 T. Results for the alternative in situ and powder metallurgy (P/M) processed Nb/sub 3/Sn and Nb--Al wires are presented for single-strand and multistrand geometries. Loss measurements for commercial continuous-fiber Nb/sub 3/Sn wires manufactured by Holec and Supercon also are presented and show that the effective fiber size determined by these ac-loss measurements corresponds to that measured optically. The effective fiber size for alternative processed wires was intermediate between the wire size and the fiber size, and the losses (and effective fiber size) were reduced by twisting. Multistrand geometries showed further reductions in losses. The smallest effective fiber size at high field was measured for P/M processed Nb--Al. The losses were fully hysteretic and the ac losses were used to determine the critical-current density at low fields where it was difficult to measure directly.

  5. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system

    PubMed Central

    Kondratov, Roman V.; Chernov, Mikhail V.; Kondratova, Anna A.; Gorbacheva, Victoria Y.; Gudkov, Andrei V.; Antoch, Marina P.

    2003-01-01

    Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex. PMID:12897057

  6. Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus

    PubMed Central

    Chen, Yu-Chen; Xia, Wenqing; Luo, Bin; Muthaiah, Vijaya P. K.; Xiong, Zhenyu; Zhang, Jian; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Tinnitus, a phantom ringing, buzzing, or hissing sensation with potentially debilitating consequences, is thought to arise from aberrant spontaneous neural activity at one or more sites within the central nervous system; however, the location and specific features of these oscillations are poorly understood with respect to specific tinnitus features. Recent resting-state functional magnetic resonance imaging (fMRI) studies suggest that aberrant fluctuations in spontaneous low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal may be an important factor in chronic tinnitus; however, the role that frequency-specific components of LFO play in subjective tinnitus remains unclear. A total of 39 chronic tinnitus patients and 41 well-matched healthy controls participated in the resting-state fMRI scans. The LFO amplitudes were investigated using the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) in two different frequency bands (slow-4: 0.027–0.073 Hz and slow-5: 0.01–0.027 Hz). We observed significant differences between tinnitus patients and normal controls in ALFF/fALFF in the two bands (slow-4 and slow-5) in several brain regions including the superior frontal gyrus (SFG), inferior frontal gyrus, middle temporal gyrus, angular gyrus, supramarginal gyrus, and middle occipital gyrus. Across the entire subject pool, significant differences in ALFF/fALFF between the two bands were found in the midbrain, basal ganglia, hippocampus and cerebellum (Slow 4 > Slow 5), and in the middle frontal gyrus, supramarginal gyrus, posterior cingulate cortex, and precuneus (Slow 5 > Slow 4). We also observed significant interaction between frequency bands and patient groups in the orbitofrontal gyrus. Furthermore, tinnitus distress was positively correlated with the magnitude of ALFF in right SFG and the magnitude of fALFF slow-4 band in left SFG, whereas tinnitus duration was positively correlated with the magnitude of ALFF in

  7. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is

  8. Identification of low-frequency fluctuations in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Gary, S. P.

    1994-01-01

    On the basis of magnetohydrodynamic (MHD) theory we develop a scheme for distinguishing among the four low-frequency modes which may propagate in a high-beta anisotropic plasma such as the magnetosheath: the fast and slow magnetosonic, the Alfven, and mirror modes. We use four parameters: the ratio of transverse to compressional powers in the magnetic field, the ratio of the wave powers in the thermal pressure and in the magnetic field, the ratio of the perturbations in the thermal and magnetic pressures, and the ratio of the wave powers in the velocity and in the magnetic field. In the test case of an Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) magnetosheath pass near the Sun-Earth line downstream of a quasi-perpendicular shock, the four modes can be clearly distinguished both spatially and spectrally. Near the bow shock, the waves are Alfvenic in a large frequency range, 1 to 100 mHz. In the middle and inner magnetosheath, the waves below 10 mHz are Alfvenic. The fast mode waves occur in the higher-frequency end of the enhanced spectrum, 80 mHz for the middle magnetosheath and 55 mHz for the inner sheath. The wave enhancement in the intermediate frequencies is slow modes in the inner sheath and mirror modes in the middle sheath. This confirms the earlier report of the existence of the slow mode waves near the magnetopause. These slow waves provide evidence that the magnetopause is an active source of the waves in the sheath. We also show that the measured frequency of a wave is close to an invariant if the magnetosheath flow is in a steady state. Therefore changes in the frequencies of enhanced waves indicate emergence, or damping, or mode conversion of the waves.

  9. Natural very-low-frequency sferics and headache

    NASA Astrophysics Data System (ADS)

    Vaitl, D.; Propson, N.; Stark, R.; Schienle, A.

      Very-low-frequency (VLF) atmospherics or sferics are pulse-shaped alternating electric and magnetic fields which originate from atmospheric discharges (lightning). The objective of the study was threefold: (i) to analyse numerous parameters characterizing the sferics activity with regard to their suitability for field studies, (ii) to identify meteorological processes related to the sferics activity and (iii) to investigate the possible association of sferics with pain processes in patients suffering from migraine- and tension-type headaches. Over a period of 6 months (July through December) the sferics activity in the area of Giessen (Germany) was recorded. Three sferics parameters were chosen. The number of sferics impulses per day, the variability of the impulse rate during a day and the variability in comparison to the preceding day were correlated with weather processes (thunderstorm, temperature, vapour pressure, barometric pressure, humidity, wind velocity, warm sector). Significant correlations were obtained during the summer months (July, August) but not during the autumn months (October, November, December). During autumn, however, the sferics activity was correlated with the occurrence of migraine-type headaches (r=0.33, P<0.01) recorded by 37 women who had filled out a headache diary over a period of 6 months (July-December). While the thunderstorm activity was very intense during July and August, no relationship between sferics and migraine was found. In summer, tension-type headaches were associated with meteorological parameters such as temperature (r=0.42, P<0.01) and vapour pressure (r=0.28, P<0.05). Although the sferics activity can explain a small percentage of the variation in migraine occurrence, a direct influence was more likely exerted by visible or otherwise perceptible weather conditions (thunderstorms, humidity, vapour pressure, warm sector, etc.) than by the sferics activity itself.

  10. Constraints on Subduction Zone Processes from Low Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.

    2015-12-01

    The discovery of tectonic tremor and constituent low-frequency earthquakes (LFEs) offers seismologists new opportunities to study both deformational processes and structure within the subduction zone forearc. This assertion is especially true for northern Cascadia where i) regular seismicity is sparse, and ii) a relatively transparent overriding plate inflicts minimal distortion upon direct P and S wave arrivals from LFEs. Despite low signal-to-noise ratios, LFEs are highly repetitive and signal can be enhanced through construction of stacked templates. Studies in both Cascadia and Nankai reveal an association between LFE hypocenters and a high Vp/Vs, low-velocity zone (LVZ) that is inferred to represent overpressured upper oceanic crust. Scattered signals within Vancouver Island templates, interpreted to originate at boundaries of the LVZ, place LFEs within the LVZ and suggest that this structure may define a distributed (several km) zone of deformation. A recent analysis of LFE magnitudes indicates that LFEs exhibit scaling relations distinct from both regular earthquakes and longer period (10's of seconds to days) phenomena associated with slow slip. Regular earthquakes generally obey a scaling of moment proportional to duration cubed consistent with self similarity, whereas long period slow slip phenomena exhibit a linear scaling between moment and duration that can be accommodated through constant slip or constant stress drop models. In contrast, LFE durations are nearly constant suggesting that moment is governed by slip alone and that asperity size remains approximately constant. The implied dimensions (~1 km2), the persistance of LFEs in time and their stationarity in space point to structural heterogeneity, perhaps related to pockets of upper oceanic crust impervious to hydrothermal circulation, as a fundamental control.

  11. Natural very-low-frequency sferics and headache.

    PubMed

    Vaitl, D; Propson, N; Stark, R; Schienle, A

    2001-09-01

    Very-low-frequency (VLF) atmospherics or sferics are pulse-shaped alternating electric and magnetic fields which originate from atmospheric discharges (lightning). The objective of the study was threefold: (i) to analyse numerous parameters characterizing the sferics activity with regard to their suitability for field studies, (ii) to identify meteorological processes related to the sferics activity and (iii) to investigate the possible association of sferics with pain processes in patients suffering from migraine- and tension-type headaches. Over a period of 6 months (July through December) the sferics activity in the area of Giessen (Germany) was recorded. Three sferics parameters were chosen. The number of sferics impulses per day, the variability of the impulse rate during a day and the variability in comparison to the preceding day were correlated with weather processes (thunderstorm, temperature, vapour pressure, barometric pressure, humidity, wind velocity, warm sector). Significant correlations were obtained during the summer months (July, August) but not during the autumn months (October, November, December). During autumn, however, the sferics activity was correlated with the occurrence of migraine-type headaches (r=0.33, P<0.01) recorded by 37 women who had filled out a headache diary over a period of 6 months (July-December). While the thunderstorm activity was very intense during July and August, no relationship between sferics and migraine was found. In summer, tension-type headaches were associated with meteorological parameters such as temperature (r=0.42, P<0.01) and vapour pressure (r=0.28, P<0.05). Although the sferics activity can explain a small percentage of the variation in migraine occurrence, a direct influence was more likely exerted by visible or otherwise perceptible weather conditions (thunderstorms, humidity, vapour pressure, warm sector, etc.) than by the sferics activity itself. PMID:11594631

  12. Low-frequency electrical response to microbial induced sulfide precipitation

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, Dimitrios; Williams, Kenneth Hurst; Slater, Lee; Hubbard, Susan

    2005-12-01

    We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final

  13. Low-frequency fluctuations in plasma magnetic fields

    SciTech Connect

    Cable, S.; Tajima, T.

    1992-02-01

    It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.

  14. Low frequency paternal transmission of plastid genes in Brassicaceae.

    PubMed

    Schneider, Anja; Stelljes, Christian; Adams, Caroline; Kirchner, Stefan; Burkhard, Gabi; Jarzombski, Sabine; Broer, Inge; Horn, Patricia; Elsayed, Ashraf; Hagl, Peter; Leister, Dario; Koop, Hans-Ulrich

    2015-04-01

    Plastid-encoded genes are maternally inherited in most plant species. Transgenes located on the plastid genome are thus within a natural confinement system, preventing their distribution via pollen. However, a low-frequency leakage of plastids via pollen seems to be universal in plants. Here we report that a very low-level paternal inheritance in Arabidopsis thaliana occurs under field conditions. As pollen donor an Arabidopsis accession (Ler-Ely) was used, which carried a plastid-localized atrazine resistance due to a point mutation in the psbA gene. The frequency of pollen transmission into F1 plants, based on their ability to express the atrazine resistance was 1.9 × 10(-5). We extended our analysis to another cruciferous species, the world-wide cultivated crop Brassica napus. First, we isolated a fertile and stable plastid transformant (T36) in a commercial cultivar of B. napus (cv Drakkar). In T36 the aadA and the bar genes were integrated in the inverted repeat region of the B. napus plastid DNA following particle bombardment of hypocotyl segments. Southern blot analysis confirmed transgene integration and homoplasmy of plastid DNA. Line T36 expressed Basta resistance from the inserted bar gene and this trait was used to estimate the frequency of pollen transmission into F1 plants. A frequency of <2.6 × 10(-5) was determined in the greenhouse. Taken together, our data show a very low rate of paternal plastid transmission in Brassicacea. Moreover, the establishment of plastid transformation in B. napus facilitates a safe use of this important crop plant for plant biotechnology. PMID:25343875

  15. Low frequency spin dynamics in a quantum Hall canted antiferromagnet

    NASA Astrophysics Data System (ADS)

    Muraki, Koji

    2007-03-01

    In quantum Hall (QH) systems, Coulomb interactions combined with the macroscopic degeneracy of Landau levels (LLs) drive the electron system into strongly correlated phases as illustrated by the series of fractional QH effects and may also lead to various forms of broken symmetry dictated by the LL filing factor ν. When two layers of such electron systems are closely separated by a thin tunnel barrier, the addition of interlayer interactions and the layer degree of freedom brings about even richer electronic phases, opening up possibilities for different classes of symmetry breaking. In particular, at total filling factor νT = 2, where the two of the four lowest LLs split by the Zeeman and interlayer tunnel couplings are occupied, the competing degrees of freedom due to the layer and spin are predicted to lead to rich magnetic phases. Here we present results of resistively detected nuclear spin relaxation measurements in closely separated electron systems that reveal strong low-frequency spin fluctuations in the QH regime at νT = 2 [1]. As the temperature is decreased, the spin fluctuations, manifested by a sharp enhancement of the nuclear spin-lattice relaxation rate 1/T1, continue to grow down to the lowest temperature of 66 mK. The observed divergent behavior of 1/T1 signals a gapless spin excitation mode (i.e., a Goldstone mode) and is a hallmark of the theoretically predicted canted antiferromagnetic order. Our data demonstrate the realization of a two-dimensional system with broken planar spin rotational symmetry, in which fluctuations do not freeze out when approaching the zero temperature limit. [1] N. Kumada, K. Muraki, and Y. Hirayama, Science 313, 329 (2006).

  16. Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.

    2014-12-01

    The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.

  17. Design Concepts for a Sky Noise Limited Low Frequency Array

    NASA Astrophysics Data System (ADS)

    Bregman, Jaap D.

    The LOw Frequency ARray is an aperture synthesis instrument for the frequency range from10 MHz up to over 300 MHz. There are order thirty stations spanning baselines up to 300 km and distributed such that bandwidth synthesis in the semi-octave observing bands provides sufficient visibility sampling for reliable wide-field imaging. Each antenna station has a few hundred active dipole receptors arranged in a sparse fractal like configuration of about two hundred meter diameter. With appropriate weighting an almost frequency independent station beamwidth is obtained. The effective collecting area scales proportional with wavelength squared approaching at the lowest frequency a square kilometre for all stations together. The digital beamformers at the stations not only perform the spatio-spectral nulling to adaptively remove any interference, but also form the spectrometer part of the array correlator. We propose the F3X correlator architecture where the efficient Fourier butterfly algorithm is not only used to transform a time sequence into a frequency sequence but also to transform a set of station sub-apertures into a set of beams before cross-correlation between antenna stations is performed. Commercial digital signal processing elements form by 2006 a cost effective implementation solution creating a "processing window of opportunity" where the signal processing power of beam-formers and correlators turns out to be matched to the data processing power of a battery of a few hundred general purpose image processing engines. We are entering the era where the performance of processing electronics in phased array antennas can cost effectively meet the performance requirements of a synthesis array.

  18. Tremor entrainment by patterned low-frequency stimulation.

    PubMed

    Barnikol, Utako B; Popovych, Oleksandr V; Hauptmann, Christian; Sturm, Volker; Freund, Hans-Joachim; Tass, Peter A

    2008-10-13

    High-frequency test stimulation for tremor suppression is a standard procedure for functional target localization during deep brain stimulation. This method does not work in cases where tremor vanishes intraoperatively, for example, due to general anaesthesia or due to an insertional effect. To overcome this difficulty, we developed a stimulation technique that effectively evokes tremor in a well-defined and quantifiable manner. For this, we used patterned low-frequency stimulation (PLFS), i.e. brief high-frequency pulse trains administered at pulse rates similar to neurons' preferred burst frequency. Unlike periodic single-pulse stimulation, PLFS enables one to convey effective and considerably greater integral charge densities without violation of safety requirements. In a computational investigation of an oscillatory neuronal network temporarily rendered inactive, we found that PLFS evokes synchronized activity, phase locked to the stimulus. While a stronger increase in the amount of synchrony in the neuronal population requires higher stimulus intensities, the portion of synchronously active neurons nevertheless becomes strongly phase locked to PLFS already at weak stimulus intensities. The phase entrainment effect of PLFS turned out to be robust against variations in the stimulation frequency, whereas enhancement of synchrony required precisely tuned stimulation frequencies. We applied PLFS to a patient with spinocerebellar ataxia type 2 (SCA2) with pronounced tremor that disappeared intraoperatively under general anaesthesia. In accordance with our computational results, PLFS evoked tremor, phase locked to the stimulus. In particular, weak PLFS caused low-amplitude, but strongly phase-locked tremor. PLFS test stimulations provided the only functional information about target localization. Optimal target point selection was confirmed by excellent post-operative tremor suppression. PMID:18632457

  19. A low-frequency directional flextensional transducer and line array

    SciTech Connect

    Butler, S.C.; Butler, J.L.; Butler, A.L.; Cavanagh, G.H.

    1997-07-01

    A unique low-frequency (900 Hz) class IV flextensional transducer that produces an enhanced far-field pressure on one side and canceled far-field pressure on the other side has been developed. The transducer radiating surface consists of a thick-walled elliptical aluminum shell and a U.S. Navy type III piezoelectric stack along its major axis with two active sections and one inactive section. The directionality is achieved by simultaneously exciting the shell into an omnidirectional and dipole operation by driving stack into both extensional and bending modes. Both measurements and modeling on this device show a front to back pressure ratio of more than 30 dB, producing cardioid-type radiation patterns over an octave band, for a single transducer element. The transducers measured mechanical Q is 8, coupling coefficient is 0.25, and electroacoustic efficiency is 80{percent} and produced a source level of 215 dB {ital re:} 1 {mu}Pa at 1 m when driven at a field limit of 394 kV/m (10 kV/in.) at resonance. The uniqueness of this transducer is its directional beam patterns (directivity index=3.4 dB) and high acoustic output power from a small (less than a third of a wavelength) single element. Six of these transducers were placed in a closely packed line array two-wavelengths long. The array successfully produced narrow directional sound beams (directivity index=8.7 dB) with a front to back ratio greater than 30 dB and a source level of 225 dB {ital re:} 1 {mu}Pa at 1 m. {copyright} {ital 1997 Acoustical Society of America.}

  20. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. PMID:26512872

  1. Impact of atmospheric changes on the low-frequency variations of convective afternoon rainfall activity over Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Ru; Hsu, Huang-Hsiung; Wang, Shih-Yu; Chen, Jian-Pu

    2015-09-01

    This study examines the characteristics of low-frequency variations (defined as decadal-scale changes) in summer (June-August) convective afternoon rainfall (CAR) activity over Taiwan during 1961-2012. Using 3-hourly rain gauge data, it was found that (1) the CAR frequency exhibits a secular trend and the 10-20 decadal oscillation, (2) the trend in CAR frequency is positive in northern Taiwan but negative in central and southern Taiwan, and (3) the CAR rate increased over most of the lower plains but decreased over the mountain range of Taiwan. Diagnoses using the Japanese ReAnalysis (JRA-55) data and surface observations indicate that the low-frequency variations in CAR frequency are closely associated with the variations in monsoon southwesterly winds over the South China Sea and island-wide sea breeze convergence. The regional low-level circulation changes are linked to sea surface temperature anomalies over the Niño-4 region and its 10-20 year (quasi-decadal) oscillation. Regarding the processes that change the CAR rate in the trending patterns, it was found that increases in the moisture flux convergence and the moist (conditional) instability over the lower plains together explain the stronger CAR events in the long run.

  2. Low-frequency QPOs and Possible Change in the Accretion Geometry during the Outbursts of Aquila X-1

    NASA Astrophysics Data System (ADS)

    Zhang, Wenda; Yu, Wenfei

    2015-06-01

    We have studied the evolution of low-frequency quasi-periodic oscillations (LFQPOs) during the rising phase of seven outbursts of the neutron star soft X-ray transient Aql X-1 observed with the RXTE. A frequency correlation between the low-frequency break and the LFQPO sampled on a timescale of ˜2 days was observed. Except for the peculiar 2001 outburst, the frequency of LFQPOs increased with time before the hard-to-soft state transition up to a maximum {{ν }max } at ˜31 Hz, a factor of ˜5 higher than those seen in BH transients such as GX 339-4, making the maximum quasi-periodic oscillation (QPO) frequency a likely indicator of the mass of the central compact object. The characteristic frequencies increased by around 10% per day in the early rising phase and accelerated to nearly 100% per day since ˜2 days before the hard-to-soft state transition. We examined the dependence of the frequency {{ν }LF} on the source flux f and found an anti-correlation between the maximum frequency of the LFQPOs and the corresponding X-ray luminosity of the hard-to-soft transition (or outburst peak luminosity) among the outbursts. We suggest that the X-ray evaporation process cannot be the only mechanism that drives the variation of the inner disk radius if either of the twin kHz QPOs corresponds to the Keplerian frequency at the truncation radius.

  3. Characterization of Indoor Extremely Low Frequency and Low Frequency Electromagnetic Fields in the INMA-Granada Cohort

    PubMed Central

    Calvente, Irene; Dávila-Arias, Cristina; Ocón-Hernández, Olga; Pérez-Lobato, Rocío; Ramos, Rosa; Artacho-Cordón, Francisco; Olea, Nicolás; Núñez, María Isabel; Fernández, Mariana F.

    2014-01-01

    Objective To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-“INMA” population-based birth cohort. Methodology The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9–10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Results Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Conclusion Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure. PMID:25192253

  4. Low-frequency intraseasonal variability in a zonally symmetric aquaplanet model

    NASA Astrophysics Data System (ADS)

    Das, Surajit; Sengupta, Debasis; Chakraborty, A.; Sukhatme, Jai; Murtugudde, Raghu

    2016-04-01

    We use the aquaplanet version of the community atmospheric model, with perpetual spring equinox forcing and zonally symmetric sea surface temperature (SST), to study tropical intraseasonal oscillations (ISOs). In the first two experiments, we specify zonally symmetric SST profiles that mimic observed climatological July and January SSTs as surface boundary conditions. In the January SST simulation, we find a zonal wavenumber 1 mode with dominant period of 60 days, moving east at about 6 m s-1. This mode, which resembles the Madden-Julian oscillation (MJO), is absent in the July SST case, although convectively coupled Kelvin waves are prominent in both experiments. To further investigate the influence of tropical SST on ISO and convectively coupled equatorial waves, we conduct experiments with idealised symmetric SST profiles having different widths of warm ocean centered at the equator. In the narrowest SST experiment, the variance of moist activity is predominantly in weather-scale Kelvin waves. When the latitudinal extent of warm SST is comparable to or larger than the equatorial Rossby radius, we find a dominant low frequency (50-80 days) eastward mode that resembles the MJO, as in the January SST experiment. We also find westward propagating waves with intraseasonal (30-120 days) periods and zonal wavenumber 1-3; the structure of these signals projects onto equatorially trapped Rossby waves with meridional mode numbers 1, 3 and 5, associated with convection that is symmetric about the equator. In addition, the model generates 30-80 days westward moving signals with zonal wavenumber 4-7, particularly in the narrow SST experiment. Although these waves are seen in the wavenumber-frequency spectra in the equatorial region, they have largest amplitude in the middle and high latitudes. Thus, our study shows that wider, meridionally symmetric SST profiles support a strong MJO-like eastward propagation, and even in an aquaplanet setting, westward propagating Rossby

  5. Low-frequency pulmonary impedance in rabbits and its response to inhaled methacholine.

    PubMed

    Tepper, R; Sato, J; Suki, B; Martin, J G; Bates, J H

    1992-07-01

    We assessed pulmonary mechanics in six open-chest rabbits (3 young and 3 adult) by the forced oscillation technique between 0.16 and 10.64 Hz. Under control conditions, pulmonary resistance (RL) decreased markedly between 0.16 and 4 Hz, after which it became reasonably constant. Measurements of alveolar pressure from two alveolar capsules in each rabbit showed that the large decrease of RL with increasing frequency below 4 Hz was due to lung tissue rheology and that tissue resistance was close to zero above 4 Hz. Estimates of resistance and elastance, also obtained by fitting tidal ventilation data at 1 Hz to the equation of the linear single-compartment model, gave values for RL motion that were slightly higher than those obtained by forced oscillations at the same frequency, presumably because of the flow dependence of airways resistance. After treatment with increasing doses of aerosolized methacholine, RL and pulmonary elastance between 0.16 and 1.34 Hz progressively increased, as did the point at which the pulmonary reactance crossed zero (the resonant frequency). The alveolar pressure measurements showed the lung to become increasingly inhomogeneously ventilated in all six animals, whereas in the three younger rabbits lobar atelectasis developed at high methacholine concentrations and the alveolar capsules ceased to communicate with the central airways. We conclude that the low-frequency pulmonary impedance of rabbits exhibits the same qualitative features observed in other species and that it is a sensitive indicator of the changes in pulmonary mechanics occurring during bronchoconstriction. PMID:1506383

  6. Manipulating neuronal activity with low frequency transcranial ultrasound

    NASA Astrophysics Data System (ADS)

    Moore, Michele Elizabeth

    neurons impose temporal constraints on their response to stimulation. If ultrasound-mediated responses are, in fact, ion channel mediated responses, ultrasound-induced responses should exhibit time-dependence characteristics similar to those of optogenetically-triggered responses. Minimal stimulus duration thresholds and the temporal limits of paired pulse facilitation for ultrasound stimulation were identical to those of optogenetic stimulation. Collectively, these experiments demonstrate an electrophysiological basis for low-frequency transcranial ultrasound stimulation of cerebral cortical neuronal activity.

  7. PageRank for low frequency earthquake detection

    NASA Astrophysics Data System (ADS)

    Aguiar, A. C.; Beroza, G. C.

    2013-12-01

    We have analyzed Hi-Net seismic waveform data during the April 2006 tremor episode in the Nankai Trough in SW Japan using the autocorrelation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise waveform matching. We have generalized this to exploit the fact that waveforms may repeat multiple times, on more than just a pair-wise basis. We are working towards developing a sound statistical basis for event detection, but that is complicated by two factors. First, the statistical behavior of the autocorrelations varies between stations. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Second, the positive detections do not satisfy "closure." That is, if window A correlates with window B, and window B correlates with window C, then window A and window C do not necessarily correlate with one another. We want to evaluate whether or not a linked set of windows are correlated due to chance. To do this, we map our problem on to one that has previously been solved for web search, and apply Google's PageRank algorithm. PageRank is the probability of a 'random surfer' to visit a particular web page; it assigns a ranking for a webpage based on the amount of links associated with that page. For windows of seismic data instead of webpages, the windows with high probabilities suggest likely LFE signals. Once identified, we stack the matched windows to improve the snr and use these stacks as template signals to find other LFEs within continuous data. We compare the results among stations and declare a detection if they are found in a statistically significant number of stations, based on multinomial statistics. We compare our detections using the single-station method to detections found by Shelly et al. (2007) for the April 2006 tremor sequence in Shikoku, Japan. We find strong similarity between the results, as well as many new detections that were not found using

  8. Low Frequency Radio-wave System for subsurface investigation

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the

  9. Low-Frequency Earthquakes in Cascadia Using Texan Array

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Creager, K. C.; Vidale, J. E.; Ghosh, A.; Nichols, M. L.; Pratt, T. L.

    2008-12-01

    Low-frequency earthquakes (LFEs) were first reported in Japan and have been observed to occur coincidently with non-volcanic tremor in both space and time. Compared to similarly-sized ordinary earthquakes, LFEs are deficient in frequencies above 5 Hz. The frequency spectrum of LFEs mirrors the spectrum of tremor. Indeed Shelly et al. (2006, 2007, Nature) have suggested that tremor is simply the superposition of many individual LFEs. Accordingly, LFEs have been used to constrain the location of tremor. In Japan, LFEs are routinely identified by their S-waves, while their P-waves are typically below noise levels. In March 2008 we deployed a 1km aperture array on the Olympic Peninsula of Washington State that recorded a small tremor swarm prior to the main episodic tremor and slip event in May. Our array consisted of approximately 80 geophones paired with Texan recorders and was laid out on a 100m spaced grid. Initial analysis of one hour of data reveals many LFE-like events with similar spectra to locally observed tremor. Unlike LFEs in Japan, P-waves are clearly seen on many individual stations. Using a clear LFE as a template event, nearly 100 matching events have been found with S minus P times that differ by less than a few hundredths of a second from event to event suggesting that they are all within a few hundred meters of each other. Preliminary locations of this cluster indicate that the LFEs are near the plate interface east of our array. For many of the LFEs, stacks of the P-wave are very similar to stacks of the S-wave, suggesting that these stacks are reasonably good approximations of source time functions. These source time functions vary in complexity from one LFE to another. Synthetic waveform modeling suggests a source focal mechanism consistent with thrust faulting on the plate interface. The location and focal mechanism of these LFEs support the notion that tremor is associated with slip on the plate interface. This LFE cluster provides a promising

  10. An efficient method for studying low-frequency two-state fluctuators

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Gustavsson, Simon; Jin, Xiaoyue; Kamal, Archana; Orlando, Terry; Oliver, William

    2014-03-01

    We propose a driven-evolution-based pulse sequence as an efficient tool to study low-frequency random telegraph noise. The sequence originates from the two-dimensional chemical exchange experiment in NMR, but dramatically reduces measuring time with a one-dimensional modification. The sequence is also more sensitive to weak fluctuators than the dynamical-decoupling-type sequences. By applying the sequence to a qubit, the existence of a two-state fluctuator is characterized by an oscillating signal, whose frequency and amplitude correspond to the fluctuator's strength and correlation time respectively. The method opens a way to investigate noise in the quasistatic regime, which cannot be resolved by conventional coherence-characterization methods. The pulse sequence can be used to study phenomena in Josephon-junction qubits such as quasiparticle tunneling. The Lincoln Laboratory portion of this work was sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

  11. Magnetoelastic beam with extended polymer for low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad; Su, Quang

    2016-04-01

    Ambient energy in the form of mechanical kinetic energy is mostly considered waste energy. The process of scavenging and storing such energy is known as energy harvesting. Energy harvesting from mechanical vibration is performed using resonant energy harvesters (EH) with two major goals: enhancing the power scavenged at low frequency sources of vibrations, and increasing the efficiency of scavenging energy by increasing the bandwidth near the resonant frequency. Toward such goals, we propose a piezoelectric EH of a composite cantilever beam with a tip magnet facing another magnet at a distance. The composite cantilever consists of a piezoelectric bimorph with an extended polymer material. With the effect of the nonlinearity of the magnetic force, higher amplitude can be achieved because of the generated bi-stability oscillations of the cantilever beam under harmonic excitation. The contribution of the this paper is to demonstrate lowering the achieved resonant frequency down to 17 Hz compared to 100 Hz for the piezoelectric bimorph beam without the extended polymer. Depending on the magnetic distance, the beam responses are divided to mono and bi-stable regions, for which we investigate static and dynamic behaviors. The dynamics of the system and the frequency and voltage responses of the beam are obtained using the shooting method.

  12. Shifting the Operating Point of Cochlear Amplification?:. Impact of Low Frequency Biasing and Contralateral Sound Stimulation on Dpoae

    NASA Astrophysics Data System (ADS)

    Wittekindt, Anna; Abel, Cornelius; Kössl, Manfred

    2009-02-01

    The mammalian efferent medial olivo-cochlear system is known to modulate active amplification of low-level sound in the cochlea. We investigated the effect of contralateral acoustic stimulation (CAS), known to elicit efferent activity, on distortion product otoacoustic emissions (DPOAEs) in the gerbil and, in second approach, biased the position of the cochlear partition and hence the operating point of the cochlear amplifier periodically by a low frequency tone (5 Hz). The study focussed on the quadratic distortion product f2-f1 that is sensitive to changes in the operating point of the amplifier transfer function. During CAS, a significant increase of the amplitude of f2-f1 was found while 2f1-f2 was less affected. Biasing by the low frequency tone resulted in a phase related amplitude modulation of f2-f1. This modulation pattern was changed pronouncedly during CAS, in dependence on the CAS-level. The current results suggest that efferent effects on DPOAEs might be produced by changes in the operating point of the cochlear amplifier and were in good agreement with a simple model based on a Boltzman function.

  13. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  14. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  15. Low frequency electromagnetic signals in the atmosphere caused by geodynamics and solar activity

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    Due to the composed structure of the medium and large portions of energy transferred, a seismic excitation in the oceanic or continental lithosphere disturbs all types of geophysical fields. To investigate the problem of electromagnetic (EM) forcing on the atmosphere from the seismically activated lithosphere, we have formulated two mathematical models of interaction of fields of different physical nature resulting in arising of the low-frequency (from 0.1 to 10 Hz by amplitude of a few hundreds of pT) EM signals in the atmosphere. First we have considered the EM field generation in the moving oceanic lithosphere and then in the moving continental one. For both cases, the main physical principles and geological data were applied for formulation of the model and characteristics of the computed signals of different nature agree with measurements of other authors. On the basis of the 2D model of the seismo-hydro-EM-temperature interaction in a lithosphere-Ocean-atmosphere domain, a block-scheme of a multisensory vertically distributed (from a seafloor up to the ionosphere) tsunami precursors’ detection system is described. On the basis of the 3D model of the seismo-EM interaction in a lithosphere-atmosphere domain, we explain effect of location of the future seismic epicenter area (obtained by Prof. Kopytenko, Yu. A. from Inst. IZMIRAN of Russian Acad. Sci. and co-authors) as the result of the magnetic field measurements in the atmosphere near the earth’s surface. We believe that the biosphere effects of forcing on the atmosphere may not be ignored. We formulate the result of our measurements with the system of micro-voltmeters: low-frequency EM disturbances of the atmosphere caused by solar activity (namely, geomagnetic storms with the geomagnetic index values K = 5 and K = 6), are decreasing temporarily the coherence of oscillations of the electric potentials of different points on the surface of a head, i.e. the coherence of the human brain EM processes. We are

  16. Terrestrial detector for low frequency gravitational waves based on full tensor measurement

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok; Paik, Hojung; Majorana, Ettore; Vol Moody, M.; Griggs, Cornelius E.; Nielsen, Alex; Kim, Chumglee

    2015-08-01

    Terrestrial gravitational wave (GW) detectors are mostly based on Michelson-type laser interferometers with arm lengths of a few km to reach a strain sensitivity of 10-23 Hz-1/2 in the frequency range of a few 100 to a few 1000 Hz. There should be a large variety of sources generating GWs at lower frequencies below 10 Hz. However, seismic and Newtonian noise has been serious obstacle in realizing terrestrial low-frequency GW detectors. Here we describe a new GW detector concept by adopting new measurement techniques and configurations to overcome the present low-frequency barrier due to seismic and Newtonian noise. The detector is an extension of the superconducting gravity gradiometer (SGG) that has been developed at the University of Maryland to measure all components of the gravity gradient tensor by orthogonally combining three bars with test masses at each end. The oscillating component of the gravity gradient tensor is the GW strain tensor, but the actual signal is likely to be dominated by Newtonian and seismic noise, whose amplitudes are several orders of magnitude larger than the GWs. We propose to mitigate seismic noise by (a) constructing detector in deep underground, (b) applying passive isolation with pendulum suspension, and (c) using the common-mode rejection characteristic of the detector. The Newtonian noise can be suppressed by combining the components of the gradient tensor with signals detected by seismometers and microphones. By constructing a detector of 100-m long bars cooled to 0.1 K, a strain sensitivity of a few times 10-21 Hz-1/2 can be achieved in the frequency range between 0.1 to 10 Hz. Binaries composed of intermediate mass black holes of 1000 to 10,000 M¤ could be detected at distances up to a few Gpc with this detector. Detectable range for the merging white dwarf binaries is up to a few Mpc. Unlike current two-dimensional detectors, our single detector is able to determine the polarization of GWs and the direction to sources on

  17. Modeling of low-frequency pulmonary impedance in dogs.

    PubMed

    Hantos, Z; Daróczy, B; Csendes, T; Suki, B; Nagy, S

    1990-03-01

    The mechanical impedance of the lungs (ZL) was measured in open-chest dogs with small-amplitude pseudorandom volume oscillations between 0.125 and 5 Hz, at mean transpulmonary pressures (Ptp) of 0.2, 0.4, and 0.8 kPa. At the lowest frequencies, the pulmonary resistance showed a marked negative frequency dependence and mirrored the changes in the reactance with altered Ptp. The ZL data were evaluated on the basis of two models, each containing the same airway compartment with a resistance and an inertance. The tissue impedance (Zti) in model 1 was represented with two compliances and a resistance (L. E. Mount. J. Physiol. Lond. 127: 157-167, 1955), whereas in model 2 a two-parameter formulation implying rate-independent dissipated work and frequency-dependent elastance (J. Hildebrandt. J. Appl. Physiol. 28: 365-372, 1970) was employed. The estimation of model parameters showed that model 2 was superior to model 1 in both fitting performance and parameter insensitivity to weighting in the fitting criterion. The model 2 coefficients of damping and elastance, characterizing the real and imaginary parts of Zti, respectively, depended on the lung distension and were closely correlated. Although ZL exhibited a slight dependence on the peak-to-peak volume excursion, at a given oscillatory volume no inconsistency with linear tissue viscoelasticity was detected. PMID:2341352

  18. Direct measurement of nitroxide pharmacokinetics in isolated hearts situated in a low-frequency electron spin resonance spectrometer: implications for spin trapping and in vivo oxymetry.

    PubMed Central

    Rosen, G M; Halpern, H J; Brunsting, L A; Spencer, D P; Strauss, K E; Bowman, M K; Wechsler, A S

    1988-01-01

    The pharmacokinetics of two nitroxides were investigated in isolated rat hearts situated in a low-frequency electron spin resonance spectrometer. The spin labels 2,2,3,3,5,5-hexamethyl-1-pyrrolidinyloxy and 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy were chosen for their physiochemical analogy to the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and its corresponding spin-trapped adduct, 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxy (DMPO-OH). The bioreductive rates of the two nitroxides were measured during constant perfusion as well as during ischemia and are discussed in terms of a two-compartment pharmacokinetic model. These data provide information necessary to the design and application of spin traps to detect oxy radicals during reperfusion of ischemic tissue and suggest the feasibility of monitoring free-radical processes in intact, functioning mammalian tissues by using a low-frequency electron spin resonance spectrometer. Images PMID:2845421

  19. The Low-Frequency Encoding Disadvantage: Word Frequency Affects Processing Demands

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Reder, Lynne M.

    2006-01-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative…

  20. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain...

  1. THE USE OF LOW FREQUENCY RESIDUAL HEARING IN PROFOUNDLY DEAF CHILDREN.

    ERIC Educational Resources Information Center

    LING, DANIEL

    IN ORDER TO TEST THE HYPOTHESIS THAT ADDITIONAL LOW FREQUENCY AMPLIFICATION WOULD CONTRIBUTE SIGNIFICANTLY TO THE AUDITION OF SPEECH, 12 CHILDREN WITH LOW FREQUENCY RESIDUAL HEARING WERE STUDIED, USING TWO INDIVIDUAL HEARING AIDS--AN EXPERIMENTAL MODEL WITH A FREQUENCY RANGE OF 80-3500 CYCLES PER SECOND (CPS) AND A STANDARD MODEL WITH A FREQUENCY…

  2. Low-Frequency Otolith Function in Microgravity: A Re-Evaluation of the Otolith Tilt-Translation Reinterpretation (OTTR) Hypothesis

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Clement, Gilles; Raphan, Theodore

    1999-01-01

    On Earth, the low-frequency afferent signal from the otoliths encodes head tilt with respect to the gravitational vertical, and the higher frequency components reflect both tilt and linear acceleration of the head. In microgravity, static tilt of the head does not influence otolith output, and the relationship between sensory input from the vestibular organs, and the visual, proprioceptive and somatosensory systems, would be disrupted. Several researchers have proposed that in 0-g this conflict may induce a reinterpretation of all otolith signals by the brain to encode only linear translation (otolith tilt-translation reinterpretation or OTTR). Ocular counter-rolling (OCR) is a low-frequency otolith-mediated reflex, which generates compensatory torsional eye movements (rotation about the visual axis) towards the spatial vertical during static roll tilt with a gain of approximately 10%. Transient linear acceleration and off-axis centrifugation at a constant angular velocity can also generate OCR. According to the OTTR hypothesis, OCR should be reduced in microgravity, and immediately upon return from a 0-g environment. Results to date have been inconclusive. OCR was reduced following the 10 day Spacelab-1 mission in response to leftward roll tilts (28-56% in 3 subjects and unchanged in one subject), and sinusoidal linear oscillations at 0.4 and 0.8 Hz. OCR gain declined 70% in four monkeys following a 14 day COSMOS mission. Following a 30 day MIR mission OCR gain decreased in one astronaut, but increased in two others following a 180 day mission. We have studied the affect of microgravity on low-frequency otolith function as part of a larger study of the interaction of vision and the vestibular system. This experiment (E-047) involved off-axis centrifugation of payload crewmembers and flew aboard the recent Neurolab mission (STS 90). Presented below are preliminary results focusing on perception and the OCR response during both centrifugation and static tilt.

  3. Effect of low frequency noise on the echocardiographic parameter E/A ratio.

    PubMed

    Chao, Pao-Chiang; Yeh, Ching-Ying; Juang, Yow-Jer; Hu, Ching-Yao; Chen, Chiou-Jong

    2012-01-01

    The hearing condition of the Taiwanese aerospace maintenance workers affected by the low frequency noise had not been reported. The purpose of this research is to clarify the maintenance workers' health effect when exposed to low frequency and/or general noises and to understand the relationship between the variations of the worker's echocardiographic E/A ratio and the low frequency noise. The low frequency noise monitoring and echocardiographic E/A ratio results obtained for 213 aerospace maintenance workers indicated that the workers' hearing loss was more serious at high frequency 4k and 6k when exposed to the low frequency noise and could be more than 40 dB. The abnormality of echocardiographic E/A ratio was also higher than that of control group. PMID:22918145

  4. Does greater low frequency EEG activity in normal immaturity and in children with epilepsy arise in the same neuronal network?

    PubMed

    Michels, L; Bucher, K; Brem, S; Halder, P; Lüchinger, R; Liechti, M; Martin, E; Jeanmonod, D; Kröll, J; Brandeis, D

    2011-03-01

    Greater low frequency power (<8 Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3 Hz, theta: 4-7 Hz), medium (alpha: 8-12 Hz) and high (beta: 13-25 Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal network. PMID:20820898

  5. Characterization of ultra low frequency (ULF) pulsations and the investigation of their possible source

    NASA Astrophysics Data System (ADS)

    Mthembu, S. H.; Malinga, S. B.; Walker, A. D. M.; Magnus, L.

    2009-08-01

    In this paper we present the results from the observation of ultra low frequency (ULF) pulsations in the Doppler velocity data from SuperDARN HF radar located at Goose Bay (61.94° N, 23.02° E, geomagnetic). Fourier spectral techniques were used to determine the spectral content of the data and the results show Pc 5 ULF pulsations (with a frequency range of 1 to 4 mHz) where the magnetic field lines were oscillating at discrete frequencies of about 1.3 and 1.9 mHz. These pulsations are classified as field lines resonance (FLR) since the 1.9 mHz component exhibited an enhancement in amplitude with an associated phase change of approximately 180° across a resonance latitude of 71.3°. The spatial and temporal structure of the ULF pulsations was examined by investigating their instantaneous amplitude which was calculated as the amplitude of the analytic signal. The results presented a full field of view which exhibit pulsations activity simultaneously from all beams. This representation shows that the peak amplitude of the 1.9 mHz component was observed over the longitudinal range of 13°. The temporal structure of the pulsations was investigated from the evolution of the 1.9 mHz component and the results showed that the ULF pulsations had a duration of about 1 h. Wavelet analysis was used to investigate solar wind as a probable source of the observed ULF pulsations. The time delay compared well with the solar wind travel time estimates and the results suggest a possible link between the solar wind and the observed pulsations. The sudden change in dynamic pressure also proved to be a possible source of the observed ULF pulsations.

  6. Synchronization by the hand: the sight of gestures modulates low-frequency activity in brain responses to continuous speech.

    PubMed

    Biau, Emmanuel; Soto-Faraco, Salvador

    2015-01-01

    During social interactions, speakers often produce spontaneous gestures to accompany their speech. These coordinated body movements convey communicative intentions, and modulate how listeners perceive the message in a subtle, but important way. In the present perspective, we put the focus on the role that congruent non-verbal information from beat gestures may play in the neural responses to speech. Whilst delta-theta oscillatory brain responses reflect the time-frequency structure of the speech signal, we argue that beat gestures promote phase resetting at relevant word onsets. This mechanism may facilitate the anticipation of associated acoustic cues relevant for prosodic/syllabic-based segmentation in speech perception. We report recently published data supporting this hypothesis, and discuss the potential of beats (and gestures in general) for further studies investigating continuous AV speech processing through low-frequency oscillations. PMID:26441618

  7. Synchronization by the hand: the sight of gestures modulates low-frequency activity in brain responses to continuous speech

    PubMed Central

    Biau, Emmanuel; Soto-Faraco, Salvador

    2015-01-01

    During social interactions, speakers often produce spontaneous gestures to accompany their speech. These coordinated body movements convey communicative intentions, and modulate how listeners perceive the message in a subtle, but important way. In the present perspective, we put the focus on the role that congruent non-verbal information from beat gestures may play in the neural responses to speech. Whilst delta-theta oscillatory brain responses reflect the time-frequency structure of the speech signal, we argue that beat gestures promote phase resetting at relevant word onsets. This mechanism may facilitate the anticipation of associated acoustic cues relevant for prosodic/syllabic-based segmentation in speech perception. We report recently published data supporting this hypothesis, and discuss the potential of beats (and gestures in general) for further studies investigating continuous AV speech processing through low-frequency oscillations. PMID:26441618

  8. Possibility of breakdown of overdamped and narrowing limits in low-frequency Raman spectra: Phenomenological band-shape analysis using the multiple-random-telegraph model

    NASA Astrophysics Data System (ADS)

    Amo, Yuko; Tominaga, Yasunori

    1999-08-01

    Depolarized low-frequency Raman spectra of liquid water and heavy water are investigated from 266 K to 356 K. The reduced Raman spectra below 250 cm-1 are reproduced by a superposition of one relaxation mode and two damped harmonic oscillator modes. The multiple-random-telegraph (MRT) model, which takes into account inertia and memory effects, is applied to analyze the relaxation component. Two damped harmonic oscillators around 50 cm-1 and 180 cm-1 are known as a bendinglike mode and a stretchinglike mode, respectively. It is found that the intensity of the bendinglike mode in water (heavy water) gradually decreases with increasing temperature, and finally vanishes above about 296 K (306 K). The relaxation time of the MRT model is interpreted as representing the averaged lifetime of the vibrating unit. At high temperature, the relaxation time becomes short, that is to say, the vibrating unit is quickly destroyed before the 50 cm-1 mode is oscillating sufficiently. In the present analysis, the strongly disrupted oscillation cannot be distinguished from the relaxation mode which includes the inertia and memory effects. It is found that the low-frequency Raman spectrum of liquid water at high temperature is a good example demonstrating an application of the MRT model.

  9. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  10. Effects on Performance and Work Quality due to Low Frequency Ventilation Noise

    NASA Astrophysics Data System (ADS)

    Persson Waye, K.; Rylander, R.; Benton, S.; Leventhall, H. G.

    1997-08-01

    A pilot study was carried out to assess method evaluating effects of low frequency noise on performance. Of special interest was to study objective and subjective effects over time. Two ventilation noises were used, one of a predominantly mid frequency character and the other of a predominantly low frequency character. Both had an NC value of 35. For the study, 50 students were recruited and 30 selected on the basis of subjective reports of pressure on the eardrum after exposure to a low frequency noise. Of these, 14 randomly selected subjects aged 21 and 34 took part. The subjects performed three computerized cognitive tests in the mid frequency or the low frequency noise condition alternatively. Tests I and II were performed together with a secondary task.Questionnaires were used to evaluate subjective symptoms, effects on mood and estimated interference with the test results due to temperature, light and noise. The results showed that the subjective estimations of noise interference with performance were higher for the low frequency noise (p<0·05). The exposure to low frequency noise resulted in lower social orientation (p<0·05) (more disagreeable, less co-operative, helpful) and a tendency to lower pleasantness (p=0·07) (more bothered, less content) as compared to the mid frequency noise exposure. Data from test III may indicate that the response time during the last part of the test was longer in the low frequency noise exposure. The effects seemed to appear over time. The hypothesis that cognitive demands are less well coped with under the low frequency noise condition, needs to be further studied. The results further indicate that the NC curves do not fully assess the negative effects of low frequency noise on work performance.

  11. Dynamics of barotropic low-frequency fluctuations in San Francisco Bay during upwelling

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, S.; Fringer, Oliver B.

    2013-08-01

    Observations of wind, surface elevations, and currents in San Francisco Bay during the 1999 upwelling season are analyzed to understand the dynamics of low-frequency currents in upwelling-dominated estuaries. Principal component analysis is carried out to distinguish the different uncorrelated components of the low-frequency fluctuations in the observations. Analyses of ADCP observations at two locations in the Bay show that barotropic currents flow in the direction of winds in the shallow parts of the cross section and flow against the wind in the deeper parts of the cross-section. We ran the SUNTANS model with three forcing functions: (i) winds, (ii) low-frequency surface elevations, and (iii) winds and low-frequency surface elevations, to determine the forcing functions that best reproduce the observed low-frequency fluctuations. Analyses of observations and model simulations show that wind-driven flow in the shallow areas and upwind in the deeper areas, consistent with linear theory. Model simulations also show that the low-frequency currents in the Bay generated due to local winds capture the mean low-frequency barotropic fluctuations seen in the observations during the upwelling season. Model simulations showed that the current generated due to the coastal sea level forcing at the mouth of the Bay is small because the coastal sea levels inside the Bay are in phase with that at the mouth and thus generate weak or negligible pressure gradients. We conclude that forcing of low-frequency sea level fluctuations along the offshore boundaries in the model simulations does not lead to improvement in the prediction of low-frequency currents in San Francisco Bay.

  12. A Population Based Study of the Genetic Association between Catecholamine Gene Variants and Spontaneous Low-Frequency Fluctuations in Reaction Time

    PubMed Central

    Bastiaansen, Jojanneke A.; Cummins, Tarrant D. R.; Riese, Harriëtte; van Roon, Arie M.; Nolte, Ilja M.; Oldehinkel, Albertine J.; Bellgrove, Mark A.

    2015-01-01

    The catecholamines dopamine and noradrenaline have been implicated in spontaneous low-frequency fluctuations in reaction time, which are associated with attention deficit hyperactivity disorder (ADHD) and subclinical attentional problems. The molecular genetic substrates of these behavioral phenotypes, which reflect frequency ranges of intrinsic neuronal oscillations (Slow-4: 0.027-0.073 Hz; Slow-5: 0.010-0.027 Hz), have not yet been investigated. In this study, we performed regression analyses with an additive model to examine associations between low-frequency fluctuations in reaction time during a sustained attention task and genetic markers across 23 autosomal catecholamine genes in a large young adult population cohort (n = 964), which yielded greater than 80% power to detect a small effect size (f2 = 0.02) and 100% power to detect a small/medium effect size (f2 = 0.15). At significance levels corrected for multiple comparisons, none of the gene variants were associated with the magnitude of low-frequency fluctuations. Given the study’s strong statistical power and dense coverage of the catecholamine genes, this either indicates that associations between low-frequency fluctuation measures and catecholamine gene variants are absent or that they are of very small effect size. Nominally significant associations were observed between variations in the alpha-2A adrenergic receptor gene (ADRA2A) and the Slow-5 band. This is in line with previous reports of an association between ADRA2A gene variants and general reaction time variability during response selection tasks, but the specific association of these gene variants and low-frequency fluctuations requires further confirmation. Pharmacological challenge studies could in the future provide convergent evidence for the noradrenergic modulation of both general and time sensitive measures of intra-individual variability in reaction time. PMID:25978426

  13. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  14. A Review of the Low-Frequency Waves in the Giant Magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2016-02-01

    The giant magnetospheres harbor a plethora of low-frequency waves with both internal (i.e., moons) and external (i.e., solar wind) source mechanisms. This chapter summarizes the observation of low-frequency waves at Jupiter and Saturn and postulates the underlying physics based on our understanding of magnetodisc generation mechanisms. The source mechanisms of ULF pulsations at the giant magnetospheres are numerous. The satellite-magnetosphere interactions and mass loading of corotational flows generate many low-frequency waves. Observations of low-frequency bursts of radio emissions serve as an excellent diagnostic for understanding satellite-magnetosphere interactions. The outward radial transport of plasma through the magnetodisc and related magnetic flux circulation is a significant source of ULF pulsations; however, it is uncertain how the radial transport mechanism compares with solar wind induced perturbations.

  15. Low Frequency Activity of Cortical Networks on Microelectrode Arrays is Differentially Altered by Bicuculline and Carbaryl

    EPA Science Inventory

    Thousands of chemicals need to be characterized for their neurotoxicity potential. Neurons grown on microelectrode arrays (MEAs) are an in vitro model used to screen chemicals for functional effects on neuronal networks. Typically, after removal of low frequency components, effec...

  16. Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.

    2010-01-01

    This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.

  17. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  18. Impact to Space Shuttle Vehicle Trajectory on Day of Launch from change in Low Frequency Winds

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Puperi, Daniel; Leach, Richard

    2007-01-01

    The National Aeronautics and Space Administration's (NASA) Space Shuttle utilizes atmospheric winds on day of launch to develop throttle and steering commands to best optimize vehicle performance while keeping structural loading on the vehicle within limits. The steering commands and resultant trajectory are influenced by both the high and low frequency component of the wind. However, the low frequency component has a greater effect on the ascent design. Change in the low frequency wind content from the time of trajectory design until launch can induce excessive loading on the vehicle. Wind change limits have been derived to protect from launching in an environment where these temporal changes occur. Process of developing wind change limits are discussed followed by an observational study of temporal wind change in low frequency wind profiles at the NASA's Kennedy Space Center area are presented.

  19. Dynamics of Low-frequency fluctuations in San Francisco Bay due to upwelling

    NASA Astrophysics Data System (ADS)

    Subbayya, S.; Fringer, O. B.

    2010-12-01

    Low-frequency dynamics of San Francisco Bay during the 1999 upwelling event is analyzed using observations of wind, surface elevations, and currents, and a principal component analysis is carried out on the observations to distinguish between barotropic and baroclinic components of the low-frequency fluctuations. The source of these low-frequency fluctuations is then determined with the SUNTANS model which is forced using local winds and offshore low-frequency surface observations. The results show that local wind forcing generates 5-10 cm/s currents in the direction of the winds in the shallows and 2-3 cm/s currents against winds in deep water. The offshore forcing, on the other hand, induces predicted current speeds of 1-2 cm/s in the shallows and negligible currents in deeper waters. The simulations also show that the local winds and bathymetric variability drive transverse circulation in the Bay similar to topographic gyres seen in lakes.

  20. Small foamed polystyrene shield protects low-frequency microphones from wind noise

    NASA Technical Reports Server (NTRS)

    Tedrick, R. N.

    1964-01-01

    A foamed polystyrene noise shield for microphones has been designed in teardrop shape to minimize air turbulence. The shield slips on and off the microphone head easily and is very effective in low-frequency sound intensity measurements.

  1. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  2. Development of Very Low Frequency Self-Nulling Probe for Inspection of Thick Layered Aluminum Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    1998-01-01

    It is clear from simple skin depth considerations that steady state electromagnetic inspection of thick multi-layered conductors requires low frequency excitation. Conventional pickup sensors, however, lose sensitivity at lower frequencies. Giant magneto resistive materials offer a unique alternative for very low frequency electromagnetic NDE due to their high sensitivity to low frequency fields, small size, ease of use, and low cost. This paper outlines the development and testing of a Very Low Frequency Self-Nulling Probe incorporating a GMR sensor. The initial test results show flaw detectability at depths up to 1 cm in aluminum 2024. Optimization of the probe design based upon finite element modeling and GMR sensor characteristics (including hysteresis, linearity and saturation) is under way.

  3. Study of low-frequency-acoustic- and seismic-wave energy propagation on the shelf

    NASA Astrophysics Data System (ADS)

    Rutenko, A. N.; Manul'chev, D. S.; Solov'ev, A. A.

    2013-05-01

    The paper presents the results of field and numerical studies on the features of low-frequency-acoustic- and seismic-wave energy propagation on the shelf of the Sea of Japan. Measurements were conducted with the Mollusk-07 autonomous vertical acousto-hydrophysical measurement system, an electromagnetic low-frequency resonance emitter, and a pulsed pneumoemitter lowered from the ship, as well as a shore-based resonance seismoemitter.

  4. The transmission of low frequency medical data using delta modulation techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Dawson, C. T.

    1972-01-01

    The transmission of low-frequency medical data using delta modulation techniques is described. The delta modulators are used to distribute the low-frequency data into the passband of the telephone lines. Both adaptive and linear delta modulators are considered. Optimum bit rates to minimize distortion and intersymbol interference are discussed. Vibrocardiographic waves are analyzed as a function of bit rate and delta modulator configuration to determine their reproducibility for medical evaluation.

  5. High Accuracy Tiny Crack Detection in Metal by Low Frequency Electromagnetic Technique

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Shen, Changyu; Shentu, Fengying; Li, Guanghai; Chang, Yu; Lu, Xinyuan

    2016-01-01

    A low frequency testing technology based on eddy current technique is proposed for detecting defects in some special equipment surface. A two-dimension model is built to simulate the distribution of low frequency (10 Hz) magnetic flux density nearby the surface of a metal plate. The influence of lift-off effect, coil diameter, crack shape on the measurement are discussed. And the crack measurement sensitivity of 0.6 pm was obtained.

  6. The Design and Implementation of Instruments for Low-Frequency Electromagnetic Sounding of the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Delory, G. T.; Grimm, R. E.

    2003-01-01

    Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.

  7. The Prevalence of Annoyance and Effects after Long-Term Exposure to Low-Frequency Noise

    NASA Astrophysics Data System (ADS)

    PERSSON WAYE, K.; RYLANDER, R.

    2001-02-01

    A cross-sectional questionnaire and noise measurement survey was undertaken among 279 randomly chosen persons exposed to noise from heat pump/ventilation installations in their homes. The aim was to evaluate the prevalence of annoyance, disturbance of rest and concentration and the presence of psycho-social and medical symptoms in relation to noise exposure. Of the sample, 108 persons were exposed to a noise classified as of a low-frequency character (low-frequency noise exposed). As controls were chosen 171 persons living in similar residential areas, but exposed to a noise classified as of a mid-frequency character. The results showed that the prevalence of annoyance and disturbed concentration and rest was significantly higher among the persons exposed to low-frequency noise as compared to controls. Annoyance was suggested to be related to the sound pressure levels of the dominant low frequencies. The dB (A) noise levels did not predict annoyance. No significant differences in medical or psycho-social symptoms were found between the low-frequency noise exposed persons and controls. Among persons reporting themselves to be “rather” or “very” annoyed by low-frequency noise due to the heat pump/ventilation installations, a higher extent of psycho-social symptoms, sleep disturbance and headaches was found.

  8. The subjective effect of low frequency content in road traffic noise.

    PubMed

    Torija, Antonio J; Flindell, Ian H

    2015-01-01

    Based on subjective listening trials, Torija and Flindell [J. Acoust. Soc. Am. 135, 1-4 (2014)] observed that low frequency content in typical urban main road traffic noise appeared to make a smaller contribution to reported annoyance than might be inferred from its objective or physical dominance. This paper reports a more detailed study which was aimed at (i) identifying the difference in sound levels at which low frequency content becomes subjectively dominant over mid and high frequency content and (ii) investigating the relationship between loudness and annoyance under conditions where low frequency content is relatively more dominant, such as indoors where mid and high frequency content is reduced. The results suggested that differences of at least +30 dB between the low frequency and the mid/high frequency content are needed for changes in low frequency content to have as much subjective effect as equivalent changes in mid and high frequency content. This suggests that common criticisms of the A-frequency weighting based on a hypothesized excessive downweighting of the low frequency content may be relatively unfounded in this application area. PMID:25618050

  9. 40-50 day oscillation and the El-Nino/Southern Oscillation - a new perspective

    SciTech Connect

    Lau, K.M.; Chan, P.H.

    1986-05-01

    The tropical ocean-atmosphere exhibits two prominent modes of low-frequency oscillations, i.e, the 40-50 day oscillation and the El Nino/Southern Oscillation (ENSO). The two phenomena are viewed in the same perspective from 10 years of satellite-derived out-going-longwave-radiation data. Results reveal some interesting features that may lead to new insights into the understanding of the two phenomena.

  10. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  11. Detection and significance of a discrete very low frequency rhythm in RR interval variability in chronic congestive heart failure.

    PubMed

    Ponikowski, P; Chua, T P; Amadi, A A; Piepoli, M; Harrington, D; Volterrani, M; Colombo, R; Mazzuero, G; Giordano, A; Coats, A J

    1996-06-15

    Although in advanced chronic congestive heart failure (CHF) very low frequency (< 0.04 Hz, VLF) oscillations are prominent, the clinical importance and the physiologic basis of these rhythms have not been elucidated. To investigate the physiologic determinants of the VLF rhythms in RR interval variability, we studied 36 patients with stable, moderate to severe CHF (33 men, age: 58 +/- 8 years, ejection fraction 25 +/- 10%, peak oxygen consumption 18.1 +/- 4.6 ml/kg/min) and 12 age- and sex-matched controls using autoregressive spectral analysis of RR interval, blood pressure, and respiratory signals during controlled conditions. We quantified low frequency (LF) (0.04 to 0.15 Hz), high frequency (HF) (0.15 to 0.40 Hz), VLF, and total power (0 to 0.5 Hz), and calculated the coherence between systolic blood pressure and RR interval variability within each band. Peripheral chemosensitivity was assessed by the ventilatory response to hypoxia using transient inhalation of pure nitrogen. The influence of transient inactivation of peripheral chemoreceptors on the VLF rhythm was investigated by exposing 6 patients to hyperoxic (60% oxygen) conditions for 20 minutes. Twenty-three patients (64%) with CHF, but no controls, had a discrete VLF rhythm (0.019 +/- 0.008 Hz) in RR variability. The presence of VLF rhythm was not related to any difference in clinical parameters (etiology, New York Heart Association class, ejection fraction, oxygen uptake) but rather to a different pattern in RR interval and blood pressure variability: lower LF power (2.8 +/- 1.6 ms2 natural logarithm [ln]) compared either to patients without VLF (4.0 +/- 1.3 ms2 ln) or to controls (5.9 +/- 0.7 ms2 ln), higher percentage of power within VLF band (86.3 +/- 8.3% vs 77.5 +/- 7.9% and 61.5 +/- 14.1%) and a markedly impaired coherence between RR interval and systolic blood pressure variability within the LF band (0.26 +/- 0.10 vs 0.42 +/- 0.18 and 0.63 +/- 0.15, in patients with vs without VLF peak and

  12. Low-frequency vibrational properties of crystalline and glassy indomethacin probed by terahertz time-domain spectroscopy and low-frequency Raman scattering.

    PubMed

    Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji

    2015-11-01

    In order to clarify the intermolecular vibrations, the low-frequency modes of the glassy and crystalline states of model pharmaceutical indomethacin have been studied using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. In the crystalline γ-form, the center of symmetry was suggested by the observation of the exclusion principle of the infrared (IR) and Raman selection rules in the frequency range between 0.2 and 6.5 THz. In addition, a boson peak of the glassy state was observed in both IR and Raman spectra and their frequency showed apparent discrepancy. The intermediate correlation length of the glassy structure was estimated to be about 2.5 nm. The existence of hydrogen bonded cyclic dimers in a glassy state was suggested by the observation of the infrared active intermolecular vibrational mode of the hydrogen bonded cyclic dimers as a broad peak at 3.0 THz in the IR spectrum. PMID:26051642

  13. Low-frequency scaling applied to stochastic finite-fault modeling

    NASA Astrophysics Data System (ADS)

    Crane, Stephen; Motazedian, Dariush

    2014-01-01

    Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.

  14. Low Frequency Variability in a Stochastic Atmosphere - Ocean Mixed Layer Model

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.

    2015-12-01

    The climate system exhibits low-frequency variability in characteristic spatial structures, but the mechanisms for this variability have remained unclear partly due to observational limitations and partly due to difficulties in analyzing simulations from nonlinear, chaotic models. In addition, recent studies have questioned the necessity of ocean circulations to generate such low-frequency variability. Our research is intended to clarify mechanisms of low-frequency climate variability that can occur purely from atmospheric dynamics coupled to an ocean mixed-layer model. For this purpose, we have built a new stochastic model based on the linearized primitive equations for the atmosphere, a slab mixed-layer model for the ocean, a gray radiation scheme for radiative effects, and a diffusive scheme for vertical turbulent eddy fluxes. Temperature is randomly excited in midlatitudes, and all variables except surface pressure are damped artificially with a 1-day time scale. The atmospheric model alone is shown to produce realistic seasonal mean eddy variances and fluxes in midlatitudes, despite the absence of moisture, clouds, moist convection, topography, and zonal asymmetries in the back- ground state. Because the atmospheric eddy statistics are realistic, it is argued that coupling these eddies to a mixed-layer model will produce more realistic low-frequency variability than the traditional Hasselmann model in which the atmospheric stochastic forcing is imposed by fiat. We have shown that such coupling does indeed generate peaks in the low-frequency power spectrum that otherwise would not occur in the absence of coupling. Now, we are trying to comprehensively analyze the mechanism for these low-frequency peaks, exploiting the fact that the model is purely linear. We further aim to analyze simulations from a comprehensive nonlinear aquaplanet GCM. The results from nonlinear simulations will serve as a baseline for theoretical statistical studies in low frequency

  15. Low frequency, electrodynamic simulation of kinetic plasmas with the DArwin Direct Implicit Particle-In-Cell (DADIPIC) method

    SciTech Connect

    Gibbons, M.R.

    1995-06-01

    This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.

  16. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury

    PubMed Central

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz; and typical: 0.01–0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients. PMID:26869907

  17. Low-frequency vocalizations in the Florida manatee (Trichechus manatus latirostris)

    NASA Astrophysics Data System (ADS)

    Frisch, Katherine; Frisch, Stefan

    2003-10-01

    Vocalizations produced by Florida manatees (Trichechus manatus latirostris) have been characterized as being of relatively high frequency, with fundamental tones ranging from 2500-5000 Hz. These sounds have been variously described as squeaks, squeals, and chirps. Vocalizations below 500 Hz have not been previously reported. Two captive-born Florida manatees were recorded at Mote Marine Laboratory in Sarasota, Florida. The analysis of these vocalizations provides evidence of a new category of low-frequency sounds produced by manatees. These sounds are often heard in conjunction with higher-frequency vocalizations. The low-frequency vocalizations are relatively brief and of low amplitude. These vocalizations are perceived as a series of impulses rather than a low-frequency periodic tone. Knowledge of these low-frequency vocalizations could be useful to those developing future management strategies. Interest has recently increased in the development of acoustic detection and deterrence devices to reduce the number of manatee watercraft interactions. The design of appropriate devices must take into account the apparent ability of manatees to perceive and produce sounds of both high and low frequency. It is also important to consider the possibility that acoustic deterrence devices may disrupt the potentially communicative frequencies of manatee vocalizations.

  18. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs.

    PubMed

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-11

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid-semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics. PMID:26574477

  19. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-01

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid-semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics.

  20. A hybrid method for strong low-frequency noise suppression in prestack seismic data

    NASA Astrophysics Data System (ADS)

    Hu, Chunhua; Lu, Wenkai

    2014-09-01

    Low-frequency components are important portion of seismic data in exploration geophysics, and have great effects on seismic imaging of deep subsurface and full waveform inversion. Unfortunately, seismic data usually suffers from various kinds of noises and has low signal to noise ratio (SNR) in low-frequency band, although this situation has been improved by developments of acquisition technology. In this paper, we propose a low-frequency cascade filter (LFCF) in Fourier domain for strong low-frequency noise suppression in prestack gathers. LFCF includes a 1D adaptive median filter in f-x domain and a 2D notch filter in f-k domain, which is able to process high-amplitude swell noise, random noise, and seismic interference noise. We employ traces rearrangement and spike-detection mechanisms in adaptive f-x median filter, which can handle strong noise specifically, such as wide-spreading swell noise and tug noise. And a notch filter in f-k domain is designed to separate reflection signal and random noise by different apparent velocities. Through these means, our method can effectively attenuate low-frequency random and coherent noise while simultaneously protect the signal. Experiments on synthetic example and field data are conducted, and the results demonstrate that our method is practical and effective and can preserve signal down to 2 Hz.

  1. Extremely Low Frequency Electromagnetic Fields Facilitate Vesicle Endocytosis by Increasing Presynaptic Calcium Channel Expression at a Central Synapse.

    PubMed

    Sun, Zhi-Cheng; Ge, Jian-Long; Guo, Bin; Guo, Jun; Hao, Mei; Wu, Yi-Chen; Lin, Yi-An; La, Ting; Yao, Pan-Tong; Mei, Yan-Ai; Feng, Yi; Xue, Lei

    2016-01-01

    Accumulating evidence suggests significant biological effects caused by extremely low frequency electromagnetic fields (ELF-EMF). Although exo-endocytosis plays crucial physical and biological roles in neuronal communication, studies on how ELF-EMF regulates this process are scarce. By directly measuring calcium currents and membrane capacitance at a large mammalian central nervous synapse, the calyx of Held, we report for the first time that ELF-EMF critically affects synaptic transmission and plasticity. Exposure to ELF-EMF for 8 to 10 days dramatically increases the calcium influx upon stimulation and facilitates all forms of vesicle endocytosis, including slow and rapid endocytosis, endocytosis overshoot and bulk endocytosis, but does not affect the RRP size and exocytosis. Exposure to ELF-EMF also potentiates PTP, a form of short-term plasticity, increasing its peak amplitude without impacting its time course. We further investigated the underlying mechanisms and found that calcium channel expression, including the P/Q, N, and R subtypes, at the presynaptic nerve terminal was enhanced, accounting for the increased calcium influx upon stimulation. Thus, we conclude that exposure to ELF-EMF facilitates vesicle endocytosis and synaptic plasticity in a calcium-dependent manner by increasing calcium channel expression at the nerve terminal. PMID:26887777

  2. Extremely Low Frequency Electromagnetic Fields Facilitate Vesicle Endocytosis by Increasing Presynaptic Calcium Channel Expression at a Central Synapse

    PubMed Central

    Sun, Zhi-cheng; Ge, Jian-long; Guo, Bin; Guo, Jun; Hao, Mei; Wu, Yi-chen; Lin, Yi-an; La, Ting; Yao, Pan-tong; Mei, Yan-ai; Feng, Yi; Xue, Lei

    2016-01-01

    Accumulating evidence suggests significant biological effects caused by extremely low frequency electromagnetic fields (ELF-EMF). Although exo-endocytosis plays crucial physical and biological roles in neuronal communication, studies on how ELF-EMF regulates this process are scarce. By directly measuring calcium currents and membrane capacitance at a large mammalian central nervous synapse, the calyx of Held, we report for the first time that ELF-EMF critically affects synaptic transmission and plasticity. Exposure to ELF-EMF for 8 to 10 days dramatically increases the calcium influx upon stimulation and facilitates all forms of vesicle endocytosis, including slow and rapid endocytosis, endocytosis overshoot and bulk endocytosis, but does not affect the RRP size and exocytosis. Exposure to ELF-EMF also potentiates PTP, a form of short-term plasticity, increasing its peak amplitude without impacting its time course. We further investigated the underlying mechanisms and found that calcium channel expression, including the P/Q, N, and R subtypes, at the presynaptic nerve terminal was enhanced, accounting for the increased calcium influx upon stimulation. Thus, we conclude that exposure to ELF-EMF facilitates vesicle endocytosis and synaptic plasticity in a calcium-dependent manner by increasing calcium channel expression at the nerve terminal. PMID:26887777

  3. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains.

    PubMed

    Cheng, Yannan; Dai, Yiqin; Zhu, Ximin; Xu, Haochen; Cai, Ping; Xia, Ruohong; Mao, Lizhen; Zhao, Bing-Qiao; Fan, Wenying

    2015-10-21

    In the mammalian brain, neurogenesis persists throughout the embryonic period and adulthood in the subventricular zone of the lateral ventricle and the granular zone (dentate gyrus) of the hippocampus. Newborn neural progenitor cells (NPCs) in the two regions play a critical role in structural and functional plasticity and neural regeneration after brain injury. Previous studies have reported that extremely low-frequency electromagnetic fields (ELF-EMF) could promote osteogenesis, angiogenesis, and cardiac stem cells' differentiation, which indicates that ELF-EMF might be an effective tool for regenerative therapy. The present studies were carried out to examine the effects of ELF-EMF on hippocampal NPCs cultured from embryonic and adult ischemic brains. We found that exposure to ELF-EMF (50 Hz, 0.4 mT) significantly enhanced the proliferation capability both in embryonic NPCs and in ischemic NPCs. Neuronal differentiation was also enhanced after 7 days of cumulative ELF-EMF exposure, whereas glial differentiation was not influenced markedly. The expression of phosphorylated Akt increased during the proliferation process when ischemic NPCs were exposed to ELF-EMF. However, blockage of the Akt pathway abolished the ELF-EMF-induced proliferation of ischemic NPCs. These data show that ELF-EMF promotes neurogenesis of ischemic NPCs and suggest that this effect may occur through the Akt pathway.Video abstract, Supplemental Digital Content 1, http://links.lww.com/WNR/A347. PMID:26339991

  4. Weld pool oscillation during pulsed GTA welding

    SciTech Connect

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Under these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.

  5. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  6. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  7. Low frequency noise characteristics in multilayer WSe2 field effect transistor

    NASA Astrophysics Data System (ADS)

    Cho, In-Tak; Kim, Jong In; Hong, Yoonki; Roh, Jeongkyun; Shin, Hyeonwoo; Baek, Geun Woo; Lee, Changhee; Hong, Byung Hee; Jin, Sung Hun; Lee, Jong-Ho

    2015-01-01

    This paper investigates the low-frequency noise properties of multilayer WSe2 field effect transistors (FETs) in subthreshold, linear, and saturation regime. The measured noise power spectral density of drain current (SID) shows that the low-frequency noise in multilayer WSe2 FET fits well to a 1/fγ power law with γ ˜ 1 in the frequency range of 10 Hz-200 Hz. From the dependence of SID on the drain current, carrier mobility fluctuation is considered as a dominant low frequency noise mechanism from all operation regimes in multilayer WSe2 FET. Extracted Hooge's parameter in this study is within the value of 0.12, comparable to those of the transition metal dichalcogenide FETs in recent reports.

  8. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  9. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  10. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  11. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  12. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer.

    PubMed

    O'Toole, A; Peña Arellano, F E; Rodionov, A V; Shaner, M; Sobacchi, E; Dergachev, V; DeSalvo, R; Asadoor, M; Bhawal, A; Gong, P; Kim, C; Lottarini, A; Minenkov, Y; Murphy, C

    2014-07-01

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems. PMID:25085166

  13. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Düring, Gustavo; Bouchbinder, Eran

    2016-07-01

    Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a crossover size LD, the low-frequency tail of the density of states follows D (ω )˜ω4 up to the vicinity of the lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational frequency in systems of size L low-frequency modes is elucidated, and a number of glassy length scales are briefly discussed.

  14. The impact of low-frequency and rare variants on lipid levels

    PubMed Central

    Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli

    2016-01-01

    Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943

  15. Development of narrow-band low-frequency active filters for DC railway vehicles

    SciTech Connect

    Weem, J. van der

    1994-12-31

    To avoid failures in the signalling systems of light-rail plants low frequency components of the line current may often not exceed specified limits. These limits are in the range of 0.1% of the line current. Presently the low frequency components are damped with passive filters. This paper proposes an active filter to reduce the low frequency components of the line current. A method for dimensioning a digital control algorithm for active filters, which are implemented in the railway vehicle, is presented. Time domain simulations are carried out. They predicted a good behaviour of the active filter for all kinds of vehicles and different realistic conditions. The active filter was realized with an IGBT-inverter and the filter algorithm was implemented in a microcontroller, to ensure a high flexibility. The measurements presented in this paper prove the validity of the simulations. 19 refs.

  16. Application of a finite-element model to low-frequency sound insulation in dwellings.

    PubMed

    Maluski, S P; Gibbs, B M

    2000-10-01

    The sound transmission between adjacent rooms has been modeled using a finite-element method. Predicted sound-level difference gave good agreement with experimental data using a full-scale and a quarter-scale model. Results show that the sound insulation characteristics of a party wall at low frequencies strongly depend on the modal characteristics of the sound field of both rooms and of the partition. The effect of three edge conditions of the separating wall on the sound-level difference at low frequencies was examined: simply supported, clamped, and a combination of clamped and simply supported. It is demonstrated that a clamped partition provides greater sound-level difference at low frequencies than a simply supported. It also is confirmed that the sound-pressure level difference is lower in equal room than in unequal room configurations. PMID:11051501

  17. Human Hippocampal Increases in Low-Frequency Power during Associative Prediction Violations

    PubMed Central

    Chen, Janice; Dastjerdi, Mohammad; Foster, Brett L.; LaRocque, Karen F.; Rauschecker, Andreas M.; Parvizi, Josef; Wagner, Anthony D.

    2013-01-01

    Environmental cues often trigger memories of past events (associative retrieval), and these memories are a form of prediction about imminent experience. Learning is driven by the detection of prediction violations, when the past and present diverge. Using intracranial electroencephalography (iEEG), we show that associative prediction violations elicit increased low-frequency power (in the slow-theta range) in human hippocampus, that this low-frequency power increase is modulated by whether conditions allow predictions to be generated, that the increase rapidly onsets after the moment of violation, and that changes in low-frequency power are not present in adjacent perirhinal cortex. These data suggest that associative mismatch is computed within hippocampus when cues trigger predictions that are violated by imminent experience. PMID:23571081

  18. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    SciTech Connect

    O’Toole, A. E-mail: riccardo.desalvo@gmail.com; Peña Arellano, F. E.; Rodionov, A. V.; Kim, C.; Shaner, M.; Asadoor, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R. E-mail: riccardo.desalvo@gmail.com; Bhawal, A.; Gong, P.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  19. The history of early low frequency radio astronomy in Australia. 2: Tasmania

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    Significant contributions to low frequency radio astronomy were made in the Australian state of Tasmania after the arrival of Grote Reber in 1954. Initially, Reber teamed with Graeme Ellis, who was then working with the Ionospheric Prediction Service, and they carried out observations as low as 0.52 MHz during the 1955 period of exceptionally low sunspot activity. In the early 1960s, Reber established a 2.085 MHz array in the southern central region of the State and used this to make the first map of the southern sky at this frequency. In addition, in the 1960s the University of Tasmania constructed several low frequency arrays near Hobart, including a 609m × 609m array designed for operation between about 2 MHz and 20 MHz. In this paper we present an overview of the history of low frequency radio astronomy in Tasmania.

  20. Balloon observations of ultra-low-frequency waves in the electric field above the South Pole

    SciTech Connect

    Liao, B.; Benbrrook, J.R.; Bering E.A. III; Byrne, G.J.; Theall, J.R. )

    1988-01-01

    The physics of ultra-low-frequency waves in the magnetosphere, near the cusp and in the polar cap, is important because this region is one where ultra-low-frequency wave energy from the magnetopause can most easily enter the magnetosphere. During the 1985-1986 South Pole balloon campaign, eight stratospheric balloon payloads were launched from Amundsen-Scott Station, South Geographic Pole, Antarctica, to record data on ultra-low-frequency waves. The payloads were instrumented with three-axis double-probe electric field detectors and X-ray scintillation counters. This paper concentrates on the third flight of this series, which was launched at 2205 universal time on 21 December 1985. Good data were received from the payload until the transmitter failed at 0342 universal time on 22 December. During most of the four hours that the balloon was afloat, an intense ultra-low-frequency wave event was in progress. The electric-field data from this period have been examined in detail and compared with magnetic field data, obtained with ground-based fluxgate and induction magnetometers to determine the characteristics of the waves. After float was reached, the electric-field data in figure 1 show large-amplitude, quasi-periodic fluctuations suggesting the presence of intense ultra-low-frequency wave activity. In conclusion, the electric-field signature observed from flight 3 appears to have been essentially an electrostatic event or possibly a short-wavelength hydromagnetic wave with a varying and interesting polarization character. The authors are continuing the analysis of the data to determine the source of the observed ultra-low-frequency waves.