Sample records for low-frequency vibrational dynamics

  1. Cyclodextrin-complexation effects on the low-frequency vibrational dynamics of ibuprofen by combined inelastic light and neutron scattering experiments.

    PubMed

    Crupi, Vincenza; Fontana, Aldo; Giarola, Marco; Guella, Graziano; Majolino, Domenico; Mancini, Ines; Mariotto, Gino; Paciaroni, Alessandro; Rossi, Barbara; Venuti, Valentina

    2013-04-11

    The effect of the inclusion into cyclodextrins (CD) cavity on the low-frequency vibrational dynamics of the anti-inflammatory drug ibuprofen (IBP) is here investigated by using Raman and inelastic neutron scattering (INS) experiments. The differences observed in the frequency regime 0-100 cm(-1) between the vibrational modes of uncomplexed racemic and enantiomeric IBP are discussed on the basis of comparison with the quantum chemical computation results, taking into account the distinct symmetry properties of the molecules involved in the formation of the host-guest complex. Subsequently, the inspection of the same frequency range in the spectra of pure host methyl-β-CD and its IBP-inclusion complexes allows one to identify significant modifications in the vibrational dynamics of the guest molecule after their confinement into CD cavity. The experimental Raman and neutron spectra and the derived Raman coupling function C(R)(ω) show that the complexation process gives rise to a complete amorphization of the drug, as well as to a partial hindering, in the vibrational dynamics of complexes, of the modes between 50 and 150 cm(-1) attributed to CD molecule. The comparison between the Raman and neutron spectra of free and complexed IBP in the energy range of the Boson peak (BP) gives evidence that the dynamics related to this specific vibrational feature is sensitive to complexation phenomena.

  2. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth

    PubMed Central

    Han, D.; Kedzierski, Mark A.

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°–80°), the vibration displacement (10 µm–50 µm), the vibration frequency (5 Hz–25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described. PMID:28747812

  3. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: A Raman scattering and molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2009-12-01

    The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the

  4. Vibration amplitude sonoelastography lesion imaging using low-frequency audible vibration

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence; Parker, Kevin

    2003-04-01

    Sonoelastography or vibration amplitude imaging is an ultrasound imaging technique in which low-amplitude, low-frequency shear waves, less than 0.1-mm displacement and 1-kHz frequency, are propagated deep into tissue, while real time Doppler techniques are used to image the resulting vibration pattern. Finite-element studies and experiments on tissue-mimicking phantoms verify that a discrete hard inhomogeneity present within a larger region of soft tissue will cause a decrease in the vibration field at its location. This forms the basis for tumor detection using sonoelastography. Real time relative imaging of the vibration field is possible because a vibrating particle will phase modulate an ultrasound signal. The particle's amplitude is directly proportional to the spectral spread of the reflected Doppler echo. Real time estimation of the variance of the Doppler power spectrum at each pixel allows the vibration field to be imaged. Results are shown for phantom lesions, thermal lesions, and 3-D in vitro and 2-D in vivo prostate cancer. MRI and whole mount histology is used to validate the system accuracy.

  5. Gel performance in rheology and profile control under low-frequency vibration: coupling application of physical and chemical EOR techniques.

    PubMed

    Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir

    2017-01-01

    Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.

  6. High-precision and low-cost vibration generator for low-frequency calibration system

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  7. Internally resonating lattices for bandgap generation and low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Baravelli, Emanuele; Ruzzene, Massimo

    2013-12-01

    The paper reports on a structural concept for high stiffness and high damping performance. A stiff external frame and an internal resonating lattice are combined in a beam-like assembly which is characterized by high frequency bandgaps and tuned vibration attenuation at low frequencies. The resonating lattice consists of an elastomeric material arranged according to a chiral topology which is designed to resonate at selected frequencies. The concept achieves high damping performance by combining the frequency-selective properties of internally resonating structures, with the energy dissipation characteristics of their constituent material. The flexible ligaments, the circular nodes and the non-central interactions of the chiral topology lead to dynamic deformation patterns which are beneficial to energy dissipation. Furthermore, tuning and grading of the elements of the lattice allows for tailoring of the resonating properties so that vibration attenuation is obtained over desired frequency ranges. Numerical and experimental results demonstrate the tuning flexibility of this concept and suggest its potential application for load-carrying structural members parts of vibration and shock prone systems.

  8. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  9. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  10. Internal resonance and low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  11. Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform

    NASA Astrophysics Data System (ADS)

    Kamesh, D.; Pandiyan, R.; Ghosal, Ashitava

    2012-03-01

    Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control.

  12. Low-frequency meandering piezoelectric vibration energy harvester.

    PubMed

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.

  13. Low frequency vibration induced streaming in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less

  14. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  15. Low-frequency vibrations of a cylindrical shell rotating on rollers

    NASA Astrophysics Data System (ADS)

    Filippov, S. B.

    2018-05-01

    Small free low-frequency vibrations of a rotating closed cylindrical shell which is in a contact with rigid cylindrical rollers are considered. Assumptions of semi-momentless shell theory are used. By means of the expansion of solutions in truncated Fourier series in circumference coordinate the system of the algebraic equations for the approximate calculation of the vibration frequencies and the mode shapes is obtained. The algorithm for the evaluation of frequencies and vibration modes based on analytical solution is developed. In particular, the lowest frequencies of thin cylindrical shell, representing greatest interest for applications, were found. Approximate results are compared with results of numerical calculations carried out by the Finite Elements Analysis. It is shown that the semi-momentless theory can be used for the evaluation of the low frequencies of a cylindrical shell rotating on rollers.

  16. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

  17. The effects of low-frequency vibrations on hepatic profile of blood

    NASA Astrophysics Data System (ADS)

    Damijan, Z.

    2008-02-01

    Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of

  18. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    NASA Astrophysics Data System (ADS)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  19. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  20. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    NASA Astrophysics Data System (ADS)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  1. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  2. Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    PubMed Central

    Vandenberg, Laura N.; Pennarola, Brian W.; Levin, Michael

    2011-01-01

    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs. PMID:21826245

  3. Effect of temperature- and frequency-dependent dynamic properties of rail pads on high-speed vehicle-track coupled vibrations

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Wang, Feng; Wang, Ping; Liu, Zi-xuan; Zhang, Pan

    2017-03-01

    The soft under baseplate pad of WJ-8 rail fastener frequently used in China's high-speed railways was taken as the study subject, and a laboratory test was performed to measure its temperature and frequency-dependent dynamic performance at 0.3 Hz and at -60°C to 20°C with intervals of 2.5°C. Its higher frequency-dependent results at different temperatures were then further predicted based on the time-temperature superposition (TTS) and Williams-Landel-Ferry (WLF) formula. The fractional derivative Kelvin-Voigt (FDKV) model was used to represent the temperature- and frequency-dependent dynamic properties of the tested rail pad. By means of the FDKV model for rail pads and vehicle-track coupled dynamic theory, high-speed vehicle-track coupled vibrations due to temperature- and frequency-dependent dynamic properties of rail pads was investigated. Finally, further combining with the measured frequency-dependent dynamic performance of vehicle's rubber primary suspension, the high-speed vehicle-track coupled vibration responses were discussed. It is found that the storage stiffness and loss factor of the tested rail pad are sensitive to low temperatures or high frequencies. The proposed FDKV model for the frequency-dependent storage stiffness and loss factors of the tested rail pad can basically meet the fitting precision, especially at ordinary temperatures. The numerical simulation results indicate that the vertical vibration levels of high-speed vehicle-track coupled systems calculated with the FDKV model for rail pads in time domain are higher than those calculated with the ordinary Kelvin-Voigt (KV) model for rail pads. Additionally, the temperature- and frequency-dependent dynamic properties of the tested rail pads would alter the vertical vibration acceleration levels (VALs) of the car body and bogie in 1/3 octave frequencies above 31.5 Hz, especially enlarge the vertical VALs of the wheel set and rail in 1/3 octave frequencies of 31.5-100 Hz and above

  4. A programmable broadband low frequency active vibration isolation system for atom interferometry.

    PubMed

    Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng

    2014-09-01

    Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.

  5. Effect of impurity molecules on the low-temperature vibrational dynamics of polyisobutylene: Investigation by single-molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Eremchev, I. Yu.; Naumov, A. V.; Vainer, Yu. G.; Kador, L.

    2009-05-01

    The influence of impurity chromophore molecules—tetra-tert-butylterrylene (TBT) and dibenzo-anthanthrene (DBATT)—on the vibrational dynamics of the amorphous polymer polyisobutylene (PIB) has been studied via single-molecule spectroscopy. The measurements were performed in the temperature region of 7-30 K, where the interaction of the chromophores with quasilocalized low-frequency vibrational modes (LFMs) determines the observed spectral line broadening. The analysis of the individual temperature dependences of the linewidths for a large number of single probe molecules yielded effective frequency values of those LFMs which are located near the respective chromophores. In this way the distributions of the LFM frequencies were measured for the two systems, and they were found to be similar. Moreover, they are in good agreement with the vibrational density of states as measured in pure PIB by inelastic neutron scattering. This allows us to conclude that, at least in the case of PIB, doping with low concentrations of the nonpolar and neutral molecules TBT and DBATT does not affect the vibrational dynamics of the matrix markedly.

  6. Dynamics of liquid films exposed to high-frequency surface vibration

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Rezk, Amgad R.; Friend, James R.; Yeo, Leslie Y.

    2015-05-01

    We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β-1≡(2μ /ρ ω ) 1 /2 adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h ≪kl-1 , which spread self-similarly as t1 /4 along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h ˜kl-1≫β-1 , in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions.

  7. Ultra-low frequency vibration data acquisition concerns in operating flight simulators. [Motion sickness inducing vibrations in flight simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoy, B.W.

    1988-01-01

    The measurement of ultra-low frequency vibration (.01 to 1.0 Hz) in motion based flight simulators was undertaken to quantify the energy and frequencies of motion present during operation. Methods of measurement, the selection of transducers, recorders, and analyzers and the development of a test plan, as well as types of analysis are discussed. Analysis of the data using a high-speed minicomputer and a comparison of the computer analysis with standard FFT analysis are also discussed. Measurement of simulator motion with the pilot included as part of the control dynamics had not been done up to this time. The data aremore » being used to evaluate the effect of low frequency energy on the vestibular system of the air crew, and the incidence of simulator induced sickness. 11 figs.« less

  8. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.

    PubMed

    Kurkal-Siebert, Vandana; Smith, Jeremy C

    2006-02-22

    An understanding of low-frequency, collective protein dynamics at low temperatures can furnish valuable information on functional protein energy landscapes, on the origins of the protein glass transition and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a broad peak in the dynamic structure factor centered at about approximately 2-2.5 meV, originates from approximately 10(2) collective, harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical nature of protein-protein interactions.

  9. An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator.

    PubMed

    Deng, Weili; Jin, Long; Chen, Yueqi; Chu, Wenjun; Zhang, Binbin; Sun, Huan; Xiong, Da; Lv, Zekai; Zhu, Minhao; Yang, Weiqing

    2018-01-03

    In this paper, a piezoelectric nanogenerator (PENG) based on a tuning fork-shaped cantilever was designed and fabricated, aiming at harvesting low frequency vibration energy in the environment. In the PENG, a tuning fork-shaped elastic beam combined with ZnO nanorods (NRs), instead of conventional rectangular cantilever beams, was adopted to extract vibration energy. Benefiting from the high flexibility and the controllable shape of the substrate, this PENG was extremely sensitive to vibration and can harvest weak vibration energy at a low frequency. Moreover, a series of simulation models were established to compare the performance of the PENG with that of different shapes. On this basis, the experimental results further verify that this designed energy harvester could operate at a low frequency which was about 13 Hz. The peak output voltage and current could respectively reach about 160 mV and 11 nA, and a maximum instantaneous peak power of 0.92 μW cm -3 across a matched load of 9 MΩ was obtained. Evidently, this newly designed PENG could harvest vibration energy at a lower frequency, which will contribute to broaden the application range of the PENG in energy harvesting and self-powered systems.

  10. Low Frequency Vibrations Induce Malformations in Two Aquatic Species in a Frequency-, Waveform-, and Direction-Specific Manner

    PubMed Central

    Vandenberg, Laura N.; Stevenson, Claire; Levin, Michael

    2012-01-01

    Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs) and Danio rerio (zebrafish), specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures. PMID:23251546

  11. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng

    2017-05-01

    This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.

  12. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    PubMed

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  13. [Dynamics of vegetative indicators induced by low-frequency magnetotherapy and EHF-puncture in hypertensive workers exposed to vibration].

    PubMed

    Drobyshev, V A; Efremov, A V; Loseva, M I; Sukharevskaia, T M; Michurin, A I

    2002-01-01

    Low-frequency magnetic fields and EHF-therapy have been used in correction of autonomic homeostasis in workers exposed to vibration for different periods of time. The workers suffered from early arterial hypertension. Vegetative status and central hemodynamics improved best in workers exposed to vibration for less than 5 years. If the exposure was 6-15 years, a positive trend occurred in the tension of regulatory mechanisms. Workers with long exposure to vibration suffering from vagotonia showed an inadequate response of the autonomic parameters to treatment. This necessitates enhancement of therapeutic measures with medicines.

  14. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  15. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  16. Wideband, low-frequency springless vibration energy harvesters: part I

    NASA Astrophysics Data System (ADS)

    Bendame, Mohamed; Abdel-Rahman, Eihab; Soliman, Mostafa

    2016-11-01

    We present a novel architecture for wideband and low-frequency vibration energy harvesting (VEH). Springless vibration energy harvesters (SVEH) employ impact oscillators as energy harvesting elements. A seismic mass moves along a linear guide limited by stoppers at both ends of the track. An electromagnetic transducer converts the kinetic energy captured by the mass into electrical energy. Experiments using prototypes of the horizontal SVEH demonstrated low frequency harvesting (<20 Hz), wideband harvesting (up to 6.0 Hz), and an optimal rectified output power of P  =  12 mW for a base acceleration amplitude of 0.5 g. A model of the electromagnetic SVEH was developed and validated experimentally. A figure of merit was defined to quantify realizable output power in linear and nonlinear VEHs. Comparison using this figure of merit shows that electromagnetic SVEHs outperform their linear counterparts by 92%-232% for acceleration amplitudes in the range of 0.4-0.6 g.

  17. [Low-frequency vibrations of a Mg pyropheophorbide-histidine complex].

    PubMed

    Klevanic, A V; Shuvalov, V A

    2001-01-01

    The spectrum of vibrations and normal model for the Mg piropheophorbide-histidine complex was calculated using the MNDO-PM3 (MOPAC) semiempirical quantum chemical method. The delocalization index and the distribution function were introduced to describe the shape of normal vibrations. The greatest part (approximately 65%) of the low-frequency vibrations (1-400 cm-1) was shown to delocalize over both the His and Mg piropheophorbide molecules. Leu, Met, and Asp were also studied as the fifth ligand to the Mg piropheophorbide molecule. It is concluded that the fifth amino acid ligand to porphyrin molecules causes marked geometrical distortions in porphyrin, and induces a new, compared to four coordinated pigment, spectrum of normal modes.

  18. Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.

    PubMed

    Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji

    2014-01-16

    The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.

  19. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    PubMed

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing

  20. Escape conditioning and low-frequency whole-body vibration - The effects of frequency, amplitude, and controls for noise and activation.

    NASA Technical Reports Server (NTRS)

    Wike, E. L.; Wike, S. S.

    1972-01-01

    Seven experiments are reported on low-frequency whole-body vibration and rats' escape conditioning in a modified Skinner box. In the first three studies, conditioning was observed but was independent of frequency. In experiment four, the number of escape responses was directly related to vibration amplitude. Experiment five was a control for vibration noise and noise termination; experiments six and seven studied vibration-induced activation. Noise termination did not produce conditioning. In experiment six, subjects made more responses when responding led to termination than when it did not. In experiment seven, subjects preferred a bar which terminated vibration to one which did not.

  1. Measurement and Simulation of Low Frequency Impulse Noise and Ground Vibration from Airblasts

    NASA Astrophysics Data System (ADS)

    Hole, L. R.; Kaynia, A. M.; Madshus, C.

    1998-07-01

    This paper presents numerical simulations of low frequency ground vibration and dynamic overpressure in air using two different numerical models. Analysis is based on actual recordings during blast tests at Haslemoen test site in Norway in June 1994. It is attempted to use the collected airblast-induced overpressures and ground vibrations in order to asses the applicability of the two models. The first model is a computer code which is based on a global representation of ground and atmospheric layers, a so-called Fast Field Program (FFP). A viscoelastic and a poroelastic version of this model is used. The second model is a two-dimensionalmoving-loadformulation for the propagation of airblast over ground. The poroelastic FFP gives the most complete and realistic reproduction of the processes involved, including decay of peak overpressure amplitude and dominant frequency of signals with range. It turns out that themoving-loadformulation does not provide a complete description of the physics involved when the speed of sound in air is different from the ground wavespeeds.

  2. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  3. Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays

    NASA Astrophysics Data System (ADS)

    Chen, Shengbing; Wang, Gang; Song, Yubao

    2016-12-01

    Piezoelectric shunting arrays are proposed to isolate low-frequency vibrations transmitted in sandwich plates. The performance is characterized through application of finite element method. The numerical result shows that a complete band gap, whose width is about 20 Hz, is produced in the desired low-frequency ranges. The band gap is induced by local resonances of the shunting circuits, whose location is strongly related to the inductance, while the resistance can broaden the band gap to some extent. Vibration experiments are conducted on a 1200 × 1000 × 15 mm aluminum honeycomb plate with two arrays of 5 × 5 shunted piezoelectric patches bonded on the surface panels. Significant attenuation is found in the experimental results, which agree well with the theoretical predictions. Consequently, the proposed idea is feasible and effective.

  4. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range: Part 2—waveguide solution

    NASA Astrophysics Data System (ADS)

    Kari, Leif

    2017-09-01

    The dynamic stiffness of a chemically and physically ageing rubber vibration isolator in the audible frequency range is modelled as a function of ageing temperature, ageing time, actual temperature, time, frequency and isolator dimension. In particular, the dynamic stiffness for an axially symmetric, homogeneously aged rubber vibration isolator is derived by waveguides where the eigenmodes given by the dispersion relation for an infinite cylinder satisfying traction free radial surface boundary condition are matched to satisfy the displacement boundary conditions at the lateral surface ends of the finite rubber cylinder. The constitutive equations are derived in a companion paper (Part 1). The dynamic stiffness is calculated over the whole audible frequency range 20-20,000 Hz at several physical ageing times for a temperature history starting at thermodynamic equilibrium at +25°C and exposed by a sudden temperature step down to -60°C and at several chemical ageing times at temperature +25°C with simultaneous molecular network scission and reformation. The dynamic stiffness results are displaying a strong frequency dependence at a short physical ageing time, showing stiffness magnitude peaks and troughs, and a strong physical ageing time dependence, showing a large stiffness magnitude increase with the increased physical ageing time, while the peaks and troughs are smoothed out. Likewise, stiffness magnitude peaks and troughs are frequency-shifted with increased chemical ageing time. The developed model is possible to apply for dynamic stiffness prediction of rubber vibration isolator over a broad audible frequency range under realistic environmental condition of chemical ageing, mainly attributed to oxygen exposure from outside and of physical ageing, primarily perceived at low-temperature steps.

  5. Spectroscopy of the low-frequency vibrational modes of CH3+ isotopologues

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Thorwirth, Sven; Redlich, Britta; Schlemmer, Stephan

    2018-05-01

    The low-frequency stretching and bending vibrations of the isotopologues CH2D+,CD2H+ and CD3+ have been recorded at low temperature and low resolution. For this, a cryogenic 22-pole trapping machine coupled to an IR beamline of the FELIX free electron laser facility has been used. To record the overview spectra, the laser induced reactions CDm Hn+ + H2 → hν CDm-1 Hn+1+ +HD have been applied for these species. As this scheme is not applicable to CH3+, the latter has been tagged with He and subsequently dissociated by the IR beam. For the resulting CH3+ -He spectrum, broad features are observed below 1000 cm-1 possibly related to vibrational motions involving the He atom. The extracted vibrational band positions for all species are compared to results from high-level quantum-chemical calculations.

  6. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    NASA Astrophysics Data System (ADS)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  7. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.

    PubMed

    Li, G; Hu, H; Wu, K; Wang, G; Wang, L J

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  8. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage

    NASA Astrophysics Data System (ADS)

    Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  9. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-01

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

  10. Reducing variable frequency vibrations in a powertrain system with an adaptive tuned vibration absorber group

    NASA Astrophysics Data System (ADS)

    Gao, Pu; Xiang, Changle; Liu, Hui; Zhou, Han

    2018-07-01

    Based on a multiple degrees of freedom dynamic model of a vehicle powertrain system, natural vibration analyses and sensitivity analyses of the eigenvalues are performed to determine the key inertia for each natural vibration of a powertrain system. Then, the results are used to optimize the installation position of each adaptive tuned vibration absorber. According to the relationship between the variable frequency torque excitation and the natural vibration of a powertrain system, the entire vibration frequency band is divided into segments, and the auxiliary vibration absorber and dominant vibration absorber are determined for each sensitive frequency band. The optimum parameters of the auxiliary vibration absorber are calculated based on the optimal frequency ratio and the optimal damping ratio of the passive vibration absorber. The instantaneous change state of the natural vibrations of a powertrain system with adaptive tuned vibration absorbers is studied, and the optimized start and stop tuning frequencies of the adaptive tuned vibration absorber are obtained. These frequencies can be translated into the optimum parameters of the dominant vibration absorber. Finally, the optimal tuning scheme for the adaptive tuned vibration absorber group, which can be used to reduce the variable frequency vibrations of a powertrain system, is proposed, and corresponding numerical simulations are performed. The simulation time history signals are transformed into three-dimensional information related to time, frequency and vibration energy via the Hilbert-Huang transform (HHT). A comprehensive time-frequency analysis is then conducted to verify that the optimal tuning scheme for the adaptive tuned vibration absorber group can significantly reduce the variable frequency vibrations of a powertrain system.

  11. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorber

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Babitsky, V.; Tuito, A.

    2017-12-01

    Modern infrared imagers often rely on low Size, Weight and Power split Stirling linear cryocoolers comprised of side-by-side packed compressor and expander units fixedly mounted upon a common frame and interconnected by the configurable transfer line. Imbalanced reciprocation of moving assemblies generates vibration export in the form of tonal force couple producing angular and translational dynamic responses. Resulting line of sight jitter and dynamic defocusing may affect the image quality. The authors explore the concept of multimodal tuned dynamic absorber, the translational and tilting modal frequencies of which are essentially matched to the driving frequency. Dynamic analysis and full-scale testing show that the dynamic reactions (forces and moments) produced by such a device may effectively attenuate both translational and angular components of cryocooler-induced vibration.

  12. Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Ryder, Matthew R.; Van de Voorde, Ben; Civalleri, Bartolomeo; Bennett, Thomas D.; Mukhopadhyay, Sanghamitra; Cinque, Gianfelice; Fernandez-Alonso, Felix; De Vos, Dirk; Rudić, Svemir; Tan, Jin-Chong

    2017-06-01

    We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (˜100 cm-1 ), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO (O2C-C 6H4-CO2) ]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (Gmin ).

  13. Low frequency vibration approach for assessing performance of wood floor systems

    Treesearch

    Xiping Wang; Robert J. Ross; Michael O. Hunt; John R. Erickson; John W. Forsman

    2005-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to...

  14. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  15. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  16. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  17. Site-Specific Transmission of a Floor-Based, High-Frequency, Low-Magnitude Vibration Stimulus in Children With Spastic Cerebral Palsy.

    PubMed

    Singh, Harshvardhan; Whitney, Daniel G; Knight, Christopher A; Miller, Freeman; Manal, Kurt; Kolm, Paul; Modlesky, Christopher M

    2016-02-01

    To determine the degree to which a high-frequency, low-magnitude vibration signal emitted by a floor-based platform transmits to the distal tibia and distal femur of children with spastic cerebral palsy (CP) during standing. Cross-sectional study. University research laboratory. Children with spastic CP who could stand independently (n=18) and typically developing children (n=10) (age range, 4-12y) participated in the study (N=28). Not applicable. The vibration signal at the high-frequency, low-magnitude vibration platform (approximately 33Hz and 0.3g), distal tibia, and distal femur was measured using accelerometers. The degree of plantar flexor spasticity was assessed using the Modified Ashworth Scale. The high-frequency, low-magnitude vibration signal was greater (P<.001) at the distal tibia than at the platform in children with CP (.36±.06g vs .29±.05g) and controls (.40±.09g vs .24±.07g). Although the vibration signal was also higher at the distal femur (.35±.09g, P<.001) than at the platform in controls, it was lower in children with CP (.20±.07g, P<.001). The degree of spasticity was negatively related to the vibration signal transmitted to the distal tibia (Spearman ρ=-.547) and distal femur (Spearman ρ=-.566) in children with CP (both P<.05). A high-frequency, low-magnitude vibration signal from a floor-based platform was amplified at the distal tibia, attenuated at the distal femur, and inversely related to the degree of muscle spasticity in children with spastic CP. Whether this transmission pattern affects the adaptation of the bones of children with CP to high-frequency, low-magnitude vibration requires further investigation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  19. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    PubMed

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  20. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.

    PubMed

    Hosain, M A; Sirr, A; Ju, L; Blair, D G

    2012-08-01

    LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.

  1. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    PubMed

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  2. Low Intensity, High Frequency Vibration Training to Improve Musculoskeletal Function in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Novotny, Susan A.; Mader, Tara L.; Greising, Angela G.; Lin, Angela S.; Guldberg, Robert E.; Warren, Gordon L.; Lowe, Dawn A.

    2014-01-01

    The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice. PMID:25121503

  3. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  4. Influence of low-frequency vibration on changes of biochemical parameters of living rats

    NASA Astrophysics Data System (ADS)

    Kasprzak, Cezary; Damijan, Zbigniew; Panuszka, Ryszard

    2004-05-01

    The aim of the research was to investigate how some selected biochemical parameters of living rats depend on exposure of low-frequency vibrations. Experiments were run on 30 Wistar rats randomly segregated into three groups: (I) 20 days old (before puberty), (II) 70th day after; (III) control group. The exposure was repeated seven times, for 3 h, at the same time of day. Vibrations applied during the first tests of the experiment had acceleration 1.22 m/s2 and frequency 20 Hz. At the 135th day the rats' bones were a subject of morphometric/biochemical examination. The results of biochemical tests proved decrease in LDL and HDL cholesterol levels for exposed rats as well as the Ca contents in blood plasma. There was evident increasing of Ca in blood plasma in exposed rats for frequency of exposition.

  5. Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh

    2018-03-01

    This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].

  6. Low Frequency Vibration approach to asess the Performance of wood structural Systems

    Treesearch

    Xiping Wang; Robert J. Ross; Michael O. Hunt

    2004-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...

  7. Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators

    NASA Astrophysics Data System (ADS)

    Ma, Jiangang; Sheng, Meiping; Guo, Zhiwei; Qin, Qi

    2018-06-01

    A periodic vibration suppressor with multiple secondary oscillators is examined in this paper to reduce the low-frequency vibration. The band-gap properties of infinite periodic structure and vibration transmission properties of finite periodic structure attached with secondary oscillators with arbitrary degree of freedom are thoroughly analyzed by the plane-wave-expansion method. A simply supported plate with a periodic rectangular array of vibration suppressors is considered. The dynamic model of this periodic structure is established and the equation of harmonic vibration response is theoretically derived and numerically examined. Compared with the simply supported plate without attached suppressors, the proposed plate can obtain better vibration control, and the vibration response can be effectively reduced in several frequency bands owing to the multiple band-gap property. By analyzing the modal properties of the periodic vibration suppressors, the relationship between modal frequencies and the parameters of spring stiffness and mass is established. With the numerical results, the design guidance of the locally resonant structure with multiple secondary oscillators is proposed to provide practical guidance for application. Finally, a practical periodic specimen is designed and fabricated, and then an experiment is carried out to validate the effectiveness of periodic suppressors in the reality. The results show that the experimental band gaps have a good coincidence with those in the theoretical model, and the low-frequency vibration of the plate with periodic suppressors can be effectively reduced in the tuned band gaps. Both the theoretical results and experimental results prove that the design method is effective and the structure with periodic suppressors has a promising application in engineering.

  8. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  9. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts

    PubMed Central

    Lau, Esther; Al-Dujaili, Saja; Guenther, Axel; Liu, Dawei; Wang, Liyun; You, Lidan

    2010-01-01

    Osteocytes are well evidenced to be the major mechanosensor in bone, responsible for sending signals to the effector cells (osteoblasts and osteoclasts) that carry out bone formation and resorption. Consistent with this hypothesis, it has been shown that osteocytes release various soluble factors (e.g. transforming growth factor-β, nitric oxide, and prostaglandins) that influence osteoblastic and osteoclastic activities when subjected to a variety of mechanical stimuli, including fluid flow, hydrostatic pressure, and mechanical stretching. Recently, low-magnitude, high-frequency (LMHF) vibration (e.g., acceleration less than <1g, where g=9.98 m/s2, at 20-90 Hz) has gained much interest as studies have shown that such mechanical stimulation can positively influence skeletal homeostasis in animals and humans. Although the anabolic and anti-resorptive potential of LMHF vibration is becoming apparent, the signaling pathways that mediate bone adaptation to LMHF vibration are unknown. We hypothesize that osteocytes are the mechanosensor responsible for detecting the vibration stimulation and producing soluble factors that modulate the activity of effector cells. Hence, we applied low-magnitude (0.3g) vibrations to osteocyte-like MLO-Y4 cells at various frequencies (30, 60, 90 Hz) for 1 hour. We found that osteocytes were sensitive to this vibration stimulus at the transcriptional level: COX-2 maximally increased by 344% at 90 Hz, while RANKL decreased most significantly (-55%, p<0.01) at 60 Hz. Conditioned medium collected from the vibrated MLO-Y4 cells attenuated the formation of large osteoclasts (≥10 nuclei) by 36% (p<0.05) and the amount of osteoclastic resorption by 20% (p=0.07). The amount of soluble RANKL (sRANKL) in the conditioned medium was found to be 53% lower in the vibrated group (p<0.01), while PGE2 release was also significantly decreased (-61%, p<0.01). We conclude that osteocytes are able to sense LMHF vibration and respond by producing soluble

  10. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  11. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    PubMed Central

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  12. A study of the eigenvectors of low frequency vibrational modes in crystalline cytidine via high pressure Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.

    2014-03-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the low-frequency vibrational modes of crystalline cytidine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: 1/ω dω/dP. Crystalline samples of molecular materials such as cytidine have vibrational modes that are localized within a molecular unit (``internal'' modes) as well as modes in which the molecular units vibrate against each other (``external'' modes). The value of the logarithmic derivative is a diagnostic probe of the nature of the eigenvector of the vibrational modes, making high pressure experiments a very useful probe for such studies. Internal stretching modes have low logarithmic derivatives while external as well as internal torsional and bending modes have higher logarithmic derivatives. All of the Raman modes below 200 cm-1 in cytidine are found to have high logarithmic derivatives, consistent with being either external modes or internal torsional or bending modes.

  13. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration.

    PubMed

    Maiuri, Margherita; Delfino, Ines; Cerullo, Giulio; Manzoni, Cristian; Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Gee, Leland B; Dapper, Christie H; Newton, William E; Cramer, Stephen P

    2015-12-01

    We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of broad frequency vibration on cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.

    2003-01-01

    Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.

  15. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  16. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki

    2014-01-15

    Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors ofmore » 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.« less

  17. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    PubMed

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  18. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  19. A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise.

    PubMed

    Takahashi, Yukio

    2011-01-01

    To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL) tone and a 50-Hz, 100-dB(SPL) tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL) and that of another one was either 90, 95, or 100 dB(SPL). Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL) of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen), the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.

  20. An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2016-04-01

    This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

  1. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  2. Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory.

    PubMed

    Wong, W O; Fan, R P; Cheng, F

    2018-02-01

    A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.

  3. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  4. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    NASA Astrophysics Data System (ADS)

    Miller, Lindsay Margaret

    hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency

  5. Control of fluid flow during Bridgman crystal growth using low-frequency vibrational stirring

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin Thomas

    The goal of this research program was to develop an in depth understanding of a promising new method for stirring crystal growth melts called coupled vibrational stirring (CVS). CVS is a mixing technique that can be used in sealed systems and produces rapid mixing through vortex flows. Under normal operating conditions, CVS uses low-frequency vibrations to move the growth crucible along a circular path, producing a surface wave and convection in the melt. This research focused on the application of CVS to the vertical Bridgman technique. CVS generated flows were directly studied using a physical modeling system containing water/glycerin solutions. Sodium nitrate was chosen as a model growth system because the growth process could be directly observed using a transparent furnace. Lead magnesium niobate-lead titanate (PMNT) was chosen as the third system because of its potential application for high performance solid state transducers and actuators. In this study, the critical parameters for controlling CVS flows in cylindrical Bridgman systems were established. One of the most important results obtained was the dependence of an axial velocity gradient on the vibrational frequency. By changing the frequency, the intensity of fluid flow at a given depth can be easily manipulated. The intensity of CVS flows near the crystal-melt interface was found to be important. When flow intensity near the interface increased during growth, large growth rate fluctuations and significant changes in interface shape were observed. To eliminate such fluctuations, a constant flow rate near the crystal-melt interface was maintained by decreasing the vibrational frequency. A continuous frequency ramp was found to be essential to grow crystals of good quality under strong CVS flows. CVS generated flows were also useful in controlling the shape of the growth interface. In the sodium nitrate system without stirring, high growth rates produced a very concave interface. By adjusting the flow

  6. Investigation of a vibration-damping unit for reduction in low-frequency vibrations of electric motors

    NASA Technical Reports Server (NTRS)

    Grigoryey, N. V.; Fedorovich, M. A.

    1973-01-01

    The vibroacoustical characteristics of different types of electric motors are discussed. It is shown that the basic source of low frequency vibrations is rotor unbalance. A flexible damping support, with an antivibrator, is used to obtain the vibroacoustical effect of reduction in the basic harmonic of the electric motor. A model of the electric motor and the damping apparatus is presented. Mathematical models are developed to show the relationships of the parameters. The basic purpose in using a calculation model id the simultaneous replacement of the exciting force created by the rotor unbalance and its inertial rigidity characteristics by a limiting kinematic disturbance.

  7. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorbers

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Babitsky, Vladimir; Tuito, Avi

    2017-05-01

    Modern infrared imagers often rely on split Stirling linear cryocoolers comprising compressor and expander, the relative position of which is governed by the optical design and packaging constraints. A force couple generated by imbalanced reciprocation of moving components inside both compressor and expander result in cryocooler induced vibration comprising angular and translational tonal components manifesting itself in the form of line of sight jitter and dynamic defocusing. Since linear cryocooler is usually driven at a fixed and precisely adjustable frequency, a tuned dynamic absorber is a well suited tool for vibration control. It is traditionally made in the form of lightweight single degree of freedom undamped mechanical resonator, the frequency of which is essentially matched with the driving frequency or vice versa. Unfortunately, the performance of such a traditional approach is limited in terms of simultaneous attenuating translational and angular components of cooler induced vibration. The authors are enhancing the traditional concept and consider multimodal tuned dynamic absorber made in the form of weakly damped mechanical resonator, where the frequencies of useful dynamic modes are essentially matched with the driving frequency. Dynamic analysis and experimental testing show that the dynamic reactions (forces and moments) produced by such a device may simultaneously attenuate both translational and angular components of cryocoolerinduced vibration. The authors are considering different embodiments and their suitability for different packaging concepts. The outcomes of theoretical predictions are supported by full scale experimentation.

  8. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  9. Effect of vibration frequency on biopsy needle insertion force.

    PubMed

    Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei

    2017-05-01

    Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Ocular vestibular evoked myogenic potentials to vertex low frequency vibration as a diagnostic test for superior canal dehiscence.

    PubMed

    Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister

    2016-04-01

    To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.

    PubMed

    Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro

    2017-11-02

    In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.

  12. Effects of protein conformational flexibilities and electrostatic interactions on the low-frequency vibrational spectrum of hydration water.

    PubMed

    Pal, Somedatta; Bandyopadhyay, Sanjoy

    2013-05-16

    The conformational flexibility of a protein and its ability to form hydrogen bonds with water are expected to influence the microscopic properties of water layer hydrating the protein. Detailed molecular dynamics simulations with an aqueous solution of the globular protein barstar have been carried out to explore such influence on the low-frequency vibrational spectrum of the hydration water molecules. The calculations reveal that enhanced degree of confinement at the protein surface on freezing its local motions leads to increasingly restricted oscillatory motions of the hydration water molecules as evident from larger blue shifts of the corresponding band. Interestingly, conformational fluctuations of the protein and electrostatic component of its interaction with the solvent have been found to affect the transverse and longitudinal oscillations of hydration water molecules in a nonuniform manner. It is further noticed that the distributions of the low-frequency modes for the water molecules hydrogen bonded to the residues of different segments of the protein are heterogeneously altered. The effect is more around the frozen protein matrix and agrees well with slower protein-water hydrogen bond relaxations.

  13. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids

    NASA Astrophysics Data System (ADS)

    Ruggiero, Michael T.; Zhang, Wei; Bond, Andrew D.; Mittleman, Daniel M.; Zeitler, J. Axel

    2018-05-01

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  14. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids.

    PubMed

    Ruggiero, Michael T; Zhang, Wei; Bond, Andrew D; Mittleman, Daniel M; Zeitler, J Axel

    2018-05-11

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  15. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu; Yang, Mo

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heatmore » transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.« less

  16. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  17. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  18. Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.

    2018-02-01

    Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.

  19. Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.

    PubMed

    Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier

    2018-07-01

    Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises. To analyse the dynamic response, the influence of the pedalling movement was taken into account. The results show that there was not significant influence of vibrations on HR and VO2 during this pedalling exercise. However, muscular activity presents a significant increase with the presence of vibration that is influenced by the frequency, but this increase was very low (< 1%). Also, the dynamic response shows an influence of the frequency as well as an influence of the different parts of the pedalling cycle. Those results help to explain the effects of vibration on the human body and the influence of the rider/bike interaction in those effects.

  20. Effect of low-frequency mechanical vibration on orthodontic tooth movement.

    PubMed

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Gupta, Himank; Kalajzic, Zana; Nanda, Ravindra

    2015-09-01

    Our objective was to investigate the effect of low-frequency mechanical vibration (LFMV) on the rate of tooth movement, bone volume fraction, tissue density, and the integrity of the periodontal ligament. Our null hypothesis was that there would be no difference in the amount of tooth movement between different values of LFMV. Sixty-four male CD1 mice, 12 weeks old, were used for orthodontic tooth movement. The mice were randomly divided into 2 groups: control groups (baseline; no spring + 5 Hz; no spring + 10 Hz; and no spring + 20 Hz) and experimental groups (spring + no vibration; spring + 5 Hz; spring + 10 Hz; and spring + 20 Hz). In the experimental groups, the first molars were moved mesially for 2 weeks using nickel-titanium coil springs delivering 10 g of force. In the control and experimental groups, LFMV was applied at 5, 10, or 20 Hz. Microfocus x-ray computed tomography analysis was used for tooth movement measurements, bone volume fraction, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase (TRAP) staining, and picrosirius red staining were used on the histologic sections. Simple descriptive statistics were used to summarize the data. Kruskal-Wallis tests were used to compare the outcomes across treatment groups. LFMV did not increase the rate of orthodontic tooth movement. Microfocus x-ray computed tomography analysis showed increases in bone volume fractions and tissue densities with applications of LFMV. Sclerostin expression was decreased with 10 and 20 Hz vibrations in both the control and experimental groups. Additionally, the picrosirius staining showed that LFMV helped in maintaining the thickness and integrity of collagen fibers in the periodontal ligament. There was no significant increase in tooth movement by applying LFMV when compared with the control groups (spring + no vibration). Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)

    NASA Astrophysics Data System (ADS)

    Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.

    2015-06-01

    Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm-1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ˜0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters.

  2. Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)

    PubMed Central

    Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.

    2015-01-01

    Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm−1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ∼0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters. PMID:26049458

  3. Low-temperature vibrational dynamics of fused silica and binary silicate glasses

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Shi, Ying; Hrdina, Ken; Moore, Lisa; Wu, Jingshi; Daemen, Luke L.; Cheng, Yongqiang

    2018-02-01

    Inelastic neutron scattering was used to study the vibrational dynamics of fused silica and its mixed binary glasses that were doped with either TiO2 or K2O . The energy transfer was measured from zero to 180 meV where the so-called Boson peaks (BP) at low energy and molecular vibrations at high energy are included. Although most of the vibrational spectra at the high energy resemble those reported in earlier literature, a defect-mode-like peak is observed for the doped binary systems near 120 meV . At very low temperature, the BP intensity increases rapidly with temperature and then, at higher temperature, the peak intensity decreases. As a result, a maximum is observed in the temperature dependence of the BP intensity. This maximum was shown in all four samples, but the pure SiO2 sample shows the highest intensity peak and the lowest temperature for peak position. Broadband energy spectra reveal a shift of intensity from BP to the more localized modes at higher energy. Temperature evolution of BP and its relationship with heat conduction and thermal expansion are discussed.

  4. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  5. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  6. Low-amplitude non-linear volume vibrations of single microbubbles measured with an "acoustical camera".

    PubMed

    Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico

    2014-06-01

    Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    NASA Astrophysics Data System (ADS)

    Hou, X. Y.; Koh, C. G.; Kuang, K. S. C.; Lee, W. H.

    2017-07-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations.

  8. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  9. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    PubMed

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  10. Identification of Natural Frequency of Low Rise Building on Soft Ground Profile using Ambient Vibration Method

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Zainal Abidin, M. H.; Mokhatar, S. N.; Daud, M. E.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Natural frequency is the rate at which a body to vibrate or oscillate. Application of ambient vibration (AV) excitation is widely used nowadays as the input motion for building predominant frequency, fo, and ground fundamental frequency, Fo, prediction due to simple, fast, non-destructive, simple handling operation and reliable result. However, it must be emphasized and caution to isolate these frequencies (fo and Fo) from spurious frequencies of site-structure effects especially to low rise building on soft ground deposit. In this study, identification of fo and Fo by using AV measurements were performed on ground and 4-storey primary school reinforced concrete (RC) building at Sekolah Kebangsaan (SK) Sg. Tongkang, Rengit, Johor using 1 Hz of tri-axial seismometer sensor. Overlapping spectra between Fourier Amplitude Spectra (FAS) from and Horizontal to Vertical Spectra Ratio (HVSR) were used to distinguish respective frequencies of building and ground natural frequencies. Three dominant frequencies were identified from the FAS curves at 1.91 Hz, 1.98 Hz and 2.79 Hz in longitudinal (East West-EW), transverse (North South-NS) and vertical (UD) directions. It is expected the building has deformed in translational mode based on the first peak frequency by respective NS and EW components of FAS spectrum. Vertical frequency identified from the horizontal spectrums, might induces to the potential of rocking effect experienced by the school building. Meanwhile, single peak HVSR spectrum at low ground fundamental frequency concentrated at 0.93 Hz indicates to the existence deep contrast of soft deposit. Strong interaction between ground and building at similar frequency (0.93 Hz) observed from the FAS curves on the highest floor has shown the building to behave as a dependent unit against ground response as one rigid mass.

  11. The Simulation of Magnetorheological Elastomers Adaptive Tuned Dynamic Vibration Absorber for Automobile Engine Vibration Control

    NASA Astrophysics Data System (ADS)

    Zhang, X. C.; Zhang, X. Z.; Li, W. H.; Liu, B.; Gong, X. L.; Zhang, P. Q.

    The aim of this article is to investigate the use of a Dynamic Vibration Absorber to control vibration of engine by using simulation. Traditional means of vibration control have involved the use of passive and more recently, active methods. This study is different in that it involves an adaptive component in the design of vibration absorber using magnetorheological elastomers (MREs) as the adaptive spring. MREs are kind of novel smart material whose shear modulus can be controlled by applied magnetic field. In this paper, the vibration mode of a simple model of automobile engine is simulated by Finite Element Method (FEM) analysis. Based on the analysis, the MREs Adaptive Tuned Dynamic Vibration Absorber (ATDVA) is presented to reduce the vibration of the engine. Simulation result indicate that the control frequency of ATDVA can be changed by modifing the shear modulus of MREs and the vibraion reduction efficiency of ATDVA are also evaluated by FEM analysis.

  12. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study.

    PubMed

    Rajaei Jafarabadi, M; Rouhi, G; Kaka, G; Sadraie, S H; Arum, J

    2016-12-01

    This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats' femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm 2 , 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P < 0.05 and P < 0.001, respectively) and 6 weeks after surgery (P < 0.05 and P < 0.05, respectively). Histological evaluations showed a higher amount of new bone formation and better maturity in the LLLT and WBV groups than the control groups at 3 and 6 weeks after surgery. Biomechanical tests showed that the maximum force at fracture in the LLLT (P < 0.05 in 3 weeks and P < 0.05 in 6 weeks) and WBV (P < 0.001 in 3 weeks and P < 0.05 in 6 weeks) groups was greater than that in the control groups at both time intervals. But a combination of laser and vibration therapy, LV, did not show a positive interaction on bone fracture healing process. The biostimulation effects of PBM or LLLT and of low-amplitude high-frequency WBV both had a positive impact on bone healing process, for

  13. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    PubMed

    Manske, Sarah L; Good, Craig A; Zernicke, Ronald F; Boyd, Steven K

    2012-01-01

    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16-18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.

  14. Short-time vibrational dynamics of metaphosphate glasses

    NASA Astrophysics Data System (ADS)

    Kalampounias, Angelos G.

    2012-02-01

    In this paper we present the picosecond vibrational dynamics of a series of binary metaphosphate glasses, namely Na2O-P2O5, MO-P2O5 (M=Ba, Sr, Ca, Mg) and Al2O3-3P2O5 by means of Raman spectroscopy. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The fitting method used enables one to model the real line profiles intermediate between Lorentzian and Gaussian by an analytical function, which has an analytical counterpart in the time domain. The symmetric stretching modes νs(PO2-) and νs(P-O-P) of the PO2- entity of PØ2O2- units and of P-O-P bridges in metaphosphate arrangements have been investigated by Raman spectroscopy and we used them as probes of the dynamics of these glasses. The vibrational time correlation functions of both modes studied are rather adequately interpreted within the assumption of exponential modulation function in the context of Kubo-Rothschield theory and indicate that the system experiences an intermediate dynamical regime that gets only slower with an increase in the ionic radius of the cation-modifier. We found that the vibrational correlation functions of all glasses studied comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with increasing ionic radius of the cation indicates the deviation from the model simple liquid indicating the reduction of the coherence decay in the perturbation potential as a result of local short lived aggregates. The results are discussed in the framework of the current phenomenological status of the field.

  15. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

    PubMed

    Azevedo, Anthony W; Wilson, Rachel I

    2017-10-11

    To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Smart nanocoated structure for energy harvesting at low frequency vibration

    NASA Astrophysics Data System (ADS)

    Sharma, Sudhanshu

    Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz--1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 μW, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 μW, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection

  17. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells

    PubMed Central

    Lau, Esther; Lee, Whitaik David; Li, Jason; Xiao, Andrew; Davies, John E.; Wu, Qianhong; Wang, Liyun; You, Lidan

    2011-01-01

    Whole body vibration (WBV), consisting of a low-magnitude, high-frequency (LMHF) signal, has been found to be anabolic to bone in vivo, which may act through alteration of the lineage commitment of mesenchymal stromal cells (MSC). Here, we investigated the effect of LMHF vibration on rat bone marrow-derived MSCs (rMSCs) in an in vitro system. We subjected rMSCs to repeated (six) bouts of 1-hour vibration at 0.3g and 60 Hz in the presence of osteogenic induction medium. The osteogenic differentiation of rMSCs under the loaded and non-loaded conditions was assessed by examining cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of various osteoblast-associated markers (ALP, Runx2, osterix, collagen type I alpha 1, bone sialoprotein, osteopontin, and osteocalcin), as well as matrix mineralization. We observed that LMHF vibration did not enhance the osteogenic differentiation of rMSCs. Surprisingly, we found that the mRNA level of osterix, a transcription factor necessary for osteoblast formation, was decreased, and matrix mineralization was inhibited. Our findings suggest that LMHF vibration may exert its anabolic effects in vivo via mechanosensing of a cell type different from MSCs. PMID:21344497

  18. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells.

    PubMed

    Lau, Esther; Lee, W David; Li, Jason; Xiao, Andrew; Davies, John E; Wu, Qianhong; Wang, Liyun; You, Lidan

    2011-07-01

    Whole body vibration (WBV), consisting of a low-magnitude, high-frequency (LMHF) signal, is anabolic to bone in vivo and may act through alteration of the lineage commitment of mesenchymal stromal cells (MSC). We investigated the effect of LMHF vibration on rat bone marrow-derived MSCs (rMSCs) in an in vitro system. We subjected rMSCs to repeated (six) bouts of 1-h vibration at 0.3g and 60 Hz in the presence of osteogenic (OS) induction medium. The OS differentiation of rMSCs under the loaded and non-loaded conditions was assessed by examining cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of various osteoblast-associated markers [ALP, Runx2, osterix (Osx), collagen type I alpha 1 (COL1A1), bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN)], and matrix mineralization. LMHF vibration did not enhance the OS differentiation of rMSCs. Surprisingly, the mRNA level of Osx, a transcription factor necessary for osteoblast formation, was decreased, and matrix mineralization was inhibited. Our findings suggest that LMHF vibration may exert its anabolic effects in vivo via mechanosensing of a cell type different from MSCs. Copyright © 2011 Orthopaedic Research Society.

  19. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  20. Analysis of Dynamic Stiffness Effect of Primary Suspension Helical Springs on Railway Vehicle Vibration

    NASA Astrophysics Data System (ADS)

    Sun, W.; Thompson, D. J.; Zhou, J.; Gong, D.

    2016-09-01

    Helical springs within the primary suspension are critical components for isolating the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds increase, the frequency region of excitation becomes larger, and a simplified static stiffness can no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in particular exhibit strong internal resonances, which lead to high vibration amplitudes within the spring itself as well as degradation of the vibration isolation. In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a vehicle primary suspension. Results are confirmed with a finite element analysis. Then the spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the helical spring changes sharply. Due to this effect, the vibration transmissibility increases considerably which results in poor vibration isolation of the primary suspension. Introducing a rubber layer in series with the coil spring can attenuate this effect.

  1. [Influence of low-frequency magnetotherapy and HF-puncture on the heart rhythm in hypertensive workers exposed to vibration].

    PubMed

    Drobyshev, V A; Loseva, M I; Sukharevskaia, T M; Michurin, A I

    2001-01-01

    The authors present results concerning use of low-frequency magnetic fields and HF-therapy for correction of vegetative homeostasis in workers with variable length of service, exposed to vibration, having early forms of arterial hypertension. The most positive changes of vegetative status and central hemodynamics are seen in workers with low length of service.

  2. Simulation and experimental investigation of structural dynamic frequency characteristics control.

    PubMed

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

  3. Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  4. Relationship Between Psychomotor Efficiency and Sensation Seeking of People Exposed to Noise and Low Frequency Vibration Stimuli

    NASA Astrophysics Data System (ADS)

    Korchut, Aleksander; Kowalska-Koczwara, Alicja; Romanska – Zapała, Anna; Stypula, Krzysztof

    2017-10-01

    At the workplace of the machine operator, low frequency whole body and hand- arm vibrations are observed. They occur together with noise. Whole body vibration in the range of 3-25 Hz are detrimental to the human body due to the location of the resonant frequency of large organs of the human body in this range. It can be assumed that for this reason people working every day in such conditions can have reduced working efficiency. The influence of low frequency vibration and noise on the human body leads to both physiological and functional changes. The result of the impact of noise and vibration stimuli depends largely on the specific characteristics of the objects, which include among other personality traits, temperament and emotional factor. The pilot study conducted in the laboratory was attended by 30 young men. The aim of the study was to look for correlations between the need for stimulation of the objects and their psychomotor efficiency in case of vibration exposure and vibration together with noise exposure in variable conditions task. The need for stimulation of the objects as defined in the study is based on theoretical assumptions of one dimensional model of temperament developed by Marvin Zuckerman. This theory defines the need for stimulation as the search for different, new, complex and intense sensations, as well as the willingness to take risks. The aim of research was to verify if from four factors such as: the search for adventure and horror, sensation seeking, disinhibition and susceptibility to boredom, we can choose the ones that in conjunction with varying operating conditions, may significantly determine the efficiency of the task situation. The objects performed the test evaluation of their motor skills which consisted in keeping the cursor controlled by a joystick through the path. The number of exceeds of the cursor beyond the path and its maximum deviation was recorded. The collected data were used to determine the correlation between the

  5. Determining linear vibration frequencies of a ferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Bagdoev, A. G.; Vardanyan, A. V.; Vardanyan, S. V.; Kukudzhanov, V. N.

    2007-10-01

    The problems of determining the roots of dispersion equations for free bending vibrations of thin magnetoelastic plates and shells are of both theoretical and practical interest, in particular, in studying vibrations of metallic structures used in controlled thermonuclear reactors. These problems were solved on the basis of the Kirchhoff hypothesis in [1-5]. In [6], an exact spatial approach to determining the vibration frequencies of thin plates was suggested, and it was shown that it completely agrees with the solution obtained according to the Kirchhoff hypothesis. In [7-9], this exact approach was used to solve the problem on vibrations of thin magnetoelastic plates, and it was shown by cumbersome calculations that the solutions obtained according to the exact theory and the Kirchhoff hypothesis differ substantially except in a single case. In [10], the equations of the dynamic theory of elasticity in the axisymmetric problem are given. In [11], the equations for the vibration frequencies of thin ferromagnetic plates with arbitrary conductivity were obtained in the exact statement. In [12], the Kirchhoff hypothesis was used to obtain dispersion relations for a magnetoelastic thin shell. In [5, 13-16], the relations for the Maxwell tensor and the ponderomotive force for magnetics were presented. In [17], the dispersion relations for thin ferromagnetic plates in the transverse field in the spatial statement were studied analytically and numerically. In the present paper, on the basis of the exact approach, we study free bending vibrations of a thin ferromagnetic cylindrical shell. We obtain the exact dispersion equation in the form of a sixth-order determinant, which can be solved numerically in the case of a magnetoelastic thin shell. The numerical results are presented in tables and compared with the results obtained by the Kirchhoff hypothesis. We show a large number of differences in the results, even for the least frequency.

  6. Low vibration laboratory with a single-stage vibration isolation for microscopy applications.

    PubMed

    Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F Stefan

    2017-02-01

    The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate, are discussed. The optimization of the air spring system leads to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.

  7. Normal vibrational modes of phospholipid bilayers observed by low-frequency Raman scattering

    NASA Astrophysics Data System (ADS)

    Surovtsev, N. V.; Dmitriev, A. A.; Dzuba, S. A.

    2017-03-01

    Low-frequency Raman spectra of multilamellar vesicles made either of 1-palmitoyl-2-oleoyl-s n -glycero-3-phosphocholine (POPC) or 1,2-dipalmitoyl-s n -glycero-3-phosphocholine (DPPC) have been studied in a wide temperature range. Below 0 ∘C two peaks are found at frequencies around 8-9 and 14 -17 c m -1 and attributed to the normal vibrational modes of the phospholipid bilayer, which are determined by the bilayer thickness and stiffness (elastic modulus). The spectral positions of the peaks depend on the temperature and the bilayer composition. It is suggested that the ratio of the intensities of the first and second peaks can serve as a measure of the interleaflet elastic coupling. The addition of cholesterol to the phospholipid bilayer leads to peak shift and broadening, which may be assigned to the composition heterogeneities commonly attributed to the lipid raft formation.

  8. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Aritra; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occursmore » in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.« less

  9. Coherent Exciton Dynamics in the Presence of Underdamped Vibrations

    DOE PAGES

    Dijkstra, Arend G.; Wang, Chen; Cao, Jianshu; ...

    2015-01-22

    Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to themore » bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.« less

  10. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    PubMed Central

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072

  11. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, themore » energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.« less

  12. High frequency vibration analysis by the complex envelope vectorization.

    PubMed

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  13. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  14. Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  15. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  16. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke

    2009-09-15

    acceleration may be due to increased coupling between the OH stretching mode and the accepting mode of the VER, because the low-frequency shift caused by hydrogen bond formation is very large. Unlike phenol oligomers, however, the pump-probe signals of phenol-base complexes did not exhibit probe frequency dependence. For these complexes, rapid interconversion between different conformations causes rapid fluctuations in the vibrational frequency of the OH stretching modes, and these fluctuations level the VER times of different conformations. For the benzoic acid dimer, a quantum beat at a frequency of around 100 cm(-1) is superimposed on the pump-probe signal. This result indicates the presence of strong anharmonic coupling between the intramolecular OH stretching and the intermolecular stretching modes. From a two-dimensional plot of the OH stretching wavenumber and the low-frequency wavenumber, the wavenumber of the low-frequency mode is found to increase monotonically as the probe wavenumber is shifted toward lower wavenumbers. Our results represent a quantitative determination of the acceleration of VER by the formation of hydrogen bonds. Our studies merit further evaluation and raise fundamental questions about the current theory of vibrational dynamics in the condensed phase.

  17. Vibrational dynamics and boson peak in a supercooled polydisperse liquid.

    PubMed

    Abraham, Sneha Elizabeth; Bagchi, Biman

    2010-03-01

    Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.

  18. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    PubMed

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  19. The dance of molecules: new dynamical perspectives on highly excited molecular vibrations.

    PubMed

    Kellman, Michael E; Tyng, Vivian

    2007-04-01

    At low energies, molecular vibrational motion is described by the normal modes model. This model breaks down at higher energy, with strong coupling between normal modes and onset of chaotic dynamics. New anharmonic modes are born in bifurcations, or branchings of the normal modes. Knowledge of these new modes is obtained through the window of frequency-domain spectroscopy, using techniques of nonlinear classical dynamics. It may soon be possible to "watch" molecular rearrangement reactions spectroscopically. Connections are being made with reaction rate theories, condensed phase systems, and motions of electrons in quantum dots.

  20. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

    NASA Astrophysics Data System (ADS)

    Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.

    2016-11-01

    Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

  1. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  2. Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system

    NASA Astrophysics Data System (ADS)

    Li, Tianliang; Tan, Yuegang; Cai, Lin

    2015-10-01

    This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.

  3. Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.

    2003-01-01

    In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.

  4. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2015-01-01

    In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are

  5. Inertial mass sensing with low Q-factor vibrating microcantilevers

    NASA Astrophysics Data System (ADS)

    Adhikari, S.

    2017-10-01

    Mass sensing using micromechanical cantilever oscillators has been established as a promising approach. The scientific principle underpinning this technique is the shift in the resonance frequency caused by the additional mass in the dynamic system. This approach relies on the fact that the Q-factor of the underlying oscillator is high enough so that it does not significantly affect the resonance frequencies. We consider the case when the Q-factor is low to the extent that the effect of damping is prominent. It is shown that the mass sensing can be achieved using a shift in the damping factor. We prove that the shift in the damping factor is of the same order as that of the resonance frequency. Based on this crucial observation, three new approaches have been proposed, namely, (a) mass sensing using frequency shifts in the complex plane, (b) mass sensing from damped free vibration response in the time domain, and (c) mass sensing from the steady-state response in the frequency domain. Explicit closed-form expressions relating absorbed mass with changes in the measured dynamic properties have been derived. The rationale behind each new method has been explained using non-dimensional graphical illustrations. The new mass sensing approaches using damped dynamic characteristics can expand the current horizon of micromechanical sensing by incorporating a wide range of additional measurements.

  6. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes

    PubMed Central

    2017-01-01

    Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe 57Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe–Im stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational “baseline” for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes. PMID:28921972

  7. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads

    NASA Astrophysics Data System (ADS)

    Xu, Tengfei; Castel, Arnaud

    2016-04-01

    In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.

  8. Note: A kinematic shaker system for high amplitude, low frequency vibration testing

    NASA Astrophysics Data System (ADS)

    Swaminathan, Anand; Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2015-11-01

    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  9. Impact of low-frequency sound on historic structures

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Horonjeff, Richard D.

    2005-09-01

    In common usage, the term soundscape usually refers to portions of the sound spectrum audible to human observers, and perhaps more broadly other members of the animal kingdom. There is, however, a soundscape regime at the low end of the frequency spectrum (e.g., 10-25 Hz), which is inaudible to humans, where nonindigenous sound energy may cause noise-induced vibrations in structures. Such low frequency components may be of sufficient magnitude to pose damage risk potential to historic structures and cultural resources. Examples include Anasazi cliff and cave dwellings, and pueblo structures of vega type roof construction. Both are susceptible to noise induced vibration from low-frequency sound pressures that excite resonant frequencies in these structures. The initial damage mechanism is usually fatigue cracking. Many mechanisms are subtle, temporally multiphased, and not initially evident to the naked eye. This paper reviews the types of sources posing the greatest potential threat, their low-frequency spectral characteristics, typical structural responses, and the damage risk mechanisms involved. Measured sound and vibration levels, case history studies, and conditions favorable to damage risk are presented. The paper concludes with recommendations for increasing the damage risk knowledge base to better protect these resources.

  10. Micro- and nano-structural details of a spider's filter for substrate vibrations: relevance for low-frequency signal transmission

    PubMed Central

    Erko, Maxim; Younes-Metzler, Osnat; Rack, Alexander; Zaslansky, Paul; Young, Seth L.; Milliron, Garrett; Chyasnavichyus, Marius; Barth, Friedrich G.; Fratzl, Peter; Tsukruk, Vladimir; Zlotnikov, Igor; Politi, Yael

    2015-01-01

    The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. The mechanical properties were investigated using scanning acoustic microscopy and nanoindentation. We show that large tarsal deflections cause large deformation in the distal highly hydrated part of the pad. Beyond this region, a sclerotized region serves as a supporting frame which resists the deformation and is displaced to push against the slits, with displacement values considerably scaled down to only a few micrometres. Unravelling the structural arrangement in such specialized structures may provide conceptual ideas for the design of new materials capable of controlling a technical sensor's specificity and selectivity, which is so typical of biological sensors. PMID:25631567

  11. Micro- and nano-structural details of a spider's filter for substrate vibrations: relevance for low-frequency signal transmission.

    PubMed

    Erko, Maxim; Younes-Metzler, Osnat; Rack, Alexander; Zaslansky, Paul; Young, Seth L; Milliron, Garrett; Chyasnavichyus, Marius; Barth, Friedrich G; Fratzl, Peter; Tsukruk, Vladimir; Zlotnikov, Igor; Politi, Yael

    2015-03-06

    The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. The mechanical properties were investigated using scanning acoustic microscopy and nanoindentation. We show that large tarsal deflections cause large deformation in the distal highly hydrated part of the pad. Beyond this region, a sclerotized region serves as a supporting frame which resists the deformation and is displaced to push against the slits, with displacement values considerably scaled down to only a few micrometres. Unravelling the structural arrangement in such specialized structures may provide conceptual ideas for the design of new materials capable of controlling a technical sensor's specificity and selectivity, which is so typical of biological sensors.

  12. Dynamic modulus estimation and structural vibration analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.

    1998-11-18

    Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.

  13. Measurements and analyses of principal dynamic parameters of building structures as a function of type of vibration excitation

    NASA Astrophysics Data System (ADS)

    Bartmański, Cezary; Bochenek, Wojciech; Passia, Henryk; Szade, Adam

    2006-06-01

    The methods of direct measurement and analysis of the dynamic response of a building structure through real-time recording of the amplitude of low-frequency vibration (tilt) have been presented. Subject to analyses was the reaction induced either by kinematic excitation (road traffic and mining-induced vibration) or controlled action of solid-fuel rocket micro-engines installed on the building. The forces were analysed by means of a set of transducers installed both in the ground and on the structure. After the action of excitation forces has been stopped, the system (structure) makes damped vibration around the static equilibrium position. It has been shown that the type of excitation affects the accuracy of evaluation of principal dynamic parameters of the structure. In the authors opinion these are the decrement of damping and natural vibration frequency. Positive results of tests with the use of excitation by means of short-action (0.6 second) rocket micro-engines give a chance to develop a reliable method for periodical assessment of acceptable loss of usability characteristics of building structures heavily influenced by environmental effects.

  14. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  15. Vibrational dynamics of acetate in D2O studied by infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Tominaga, Keisuke

    2012-05-14

    Solute-solvent interactions between acetate and D(2)O were investigated by vibrational spectroscopic methods. The vibrational dynamics of the COO asymmetric stretching mode in D(2)O was observed by time-resolved infrared (IR) pump-probe spectroscopy. The pump-probe signal contained both decay and oscillatory components. The time dependence of the decay component could be explained by a double exponential function with time constants of 200 fs and 2.6 ps, which are the same for both the COO asymmetric and symmetric stretching modes. The Fourier spectrum of the oscillatory component contained a band around 80 cm(-1), which suggests that the COO asymmetric stretching mode couples to a low-frequency vibrational mode with a wavenumber of 80 cm(-1). Based on quantum chemistry calculations, we propose that a bridged complex comprising an acetate ion and one D(2)O molecule, in which the two oxygen atoms in the acetate anion form hydrogen bonds with the two deuterium atoms in D(2)O, is the most stable structure. The 80 cm(-1) low-frequency mode was assigned to the asymmetric stretching vibration of the hydrogen bond in the bridged complex. This journal is © the Owner Societies 2012

  16. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  17. Effects of local vibrations on the dynamics of space truss structures

    NASA Technical Reports Server (NTRS)

    Warnaar, Dirk B.; Mcgowan, Paul E.

    1987-01-01

    The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.

  18. Low-frequency, Raman-active vibrational modes of poly(dA).poly(dT)

    NASA Astrophysics Data System (ADS)

    Liu, C.; Edwards, G. S.; Morgan, S.; Silberman, E.

    1989-12-01

    The Raman activity of low-frequency (20-300 cm-1) vibrational modes of dehydrated, oriented fibers of the sodium salts of poly(dA).poly(dT) and random sequenced DNA have been measured. Distinct bands near 60, 75-100, and 125-140 cm-1 are resolved in poly(dA).poly(dT). The Raman activity of the two lowest bands correlate with the previously observed infrared activity of poly(dA).poly(dT). The apparent reduction in spectral line broadening for poly(dA).poly(dT), as demonstrated by this and previous measurements of a number of different polynucleotides, is considered as possible evidence for inhomogeneous line broadening.

  19. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Esben F.; Henriksen, Niels E.

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes — from a time-domain as wellmore » as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.« less

  20. A piezoelectric six-DOF vibration energy harvester based on parallel mechanism: dynamic modeling, simulation, and experiment

    NASA Astrophysics Data System (ADS)

    Yuan, G.; Wang, D. H.

    2017-03-01

    Multi-directional and multi-degree-of-freedom (multi-DOF) vibration energy harvesting are attracting more and more research interest in recent years. In this paper, the principle of a piezoelectric six-DOF vibration energy harvester based on parallel mechanism is proposed to convert the energy of the six-DOF vibration to single-DOF vibrations of the limbs on the energy harvester and output voltages. The dynamic model of the piezoelectric six-DOF vibration energy harvester is established to estimate the vibrations of the limbs. On this basis, a Stewart-type piezoelectric six-DOF vibration energy harvester is developed and explored. In order to validate the established dynamic model and the analysis results, the simulation model of the Stewart-type piezoelectric six-DOF vibration energy harvester is built and tested with different vibration excitations by SimMechanics, and some preliminary experiments are carried out. The results show that the vibration of the limbs on the piezoelectric six-DOF vibration energy harvester can be estimated by the established dynamic model. The developed Stewart-type piezoelectric six-DOF vibration energy harvester can harvest the energy of multi-directional linear vibration and multi-axis rotating vibration with resonance frequencies of 17 Hz, 25 Hz, and 47 Hz. Moreover, the resonance frequencies of the developed piezoelectric six-DOF vibration energy harvester are not affected by the direction changing of the vibration excitation.

  1. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  2. Seal Whiskers Vibrate Over Broad Frequencies During Hydrodynamic Tracking.

    PubMed

    Murphy, Christin T; Reichmuth, Colleen; Eberhardt, William C; Calhoun, Benton H; Mann, David A

    2017-08-21

    Although it is known that seals can use their whiskers (vibrissae) to extract relevant information from complex underwater flow fields, the underlying functioning of the system and the signals received by the sensors are poorly understood. Here we show that the vibrations of seal whiskers may provide information about hydrodynamic events and enable the sophisticated wake-tracking abilities of these animals. We developed a miniature accelerometer tag to study seal whisker movement in situ. We tested the ability of the tag to measure vibration in excised whiskers in a flume in response to laminar flow and disturbed flow. We then trained a seal to wear the tag and follow an underwater hydrodynamic trail to measure the whisker signals available to the seal. The results showed that whiskers vibrated at frequencies of 100-300 Hz, with a dynamic response. These measurements are the first to capture the incoming signals received by the vibrissae of a live seal and show that there are prominent signals at frequencies where the seal tactogram shows good sensitivity. Tapping into the mechanoreceptive interface between the animal and the environment may help to decipher the functional basis of this extraordinary hydrodynamic detection ability.

  3. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  4. Low frequency Raman study of the nucleosides

    NASA Astrophysics Data System (ADS)

    Koontz, Craig; Lee, Scott

    2011-04-01

    In both transcription and replication, the two helices of the DNA molecule move apart. Consequently, vibrations involving the relative motions of large portions of the molecule with respect to one another are of intrinsic interest. Such vibrations have relatively low frequencies because they involve weak bonds and large masses. Low frequency modes are difficult to observe in Raman spectroscopy because they are very close to the signal from the Rayleigh scattered light (which is very intense). In this poster, we will describe our results for the eight nucleosides: adenosine, deoxyadenosine, guanosine, deoxyguanosine, cytidine, deoxycytidine, uracil and deoxythymidine.

  5. Low frequency Raman study of the nucleosides

    NASA Astrophysics Data System (ADS)

    Koontz, Craig; Lee, Scott

    2011-03-01

    In both transcription and replication, the two helices of the DNA molecule move apart. Consequently, vibrations involving the relative motions of large portions of the molecule with respect to one another are of intrinsic interest. Such vibrations have relatively low frequencies because they involve weak bonds and large masses. Low frequency modes are difficult to observe in Raman spectroscopy because they are very close to the signal from the Rayleigh scattered light (which is very intense). In this poster, we will describe our results for the eight nucleosides: adenosine, deoxyadenosine, guanosine, deoxyguanosine, cytidine, deoxycytidine, uracil and deoxythymidine.

  6. Low frequency Raman study of the nucleosides

    NASA Astrophysics Data System (ADS)

    Koontz, Craig; Lee, Scott

    2010-10-01

    In both transcription and replication, the two helices of the DNA molecule move apart. Consequently, vibrations involving the relative motions of large portions of the molecule with respect to one another are of intrinsic interest. Such vibrations have relatively low frequencies because they involve weak bonds and large masses. Low frequency modes are difficult to observe in Raman spectroscopy because they are very close to the signal from the Rayleigh scattered light (which is very intense). In this poster, we will describe our results for the eight nucleosides: adenosine, deoxyadenosine, guanosine, deoxyguanosine, cytidine, deoxycytidine, uracil and deoxythymidine.

  7. A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes.

    PubMed

    Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H

    2018-05-17

    A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.

  8. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.

    PubMed

    Koven, Robert; Mills, Matthew; Gale, Richard; Aksak, Burak

    2017-11-01

    Piezoelectric vibration energy harvesters often consist of a cantilevered beam composed of a support layer and one or two piezoelectric layers with a tip mass. While this configuration is advantageous for maximizing electromechanical coupling, the mechanical properties of the piezoelectric material can place limitations on harvester size and resonant frequency. Here, we present numerical and experimental results from a new type of piezoelectric energy harvester in which the mechanical properties and the resonant frequency of the cantilever beam resonator are effectively decoupled from the piezoelectric component. Referred to as a base-mounted piezoelectric (BMP) harvester in this paper, this new design features a piezoelectric transducer mounted beneath the base of the cantilevered beam resonator. The flexibility in the material choice for the cantilever beam resonator means that the resonant frequency and the beam dimensions are essentially free parameters. A prototype made with a 1.6 mm mm mm polyurethane beam, a PZT-5H piezoelectric transducer, and an 8.36-g tip mass is shown to produce an average power of 8.75 and at 45 Hz across a 13.0- load under harmonic base excitations of constant peak acceleration at 0.25 and 1.0-g, respectively. We also show an increase in full-width half-maximum bandwidth approximately from 1.5 to 5.6 Hz using an array of four individual BMP harvesters of similar dimensions with peak power generation of at 37.6 Hz across a 1.934- load at 0.25-g peak base excitation. Finite elements-based numerical simulations are shown to be in reasonable agreement with experimental results, indicating that the harvester behaves like a damped mass-spring system as proposed in this paper. Fabricated using casting and laser machining techniques, this harvester shows potential as a low-cost option for powering small, low-power wireless sensor nodes and other low-power devices.

  9. Launch vehicle payload adapter design with vibration isolation features

    NASA Astrophysics Data System (ADS)

    Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.

    2005-05-01

    Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is

  10. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  11. Design and Characterization of a Dynamic Vibrational Culture System

    PubMed Central

    Farran, Alexandra J. E.; Teller, Sean S.; Jia, Fang; Rodney, J. Clifton; Duncan, Randall L.; Jia, Xinqiao

    2014-01-01

    To engineer a functional vocal fold tissue, the mechanical environment of the native tissue needs to be emulated in vitro. We have created a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies. The novel device is composed of a function generator, a power amplifier, an enclosed loudspeaker and a circumferentially-anchored silicone membrane. The vibration signals are translated to the membrane aerodynamically by the oscillating air pressure underneath. The vibration profiles detected on the membrane were symmetrical relative to the center of the membrane as well as the resting position over the range of frequencies (60–300 Hz) and amplitudes tested (1–30 μm). The oscillatory motion of the membrane gave rise to two orthogonal, in-plane strain components that are similar in magnitude (0.47%), and are strong functions of membrane thickness. Neonatal foreskin fibroblasts (NFFs) attached to the membrane were subjected to a 1-h vibration at 60, 110 and 300 Hz, with the displacement at the center of the membrane varying from 1 to 30 μm, followed by a 6-h rest. These regimens did not cause morphological changes to the cells. An increase in cell proliferation was detected when NFFs were driven into oscillation at 110 Hz with a normal displacement of 30 μm. qPCR results showed that the expression of genes encoding some extracellular matrix proteins was altered in response to changes in vibratory frequency and amplitude. The dynamic culture device provides a potentially useful in vitro platform for evaluating cellular responses to vibration. PMID:22095782

  12. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.

    PubMed

    Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A

    2016-12-15

    The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO 2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 C 1 im][PF 6 ]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO 2 -[C 4 C 1 im][PF 6 ] clusters extracted from an MD simulation. When the map was tested on 500 different CO 2 -[C 4 C 1 im][PF 6 ] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm -1 . The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO 2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO 2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.

  13. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  14. Minimal basilar membrane motion in low-frequency hearing

    PubMed Central

    Warren, Rebecca L.; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M.; Petrie, Tracy; Wang, Ruikang K.; Jacques, Steven L.; Reichenbach, Tobias; Nuttall, Alfred L.; Fridberger, Anders

    2016-01-01

    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea. PMID:27407145

  15. Frequency identification of vibration signals using video camera image data.

    PubMed

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-10-16

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  16. Frequency Identification of Vibration Signals Using Video Camera Image Data

    PubMed Central

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-01-01

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system. PMID:23202026

  17. Transmission of vibration through glove materials: effects of contact force.

    PubMed

    Md Rezali, Khairil Anas; Griffin, Michael J

    2018-04-26

    This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5-300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force. Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.

  18. A displaced and low-frequency vibration of phosphorescent state of trans-[Rh(ethylenediamine)2Cl2]PF6 in a range of 5-497 K

    NASA Astrophysics Data System (ADS)

    Islam, Ashraful; Ikeda, Noriaki; Nozaki, Koichi; Ohno, Takeshi

    1998-09-01

    The lowest 3(dπ-dσ*) excited states of both cis- and trans-isomers of [Rh(en)2Cl2]X (en=ethylenediamine; X=PF6-, NO3-) and the deuteriated crystal of trans-[Rh(en-d4)2Cl2]PF6 have been investigated in the solid state and in a wide temperature range of 5-497 K by means of emission spectra, lifetime and quantum yield measurements. Emission spectral simulation of trans-[Rh(en)2Cl2]PF6 shows that the emission from the lowest 3(dπ-dσ*) excited state exhibits a progression of a low-frequency metal-chloride stretching vibration (250 cm-1) with a large Huang-Rhys factor (S) of 21 and a progression of a high-frequency N-H stretching vibration (3000 cm-1). The increasing full-width at half maximum (2200 cm-1→4400 cm-1) with increasing temperature (77 K→468 K) is ascribed to hot bands from the excited levels of low-frequency vibration. The luminescence quantum yields of the crystal samples are determined to 0.0008 at 298 K and 0.003 at 80 K for trans-[Rh(en)2Cl2]PF6 and 0.18 at 298 K and 0.40 at 80 K for trans-[Rh(en-d4)2Cl2]PF6. From a combination of lifetime and emission quantum yield measurements, values for kr and knr have been obtained. The observed temperature dependence of nonradiative decay rates of trans-[Rh(en-d4)2Cl2]PF6 in a low-temperature region (<300 K) is possible to reconstitute by using the emission spectral fitting parameters and assuming nuclear tunneling mechanism. The temperature effect and deuteriation effect on the nonradiative rate definitively establishes that the dominant "accepting" modes in the nonradiative transition are a highly displaced (S=21) vibrational mode of low-frequency Cl-Rh-Cl stretching and a weakly displaced (S=0.1) vibrational mode of high-frequency N-D stretching. The nonradiative transition in a high-temperature region occurs via barrier passing along a displaced coordinate of Cl-Rh-Cl vibration with a pre-exponential factor of 1011s-1 and is relatively insensitive to the high-frequency vibrational mode. The crystal of

  19. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.

    PubMed

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-05-28

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  20. Bioparticles assembled using low frequency vibration immune to evacuation drifts

    NASA Astrophysics Data System (ADS)

    Shao, Fenfen; Whitehill, James David; Ng, Tuck Wah

    2012-08-01

    The use of low frequency vibration on suspensions of glass beads in a droplet has been shown to develop a strong degree of patterning (to a ring) due to the manner with which the surface waves are modified. Functionalized glass beads that serve as bioparticles permit for sensitive readings when concentrated at specific locations. However, a time controlled exposure with analytes is desirable. The replacement of the liquid medium with analyte through extraction is needed to conserve time. Nevertheless, we show here that extraction with a porous media, which is simple and useable in the field, will strongly displace the patterned beads. The liquid removal was found to be dependent on two mechanisms that affect the shape of the droplet, one of contact hysteresis due to the outer edge pinning, and the other of liquid being drawn into the porous media. From this, we developed and demonstrated a modified well structure that prevented micro-bead displacement during evacuation. An added strong advantage with this approach lies with its ability to require only analytes to be dispensed at the location of aggregated particles, which minimizes analyte usage. This was analytically established here.

  1. Vibrational Dynamics of Biological Molecules: Multi-quantum Contributions

    PubMed Central

    Leu, Bogdan M.; Timothy Sage, J.; Zgierski, Marek Z.; Wyllie, Graeme R. A.; Ellison, Mary K.; Robert Scheidt, W.; Sturhahn, Wolfgang; Ercan Alp, E.; Durbin, Stephen M.

    2006-01-01

    High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available. PMID:16894397

  2. Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter

    NASA Astrophysics Data System (ADS)

    Zhao, Yipeng; Liu, Jinyue; Guo, Shijie; Li, Tiejun

    2018-04-01

    Cameras offer a unique capability of collecting high density spatial data from a distant scene of interest. They can be employed as remote monitoring or inspection sensors to measure vibrating objects because of their commonplace availability, simplicity, and potentially low cost. A defect of vibrating measurement with the camera is to process the massive data generated by camera. In order to reduce the data collected from the camera, the camera using electronic rolling shutter (ERS) is applied to measure the frequency of one-dimensional vibration, whose frequency is much higher than the speed of the camera. Every row in the image captured by the ERS camera records the vibrating displacement at different times. Those displacements that form the vibration could be extracted by local analysis with sliding windows. This methodology is demonstrated on vibrating structures, a cantilever beam, and an air compressor to identify the validity of the proposed algorithm. Suggestions for applications of this methodology and challenges in real-world implementation are given at last.

  3. Low-Frequency MEMS Electrostatic Vibration Energy Harvester With Corona-Charged Vertical Electrets and Nonlinear Stoppers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.

    2015-12-01

    This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.

  4. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.

    PubMed

    Groth, Kevin M; Granata, Kevin P

    2008-06-01

    Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.

  5. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  6. Low-frequency Raman scattering in a Xe hydrate.

    PubMed

    Adichtchev, S V; Belosludov, V R; Ildyakov, A V; Malinovsky, V K; Manakov, A Yu; Subbotin, O S; Surovtsev, N V

    2013-09-12

    The physics of gas hydrates are rich in interesting phenomena such as anomalies for thermal conductivity, self-preservation effects for decomposition, and others. Some of these phenomena are presumably attributed to the resonance interaction of the rattling motions of guest molecules or atoms with the lattice modes. This can be expected to induce some specific features in the low-frequency (THz) vibrational response. Here we present results for low-frequency Raman scattering in a Xe hydrate, supported by numerical calculations of vibrational density of states. A number of narrow lines, located in the range from 18 to 90 cm(-1), were found in the Raman spectrum. Numerical calculations confirm that these lines correspond to resonance modes of the Xe hydrate. Also, low-frequency Raman scattering was studied during gas hydrate decomposition, and two scenarios were observed. The first one is the direct decomposition of the Xe hydrate to water and gas. The second one is the hydrate decomposition to ice and gas with subsequent melting of ice. In the latter case, a transient low-frequency Raman band is observed, which is associated with low-frequency bands (e.g., boson peak) of disordered solids.

  7. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    PubMed Central

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method. PMID:25133237

  8. Epidemiological evidence for new frequency weightings of hand-transmitted vibration.

    PubMed

    Bovenzi, Massimo

    2012-01-01

    This paper provides an overview of the exposure-response relationship for the vascular component of the hand-arm vibration syndrome, called vibration-induced white finger (VWF). Over the past two decades, several epidemiological studies have shown a poor agreement between the risk for VWF observed in various occupational groups and that predicted by models included in annexes to International Standard ISO 5349 (ISO 5349:1986, ISO 5349-1:2001). Either overestimation or underestimation of the occurrence of VWF have been reported by investigators. It has been argued that the current ISO frequency-weighting curve for hand-transmitted vibration, which assumes that vibration-induced adverse health effects are inversely related to the frequency of vibration between 16 and 1250 Hz, may be unsuitable for the assessment of VWF. To investigate this issue, a prospective cohort study was carried out to explore the performance of four alternative frequency weightings for hand-transmitted vibration to predict the incidence of VWF in groups of forestry and stone workers. The findings of this study suggested that measures of vibration exposure which give relatively more weight to intermediate and high frequency vibration produced better predictions of the incidence of VWF than that obtained with the frequency weighting currently recommended in International Standard ISO 5349-1:2001.

  9. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    PubMed Central

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  10. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.

  11. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    NASA Technical Reports Server (NTRS)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  12. Sensitive ultrasonic vibrometer for very low frequency applications.

    PubMed

    Cretin, B; Vairac, P; Jachez, N; Pergaud, J

    2007-08-01

    Ultrasonic measurement of distance is a well-known low cost method but only a few vibrometers have been developed because sensitivity, spatial resolution, and bandwidth are not high or wide enough for standard laboratory applications. Nevertheless, compared to optical vibrometers, two interesting properties should be considered: very low frequency noise (0.1 Hz to 1 kHz) is reduced and the long wavelength enables rough surfaces to be investigated. Moreover, the ultrasonic probe is a differential sensor, without being a mechanical load for the vibrating structure as usual accelerometers based on contacting transducers are. The main specificity of the presented probe is its ultralow noise electronics including a 3/2 order phase locked loop which extracts the phase modulation related to the amplitude of the detected vibration. This article presents the main useful physical aspects and details of the actual probe. The given application is the measurement of the vibration of an isolated optical bench excited at very low frequency with an electromagnetic transducer.

  13. Anomalous vibrational properties in the continuum limit of glasses

    NASA Astrophysics Data System (ADS)

    Shimada, Masanari; Mizuno, Hideyuki; Ikeda, Atsushi

    2018-02-01

    The low-temperature thermal properties of glasses are anomalous with respect to those of crystals. These thermal anomalies indicate that the low-frequency vibrational properties of glasses differ from those of crystals. Recent studies revealed that, in the simplest model of glasses, i.e., the harmonic potential system, phonon modes coexist with soft localized modes in the low-frequency (continuum) limit. However, the nature of low-frequency vibrational modes of more realistic models is still controversial. In the present work, we study the Lennard-Jones (LJ) system using large-scale molecular-dynamics (MD) simulation and establish that the vibrational property of the LJ glass converges to coexistence of the phonon modes and the soft localized modes in the continuum limit as in the case of the harmonic potential system. Importantly, we find that the low-frequency vibrations are rather sensitive to the numerical scheme of potential truncation, which is usually implemented in the MD simulation, and this is the reason why contradictory arguments have been reported by previous works. We also discuss the physical origin of this sensitiveness by means of a linear stability analysis.

  14. Clamped seismic metamaterials: ultra-low frequency stop bands

    NASA Astrophysics Data System (ADS)

    Achaoui, Y.; Antonakakis, T.; Brûlé, S.; Craster, R. V.; Enoch, S.; Guenneau, S.

    2017-06-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1-10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0-30 Hz.

  15. Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry-Perot Cavity.

    PubMed

    Barnes, Jack; Li, Sijia; Goyal, Apoorv; Abolmaesumi, Purang; Mousavi, Parvin; Loock, Hans-Peter

    2018-04-01

    A fiber optic vibration sensor is developed and characterized with an ultrawide dynamic sensing range, from less than 1 Hz to clinical ultrasound frequencies near 6 MHz. The vibration sensor consists of a matched pair of fiber Bragg gratings coupled to a custom-built signal processing circuit. The wavelength of a laser diode is locked to one of the many cavity resonances using the Pound-Drever-Hall scheme. A calibrated piezoelectric vibration element was used to characterize the sensor's strain, temperature, and noise responses. To demonstrate its sensing capability, an ultrasound phantom with built-in low frequency vibration actuation was constructed. The fiber optic senor was shown to simultaneously capture the low frequency vibration and the clinical ultrasound transmission waveforms with nanostrain sensitivity. This miniaturized and sensitive vibration sensor can provide comprehensive information regarding strain response and the resultant ultrasound waveforms.

  16. Deviations of frequency and the mode of vibration of commercially available whole-body vibration training devices.

    PubMed

    Kaeding, T S

    2015-06-01

    Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.

  17. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  18. Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats.

    PubMed

    Li, Ming; Wu, Wei; Tan, Lei; Mu, Degong; Zhu, Dong; Wang, Jian; Zhao, Bin

    2015-09-25

    The present study aimed to investigate the impact of low-magnitude and high-frequency mechanical vibration with various lengths of resting period incorporated between loading cycles on the expression of osteogenesis-related proteins in a rat model of osteoporosis. The rats in the mechanical loading groups received low-magnitude and high-frequency vibration (35 Hz and acceleration of 0.25 g, 15 min/day) for 8 weeks. Bilateral humeral heads and femoral heads were then isolated, and protein levels of bone morphogenetic protein 2 (BMP-2), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (p-ERK1/2), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were determined by Western blotting. Increased levels of BMP-2, Runx2 and OCN were observed in rats receiving mechanical vibration. Total ERK1/2 protein remained unchanged, whereas the level of activated ERK1/2 (p-ERK1/2) increased after mechanical vibration. Vibration with incorporated resting period, regardless of length, was more effective in inducing expression of these osteogenic proteins, and the vibration with 7-day resting period had the most profound impact. Signals from low-magnitude and high-frequency mechanical vibration upregulated the expression of BMP-2 and Runx2, activated the ERK1/2 signaling pathway, and consequently led to increased expression of OCN. The anabolic effect of mechanical stimulation was enhanced with incorporation of resting period between loadings, and the one with 7-day resting period exhibited the strongest effect among all. Our results could provide a reference for development of mechanical stimulation as a non-pharmacological intervention for osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Vibrational dynamics of the CO stretching of 9-fluorenone studied by visible-pump and infrared-probe spectroscopy.

    PubMed

    Fukui, Yuki; Ohta, Kaoru; Tominaga, Keisuke

    2015-01-01

    We studied the effects of hydrogen bonds on the vibrational structures and vibrational dynamics of the CO stretching mode of 9-fluorenone (FL) in the electronically excited state in aprotic and protic solvents using sub-picosecond visible-pump and IR-probe spectroscopy. The transient IR spectrum of the CO stretching band in methanol-d4 has two bands at 1529.9 cm(-1) and 1543.4 cm(-1), which are assigned to an FL-solvent complex and free FL, respectively. In the aprotic solvents, the CO stretching bands show blue-shifts in time. This shift is due to vibrational cooling, which is derived from anharmonic couplings with some low-frequency modes. Interestingly, a red-shift is observed at later delay time for the band at 1529.9 cm(-1) in methanol-d4. A possible mechanism of this spectral shift is related to the hydrogen bond dynamics between the solute and solvent.

  20. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars

    NASA Astrophysics Data System (ADS)

    Turutin, Andrei V.; Vidal, João V.; Kubasov, Ilya V.; Kislyuk, Alexander M.; Malinkovich, Mikhail D.; Parkhomenko, Yurii N.; Kobeleva, Svetlana P.; Kholkin, Andrei L.; Sobolev, Nikolai A.

    2018-05-01

    We present an investigation into the magnetic sensing performance of magnetoelectric bilayered metglas/bidomain LiNbO3 long thin bars operating in a cantilever or free vibrating regime and under quasi-static and low-frequency resonant conditions. Bidomain single crystals of Y  +  128°-cut LiNbO3 were engineered by an improved diffusion annealing technique with a polarization macrodomain structure of the ‘head-to-head’ and ‘tail-to-tail’ type. Long composite bars with lengths of 30, 40 and 45 mm, as well as with and without attached small tip proof masses, were studied. ME coefficients as large as 550 V (cm · Oe)‑1, corresponding to a conversion ratio of 27.5 V Oe‑1, were obtained under resonance conditions at frequencies of the order of 100 Hz in magnetic bias fields as low as 2 Oe. Equivalent magnetic noise spectral densities down to 120 pT Hz‑1/2 at 10 Hz and to 68 pT Hz‑1/2 at a resonance frequency as low as 81 Hz were obtained for the 45 mm long cantilever bar with a tip proof mass of 1.2 g. In the same composite without any added mass the magnetic noise was shown to be as low as 37 pT Hz‑1/2 at a resonance frequency of 244 Hz and 1.2 pT Hz‑1/2 at 1335 Hz in a fixed cantilever and free vibrating regimes, respectively. A simple unidimensional dynamic model predicted the possibility to drop the low-frequency magnetic noise by more than one order of magnitude in case all the extrinsic noise sources are suppressed, especially those related to external vibrations, and the thickness ratio of the magnetic-to-piezoelectric phases is optimized. Thus, we have shown that such systems might find use in simple and sensitive room-temperature low-frequency magnetic sensors, e.g. for biomedical applications.

  1. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  2. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  3. Dynamic characterization of high damping viscoelastic materials from vibration test data

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Manex; Elejabarrieta, María Jesús

    2011-08-01

    The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.

  4. Accurate theoretical prediction of vibrational frequencies in an inhomogeneous dynamic environment: A case study of a glutamate molecule in water solution and in a protein-bound form

    PubMed Central

    Speranskiy, Kirill; Kurnikova, Maria

    2012-01-01

    We propose a hierarchical approach to model vibrational frequencies of a ligand in a strongly fluctuating inhomogeneous environment such as a liquid solution or when bound to a macromolecule, e.g., a protein. Vibrational frequencies typically measured experimentally are ensemble averaged quantities which result (in part) from the influence of the strongly fluctuating solvent. Solvent fluctuations can be sampled effectively by a classical molecular simulation, which in our model serves as the first, low level of the hierarchy. At the second high level of the hierarchy a small subset of system coordinates is used to construct a patch of the potential surface (ab initio) relevant to the vibration in question. This subset of coordinates is under the influence of an instantaneous external force exerted by the environment. The force is calculated at the lower level of the hierarchy. The proposed methodology is applied to model vibrational frequencies of a glutamate in water and when bound to the Glutamate receptor protein and its mutant. Our results are in close agreement with the experimental values and frequency shifts measured by the Jayaraman group by the Fourier transform infrared spectroscopy [Q. Cheng et al., Biochem. 41, 1602 (2002)]. Our methodology proved useful in successfully reproducing vibrational frequencies of a ligand in such a soft, flexible, and strongly inhomogeneous protein as the Glutamate receptor. PMID:15260697

  5. Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises.

    PubMed

    Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier

    2016-11-01

    Whole body vibration (WBV) is used as a training method but its physical risk is not yet clear. Hence, the aim of this study is to assess the exposure to WBV by a measure of acceleration at the lower limb under dynamic and static postural conditions. The hypothesis of this paper is that this assessment is influenced by the frequency, position, and movement of the body. Fifteen healthy males are exposed to vertical sinusoidal vibration at different frequencies (20-60 Hz), while adopting three different static postures (knee extension angle: 180°, 120° and 90°) or performing a dynamic half-squat exercise. Accelerations at input source and at three joints of the lower limb (ankle, knee, and hip) are measured using skin-mounted accelerometers. Acceleration values (g) in static conditions show a decrease in the vibrational dose when it is measured at a more proximal location in the lower extremity. The results of the performed statistical test show statistically significant differences (p < 0.05) in the transmissibility values caused by the frequency, the position, and to the presence of the movement and its direction at the different conditions. The results confirm the initial hypothesis and justify the importance of a vibration assessment in dynamic conditions.

  6. Low frequency vibrational spectra and the nature of metal-oxygen bond of alkaline earth metal acetylacetonates

    NASA Astrophysics Data System (ADS)

    Fakheri, Hamideh; Tayyari, Sayyed Faramarz; Heravi, Mohammad Momen; Morsali, Ali

    2017-12-01

    Theoretical quantum chemistry calculations were used to assign the observed vibrational band frequencies of Be, Mg, Ca, Sr, and Ba acetylacetonates complexes. Density functional theory (DFT) calculations have been carried out at the B3LYP level, using LanL2DZ, def2SVP, and mixed, GenECP, (def2SVP for metal ions and 6-311++G** for all other atoms) basis sets. The B3LYP level, with mixed basis sets, was utilized for calculations of vibrational frequencies, IR intensity, and Raman activity. Analysis of the vibrational spectra indicates that there are several bands which could almost be assigned mainly to the metal-oxygen vibrations. The strongest Raman band in this region could be used as a measure of the stability of the complex. The effects of central metal on the bond orders and charge distributions in alkaline earth metal acetylacetonates were studied by the Natural Bond Orbital (NBO) method for fully optimized compounds. Optimization were performed at the B3LYP/6-311++G** level for the lighter alkaline earth metal complexes (Be, Mg, and Ca acetylacetonates) while the B3LYP level, using LanL2DZ (extrabasis, d and f on oxygen and metal atoms), def2SVP and mixed (def2SVP on metal ions and 6-311++G** for all other atoms) basis sets for all understudy complexes. Calculations indicate that the covalence nature of metal-oxygen bonds considerably decreases from Be to Ba complexes. The nature of metal-oxygen bond was further studied by using Atoms In Molecules (AIM) analysis. The topological parameters, Wiberg bond orders, natural charges of O and metal ions, and also some vibrational band frequencies were correlated with the stability constants of understudy complexes.

  7. Development of vibration isolation platform for low amplitude vibration

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2014-03-01

    The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.

  8. Hearing at low and infrasonic frequencies.

    PubMed

    Møller, H; Pedersen, C S

    2004-01-01

    The human perception of sound at frequencies below 200 Hz is reviewed. Knowledge about our perception of this frequency range is important, since much of the sound we are exposed to in our everyday environment contains significant energy in this range. Sound at 20-200 Hz is called low-frequency sound, while for sound below 20 Hz the term infrasound is used. The hearing becomes gradually less sensitive for decreasing frequency, but despite the general understanding that infrasound is inaudible, humans can perceive infrasound, if the level is sufficiently high. The ear is the primary organ for sensing infrasound, but at levels somewhat above the hearing threshold it is possible to feel vibrations in various parts of the body. The threshold of hearing is standardized for frequencies down to 20 Hz, but there is a reasonably good agreement between investigations below this frequency. It is not only the sensitivity but also the perceived character of a sound that changes with decreasing frequency. Pure tones become gradually less continuous, the tonal sensation ceases around 20 Hz, and below 10 Hz it is possible to perceive the single cycles of the sound. A sensation of pressure at the eardrums also occurs. The dynamic range of the auditory system decreases with decreasing frequency. This compression can be seen in the equal-loudness-level contours, and it implies that a slight increase in level can change the perceived loudness from barely audible to loud. Combined with the natural spread in thresholds, it may have the effect that a sound, which is inaudible to some people, may be loud to others. Some investigations give evidence of persons with an extraordinary sensitivity in the low and infrasonic frequency range, but further research is needed in order to confirm and explain this phenomenon.

  9. A novel piezo vibration platform for probe dynamic performance calibration

    NASA Astrophysics Data System (ADS)

    Liang, Rong; Jusko, Otto; Lüdicke, Frank; Neugebauer, Michael

    2001-09-01

    A novel piezo vibration platform of compact size (120×120×120 mm3) for probe dynamic performance calibration has been developed. A piezo tube is employed to generate movement which is measured in real time by a miniature fibre interferometer and close-loop controlled by a fast digital signal processor, thus the calibration can be made traceable to the national length standard. 20 kHz control-loop frequency with 1.71 nm uncertainty has been achieved. The maximum calibration range is 20 µm with 0.3 nm resolution. The piezo vibration platform can generate up to 300 Hz sinusoidal signal and various other waveforms, such as square, triangle and saw tooth. It can also work in sweep mode to shift the frequency up to 100 Hz continuously, which is a very useful function when the amplitude-frequency response of the probe is to be investigated.

  10. Atomic force microscopy capable of vibration isolation with low-stiffness Z-axis actuation.

    PubMed

    Ito, Shingo; Schitter, Georg

    2018-03-01

    For high-resolution imaging without bulky external vibration isolation, this paper presents an atomic force microscope (AFM) capable of vibration isolation with its internal Z-axis (vertical) actuators moving the AFM probe. Lorentz actuators (voice coil actuators) are used for the Z-axis actuation, and flexures guiding the motion are designed to have a low stiffness between the mover and the base. The low stiffness enables a large Z-axis actuation of more than 700 µm and mechanically isolates the probe from floor vibrations at high frequencies. To reject the residual vibrations, the probe tracks the sample by using a displacement sensor for feedback control. Unlike conventional AFMs, the Z-axis actuation attains a closed-loop control bandwidth that is 35 times higher than the first mechanical resonant frequency. The closed-loop AFM system has robustness against the flexures' nonlinearity and uses the first resonance for better sample tracking. For further improvement, feedforward control with a vibration sensor is combined, and the resulting system rejects 98.4% of vibrations by turning on the controllers. The AFM system is demonstrated by successful AFM imaging in a vibrational environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    NASA Astrophysics Data System (ADS)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  12. A low-frequency vibration insensitive pendulum bench based on translation-tilt compensation in measuring the performances of inertial sensors

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ye, X.; Wu, S. C.; Bai, Y. Z.; Zhou, Z. B.

    2015-10-01

    The performance test of precision space inertial sensors on the ground is inevitably affected by seismic noise. A traditional vibration isolation platform, generally with a resonance frequency of several Hz, cannot satisfy the requirements for testing an inertial sensor at low frequencies. In this paper, we present a pendulum bench for inertial sensor testing based on translation-tilt compensation. A theoretical analysis indicates that the seismic noise effect on inertial sensors located on this bench can be attenuated by more than 40 dB below 0.1 Hz, which is very significant for investigating the performance of high-precision inertial sensors. We demonstrate this attenuation with a dedicated experiment.

  13. Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters

    NASA Astrophysics Data System (ADS)

    Lee, Jin Yong; Kim, Jongseob; Lee, Han Myoung; Tarakeshwar, P.; Kim, Kwang S.

    2000-10-01

    The water hexamer is known to have a number of isoenergetic structures. The first experimental identification of the O-H stretching vibrational spectra of the water hexamer was done in the presence of benzene. It was followed by the identification of the pure water hexamer structure by vibration-rotational tunneling (VRT) spectroscopy. Although both experiments seem to have located only the Cage structure, the structure of the benzene-water hexamer complex is not clearly known, and the effect of benzene in the water hexamer is unclear. In particular, it is not obvious how the energy difference between nearly isoenergetic water hexamer conformers changes in the presence of benzene. Thus, we have compared the benzene complexes with four low-lying isoenergetic water hexamers, Ring, Book, Cage, and Prism structures, using ab initio calculations. We also investigated the effects of the presence of benzene on the structures, harmonic vibrational frequencies, and infrared (IR) intensities for the four low-lying energy conformers. There is little change in the structure of the water hexamer upon its interaction with the benzene molecule. Hence the deformation energies are very small. The dominant contribution to the benzene-water cluster interaction mainly comes from the π-H interactions between benzene and a single water molecule. As a result of this π-H interaction, O-Hπ bond length increases and the corresponding stretching vibrational frequencies are redshifted. The IR spectral features of both (H2O)6 and benzene-(H2O)6 are quite similar. From both the energetics and the comparison of calculated and experimental spectra of the benzene-(H2O)6, the water structure in these complexes is found to have the Cage form. In particular, among the four different Cage structures, only one conformer matches the experimental O-H vibrational frequencies.

  14. Effects of the different frequencies of whole-body vibration during the recovery phase after exhaustive exercise.

    PubMed

    Cheng, C F; Hsu, W C; Lee, C L; Chung, P K

    2010-12-01

    This study was to investigate the effects of vibration exercise on the oxygen consumption (VO2) and heart rate variability (HRV) during the recovery phase after exhaustive exercise. Twenty male college students volunteered as subjects to participate in the study. The subjects were randomly crossover assigned to perform three 10 min vibration exercises, namely non-vibration (CON, 0 Hz, 0 mm), low-frequency (LFT, 20 Hz, 0.4 mm) and high-frequency (HFT, 36 Hz, 0.4 mm) treatments immediately after an incremental exhaustive cycling exercise in separated days. The beat-to-beat HRV, blood lactate concentration and VO2 were measured during the 1-hour recovery phase. The time- and frequency-domain indices of HRV were analyzed to confirm the effects of vibration exercises on the cardiac autonomic modulation. There were no significant differences on the VO2, HRV and blood lactate concentrations at 30th minute (post-30 min) or 60th minute (post-60 min) during the recovery phase among the three treatments. There were also no significant differences on the excess post-exercise oxygen consumption (EPOC) during the recovery phase among the treatments. However, the VO2 at post-30 min in CON and LFT were significantly higher than the baseline values, whereas the VO2 in HFT returned to resting condition at the post-30 min. The results indicate that both low and high frequency vibration exercises could not improve the physiological recovery after exhaustive cycling exercise. However, the high frequency vibration exercise probably has a potential to facilitate the VO2 to return to the resting level during the recovery phase.

  15. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  16. Forced Vibration Analysis of a Multidegree Impact Vibrator

    NASA Astrophysics Data System (ADS)

    Pun, D.; Lau, S. L.; Law, S. S.; Cao, D. Q.

    1998-06-01

    The dynamics of a multidegree impact vibrator subject to harmonic loading is investigated. The system is represented by a lumped mass model which hits and rebounds from a rigid wall during vibration. The periodic solution to the equations of motion withNforcing cycles andPimpacts is formulated. The variational equations and the resulting transition matrix for investigating local stability of the periodic solutions are derived. A two-degree-of-freedom example is analysed, and a variety of motion types are found. Chaotic windows are present between regions of periodic response, and at these boundariesN-Pmotions are prevalent. Low velocity impacts are evident at exciting frequencies away from the natural frequencies. Two basins of attraction are computed, and the sensitivity to initial conditions is noted. The quality of theN-Pmotion is discussed from an engineering application perspective.

  17. The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model.

    PubMed

    Yadav, Sumit; Assefnia, Amir; Gupta, Himank; Vishwanath, Meenakshi; Kalajzic, Zana; Allareddy, Veerasathpurush; Nanda, Ravindra

    2016-02-01

    To investigate the effect of low-frequency mechanical vibration (LFMV) on the prevention of relapse after active orthodontic tooth movement, bone volume fraction (BVF), tissue density, and the integrity of periodontal ligament. Thirty male CD1, 12-week-old mice were used for the study. Mice were randomly divided into three groups: 1. control group, 2. relapse group, and 3. relapse + 30 Hz vibration group. In the control group, first molar was moved mesially for 7 days using nickel-titanium coil spring delivering 10g of force, whereas in relapse and relapse + 30 Hz groups, first molar was moved mesially for 7 days and then orthodontic force was removed and molar was allowed to relapse for 7 days. In relapse + 30 Hz group, LFMVs were applied at 30 Hz. Micro-focus computed tomography (micro-CT) was used for tooth movement measurements (relapse), BVF, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase staining, and picro-sirius red staining were performed on histological sections. LFMV at 30 Hz showed a tendency to decrease relapse but was not statistically significant. Micro-CT analysis showed a trend towards increase in BVF and tissue density with application of LFMV. Sclerostin expression was decreased with 30 Hz vibration. Additionally, the picro-sirius staining showed that LFMV at 30 Hz helped in maintaining the thickness and integrity of collagen fibres in periodontal ligament. This is an animal study and extrapolation of the current findings to the clinical situation must be done with caution, as there is no osteonal remodelling (secondary remodelling) in mice when compared to humans. There was no statistically significant difference in the amount of relapse between the relapse-only and relapse + 30 Hz groups. However, there was a trend of decrease in relapse with 30 Hz mechanical vibration. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved

  18. Low-frequency dynamics of pressure-induced turbulent separation bubbles

    NASA Astrophysics Data System (ADS)

    Weiss, Julien; Mohammed-Taifour, Abdelouahab; Lefloch, Arnaud

    2017-11-01

    We experimentally investigate a pressure-induced turbulent separation bubble (TSB), which is generated on a flat test surface through a combination of adverse and favorable pressure gradients imposed on a nominally two-dimensional, incompressible, turbulent boundary layer. We probe the flow using piezo-resistive pressure transducers, MEMS shear-stress sensors, and high-speed, 2D-2C, PIV measurements. Through the use of Fourier analysis of the wall-pressure fluctuations and Proper Orthogonal Decomposition of the velocity fields, we show that this type of flow is characterized by a self-induced, low-frequency contraction and expansion - called breathing - of the TSB. The dominant Strouhal number of this motion, based on the TSB length and the incoming velocity in the potential flow, is of the order of 0.01. We compare this motion to the low-frequency dynamics observed in laminar separation bubbles (LSBs), geometry-induced TSBs, and shock-induced separated flows.

  19. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    PubMed

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  20. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  1. Dynamic cues for whisker-based object localization: An analytical solution to vibration during active whisker touch

    PubMed Central

    Vaxenburg, Roman; Wyche, Isis; Svoboda, Karel; Efros, Alexander L.

    2018-01-01

    Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks. PMID:29584719

  2. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  3. Erratum: "Low vibration laboratory with a single-stage vibration isolation for microscopy applications" [Rev. Sci. Instrum. 88, 023703 (2017)

    NASA Astrophysics Data System (ADS)

    Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F. Stefan

    2018-01-01

    The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate is discussed. The optimization of the air spring system lead to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.

  4. Vibration Analysis of a Split Path Gearbox

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Rashidi, Majid

    1995-01-01

    Split path gearboxes can be attractive alternatives to the common planetary designs for rotorcraft, but because they have seen little use, they are relatively high risk designs. To help reduce the risk of fielding a rotorcraft with a split path gearbox, the vibration and dynamic characteristics of such a gearbox were studied. A mathematical model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the natural frequencies and vibration energy of the gearbox. The first design variable, shaft angle, had little influence on the natural frequencies. The second variable, mesh phasing, had a strong effect on the levels of vibration energy, with phase angles of 0 deg and 180 deg producing low vibration levels. The third design variable, the stiffness of the shafts connecting the spur gears to the helical pinions, strongly influenced the natural frequencies of some of the vibration modes, including two of the dominant modes. We found that, to achieve the lowest level of vibration energy, the natural frequencies of these two dominant modes should be less than those of the main excitation sources.

  5. Design, fabrication and characterization of a very low frequency piezoelectric energy harvester designed for heart beat vibration scavenging

    NASA Astrophysics Data System (ADS)

    Colin, M.; Basrour, S.; Rufer, L.

    2013-05-01

    Current version of implantable cardioverter defibrillators (ICDs) and pacemakers consists of a battery-powered pulse generator connected onto the heart through electrical leads inserted through the veins. However, it is known that long-term lead failure may occur and cause a dysfunction of the device. When required, the removal of the failed leads is a complex procedure associated with a potential risk of mortality. As a consequence, the main players in the field of intracardiac implants prepare a next generation of devices: miniaturized and autonomous leadless implants, which could be directly placed inside the heart. In this paper, we discuss the frequency content of a heart vibration spectrum, and the dimensional restrictions in the case of a leadless pacemaker. In combination with the requirements in terms of useable energy, we will present a design study of a resonant piezoelectric scavenger aimed at powering such a device. In particular, we will show how the frequency-volume-energy requirement leads to new challenges in terms of power densities, which are to be addressed through implementation of innovative piezoelectric thick films fabrication processes. This paper also presents the simulation, fabrication and the testing of an ultralow frequency (15Hz) resonant piezoelectric energy harvester prototype. Using both harmonic (50mg) and real heart-induced vibrations, we obtained an output power of 60μW and 10μW respectively. Finally, we will place emphasis on the new constraint represented by the gravitational (orientation) sensitivity inherent to these ultra low frequency resonant energy harvesters.

  6. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  7. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    NASA Technical Reports Server (NTRS)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  8. Perceived pitch of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding.

    PubMed

    Morley, J W; Rowe, M J

    1990-12-01

    1. The effect of changes in amplitude on the perceived pitch of cutaneous vibratory stimuli was studied in psychophysical experiments designed to test whether the coding of information about the frequency of the vibration might be based on the ratio of recruitment of the PC (Pacinian corpuscle-associated) and RA (rapidly adapting) classes of tactile sensory fibres. The study was based on previous data which show that at certain vibration frequencies (e.g. 150 Hz) the ratio of recruitment of the PC and RA classes should vary as a function of vibration amplitude. 2. Sinusoidal vibration at either 30 Hz or 150 Hz, and at an amplitude 10 dB above subjective detection thresholds was delivered in a 1 s train to the distal phalangeal pad of the index finger in eight human subjects. This standard vibration was followed after 0.5 s by a 1 s comparison train of vibration which (unknown to the subject) was at the same frequency as the standard but at a range of amplitudes from 2 to 50 dB above the detection threshold. A two-alternative forced-choice procedure was used in which the subject had to indicate whether the comparison stimulus was higher or lower in pitch (frequency) than the standard. 3. Marked differences were seen from subject to subject in the effect of amplitude on perceived pitch at both 30 Hz and 150 Hz. At 150 Hz, five out of the eight subjects reported an increase in pitch as the amplitude of the comparison vibration increased, one experienced no change, and only two experienced the fall in perceived pitch that is predicted if the proposed ratio code contributes to vibrotactile pitch judgements. At 30 Hz similar intersubject variability was seen in the pitch-amplitude functions. 4. The results do not support the hypothesis that a ratio code contributes to vibrotactile pitch perception. We conclude that temporal patterning of impulse activity remains the major candidate code for pitch perception, at least over a substantial part of the vibrotactile frequency

  9. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  10. A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolin; Yang, Wei; Hu, Xiaosong; Zhang, Dejiu

    2017-02-01

    In this study, based on our previous work, a novel simplified torsional vibration dynamic model is established to study the torsional vibration characteristics of a compound planetary hybrid propulsion system. The main frequencies of the hybrid driveline are determined. In contrast to vibration characteristics of the previous 16-degree of freedom model, the simplified model can be used to accurately describe the low-frequency vibration property of this hybrid powertrain. This study provides a basis for further vibration control of the hybrid powertrain during the process of engine start/stop.

  11. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS).

    PubMed

    Velarde, Luis; Wang, Hong-Fei

    2013-12-14

    The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.

  12. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly showsmore » two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.« less

  13. Reduction of the coupling vibration between the bending vibrators of the frequency-change-type two-axis acceleration sensor

    NASA Astrophysics Data System (ADS)

    Sugawara, Sumio; Sasaki, Yoshifumi; Kudo, Subaru

    2018-07-01

    The frequency-change-type two-axis acceleration sensor uses a cross-type vibrator consisting of four bending vibrators. When coupling vibration exists between these four bending vibrators, the resonance frequency of each vibrator cannot be adjusted independently. In this study, methods of reducing the coupling vibration were investigated by finite-element analysis. A method of adjusting the length of the short arm of each vibrator was proposed for reducing the vibration. When piezoelectric ceramics were bonded to the single-sided surface of the vibrator, the method was not sufficient. Thus, the ceramics with the same dimensions were bonded to double-sided surfaces. As a result, a marked reduction was obtained in this case. Also, the linearity of the sensor characteristics was significantly improved in a small acceleration range. Accordingly, it was clarified that considering the symmetry along the thickness direction of the vibrator is very important.

  14. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.

    PubMed

    Fedoseeva, Marina; Delor, Milan; Parker, Simon C; Sazanovich, Igor V; Towrie, Michael; Parker, Anthony W; Weinstein, Julia A

    2015-01-21

    Understanding the dynamics of the initial stages of vibrational energy transfer in transition metal complexes is a challenging fundamental question which is also of crucial importance for many applications, such as improving the performance of solar devices or photocatalysis. The present study investigates vibrational energy transport in the ground and the electronic excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2, a close relative of the efficient "N3" dye used in dye-sensitized solar cells. Using the emerging technique of ultrafast two-dimensional infrared spectroscopy, we show that, similarly to other transition-metal complexes, the central Ru heavy atom acts as a "bottleneck" making the energy transfer from small ligands with high energy vibrational stretching frequencies less favorable and thereby affecting the efficiency of vibrational energy flow in the complex. Comparison of the vibrational relaxation times in the electronic ground and excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2 shows that it is dramatically faster in the latter. We propose to explain this observation by the intramolecular electrostatic interactions between the thiocyanate group and partially oxidised Ru metal center, which increase the degree of vibrational coupling between CN and Ru-N modes in the excited state thus reducing structural and thermodynamic barriers that slow down vibrational relaxation and energy transport in the electronic ground state. As a very similar behavior was earlier observed in another transition-metal complex, Re(4,4'-(COOEt)2-2,2'-bpy)(CO)3Cl, we suggest that this effect in vibrational energy dynamics might be common for transition-metal complexes with heavy central atoms.

  15. Dynamics of a grain-filled ball on a vibrating plate.

    PubMed

    Pacheco-Vázquez, F; Ludewig, F; Dorbolo, S

    2014-09-12

    We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.

  16. Dynamics of a Grain-Filled Ball on a Vibrating Plate

    NASA Astrophysics Data System (ADS)

    Pacheco-Vázquez, F.; Ludewig, F.; Dorbolo, S.

    2014-09-01

    We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.

  17. Loads and low frequency dynamics - An ENVIRONET data base

    NASA Technical Reports Server (NTRS)

    Garba, John A.

    1988-01-01

    The loads and low frequency dynamics data base, part of Environet, is described with particular attention given to its development and contents. The objective of the data base is to provide the payload designer with design approaches and design data to meet STS safety requirements. Currently the data base consists of the following sections: abstract, scope, glossary, requirements, interaction with other environments, summary of the loads analysis process, design considerations, guidelines for payload design loads, information data base, and references.

  18. Vibrational cooling dynamics of a [FeFe]-hydrogenase mimic probed by time-resolved infrared spectroscopy.

    PubMed

    Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-12-11

    Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states.

  19. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    NASA Astrophysics Data System (ADS)

    Velarde, Luis; Wang, Hong-fei

    2013-08-01

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  20. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS).

    PubMed

    Velarde, Luis; Wang, Hong-fei

    2013-08-28

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm(-1) with a total linewidth of 10.9 ± 0.3 cm(-1) at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm(-1) to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm(-1). Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  1. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuirmore » monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.« less

  2. Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed

    2017-02-01

    Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.

  3. An efficient formulation of Krylov's prediction model for train induced vibrations based on the dynamic reciprocity theorem.

    PubMed

    Degrande, G; Lombaert, G

    2001-09-01

    In Krylov's analytical prediction model, the free field vibration response during the passage of a train is written as the superposition of the effect of all sleeper forces, using Lamb's approximate solution for the Green's function of a halfspace. When this formulation is extended with the Green's functions of a layered soil, considerable computational effort is required if these Green's functions are needed in a wide range of source-receiver distances and frequencies. It is demonstrated in this paper how the free field response can alternatively be computed, using the dynamic reciprocity theorem, applied to moving loads. The formulation is based on the response of the soil due to the moving load distribution for a single axle load. The equations are written in the wave-number-frequency domain, accounting for the invariance of the geometry in the direction of the track. The approach allows for a very efficient calculation of the free field vibration response, distinguishing the quasistatic contribution from the effect of the sleeper passage frequency and its higher harmonics. The methodology is validated by means of in situ vibration measurements during the passage of a Thalys high-speed train on the track between Brussels and Paris. It is shown that the model has good predictive capabilities in the near field at low and high frequencies, but underestimates the response in the midfrequency band.

  4. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies

    PubMed Central

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G.; Miles-Chan, Jennifer L.

    2016-01-01

    Background and Aim There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5–4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a “dose-response” exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). Methods EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Results Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. Conclusion No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS). PMID:26974147

  5. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    PubMed

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G; Miles-Chan, Jennifer L

    2016-01-01

    There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS).

  6. Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range

    DTIC Science & Technology

    2003-02-01

    frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA

  7. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1984-01-01

    The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.

  8. Dynamic damping of vibrations of technical object with two degrees of freedom

    NASA Astrophysics Data System (ADS)

    Khomenko, A. P.; Eliseev, S. V.; Artyunin, A. I.

    2017-10-01

    Approach to the solution of problems of dynamic damping for the technical object with two degrees of freedom on the elastic supports is developed. Such tasks are typical for the dynamics of technological vibrating machines, machining machine tools and vehicles. The purpose of the study is to justify the possibility of obtaining regimes of simultaneous dynamic damping of oscillations in two coordinates. The achievement of the goal is based on the use of special devices for the transformation of motion, introduced parallel to the elastic element. The dynamic effect is provided by the possibility of changing the relationships between the reduced masses of devices for transforming motion. The method of structural mathematical modeling is used, in which the mechanical oscillatory system is compared, taking into account the principle of dynamic analogies, the dynamically equivalent structural diagram of the automatic control system. The concept of transfer functions of systems interpartial relations and generalized ideas about the partial frequencies and frequencies dynamic damping is applied. The concept of a frequency diagram that determines the mutual distribution of graphs of frequency characteristics in the interaction of the elements of the system is introduced.

  9. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  10. Piezoelectric Instruments of High Natural Frequency Vibration Characteristics and Protection Against Interference by Mass Forces

    NASA Technical Reports Server (NTRS)

    Gohlka, Werner

    1943-01-01

    The exploration of the processes accompanying engine combustion demands quick-responding pressure-recording instruments, among which the piezoelectric type has found widespread use because of its especially propitious properties as vibration-recording instruments for high frequencies. Lacking appropriate test methods, the potential errors of piezoelectric recorders in dynamic measurements could only be estimated up to now. In the present report a test method is described by means of which the resonance curves of the piezoelectric pickup can be determined; hence an instrumental appraisal of the vibration characteristics of piezoelectric recorders is obtainable.

  11. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  12. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    NASA Astrophysics Data System (ADS)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  13. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    PubMed

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s 2 ) vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the

  14. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    NASA Astrophysics Data System (ADS)

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ˜3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  15. The effects of transverse shearing and anisotropy on vibration frequencies of laminated cylinders

    NASA Technical Reports Server (NTRS)

    Jegley, D. C.

    1990-01-01

    The natural vibration frequencies of orthotropic and anisotropic, simply supported right circular cylinders are predicted using a theory which takes into account higher-order transverse shear deformation effects. A comparison between results based on first-order transverse shear deformation theory and the higher-order theory indicates that an additional allowance for transverse shear deformation has a negligible effect on the predicted natural vibration frequencies associated with long wavelengths, but significantly reduces the natural vibration frequencies associated with short wavelengths. Results of a parametric study of ply orientation for two classes of laminates indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry and mode shape are more important in accurately predicting transverse shear deformation effects. Transverse shearing effects are less important in predicting natural vibration frequencies associated with long wavelength than in predicting axial compressive buckling loads.

  16. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study

    NASA Astrophysics Data System (ADS)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.

    2018-03-01

    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  17. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    PubMed

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  18. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    NASA Astrophysics Data System (ADS)

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  19. Earless toads sense low frequencies but miss the high notes.

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A; Chaparro, Juan C; Hoke, Kim L

    2017-10-11

    Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey. © 2017 The Author(s).

  20. A Low-Cost Data Acquisition System for Automobile Dynamics Applications

    PubMed Central

    González, Alejandro; Vinolas, Jordi

    2018-01-01

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources. PMID:29382039

  1. A Low-Cost Data Acquisition System for Automobile Dynamics Applications.

    PubMed

    González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi

    2018-01-27

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.

  2. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy.

    PubMed

    Xu, Yao; Havenith, Martina

    2015-11-07

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  3. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Havenith, Martina

    2015-11-01

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  4. Vibration-based structural health monitoring of the aircraft large component

    NASA Astrophysics Data System (ADS)

    Pavelko, V.; Kuznetsov, S.; Nevsky, A.; Marinbah, M.

    2017-10-01

    In the presented paper there are investigated the basic problems of the local system of SHM of large scale aircraft component. Vibration-based damage detection is accepted as a basic condition, and main attention focused to a low-cost solution that would be attractive for practice. The conditions of small damage detection in the full scale structural component at low-frequency excitation were defined in analytical study and modal FEA. In experimental study the dynamic test of the helicopter Mi-8 tail beam was performed at harmonic excitation with frequency close to first natural frequency of the beam. The index of correlation coefficient deviation (CCD) was used for extraction of the features due to embedded pseudo-damage. It is shown that the problem of vibration-based detection of a small damage in the large scale structure at low-frequency excitation can be solved successfully.

  5. The Shock and Vibration Bulletin. Part 3. Dynamic Analysis, Design Techniques

    DTIC Science & Technology

    1980-09-01

    response at certain discrete frequen- nique for dynamic analysis was pioneered by cies, not over a random-frequence spectrum. Myklestad[l]. Later Pestel and...34Fundamentals of Vibra- v’ angle of rotation due to tion Analysis ," McGraw-Hill, New York, 1956. bending 2. E.C. Pestel and F.A. Leckie, "Matrix o’ angle of...Bulletin 50IC FILE COPY (Part 03ofP,) to THE SHOCK AND VIBRATION BULLETIN Part 3 Dynamic Analysis , Design Techniques IELECTE SEPTEMBER 1980 S NOV 1

  6. Reduced dynamical model of the vibrations of a metal plate

    NASA Astrophysics Data System (ADS)

    Moreno, D.; Barrientos, Bernardino; Perez-Lopez, Carlos; Mendoza-Santoyo, Fernando; Guerrero, J. A.; Funes, M.

    2005-02-01

    The Proper Orthogonal Decomposition (POD) method is applied to the vibrations analysis of a metal plate. The data obtained from the metal plate under vibrations were measured with a laser vibrometer. The metal plate was subject to vibrations with an electrodynamical shaker in a range of frequencies from 100 to 5000 Hz. The deformation measurements were taken on a quarter of the plate in a rectangular grid of 7 x 8 points. The plate deformation measurements were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total energy of the deformation is contained within the first six POD modes. The essential features of the deformation are thus described by only the six first eigenfunctions. A reduced order model for the dynamical behavior is then constructed using Galerkin projection of the equation of motion for the vertical displacement of a plate.

  7. Granular metamaterials for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  8. Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration

    PubMed Central

    Krajnak, Kristine; Miller, G. Roger; Waugh, Stacey; Johnson, Claud; Kashon, Michael L.

    2015-01-01

    Objective Occupational exposure to hand-transmitted vibration can result in damage to nerves and sensory loss. The goal of this study was to assess the frequency-dependent effects of repeated bouts of vibration on sensory nerve function and associated changes in nerves. Methods The tails of rats were exposed to vibration at 62.5, 125, or 250 Hz (constant acceleration of 49m/s2) for 10 days. The effects on sensory nerve function, nerve morphology, and transcript expression in ventral tail nerves were measured. Results Vibration at all frequencies had effects on nerve function and physiology. However, the effects tended to be more prominent with exposure at 250 Hz. Conclusion Exposure to vibration has detrimental effects on sensory nerve function and physiology. However, many of these changes are more prominent at 250-Hz exposure than at lower frequencies. PMID:22785326

  9. Frequency Dynamics of the First Heart Sound

    NASA Astrophysics Data System (ADS)

    Wood, John Charles

    Cardiac auscultation is a fundamental clinical tool but first heart sound origins and significance remain controversial. Previous clinical studies have implicated resonant vibrations of both the myocardium and the valves. Accordingly, the goals of this thesis were threefold, (1) to characterize the frequency dynamics of the first heart sound, (2) to determine the relative contribution of the myocardium and the valves in determining first heart sound frequency, and (3) to develop new tools for non-stationary signal analysis. A resonant origin for first heart sound generation was tested through two studies in an open-chest canine preparation. Heart sounds were recorded using ultralight acceleration transducers cemented directly to the epicardium. The first heart sound was observed to be non-stationary and multicomponent. The most dominant feature was a powerful, rapidly-rising frequency component that preceded mitral valve closure. Two broadband components were observed; the first coincided with mitral valve closure while the second significantly preceded aortic valve opening. The spatial frequency of left ventricular vibrations was both high and non-stationary which indicated that the left ventricle was not vibrating passively in response to intracardiac pressure fluctuations but suggested instead that the first heart sound is a propagating transient. In the second study, regional myocardial ischemia was induced by left coronary circumflex arterial occlusion. Acceleration transducers were placed on the ischemic and non-ischemic myocardium to determine whether ischemia produced local or global changes in first heart sound amplitude and frequency. The two zones exhibited disparate amplitude and frequency behavior indicating that the first heart sound is not a resonant phenomenon. To objectively quantify the presence and orientation of signal components, Radon transformation of the time -frequency plane was performed and found to have considerable potential for pattern

  10. Measurement of dynamic patterns of an elastic membrane at bi-modal vibration using high speed electronic speckle pattern interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza

    2014-05-27

    Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with twomore » consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.« less

  11. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    NASA Astrophysics Data System (ADS)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  12. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  13. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  14. Dynamical mechanical characteristic simulation and analysis of the low voltage switch under vibration and shock conditions

    NASA Astrophysics Data System (ADS)

    Miao, Xiaodan; Han, Feng

    2017-04-01

    The low voltage switch has widely application especially in the hostile environment such as large vibration and shock conditions. In order to ensure the validity of the switch in the hostile environment, it is necessary to predict its mechanical characteristic. In traditional method, the complex and expensive testing system is build up to verify its validity. This paper presented a method based on finite element analysis to predict the dynamic mechanical characteristic of the switch by using ANSYS software. This simulation could provide the basis for the design and optimization of the switch to shorten the design process to improve the product efficiency.

  15. A coin vibrational motor swimming at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Askari, Hesam; Kelley, Douglas H.; Friedmann, Tamar; Oakes, Patrick W.

    2016-12-01

    Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream Re s 1/2 U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 0 2 /( ων) for motor angular frequency ω and fluid kinematic viscosity ν.

  16. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    NASA Astrophysics Data System (ADS)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  17. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less

  18. Transmission of vibration through gloves: effects of material thickness.

    PubMed

    Md Rezali, Khairil Anas; Griffin, Michael J

    2016-08-01

    It might be assumed that increasing the thickness of a glove would reduce the vibration transmitted to the hand. Three material samples from an anti-vibration glove were stacked to produce three thicknesses: 6.4, 12.8 and 19.2 mm. The dynamic stiffnesses of all three thicknesses, the apparent mass at the palm and the finger and the transmission of vibration to the palm and finger were measured. At frequencies from 20 to 350 Hz, the material reduced vibration at the palm but increased vibration at the finger. Increased thickness reduced vibration at the palm but increased vibration at the finger. The measured transmissibilities could be predicted from the material dynamic stiffness and the apparent mass of the palm and finger. Reducing the dynamic stiffness of glove material may increase or decrease the transmission of vibration, depending on the material, the frequency of vibration and the location of measurement (palm or finger). Practitioner Summary: Transmission of vibration through gloves depends on the dynamic response of the hand and the dynamic stiffness of glove material, which depends on material thickness. Measuring the transmission of vibration through gloves to the palm of the hand gives a misleading indication of the transmission of vibration to the fingers.

  19. Near-field infrared vibrational dynamics and tip-enhanced decoherence.

    PubMed

    Xu, Xiaoji G; Raschke, Markus B

    2013-04-10

    Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.

  20. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  1. Dynamic Testing of In-Situ Composite Floors and Evaluation of Vibration Serviceability Using the Finite Element Method

    DTIC Science & Technology

    2006-08-21

    Dynamic Testing of In-Situ Composite Floors and Evaluation of Vibration Serviceability Using the Finite Element Method By Anthony R. Barrett...Setareh Alfred L. Wicks 21 August 2006 Blacksburg, VA Keywords: vibration, floor, serviceability , walking, modal analysis, fundamental frequency...burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services

  2. Dynamics of a passive micro-vibration isolator based on a pretensioned plane cable net structure and fluid damper

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi

    2016-09-01

    This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.

  3. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    NASA Astrophysics Data System (ADS)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  4. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach.

    PubMed

    Chiariello, Maria Gabriella; Rega, Nadia

    2018-03-22

    Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.

  5. Excited-State Vibrational Coherence in Perylene Bisimide Probed by Femtosecond Broadband Pump-Probe Spectroscopy.

    PubMed

    Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho

    2015-06-18

    Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.

  6. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  7. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration.

    PubMed

    Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X

    2007-10-01

    Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.

  8. Instant Variations in Velocity and Attenuation of Seismic Waves in a Friable Medium Under a Vibrational Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Geza, N.; Yushin, V.

    2007-12-01

    Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.

  9. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, Nick

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm -1 intermolecular vibration of the water dimer-d 4. Each of the VRT subbands originate from K a''=0 and terminate in either K a'=0 or 1. These data provide a complete characterization of the tunneling dynamics in themore » vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K a' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v 12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D 2O-DOH isotopomer.« less

  10. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, Hilary M.; Chen, Shunli; Fu, Li

    2017-09-01

    Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.

  11. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  12. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    PubMed

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  13. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    NASA Technical Reports Server (NTRS)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  14. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  15. Stimulated low-frequency Raman scattering in aqueous suspension of nanoparticles

    NASA Astrophysics Data System (ADS)

    Averyushkin, Anatolii S.; Baranov, Anatoly N.; Bulychev, Nikolay A.; Kazaryan, Mishik A.; Kudryavtseva, Anna D.; Shevchenko, Mikhail A.; Strokov, Maxim A.; Tcherniega, Nikolay V.; Zemskov, Konstantin I.

    2018-04-01

    The low-frequency acoustic mode in nanoparticles of different nature in aqueous suspension has been studied by stimulated low-frequency Raman scattering (SLFRS). Nanoparticles investigated (CuO, Ag, Au, ZnS) had different dimensions and different vibrational properties. Synthesis of cupric oxide nanoparticles in acoustoplasma discharge is described in details. SLFRS has been excited by nanosecond pulses of ruby laser. Spectra of the scattered light had been registered with the help of Fabry-Perot interferometer. SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  16. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  17. Two-dimensional vibrational-electronic spectroscopy.

    PubMed

    Courtney, Trevor L; Fox, Zachary W; Slenkamp, Karla M; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological

  18. Two-dimensional vibrational-electronic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE)more » to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer

  19. Design and vibration control of vehicle engine mount activated by MR fluid and piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.

    2009-07-01

    An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).

  20. Vibration therapy: clinical applications in bone

    PubMed Central

    Thompson, William R.; Yen, Sherwin S.; Rubin, Janet

    2015-01-01

    Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise. PMID:25354044

  1. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    NASA Astrophysics Data System (ADS)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show

  2. Modelling vibrational coherence in the primary rhodopsin photoproduct.

    PubMed

    Weingart, O; Garavelli, M

    2012-12-14

    Molecular dynamics simulations of the rhodopsin photoreaction reveal coherent low frequency oscillations in the primary photoproduct (photorhodopsin), with frequencies slightly higher than observed in the experiment. The coherent molecular motions in the batho-precursor can be attributed to the activation of ground state vibrational modes in the hot photo-product, involving out-of-plane deformations of the carbon skeleton. Results are discussed and compared with respect to spectroscopic data and suggested reaction mechanisms.

  3. Improving frequencies range measurement of vibration sensor based on Fiber Bragg Grating (FBG)

    NASA Astrophysics Data System (ADS)

    Qomaruddin; Setiono, A.; Afandi, M. I.

    2017-04-01

    This research aimed to develop a vibration sensor based on Fiber Bragg Grating (FBG). The design was mainly done by attaching FBG at the cantilever. The free-end of the cantilever was tied to a vibration source in order to increase the measurement range of vibration frequencies. The results indicated that the developed sensor was capable of detecting wide range of frequencies (i.e. 10 - 1700 Hz). The results also showed both good stability and repeatability. The measured frequency range was 566 times greater than the range obtained from the previous works.

  4. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    PubMed

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  5. Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Sugino, C.; Erturk, A.

    2018-05-01

    Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from locally resonant metastructures without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, integrating energy harvesters into a locally resonant metastructure enables a new potential for multifunctional locally resonant metastructures that can host self-powered sensors.

  6. Improved measurement of vibration amplitude in dynamic optical coherence elastography

    PubMed Central

    Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.

    2012-01-01

    Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565

  7. Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Yang, Liangdong; Gao, Jiawei; Zhang, Xingwu

    2017-11-01

    In the field of active noise and vibration control (ANVC), a considerable part of unwelcome noise and vibration is resulted from rotational machines, making the spectrum of response signal multiple-frequency. Narrowband filtered-x least mean square (NFXLMS) is a very popular algorithm to suppress such noise and vibration. It has good performance since a priori-knowledge of fundamental frequency of the noise source (called reference frequency) is adopted. However, if the priori-knowledge is inaccurate, the control performance will be dramatically degraded. This phenomenon is called reference frequency mismatch (RFM). In this paper, a novel narrowband ANVC algorithm with orthogonal pair-wise reference frequency regulator is proposed to compensate for the RFM problem. Firstly, the RFM phenomenon in traditional NFXLMS is closely investigated both analytically and numerically. The results show that RFM changes the parameter estimation problem of the adaptive controller into a parameter tracking problem. Then, adaptive sinusoidal oscillators with output rectification are introduced as the reference frequency regulator to compensate for the RFM problem. The simulation results show that the proposed algorithm can dramatically suppress the multiple-frequency noise and vibration with an improved convergence rate whether or not there is RFM. Finally, case studies using experimental data are conducted under the conditions of none, small and large RFM. The shaft radial run-out signal of a rotor test-platform is applied to simulate the primary noise, and an IIR model identified from a real steel structure is applied to simulate the secondary path. The results further verify the robustness and effectiveness of the proposed algorithm.

  8. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics.

    PubMed

    Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi

    2004-04-01

    Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.

  9. Eulerian frequency analysis of structural vibrations from high-speed video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venanzoni, Andrea; Siemens Industry Software NV, Interleuvenlaan 68, B-3001 Leuven; De Ryck, Laurent

    An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motionmore » of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency

  10. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111)

    NASA Astrophysics Data System (ADS)

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-01

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.

  11. Vibration-translation energy transfer in vibrationally excited diatomic molecules. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.

  12. Low Cost Digital Vibration Meter.

    PubMed

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  13. Low Cost Digital Vibration Meter

    PubMed Central

    Payne, W. Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device. PMID:27110459

  14. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  15. Decreasing sound and vibration during ground transport of infants with very low birth weight.

    PubMed

    Prehn, J; McEwen, I; Jeffries, L; Jones, M; Daniels, T; Goshorn, E; Marx, C

    2015-02-01

    To measure the effectiveness of modifications to reduce sound and vibration during interhospital ground transport of a simulated infant with very low birth weight (VLBW) and a gestational age of 30 weeks, a period of high susceptibility to germinal matrix and intraventricular hemorrhage. Researchers measured vibration and sound levels during infant transport, and compared levels after modifications to the transport incubator mattresses, addition of vibration isolators under incubator wheels, addition of mass to the incubator mattress and addition of incubator acoustic cover. Modifications did not decrease sound levels inside the transport incubator during transport. The combination of a gel mattress over an air chambered mattress was effective in decreasing vibration levels for the 1368 g simulated infant. Transport mattress effectiveness in decreasing vibration is influenced by infant weight. Modifications that decrease vibration for infants weighing 2000 g are not effective for infants with VLBW. Sound levels are not affected by incubator covers, suggesting that sound is transmitted into the incubator as a low-frequency vibration through the incubator's contact with the ambulance. Medical transportation can apply industrial methods of vibration and sound control to protect infants with VLBW from excessive physical strain of transport during vulnerable periods of development.

  16. Ultrafast Solvation Dynamics and Vibrational Coherences of Halogenated Boron-Dipyrromethene Derivatives Revealed through Two-Dimensional Electronic Spectroscopy.

    PubMed

    Lee, Yumin; Das, Saptaparna; Malamakal, Roy M; Meloni, Stephen; Chenoweth, David M; Anna, Jessica M

    2017-10-18

    Boron-dipyrromethene (BODIPY) chromophores have a wide range of applications, spanning areas from biological imaging to solar energy conversion. Understanding the ultrafast dynamics of electronically excited BODIPY chromophores could lead to further advances in these areas. In this work, we characterize and compare the ultrafast dynamics of halogenated BODIPY chromophores through applying two-dimensional electronic spectroscopy (2DES). Through our studies, we demonstrate a new data analysis procedure for extracting the dynamic Stokes shift from 2DES spectra revealing an ultrafast solvent relaxation. In addition, we extract the frequency of the vibrational modes that are strongly coupled to the electronic excitation, and compare the results of structurally different BODIPY chromophores. We interpret our results with the aid of DFT calculations, finding that structural modifications lead to changes in the frequency, identity, and magnitude of Franck-Condon active vibrational modes. We attribute these changes to differences in the electron density of the electronic states of the structurally different BODIPY chromophores.

  17. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, N.

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics inmore » the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.« less

  18. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Li, Qingpin; Yan, Bo; Luo, Yajun; Zhang, Xinong

    2018-05-01

    In order to improve the isolation performance of passive Stewart platforms, the negative stiffness magnetic spring (NSMS) is employed to construct high static low dynamic stiffness (HSLDS) struts. With the NSMS, the resonance frequencies of the platform can be reduced effectively without deteriorating its load bearing capacity. The model of the Stewart isolation platform with HSLDS struts is presented and the stiffness characteristic of its struts is studied firstly. Then the nonlinear dynamic model of the platform including both geometry nonlinearity and stiffness nonlinearity is established; and its simplified dynamic model is derived under the condition of small vibration. The effect of nonlinearity on the isolation performance is also evaluated. Finally, a prototype is built and the isolation performance is tested. Both simulated and experimental results demonstrate that, by using the NSMS, the resonance frequencies of the Stewart isolator are reduced and the isolation performance in all six directions is improved: the isolation frequency band is increased and extended to a lower-frequency level.

  19. Modal analysis of dislocation vibration and reaction attempt frequency

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-02-04

    Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less

  20. The vibration behavior of railway track at high frequencies under multiple preloads and wheel interactions

    PubMed

    Wu; Thompson

    2000-09-01

    The track foundation is preloaded by multiple wheel loads due to the train weight and, as the pad and ballast are nonlinear, their stiffness depends upon the preload in them. Due to the influence of these resilient components of the track, the track vibration is affected by the wheel loads. It is also affected by the wheel/rail interactions. In this article the preloads in the pad and ballast are calculated by considering the nonlinear properties of the track foundation, and thus the preloaded pad and ballast stiffnesses are determined. The vibration properties are explored for the track under multiple wheel loads and multiple wheel/rail interactions by comparing the results from different track models with and without these effects. It is found that the point receptance of the track is reduced and the vibration decay rate is enhanced at low frequencies due to the wheel loads. The effects of the wheel/rail interactions are most significant for frequencies 400-2000 Hz. Because of the wheel/rail interactions, the point receptance fluctuates and the vibration decay is enhanced in the regions around the wheels.

  1. A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Bartlett, Felton D., Jr.; Cline, John H.

    1988-01-01

    The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement.

  2. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  3. Low-frequency absorption of sound in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1985-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  4. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  5. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  6. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal

    PubMed Central

    Yu, Haiyang; Gan, Xueqi

    2017-01-01

    Low magnitude high frequency vibration (LMHFV) has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm), 15min/d, on multipotent stem cells (MSCs), which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs) and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis. PMID:28253368

  7. Distinct frequency dependent effects of whole-body vibration on non-fractured bone and fracture healing in mice.

    PubMed

    Wehrle, Esther; Wehner, Tim; Heilmann, Aline; Bindl, Ronny; Claes, Lutz; Jakob, Franz; Amling, Michael; Ignatius, Anita

    2014-08-01

    Low-magnitude high-frequency vibration (LMHFV) provokes anabolic effects in non-fractured bone; however, in fracture healing, inconsistent results were reported and optimum vibration conditions remain unidentified. Here, we investigated frequency dependent effects of LMHFV on fracture healing. Twelve-week-old, female C57BL/6 mice received a femur osteotomy stabilized using an external fixator. The mice received whole-body vibrations (20 min/day) with 0.3g peak-to-peak acceleration and a frequency of either 35 or 45 Hz. After 10 and 21 days, the osteotomized femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, µ-computed tomography, and histomorphometry. In non-fractured trabecular bone, vibration with 35 Hz significantly increased the relative amount of bone (+28%) and the trabecular number (+29%), whereas cortical bone was not influenced. LMHFV with 45 Hz failed to provoke anabolic effects in trabecular or cortical bone. Fracture healing was not significantly influenced by whole-body vibration with 35 Hz, whereas 45 Hz significantly reduced bone formation (-64%) and flexural rigidity (-34%) of the callus. Although the exact mechanisms remain open, our results suggest that small vibration setting changes could considerably influence LMHFV effects on bone formation in remodeling and repair, and even disrupt fracture healing, implicating caution when treating patients with impaired fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Effect of low velocity impact damage on the natural frequency of composite plates

    NASA Astrophysics Data System (ADS)

    Chok, E. Y. L.; Majid, D. L. A. A.; Harmin, M. Y.

    2017-12-01

    Biodegradable natural fibers have been suggested to replace the hazardous synthetic fibers in many aerospace applications. However, this notion has been limited due to their low mechanical properties, which leads to the idea of hybridizing the two materials. Many aircraft components such as radome, aft body and wing are highly susceptible to low velocity impact damage while in-service. The damages degrade the structural integrity of the components and change their dynamic characteristics. In worst case scenario, the changes can lead to resonance, which is an excessive vibration. This research is conducted to study the dynamic characteristic changes of low velocity impact damaged hybrid composites that is designed for aircraft radome applications. Three materials, which are glass fiber, kenaf fiber and kenaf/glass fiber hybrid composites, have been impacted with 3J, 6J and 9J of energy. Cantilevered and also vertically clamped boundary conditions are used and the natural frequencies are extracted for each of the specimens. The obtained results show that natural frequency decreases with increasing impact level. Cantilevered condition is found to induce lower modes due to the gravitational pull. To eliminate mass and geometrical effects, normalized modes are computed. Among the three materials considered, glass fiber composites have displayed the highest normalized frequency that reflects on its higher stiffness compared to the other two materials. As the damage level is increased, glass fiber composites have shown the highest frequency reduction to a maximum of 35% while kenaf composites have the least frequency reduction in the range of 1 - 18%. Thus, kenaf fiber is taken to be helpful in stalling the damage progression and reducing the effect of damage. This has been proven when the percentage frequency decrement shown by kenaf/glass fiber composite lies between glass fiber and kenaf fiber composites.

  9. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  10. [Low magnitude whole-body vibration and postmenopausal osteoporosis].

    PubMed

    Li, Huiming; Li, Liang

    2018-04-01

    Postmenopausal osteoporosis is a type of osteoporosis with high bone transformation rate, caused by a decrease of estrogen in the body, which is a systemic bone disease characterized by decreased bone mass and increased risk of fracture. In recent years, as a kind of non-pharmacologic treatment of osteoporosis, defined by whole-body vibration less than 1 g ( g = 9.81 m/s 2 ), low magnitude whole-body vibration is widely concerned, mainly because of its small side effects, simple operation and relative safety. Studies have shown that low magnitude whole-body vibration can improve bone strength, bone volume and bone density. But a lot of research found that, the therapeutic effects of low magnitude whole-body vibration are different depending on ages and hormone levels of subjects for animal models or human patients. There has been no definite vibration therapy can be applied to each subject so far. Studies of whole-body and cellular level suggest that low magnitude whole-body vibration stimulation is likely to be associated with changes of hormone levels and directed differentiation of stem cells. Based on the analysis of related literature in recent years, this paper made a review from vibration parameters, vibration effects and the mechanisms, to provide scientific basis and clinical guidance for the treatment of postmenopausal osteoporosis with low magnitude whole-body vibration.

  11. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    PubMed Central

    Gao, Fengli; Li, Xide

    2018-01-01

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing. PMID:29364847

  12. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.

    PubMed

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-22

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.

  13. A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms.

    PubMed

    Unger, Jakob; Schuster, Maria; Hecker, Dietmar J; Schick, Bernhard; Lohscheller, Jörg

    2016-01-01

    This work presents a computer-based approach to analyze the two-dimensional vocal fold dynamics of endoscopic high-speed videos, and constitutes an extension and generalization of a previously proposed wavelet-based procedure. While most approaches aim for analyzing sustained phonation conditions, the proposed method allows for a clinically adequate analysis of both dynamic as well as sustained phonation paradigms. The analysis procedure is based on a spatio-temporal visualization technique, the phonovibrogram, that facilitates the documentation of the visible laryngeal dynamics. From the phonovibrogram, a low-dimensional set of features is computed using a principle component analysis strategy that quantifies the type of vibration patterns, irregularity, lateral symmetry and synchronicity, as a function of time. Two different test bench data sets are used to validate the approach: (I) 150 healthy and pathologic subjects examined during sustained phonation. (II) 20 healthy and pathologic subjects that were examined twice: during sustained phonation and a glissando from a low to a higher fundamental frequency. In order to assess the discriminative power of the extracted features, a Support Vector Machine is trained to distinguish between physiologic and pathologic vibrations. The results for sustained phonation sequences are compared to the previous approach. Finally, the classification performance of the stationary analyzing procedure is compared to the transient analysis of the glissando maneuver. For the first test bench the proposed procedure outperformed the previous approach (proposed feature set: accuracy: 91.3%, sensitivity: 80%, specificity: 97%, previous approach: accuracy: 89.3%, sensitivity: 76%, specificity: 96%). Comparing the classification performance of the second test bench further corroborates that analyzing transient paradigms provides clear additional diagnostic value (glissando maneuver: accuracy: 90%, sensitivity: 100%, specificity: 80

  14. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  15. Vibration parameters affecting vibration-induced reflex muscle activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir

    2017-03-01

    To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.

  16. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  17. Effect of vibration frequency on agonist and antagonist arm muscle activity.

    PubMed

    Rodríguez Jiménez, Sergio; Benítez, Adolfo; García González, Miguel A; Moras Feliu, Gerard; Maffiuletti, Nicola A

    2015-06-01

    This study aimed to assess the effect of vibration frequency (f out) on the electromyographic (EMG) activity of the biceps brachii (BB) and triceps brachii (TB) muscles when acting as agonist and antagonist during static exercises with different loads. Fourteen healthy men were asked to hold a vibratory bar as steadily as possible for 10 s during lying row (pulling) and bench press (pushing) exercise at f out of 0 (non-vibration condition), 18, 31 and 42 Hz with loads of 20, 50, and 80 % of the maximum sustainable load (MSL). The root mean square of the EMG activity (EMGRMS) of the BB and TB muscles was expressed as a function of the maximal EMGRMS for respective muscles to characterize agonist activation and antagonist coactivation. We found that (1) agonist activation was greater during vibration (42 Hz) compared to non-vibration exercise for the TB but not for the BB muscle (p < 0.05); (2) antagonist activation was greater during vibration compared to non-vibration exercise for both BB (p < 0.01) and TB (p < 0.05) muscles; (3) the vibration-induced increase in antagonist coactivation was proportional to vibration f out in the range 18-42 Hz and (4) the vibration-induced increase in TB agonist activation and antagonist coactivation occurred at all loading conditions in the range 20-80 % MSL. The use of high vibration frequencies within the range of 18-42 Hz can maximize TB agonist activation and antagonist activation of both BB and TB muscles during upper limb vibration exercise.

  18. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension

    NASA Astrophysics Data System (ADS)

    Shen, Yujie; Chen, Long; Yang, Xiaofeng; Shi, Dehua; Yang, Jun

    2016-01-01

    Inerter is a recently proposed mechanical element with two terminals. The novelty of this paper is to present the improved design which aims to add traditional dynamic vibration absorber to the vehicle body by using the inerter. Based on this background, a new vehicle suspension structure called ISD suspension, including the inerter, spring and damper has been created. A dual-mass vibration model including the ISD suspension is considered in this study. Parameters are obtained by using the genetic optimizing algorithm. The frequency-domain simulation confirms that the ISD suspension can effectively improve the damping performance of the suspension system, especially at the offset frequency of the vehicle body, which is consistent with the feature of the dynamic vibration absorber added to the vehicle body mass. At last, a prototype ball screw inerter has been designed and the bench test of a quarter-car model has been undertaken. Under the conditions of the random road input, the vehicle ride comfort evaluation of body acceleration RMS value decreases by 4% at most, the suspension deflection RMS value decreases by 16% at most, the tire dynamic load RMS value decreases by 6% at most. Power spectral density results also indicate that the ISD suspension has superior damping performance than passive suspension which proves that the proposed ISD suspension is deemed effective.

  19. Universality in the dynamical properties of seismic vibrations

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  20. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone☆

    PubMed Central

    Vanleene, Maximilien; Shefelbine, Sandra J.

    2013-01-01

    the histological sections, it is possible that WBV reduced bone resorption, resulting in a relative increase in cortical thickness. Whole body vibration appears as a potential effective and innocuous means for increasing bone formation and strength, which is particularly attractive for treating the growing skeleton of children suffering from brittle bone disease or low bone density pathologies without the long term disadvantages of current pharmacological therapies. PMID:23352925

  1. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  2. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.

  3. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: pump-probe SFG spectra of CO/Pt(111).

    PubMed

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-08

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR + visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed. Copyright 2004 American Institute of Physics

  4. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    NASA Astrophysics Data System (ADS)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  5. Evaluation of the effectiveness of elastomeric mount using vibration power flow and transmissibility methods

    NASA Astrophysics Data System (ADS)

    Arib Rejab, M. N.; Shukor, S. A. Abdul; Sofian, M. R. Mohd; Inayat-Hussain, J. I.; Nazirah, A.; Asyraf, I.

    2017-10-01

    This paper presents the results of an experimental work to determine the dynamic stiffness and loss factor of elastomeric mounts. It also presents the results of theoretical analysis to determine the transmissibility and vibration power flow of these mounts, which are associated with their contribution to structure-borne noise. Four types of elastomeric mounts were considered, where three of them were made from green natural rubber material (SMR CV60, Ekoprena and Pureprena) and one made from petroleum based synthetic rubber (EPDM). In order to determine the dynamic stiffness and loss factor of these elastomeric mounts, dynamic tests were conducted using MTS 830 Elastomer Test System. Dynamic stiffness and loss factor of these mounts were measured for a range of frequency between 5 Hz and 150 Hz, and with a dynamic amplitude of 0.2 mm (p-p). The transmissibility and vibration power flow were determined based on a simple 2-Degree-of-Freedom model representing a vibration isolation system with a flexible receiver. This model reprsents the three main parts of a vehicle, which are the powertrain and engine mounting, the flexible structure and the floor of the vehicle. The results revealed that synthetic rubber (EPDM) was only effective at high frequency region. Natural rubber (Ekoprena), on the other hand, was found to be effective at both low and high frequency regions due to its low transmissibility at resonant frequency and its ability to damp the resonance. The estimated structure-borne noise emission showed that Ekoprena has a lower contribution to structure-borne noise as compared to the other types of elastomeric mounts.

  6. Inhibiting Low-Frequency Vibrations Explains Exceptionally High Electron Mobility in 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) Single Crystals.

    PubMed

    Chernyshov, Ivan Yu; Vener, Mikhail V; Feldman, Elizaveta V; Paraschuk, Dmitry Yu; Sosorev, Andrey Yu

    2017-07-06

    Organic electronics requires materials with high charge mobility. Despite decades of intensive research, charge transport in high-mobility organic semiconductors has not been well understood. In this Letter, we address the physical mechanism underlying the exceptionally high band-like electron mobility in F 2 -TCNQ (2,5-difluoro-7,7,8,8-tetracyanoquinodimethane) single crystals among a crystal family of similar compounds F n -TCNQ (n = 0, 2, 4) using a combined experimental and theoretical approach. While electron transfer integrals and reorganization energies did not show outstanding features for F 2 -TCNQ, Raman spectroscopy and solid-state DFT indicated that the frequency of the lowest vibrational mode is nearly twice higher in the F 2 -TCNQ crystal than in TCNQ and F 4 -TCNQ. This phenomenon is explained by the specific packing motif of F 2 -TCNQ with only one molecule per primitive cell so that electron-phonon interaction decreases and the electron mobility increases. We anticipate that our findings will encourage investigators for the search and design of organic semiconductors with one molecule per primitive cell and/or the poor low-frequency vibrational spectrum.

  7. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    PubMed Central

    Hsu, Hung-Yao

    2016-01-01

    Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178

  8. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements.

    PubMed

    Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Jiang, Taofei; Ba, Dexin; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Li, Hui

    2017-02-06

    We present a slope-assisted BOTDA system based on the vector stimulated Brillouin scattering (SBS) and frequency-agile technique (FAT) for the wide-strain-range dynamic measurement. A dimensionless coefficient K defined as the ratio of Brillouin phase-shift to gain is employed to demodulate the strain of the fiber, and it is immune to the power fluctuation of pump pulse and has a linear relation of the frequency detuning for the continuous pump and Stokes waves. For a 30ns-square pump pulse, the available frequency span of the K spectrum can reach up to 200MHz, which is larger than fourfold of 48MHz-linewidth of Brillouin gain spectrum. For a single-slope assisted BOTDA, dynamic strain measurement with the maximum strain of 2467.4με and the vibration frequency components of 10.44Hz and 20.94Hz is obtained. For a multi-slope-assisted BOTDA, dynamic measurement with the strain variation up to 5372.9με and the vibration frequency components of 5.58Hz and 11.14Hz is achieved by using FAT to extend the strain range.

  9. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  10. Visualization of hydrodynamic pilot-wave dynamics

    NASA Astrophysics Data System (ADS)

    Prost, Victor; Quintela, Julio; Harris, Daniel; Brun, Pierre-Thomas; Bush, John

    2015-11-01

    We present a low-cost device for examining the dynamics of droplets bouncing on a vibrating fluid bath, suitable for educational purposes. Dual control of vibrational and strobing frequency from a cell phone application allowed us to reduce the total cost to 60 dollars. Illumination with inhomogeneous colored light allows for striking visualization of the droplet dynamics and accompanying wave field via still photography or high-speed videography. Thanks to the NSF.

  11. The Influence of Various Vibration Frequency on Barium Sulfate Scale Formation Of Vibrated Piping System In The Presence Citric Acid

    NASA Astrophysics Data System (ADS)

    Karaman, N.; Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2018-01-01

    In this paper, the influence of vibrated piping system for BaSO4 scale formation was investigated. The vibration frequency and presence of citric acid were independent variables determining the kinetics, mass deposit and polymorph of the crystals. Correspondingly, induction time and mass of scale were obtained during the experiments. The crystalline scale was observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) to investigate the morphology and the phase mineral deposits, respectively. This effect indicated that the increase in vibration frequency promoted the increased deposition rate, while the pure barite with a plate-like morphology was produced in the experiments.

  12. Radio frequency magnetic field effects on molecular dynamics and iron uptake in cage proteins.

    PubMed

    Céspedes, Oscar; Inomoto, Osamu; Kai, Shoichi; Nibu, Yoshinori; Yamaguchi, Toshio; Sakamoto, Nobuyoshi; Akune, Tadahiro; Inoue, Masayoshi; Kiss, Takanobu; Ueno, Shoogo

    2010-05-01

    The protein ferritin has a natural ferrihydrite nanoparticle that is superparamagnetic at room temperature. For native horse spleen ferritin, we measure the low field magnetic susceptibility of the nanoparticle as 2.2 x 10(-6) m(3) kg(-1) and its Néel relaxation time at about 10(-10) s. Superparamagnetic nanoparticles increase their internal energy when exposed to radio frequency magnetic fields due to the lag between magnetization and applied field. The energy is dissipated to the surrounding peptidic cage, altering the molecular dynamics and functioning of the protein. This leads to an increased population of low energy vibrational states under a magnetic field of 30 microT at 1 MHz, as measured via Raman spectroscopy. After 2 h of exposure, the proteins have a reduced iron intake rate of about 20%. Our results open a new path for the study of non-thermal bioeffects of radio frequency magnetic fields at the molecular scale.

  13. Dependence of palmar sweating response and central nervous system activity on the frequency of whole-body vibration.

    PubMed

    Ando, Hideo; Noguchi, Ryo

    2003-06-01

    This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.

  14. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    PubMed

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  15. VO2 film temperature dynamics at low-frequency current self-oscillations

    NASA Astrophysics Data System (ADS)

    Bortnikov, S. G.; Aliev, V. Sh.; Badmaeva, I. A.; Mzhelskiy, I. V.

    2018-02-01

    Low-frequency (˜2 Hz) current self-oscillations were first obtained in a millimeter-sized two-terminal planar device with a vanadium dioxide (VO2) film. The film temperature distribution dynamics was investigated within one oscillation period. It was established that the formation and disappearance of a conductive channel occur in a film in less than 60 ms with oscillation period 560 ms. The experimentally observed temperature in the channel region reached 413 K, being understated due to a low infrared microscope performance (integration time 10 ms). The VO2 film temperature distribution dynamics was simulated by solving a 2D problem of the electric current flow and heat transfer in the film. The calculation showed that the thermally initiated resistance switching in the film occurs in less than 4 ms at a channel temperature reaching ˜1000 K. The experimental results and simulation are consistent with the current self-oscillation mechanism based on the current pinching and dielectric relaxation in the VO2 film at the metal-insulator phase transition.

  16. Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1997-01-01

    Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.

  17. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  18. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells.

    PubMed

    Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin

    2017-02-01

    Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.

  19. Nonharmonicity in vibrated granular solids

    NASA Astrophysics Data System (ADS)

    Schreck, Carl

    2012-02-01

    We have shown that granular packings composed of frictionless particles with repulsive contact interactions are strongly nonharmonic. When infinitesimally perturbed along linear response eigenmodes of the static packing, energy leaks from the original mode of vibration to a continuum of frequencies due solely to contact breaking even when the system is under significant compression. Further, vibrated packings possess well-defined equilibrium positions that are different than those of the unperturbed packing. The vibrational density of states obtained using the displacement matrix and velocity autocorrelation function methods exhibit an increase in the number of low-frequency modes over that obtained from linear response of the static packing. The form of the density of states in vibrated granular packings is reminiscent of the low-frequency behavior of the vibrational density of states in fluid systems. We also investigate the effects of inter-particle friction, dissipation, particle shape, and degree of positional order on the density of states and thermal transport properties in driven granular packings.

  20. Effects of Amplitude and Frequency of Mechanical Vibration Stimulation on Cultured Osteoblasts

    NASA Astrophysics Data System (ADS)

    Shikata, Tetsuo; Shiraishi, Toshihiko; Morishita, Shin; Takeuchi, Ryohei; Saito, Tomoyuki

    Mechanical stimulation to bones affects bone formation such as decrease of bone mass of astronauts under zero gravity, walking rehabilitation to bone fracture and fracture repair with ultrasound devices. Bone cells have been reported to sense and response to mechanical stimulation at cellular level morphologically and metabolically. In the view of mechanical vibrations, bone cells are deformed according to mechanical stimulation and their mechanical characteristics. In this study, sinusoidal inertia force was applied to cultured osteoblasts, which are a kind of bone cells, and effects of frequency and acceleration amplitude of mechanical vibration on the cells were investigated in respect of the cell proliferation, bone matrix generation and alkaline phosphatase (ALP) gene expression. The results to be obtained are as follows. The significant difference of cell density and bone mass generation between the non-vibrating and vibrating groups is found. ALP gene expression shows a peak to frequency at 50 Hz and the value of it is approximately 4.5 times as high as that of the non-vibrating group in the case of the acceleration amplitude of 0.5 G. ALP gene expression at 0.5 G is significantly larger than at 0, 0.125 or 0.25 G in the case of the frequency of 50 Hz.

  1. Dynamic Loads Generation for Multi-Point Vibration Excitation Problems

    NASA Technical Reports Server (NTRS)

    Shen, Lawrence

    2011-01-01

    A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.

  2. Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li; Chen, Shun-li; Gan, Wei

    2016-02-27

    Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP geometry, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directlymore » access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials.« less

  3. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    NASA Astrophysics Data System (ADS)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  4. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply.more » This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.« less

  5. Low-frequency oscillations in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning

    2015-05-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).

  6. Trunk isometric force production parameters during erector spinae muscle vibration at different frequencies

    PubMed Central

    2013-01-01

    Background Vibration is known to alter proprioceptive afferents and create a tonic vibration reflex. The control of force and its variability are often considered determinants of motor performance and neuromuscular control. However, the effect of vibration on paraspinal muscle control and force production remains to be determined. Methods Twenty-one healthy adults were asked to perform isometric trunk flexion and extension torque at 60% of their maximal voluntary isometric contraction, under three different vibration conditions: no vibration, vibration frequencies of 30 Hz and 80 Hz. Eighteen isometric contractions were performed under each condition without any feedback. Mechanical vibrations were applied bilaterally over the lumbar erector spinae muscles while participants were in neutral standing position. Time to peak torque (TPT), variable error (VE) as well as constant error (CE) and absolute error (AE) in peak torque were calculated and compared between conditions. Results The main finding suggests that erector spinae muscle vibration significantly decreases the accuracy in a trunk extension isometric force reproduction task. There was no difference between both vibration frequencies with regard to force production parameters. Antagonist muscles do not seem to be directly affected by vibration stimulation when performing a trunk isometric task. Conclusions The results suggest that acute erector spinae muscle vibration interferes with torque generation sequence of the trunk by distorting proprioceptive information in healthy participants. PMID:23919578

  7. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1985-01-01

    The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.

  8. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite

    NASA Astrophysics Data System (ADS)

    Kumbhar, Samir B.; Chavan, S. P.; Gawade, S. S.

    2018-02-01

    Shape memory alloy (SMA) is an attractive smart material which could be used as stiffness tuning element in adaptive tuned vibration absorber (ATVA). The sharp modulus change in SMA material during phase transformation creates difficulties for smooth tuning to track forcing frequency to minimize vibrations of primary system. However, high hysteresis damping at low temperature martensitic phase degrades performance of vibration absorber. This paper deals with the study of dynamic response of system in which SMA and magnetorheological elastomer (MRE) are combined together to act as a smart spring- mass-damper system in a tuned vibration absorber. This composite is used as two way stiffness tuning element in ATVA for smooth and continuous tuning and to minimize the adverse effect at low temperature by increasing equivalent stiffness. The stiffnesses of SMA element and MRE are varied respectively by changing temperature and strength of external magnetic field. The two way stiffness tuning ability and adaptivity have been demonstrated analytically and experimentally. The experimental results show good agreement with analytical results. The proposed composite is able to shift the stiffness consequently the natural frequency of primary system as well as reduce the vibration level of primary system by substantial mount.

  9. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  10. Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics

    NASA Astrophysics Data System (ADS)

    Shu, Chuan-Cun; Thomas, Esben F.; Henriksen, Niels E.

    2017-09-01

    We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically for the H2 and Cl2 molecules. In general, pulse trains or more advanced pulse shaping techniques are required in order to obtain significant vibrational excitation. To that end, we demonstrate that a high degree of selectivity between vibrational and rotational excitation is possible with a suitably phase-modulated Gaussian pulse.

  11. Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan

    Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.

  12. Reducing vibration transfer from power plants by active methods

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.

    2017-12-01

    The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal

  13. A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Perova, T. S.; Vij, J. K.; Christensen, D. H.; Nielsen, O. F.

    1999-04-01

    Far-infrared and low-frequency Raman spectra in the wavenumber range from 15 to 500 cm -1 were recorded for glycerol, triacetin (glycerol triacetate) and o-terphenyl at temperatures from 253 to 355 K. The far-infrared spectra of glycerol appear complex compared with the spectra of triacetin owing to the presence of hydrogen bonding in glycerol. The experimental results obtained for o-terphenyl are in good agreement with normal mode analyses carried out for crystalline o-terphenyl (A. Criado, F.J. Bermejo, A. de Andres, Mol. Phys. 82 (1994) 787). The far-infrared results are compared with the low-frequency Raman spectra of these three glass-forming liquids. The difference in temperature dependences found from these spectra is explained on the basis of different temperature contributions of the relaxational and vibrational processes to the low-frequency vibrational spectra.

  14. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  15. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution whenmore » the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.« less

  16. Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1.

    PubMed

    Zorn, Reiner; Yin, Huajie; Lohstroh, Wiebke; Harrison, Wayne; Budd, Peter M; Pauw, Brian R; Böhning, Martin; Schönhals, Andreas

    2018-01-17

    Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering.

  17. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding.

    PubMed

    Tang, Gang; Yang, Bin; Hou, Cheng; Li, Guimiao; Liu, Jingquan; Chen, Xiang; Yang, Chunsheng

    2016-12-08

    Recently, piezoelectric energy harvesters (PEHs) have been paid a lot of attention by many researchers to convert mechanical energy into electrical and low level vibration. Currently, most of PEHs worked under high frequency and low level vibration. In this paper, we propose a micro cantilever generator based on the bonding of bulk PZT wafer and phosphor bronze, which is fabricated by MEMS technology, such as mechanical chemical thinning and etching. The experimental results show that the open-circuit output voltage, output power and power density of this fabricated prototype are 35 V, 321 μW and 8664 μW cm -3 at the resonant frequency of 100.8 Hz, respectively, when it matches an optimal loading resistance of 140 kΩ under the excitation of 3.0 g acceleration. The fabricated micro generator can obtain the open-circuit stable output voltage of 61.2 V when the vibration acceleration arrives at 7.0 g. Meanwhile, when this device is pasted on the vibrating vacuum pump, the output voltage is about 11 V. It demonstrates that this novel proposed device can scavenge high vibration level energy at low frequency for powering the inertial sensors in internet of things application.

  18. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding

    PubMed Central

    Tang, Gang; Yang, Bin; Hou, Cheng; Li, Guimiao; Liu, Jingquan; Chen, Xiang; Yang, Chunsheng

    2016-01-01

    Recently, piezoelectric energy harvesters (PEHs) have been paid a lot of attention by many researchers to convert mechanical energy into electrical and low level vibration. Currently, most of PEHs worked under high frequency and low level vibration. In this paper, we propose a micro cantilever generator based on the bonding of bulk PZT wafer and phosphor bronze, which is fabricated by MEMS technology, such as mechanical chemical thinning and etching. The experimental results show that the open-circuit output voltage, output power and power density of this fabricated prototype are 35 V, 321 μW and 8664 μW cm−3 at the resonant frequency of 100.8 Hz, respectively, when it matches an optimal loading resistance of 140 kΩ under the excitation of 3.0 g acceleration. The fabricated micro generator can obtain the open-circuit stable output voltage of 61.2 V when the vibration acceleration arrives at 7.0 g. Meanwhile, when this device is pasted on the vibrating vacuum pump, the output voltage is about 11 V. It demonstrates that this novel proposed device can scavenge high vibration level energy at low frequency for powering the inertial sensors in internet of things application. PMID:27929139

  19. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  20. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  1. Effects of early and late treatments of low-intensity, high-frequency mechanical vibration on bone parameters in rats.

    PubMed

    Sasso, Gisela Rodrigues da Silva; Florencio-Silva, Rinaldo; Santos, Miriam Aparecida; Teixeira, Cristiane de Paula; Simões, Manuel de Jesus; Katchburian, Eduardo; Reginato, Rejane Daniele; Daniele Reginato, Rejane

    2015-01-01

    Low-intensity, high-frequency mechanical vibration (LHMV) has shown to increase bone formation. However, studies comparing the effectiveness of early- and late-treatments of LHMV to counteract bone loss have not been documented. This study was designed to compare the effects of early- and late-treatments of LHMV (at 30 Hz/0.6 g, 20 min per day/five days per week, for 12 weeks) on bone parameters in ovariectomized (Ovx) rats. Thirty days after ovariectomy, 40 adult rats were randomly divided into four groups: GI (early control group); GII treated with LHMV 3 weeks after Ovx (early treatment); GIII (late control group) and GIV treated with LHMV twelve weeks after Ovx (late treatment). Bone mineral density (BMD) was analyzed before Ovx and after treatments. Then, animals were killed, and the femurs were collected and their length and diaphysis diameter were measured; the distal femurs were taken and processed for histomorphometry and polarized light microscopy for collagen fibers analysis or subjected to immunohistochemistry of cleaved caspase-3 in osteocytes. Statistical analysis was done by ANOVA followed by the Bonferroni post hoc test (p < 0.05). BMD was similar among the groups before Ovx, but after treatments, it was significantly higher in GII and GIV compared with their control groups (p < 0.05). Femur length and cortical bone thickness were similar among the groups, but the diaphysis diameter of GII was higher compared with GI. Trabecular bone area was higher in the vibrated groups, but it was greater in GII (p < 0.05). Also, the vibrated groups showed the higher content collagen fibers and lower presence apoptotic osteocytes (positive caspase-3 immunoreactivity) when compared with the other groups (p < 0.05). These results suggest that both early- and late-treatments with LHMV counteract bone loss, being the early treatment more effective than the late treatment.

  2. Continuum limit of the vibrational properties of amorphous solids.

    PubMed

    Mizuno, Hideyuki; Shiba, Hayato; Ikeda, Atsushi

    2017-11-14

    The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.

  3. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Bibi, Maryam

    2017-04-01

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO2, whereas two IR active and one Raman active modes were observed for CeO2. The comparative analysis indicates that the hybrid cluster CeTiO4 contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO4 to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  4. Response Identification in the Extremely Low Frequency Region of an Electret Condenser Microphone

    PubMed Central

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems. PMID:22346594

  5. Response identification in the extremely low frequency region of an electret condenser microphone.

    PubMed

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  6. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    NASA Astrophysics Data System (ADS)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  7. Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects

    NASA Astrophysics Data System (ADS)

    Li, Jingru; Li, Sheng

    2018-02-01

    Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than using the local resonance method, thus is more suitable for designing applications to suppress transverse wave propagation.

  8. Investigation of vibration characteristics of electric motors

    NASA Technical Reports Server (NTRS)

    Bakshis, A. K.; Tamoshyunas, Y. K.

    1973-01-01

    The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.

  9. Prediction of Ground Vibration from Freight Trains

    NASA Astrophysics Data System (ADS)

    Jones, C. J. C.; Block, J. R.

    1996-05-01

    Heavy freight trains emit ground vibration with predominant frequency components in the range 4-30 Hz. If the amplitude is sufficient, this may be felt by lineside residents, giving rise to disturbance and concern over possible damage to their property. In order to establish the influence of parameters of the track and rolling stock and thereby enable the design of a low vibration railway, a theoretical model of both the generation and propagation of vibration is required. The vibration is generated as a combination of the effects of dynamic forces, due to the unevenness of the track, and the effects of the track deformation under successive axle loads. A prediction scheme, which combines these effects, has been produced. A vehicle model is used to predict the dynamic forces at the wheels. This includes the non-linear effects of friction damped suspensions. The loaded track profile is measured by using a track recording coach. The dynamic loading and the effects of the moving axles are combined in a track response model. The predicted track vibration is compared to measurements. The transfer functions from the track to a point in the ground can be calculated by using a coupled track and a three-dimensional layered ground model. The propagation effects of the ground layers are important but the computation of the transfer function from each sleeper, which would be required for a phase coherent summation of the vibration in the ground, would be prohibitive. A compromise summation is used and results are compared with measurements.

  10. Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motriuk, R.W.; Harvey, D.P.

    1998-08-01

    High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less

  11. Some problems of control of dynamical conditions of technological vibrating machines

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  12. Structural sensitivity of Csbnd H vibrational band in methyl benzoate

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Maiti, Kiran Sankar

    2018-05-01

    The Csbnd H vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the Csbnd H stretch vibrations, assignment of the Csbnd H vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the Csbnd H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric Csbnd H stretch vibration of methyl group. The Csbnd D stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.

  13. Individual Optimal Frequency in Whole-Body Vibration: Effect of Protocol, Joint Angle, and Fatiguing Exercise.

    PubMed

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2016-12-01

    Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p < 0.001) and in CF (p = 0.04) compared with the C protocol. Joint angle and fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.

  14. Vibrational-vibrational coupling in air at low humidities

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Miller, Keith W.

    1988-01-01

    Calculations of sound absorption in air are traditionally based on the assumption that molecular relaxations in N2 and O2 are independent. In binary mixtures of these two gases, however, they are not independent; rather, molecular relaxation is known to be controlled by a very strong vibrational-vibrational (V-V) coupling, which influences both the relaxation frequencies and the relaxation strengths. This article shows that small concentrations of the air constituents CO2 and H2O, which themselves possess a strong V-V coupling to N2 and O2, serve to decouple the N2 and O2 relaxations. To characterize the N2-O2 coupling a coupling strength is derived which depends upon the constituent concentrations and the related reaction rate constants. It is found that the molecular relaxations associated with N2 and O2 in air experience a gradual transition from strong to weak coupling as the humidity increases beyond approximately 0.001 mole percent.

  15. Computational procedures for evaluating the sensitivity derivatives of vibration frequencies and Eigenmodes of framed structures

    NASA Technical Reports Server (NTRS)

    Fetterman, Timothy L.; Noor, Ahmed K.

    1987-01-01

    Computational procedures are presented for evaluating the sensitivity derivatives of the vibration frequencies and eigenmodes of framed structures. Both a displacement and a mixed formulation are used. The two key elements of the computational procedure are: (a) Use of dynamic reduction techniques to substantially reduce the number of degrees of freedom; and (b) Application of iterative techniques to improve the accuracy of the derivatives of the eigenmodes. The two reduction techniques considered are the static condensation and a generalized dynamic reduction technique. Error norms are introduced to assess the accuracy of the eigenvalue and eigenvector derivatives obtained by the reduction techniques. The effectiveness of the methods presented is demonstrated by three numerical examples.

  16. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    PubMed

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  17. Mobilization of colloidal particles by low-frequency dynamic stress stimulation.

    PubMed

    Beckham, Richard E; Abdel-Fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sowmitri

    2010-01-05

    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern, especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. Although the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and the mobilization of in situ colloidal particles. This article explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1 mm borosilicate beads and loaded with polystyrene microparticles demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microparticles. Increasing the amplitude of the oscillations increases the number of microparticles released and can also result in cyclical spikes in effluent microparticle concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data and continued at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes in the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low-frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed

  18. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  19. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  20. Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.

    PubMed

    Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan

    2018-05-01

    Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model.

    PubMed

    Guo, An-Yun; Leung, Kwok-Sui; Qin, Jiang-Hui; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2016-08-01

    Sarcopenia-related falls and fall-related injuries in community-dwelling elderly people garnered more and more interest in recent years. Low-magnitude high-frequency vibration (LMHFV) was proven beneficial to musculoskeletal system and recommended for sarcopenia treatment. This study aimed to evaluate the effects of LMHFV on the sarcopenic animals and explore the mechanism of the stimulatory effects. Senescence-accelerated mouse P8 (SAMP8) mice at month 6 were randomized into control (Ctrl) and vibration (Vib) groups and the mice in the Vib group were given LMHFV (0.3 g, 20 min/day, 5 days/week) treatment. At months 0, 1, 2, 3, and 4 post-treatment, muscle mass, structure, and function were assessed. The potential proliferation capacity of the muscle was also evaluated by investigating satellite cells (SCs) pool and serum myostatin expression. At late stage, the mice in the Vib group showed higher muscle strength (month 4, p = 0.028). Generally, contractibility was significantly improved by LMHFV (contraction time [CT], p = 0.000; half-relaxation time [RT50], p = 0.000). Enlarged cross-sectional area of fiber type IIA was observed in the Vib group when compared with Ctrl group (p = 0.000). No significant difference of muscle mass was observed. The promotive effect of LMHFV on myoregeneration was reflected by suppressed SC pool reduction (month 3, p = 0.000; month 4, p = 0.000) and low myostatin expression (p = 0.052). LMHFV significantly improved the structural and functional outcomes of the skeletal muscle, hence retarding the progress of sarcopenia in SAMP8. It would be a good recommendation for prevention of the diseases related to skeletal muscle atrophy.

  2. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campetella, M.; Caminiti, R.; Bencivenni, L.

    2016-07-14

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{supmore » −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.« less

  3. The dynamic Casimir effect within a vibrating metal photonic crystal

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2014-09-01

    The lattice-vibrating metal photonic crystal is exactly a system of dynamical Casimir effect connected in series, and so we can expect that a dynamical Casimir effect is enhanced by the photonic band effect. In the present study, when an electromagnetic field between metal plates is in the ground state in a one-dimensional metal photonic crystal, the radiation of electromagnetic wave in excited states has been investigated by artificially introducing lattice vibration to the photonic crystal. In this case as well as a dynamical Casimir effect, it has been shown that the harmonics of a ground state are generated just by vibrating a photonic crystal even without an incident wave. The dependencies of the radiating power on the number of layers and on the wavenumber of the lattice vibration are remarkable. It has been found that the radiation amplitude on lower excited states is not necessarily large and radiation on specific excited levels is large.

  4. Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores

    DOE PAGES

    Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...

    2017-06-12

    The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less

  5. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    PubMed

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-06-01

    The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.

  7. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  8. Continuum limit of the vibrational properties of amorphous solids

    PubMed Central

    Mizuno, Hideyuki; Ikeda, Atsushi

    2017-01-01

    The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law. PMID:29087941

  9. Low back cutaneous vibration and its effect on trunk postural control.

    PubMed

    Cornwall, Adam R; Gregory, Diane E

    2017-08-01

    The current study investigated the effects of a low back pain (LBP) vibration modality on trunk motor control. Trunk repositioning error and responses to a sudden loading trunk perturbation were evaluated pre- and post-vibration (15min vibration exposure while sitting on a standard chair) as well as when concurrent cutaneous low back vibration was applied. Only minor effects were observed post-vibration when compared to pre-vibration. However, when vibration was applied at the same time as the sudden trunk perturbations, lumbar erector spinae and external oblique muscles were significantly more delayed in activating following the perturbation. In addition, the resting muscle activation prior to the trunk perturbation was higher in both the back extensor and abdominal muscles when concurrent vibration was applied. These findings suggest that cutaneous low back vibration significantly alters motor control responses and this should be considered before implementing cutaneous vibration as a low back pain management strategy. Copyright © 2017. Published by Elsevier B.V.

  10. An extension of command shaping methods for controlling residual vibration using frequency sampling

    NASA Technical Reports Server (NTRS)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  11. Pressure effect on phonon frequencies in some transition metals: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kazanc, S.; Ozgen, S.

    2005-08-01

    It is important to determine the atomic lattice vibrations of metallic materials, under high-pressure conditions, due to its effects on material properties such as thermal, electrical and optical conductions. In this work, we have investigated the changes of acoustic phonon frequencies with hydrostatic pressure for Cu, Ni, Al, Ag and Au transition metals, using molecular dynamics (MD) simulations based on embedded atom method (EAM). For this aim, we have adopted the embedded atom potential proposed by Sutton and Chen. The phonon frequencies have been calculated from the dynamical matrix for [1 0 0], [1 1 0] and [1 1 1] high symmetry directions of the Brillouin zone. The obtained results show that the hydrostatic pressure causes an increment in phonon frequencies, and this rising do not depend linearly on the increasing pressure.

  12. Coordinated within-trial dynamics of low-frequency neural rhythms controls evidence accumulation.

    PubMed

    Werkle-Bergner, Markus; Grandy, Thomas H; Chicherio, Christian; Schmiedek, Florian; Lövdén, Martin; Lindenberger, Ulman

    2014-06-18

    Higher cognitive functions, such as human perceptual decision making, require information processing and transmission across wide-spread cortical networks. Temporally synchronized neural firing patterns are advantageous for efficiently representing and transmitting information within and between assemblies. Computational, empirical, and conceptual considerations all lead to the expectation that the informational redundancy of neural firing rates is positively related to their synchronization. Recent theorizing and initial evidence also suggest that the coding of stimulus characteristics and their integration with behavioral goal states require neural interactions across a hierarchy of timescales. However, most studies thus have focused on neural activity in a single frequency range or on a restricted set of brain regions. Here we provide evidence for cooperative spatiotemporal dynamics of slow and fast EEG signals during perceptual decision making at the single-trial level. Participants performed three masked two-choice decision tasks, one each with numerical, verbal, or figural content. Decrements in posterior α power (8-14 Hz) were paralleled by increments in high-frequency (>30 Hz) signal entropy in trials demanding active sensory processing. Simultaneously, frontocentral θ power (4-7 Hz) increased, indicating evidence integration. The coordinated α/θ dynamics were tightly linked to decision speed and remarkably similar across tasks, suggesting a domain-general mechanism. In sum, we demonstrate an inverse association between decision-related changes in widespread low-frequency power and local high-frequency entropy. The cooperation among mechanisms captured by these changes enhances the informational density of neural response patterns and qualifies as a neural coding system in the service of perceptual decision making. Copyright © 2014 the authors 0270-6474/14/348519-10$15.00/0.

  13. Vibrational collapse of boroxol rings in compacted B2O3 glasses: a study of Raman scattering and low temperature specific heat

    NASA Astrophysics Data System (ADS)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino

    2018-05-01

    Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.

  14. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    PubMed

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  15. Influence of Traffic Vehicles Against Ground Fundamental Frequency Prediction using Ambient Vibration Technique

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Noh, M. S. Md; Mokhatar, S. N.; Anuar, M. A. Mohd; Ibrahim, A.; Ibrahim, Z.; Daud, M. E.

    2018-04-01

    Ambient vibration (AV) technique is widely used nowadays for ground fundamental frequency prediction. This technique is easy, quick, non-destructive, less operator required and reliable result. The input motions of ambient vibration are originally collected from surrounding natural and artificial excitations. But, careful data acquisition controlled must be implemented to reduce the intrusion of short period noise that could imply the quality of frequency prediction of an investigated site. In this study, investigation on the primary noise intrusion under peak (morning, afternoon and evening) and off peak (early morning) traffic flows (only 8 meter from sensor to road shoulder) against the stability and quality of ground fundamental frequency prediction were carried out. None of specific standard is available for AV data acquisition and processing. Thus, some field and processing parameters recommended by previous studies and guideline were considered. Two units of 1 Hz tri-axial seismometer sensor were closely positioned in front of the main entrance Universiti Tun Hussein Onn Malaysia. 15 minutes of recording length were taken during peak and off peak periods of traffic flows. All passing vehicles were counted and grouped into four classes. Three components of ambient vibration time series recorded in the North-South: NS, East-West: EW and vertical: UD directions were automatically computed into Horizontal to Vertical Spectral Ratio (HVSR), by using open source software of GEOPSY for fundamental ground frequency, Fo determination. Single sharp peak pattern of HVSR curves have been obtained at peak frequencies between 1.33 to 1.38 Hz which classified under soft to dense soil classification. Even identical HVSR curves pattern with close frequencies prediction were obtained under both periods of AV measurement, however the total numbers of stable and quality windows selected for HVSR computation were significantly different but both have satisfied the requirement

  16. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Liu, Zhangyi; Fu, Gang

    2015-11-01

    In this paper, a kind of sandwich phononic crystal (PC) plate with silicon rubber scatterers embedded in polymethyl methacrylate (PMMA) matrix is proposed to demonstrate its low-frequency Lamb wave band gap (BG) characteristics. The dispersion relationship and the displacement vector fields of the basic slab modes and the locally resonant modes are investigated to show the BG formation mechanism. The anti-symmetric Lamb wave BG is further studied due to its important function in reducing vibration. The analysis on the BG characteristics of the PC through changing their geometrical parameters is performed. By optimizing the structure, a sandwich PC plate with a thickness of only 3 mm and a lower boundary (as low as 23.9 Hz) of the first anti-symmetric BG is designed. Finally, sound insulation experiment on a sandwich PC plate with the thickness of only 2.5 mm is conducted, showing satisfactory noise reduction effect in the frequency range of the anti-symmetric Lamb BG. Therefore, this kind of sandwich PC plate has potential applications in controlling vibration and noise in low-frequency ranges.

  17. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  18. Integrated and dispersed photon echo studies of nitrile stretching vibration of 4-cyanophenol in methanol.

    PubMed

    Ha, Jeong-Hyon; Lee, Kyung-Koo; Park, Kwang-Hee; Choi, Jun-Ho; Jeon, Seung-Joon; Cho, Minhaeng

    2009-05-28

    By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents.

  19. Shaping liquid drops by vibration

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2018-02-01

    We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in the horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragment into smaller drops.

  20. C-5A Cargo Deck Low-Frequency Vibration Environment

    DTIC Science & Technology

    1975-02-01

    SAMPLE VIBRATION CALCULATIONS 13 1. Normal Distribution 13 2. Binomial Distribution 15 IV CONCLUSIONS 17 -! V REFERENCES 18 t: FEiCENDIJJ PAGS 2LANKNOT...Calculation for Binomial Distribution 108 (Vertical Acceleration, Right Rear Cargo Deck) xi I. INTRODUCTION The availability of large transport...the end of taxi. These peaks could then be used directly to compile the probability of occurrence of specific values of acceleration using the binomial

  1. Equilibrium structure and atomic vibrations of Nin clusters

    NASA Astrophysics Data System (ADS)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  2. Dynamic Model of Aircraft Passenger Seats for Vibration Comfort Evaluation and Control

    NASA Astrophysics Data System (ADS)

    Šika, Z.; Valášek, Michael; Vampola, T.; Füllekrug, U.; Klimmek, T.

    The paper deals with the development of the seat dynamical model for vibration comfort evaluation and control. The aircraft seats have been tested extensively by vibrations on the 6 DOF vibrating platform. The importance of the careful comfort control together with the flight mechanics control is namely stressed for the blended wing body (BWB) aircrafts. They have a very large fuselage, where the mechanical properties (accelerations, angular accelerations) vary considerably for different seat places. The model have been improved by adding of dynamical models of the aircraft passenger seats identified by the measurements on the 6 DOF vibrating platform. The experiments, their results and the identification of the dynamical seat model are described. The model is further modified by adding of the comfort evaluation norms represented by dynamical filters. The structure and identification of the seat model is briefly described and discussed.

  3. Vibrational spectra from atomic fluctuations in dynamics simulations. II. Solvent-induced frequency fluctuations at femtosecond time resolution

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul

    2004-12-01

    The midinfrared (MIR) spectra of molecules in polar solvents exhibit inhomogeneously broadened bands whose spectral positions are shifted as compared to the gas phase. The shifts are caused by interactions with structured solvation shells and the broadenings by fluctuations of these interactions. The MIR spectra can be calculated from hybrid molecular dynamics (MD) simulations, which treat the solute molecule by density functional theory and the solvent by molecular mechanics by the so-called instantaneous normal mode analysis (INMA) or by Fourier transforming the time correlation function (FTTCF) of the molecular dipole moment. In Paper I of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12233 (2004)] we explored an alternative method based on generalized virial (GV) frequencies noting, however, that GV systematically underestimates frequencies. As shown by us these artifacts are caused by solvent-induced fluctuations of the (i) equilibrium geometry, (ii) force constants, and (iii) normal mode directions as well as by (iv) diagonal and (v) off-diagonal anharmonicities. Here we now show, by analyzing the time scales of fluctuations and sample MD trajectories of formaldehyde in the gas phase and in water, that all these sources of computational artifacts can be made visible by a Fourier analysis of the normal coordinates. Correspondingly, the error sources (i) and (iii)-(v) can be removed by bandpass filtering, as long as the spectral signatures of the respective effects are well separated from the fundamental band. Furthermore, the artifacts arising from effect (ii) can be strongly diminished by a time-resolved version of the GV approach (TF-GV). The TF-GV method then yields for each mode j a trajectory of the vibrational frequency ωj(t|τ) at a time resolution τ>τj, which is only limited by the corresponding oscillation time τj=2π/ωj and, thus, is in the femtosecond range. A correlation analysis of these trajectories clearly separates the

  4. Low frequency mechanical actuation accelerates reperfusion in-vitro

    PubMed Central

    2013-01-01

    Background Rapid restoration of vessel patency after acute myocardial infarction is key to reducing myocardial muscle death and increases survival rates. Standard therapies include thrombolysis and direct PTCA. Alternative or adjunctive emergency therapies that could be initiated by minimally trained personnel in the field are of potential clinical benefit. This paper evaluates a method of accelerating reperfusion through application of low frequency mechanical stimulus to the blood carrying vessels. Materials and method We consider a stenosed, heparinized flow system with aortic-like pressure variations subject to direct vessel vibration at the occlusion site or vessel deformation proximal and distal to the occlusion site, versus a reference system lacking any form of mechanical stimulus on the vessels. Results The experimental results show limited effectiveness of the direct mechanical vibration method and a drastic increase in the patency rate when vessel deformation is induced. For vessel deformation at occlusion site 95% of clots perfused within 11 minutes of application of mechanical stimulus, for vessel deformation 60 centimeters from the occlusion site 95% percent of clots perfused within 16 minutes of stimulus application, while only 2.3% of clots perfused within 20 minutes in the reference system. Conclusion The presented in-vitro results suggest that low frequency mechanical actuation applied during the pre-hospitalization phase in patients with acute myocardial infarction have potential of being a simple and efficient adjunct therapy. PMID:24257116

  5. An experimental system for the study of active vibration control - Development and modeling

    NASA Astrophysics Data System (ADS)

    Batta, George R.; Chen, Anning

    A modular rotational vibration system designed to facilitate the study of active control of vibrating systems is discussed. The model error associated with four common types of identification problems has been studied. The general multiplicative uncertainty shape for a vibration system is small in low frequencies, large at high frequencies. The frequency-domain error function has sharp peaks near the frequency of each mode. The inability to identify a high-frequency mode causes an increase of uncertainties at all frequencies. Missing a low-frequency mode causes the uncertainties to be much larger at all frequencies than missing a high-frequency mode. Hysteresis causes a small increase of uncertainty at low frequencies, but its overall effect is relatively small.

  6. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    PubMed

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  7. Surface sum-frequency vibrational spectroscopy of nonpolar media

    DOE PAGES

    Sun, Shumei; Tian, Chuanshan; Shen, Y. Ron

    2015-04-27

    Sum-frequency generation spectroscopy is surface specific only if the bulk contribution to the signal is negligible. Negligible bulk contribution is, however, not necessarily true, even for media with inversion symmetry. The inevitable challenge is to find the surface spectrum in the presence of bulk contribution, part of which has been believed to be inseparable from the surface contribution. Here, we show that, for nonpolar media, it is possible to separately deduce surface and bulk spectra from combined phase-sensitive sum-frequency vibrational spectroscopic measurements in reflection and transmission. Finally, the study of benzene interfaces is presented as an example.

  8. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  9. Variational study on the vibrational level structure and vibrational level mixing of highly vibrationally excited S₀ D₂CO.

    PubMed

    Rashev, Svetoslav; Moule, David C; Rashev, Vladimir

    2012-11-01

    We perform converged high precision variational calculations to determine the frequencies of a large number of vibrational levels in S(0) D(2)CO, extending from low to very high excess vibrational energies. For the calculations we use our specific vibrational method (recently employed for studies on H(2)CO), consisting of a combination of a search/selection algorithm and a Lanczos iteration procedure. Using the same method we perform large scale converged calculations on the vibrational level spectral structure and fragmentation at selected highly excited overtone states, up to excess vibrational energies of ∼17,000 cm(-1), in order to study the characteristics of intramolecular vibrational redistribution (IVR), vibrational level density and mode selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    DOE PAGES

    Nelson, Tammie R.; Ondarse-Alvarez, Dianelys; Oldani, Nicolas; ...

    2018-06-13

    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble ofmore » trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.« less

  11. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Tammie R.; Ondarse-Alvarez, Dianelys; Oldani, Nicolas

    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble ofmore » trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.« less

  12. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    PubMed

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  13. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  14. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    NASA Astrophysics Data System (ADS)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  15. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Zheng, Bowen; Xu, Jun

    2017-11-01

    Mechanical information processing and control has attracted great attention in recent years. A challenging pursuit is to achieve broad functioning frequency ranges, especially at low-frequency domain. Here, we propose a design of mechanical logic switches based on DNA-inspired chiral acoustic metamaterials, which are capable of having ultrabroad band gaps at low-frequency domain. Logic operations can be easily performed by applying constraints at different locations and the functioning frequency ranges are able to be low, broad and tunable. This work may have an impact on the development of mechanical information processing, programmable materials, stress wave manipulation, as well as the isolation of noise and harmful vibration.

  16. Experiments In Characterizing Vibrations Of A Structure

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.

    1993-01-01

    Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).

  17. Low frequency vibration isolation technology for microgravity space experiments

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Brown, Gerald V.

    1989-01-01

    The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments.

  18. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao

    2018-07-01

    Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.

  19. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    PubMed Central

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  20. [Complaints of low back pain among private farmers exposed to whole body vibration].

    PubMed

    Solecki, Leszek

    2014-01-01

    Work-related lower back disorders, which involve the lumbo-sacral region, as well as injuries of the lumbar section of the spine, are a serious and constantly growing problem in Europe. Whole body vibration is one of the major hazardous factors suspected of the development of back pain. The study covered a selected group of males, 98 farmers (aged 55.3 +/- 10.1) from the area of 7 communes in the Lublin Region, engaged in the mixed agricultural production (plant-animal). The control group consisted of 40 academic workers (university and research institute employees) aged 48.9 +/- 9.6 years. A questionnaire concerning low back pain (in the lumbar region) designed by the researchers of the Institute of Rural Health in Lublin was used as a major research tool. The degree of farmers' exposure to whole body vibration was evaluated based on the parameter known as a cumulative vibration dose (d) (years x m2 x s(-1)). The measurements showed that the cumulative vibration dose for the selected group of farmers (98) remained within the range of 2.90-9.68 (years x m2 x s(-1)), in the time interval between 15-50 years of work in conditions of exposure to vibration. The survey confirmed that private farmers exposed to whole body vibration considerably more frequently complained of back pain (92 farmers, 94% of the total number of respondents), than academic workers (control group not exposed to whole body vibration (25 researchers, 63%); p < 0.0001. Also the frequency of back pain in all the three time intervals of employment (15-25, 26-35, 36-50 years) is significantly higher in the group of farmers than in the control group (p < 0.05). The frequency of back pains experienced by farmers during the entire period of occupational activity increases with a growing dose of whole body vibration (p = 0.005). In the incidence of chronic pain an upward tendency was observed (statistically insignificant).

  1. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  2. Low-Magnitude High-Frequency Vibration Inhibits RANKL-Induced Osteoclast Differentiation of RAW264.7 Cells

    PubMed Central

    Wu, Song-Hui; Zhong, Zhao-Ming; Chen, Jian-Ting

    2012-01-01

    Osteoclasts are the key participants in regulation of bone mass. Low-magnitude high-frequency vibration (LMHFV) has been found to be anabolic to bone in vivo. This study aimed to investigate the effect of LMHFV on osteoclast differentiation in vitro. Murine monocyte cell line RAW264.7 cells in the presence of receptor activator of nuclear factor-kappaB ligand (RANKL) were treated with or without LMHFV at 45 Hz (0.3 g) for 15 min day−1. Tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) and actin ring formation were evaluated. Expression of the osteoclast-specific genes, such as cathepsin K, matrix metallopeptidase-9 (MMP-9) and TRAP, were analyzed using real time-PCR. c-Fos, an osteoclast-specific transcription factor, was determined using Western blot. We found that LMHFV significantly decreased the number of RANKL-induced TRAP-positive MNCs (P<0.01), and inhibited the actin ring formation. The mRNA expression of the cathepsin K, MMP-9 and TRAP were down-regulated by LMHFV intervention (all P<0.001). Furthermore, LMHFV also inhibited the expression of c-Fos protein in the RANKL-treated RAW264.7 cells (P<0.05). Our results suggest that LMHFV can inhibit the RANKL-induced osteoclast differentiation of RAW264.7 cells, which give some new insight into the anabolic effects of LMHFV on bone. PMID:23136544

  3. Dynamic (Vibration) Testing: Design-Certification of Aerospace System

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2010-01-01

    Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.

  4. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maj, Michał; Oh, Younjun; Park, Kwanghee

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysiamore » Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.« less

  5. Metal isotope and density functional study of the tetracarboxylatodicopper(II) core vibrations

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Brożyna, Anna

    2005-11-01

    Vibrational spectra of tetrakis(acetato)diaquadicopper(II) complex have been deeply examined in order to provide a detailed description of dynamics of [Cu 2O 8C 4] core being a typical structural unit of most copper(II) carboxylates. Low frequency bands related to significant motions of metal atoms were detected by metal isotope substitution. Observed spectra and isotope shifts were reproduced in DFT calculations. For clear presentation of computed normal vibrations, a D 4h symmetry approximation was successfully applied. Basing on observed isotope shifts and calculation results, all skeletal vibrations have been analyzed including normal mode with the largest Cu ⋯Cu stretching amplitude assigned to Raman band at 178 cm -1.

  6. Analysis of cracked RC beams under vibration

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Magagnini, E.

    2017-05-01

    Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.

  7. Dependence of the atomic level Green-Kubo stress correlation function on wavevector and frequency: molecular dynamics results from a model liquid.

    PubMed

    Levashov, V A

    2014-09-28

    We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.

  8. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    NASA Astrophysics Data System (ADS)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  9. Enhancement of the dynamic Casimir effect within a metal photonic crystal

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2013-05-01

    If the counterposed metal plates are vibrated, when the gap between the plates becomes narrow, the energy of stationary states between the plates increases, and when it spreads, the energy decreases. Light with the energy for this energy difference arises. This is called dynamical Casimir effect. The author has so far investigated the interaction between lattice vibration and light in a one-dimensional metal photonic crystal whose stacked components are artificially vibrated by using actuators. A simple model was numerically analyzed, and the following novel phenomena were found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon was analytically discussed for low frequency of the lattice vibration and is confirmed by numerical works. The lattice-vibrating metal photonic crystal is a system of dynamical Casimir effect connected in series, and so we can expect that a dynamical Casimir effect is enhanced by the photonic band effect. In the present study, when an electromagnetic field between metal plates is in the ground state in a one-dimensional metal photonic crystal, the radiation of electromagnetic wave in excited states has been investigated by artificially introducing lattice vibration to the photonic crystal. In this case as well as a dynamical Casimir effect, it has been shown that the harmonics of a ground state are generated just by vibrating a photonic crystal even without an incident wave. The dependencies of the radiating power on the number of layers and on the wavenumber of the lattice vibration are remarkable. It has found that the radiation amplitude on lower excited states is not necessarily large and radiation on

  10. Energy harvesting from low frequency applications using piezoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel, E-mail: zhiqun.deng@pnnl.gov

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and themore » methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.« less

  11. Analysis of vibration frequencies of uranyl ion in complexes with neutral bases (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobets, L.V.; Umreiko, D.S.

    1986-12-01

    It has been shown that any estimate of the changes in vibration frequencies of UO/sub 2//sup 2 +/ applies only to the series of isostructural compounds with similar stoichiometry. Either the same values of stretching vibration frequencies of uranyl correspond to complexes with ligands that have different donor abilities, or changes in these frequencies are not great and do not reflect the real increase in the donor ability of the bases with respect to proton-containing acceptors. When the acido ligands are replaced or the stoichiometry of the complexes is changed, no correlations can be carried out, since, besides the basicitiesmore » of donors, other parameters such as the dentateness of the ligand, and hence the symmetry and the structure of the compound, are also varied. In this paper, the authors evaluate the contributions of the ligands to the shift of the vibration frequencies of uranyl that have been made and do not take into account the characteristic features of the compounds which therefore led to very different values of the contributions for one and the same ligand in different compounds. To evaluate the shifts produced by the ligands, the value of 1065 cm/sup -1/ was taken as the vibration frequency of a hypothetical fee uranyl ion, not perturbed by bonds with equatorial ligands. The authors also evaluate the contributions of ions able to form polymer structures.« less

  12. Proximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic model

    NASA Astrophysics Data System (ADS)

    Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang

    2018-03-01

    Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the

  13. Transmission of vibration through gloves: effects of contact area.

    PubMed

    Md Rezali, Khairil Anas; Griffin, Michael J

    2017-01-01

    For three samples of material (12.5, 25.0 and 37.5 mm diameter) from each of three gloves, the dynamic stiffnesses and the vibration transmissibilities of the materials (to both the palm of the hand and the thenar eminence) were measured at frequencies from 10 to 300 Hz. Additional measurements showed the apparent masses of the hand at the palm and the thenar eminence were independent of contact area at frequencies less than about 40 Hz, but increased with increasing area at higher frequencies. The stiffness and damping of the glove materials increased with increasing area. These changes caused material transmissibilities to the hand to increase with increasing area. It is concluded that the size of the area of contact has a large influence on the transmission of vibration through a glove to the hand. The area of contact should be well-defined and controlled when evaluating the transmission of vibration through gloves. Practitioner Summary: The transmission of vibration through gloves depends on both the dynamic stiffness of glove material and the dynamic response of the hand. Both of these depend on the size of the contact area between a glove material and the hand, which should be taken into account when assessing glove transmissibility.

  14. Frequency weighting for vibration-induced white finger compatible with exposure-response models.

    PubMed

    Brammer, Anthony J; Pitts, Paul M

    2012-01-01

    An analysis has been performed to derive a frequency weighting for the development of vibration-induced white finger (VWF). It employs a model to compare health risks for pairs of population groups that are selected to have similar health outcomes from operating power tools or machines with markedly different acceleration spectra (rock drills, chain saws, pavement breakers and motorcycles). The model defines the Relative Risk, RR(f(trial)), which is constructed from the ratio of daily exposures and includes a trial frequency weighting that is applied to the acceleration spectra. The trial frequency weighting consists of a frequency-independent primary frequency range, and subordinate frequency ranges in which the response to vibration diminishes, with cut-off frequencies that are changed to influence the magnitude of RR(f(trial)). The frequency weighting so derived when RR(f(trial)) = 1 is similar to those obtained by other methods (W(hf), W(hT)). It consists of a frequency independent range from about 25 Hz to 500 Hz (-3 dB frequencies), with an amplitude cut-off rate of 12 dB/octave below 25 Hz and above 500 Hz. The range is compatible with studies of vasoconstriction in persons with VWF. The results provide further evidence that the ISO frequency weighting may be inappropriate for assessing the risk of developing VWF.

  15. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    NASA Astrophysics Data System (ADS)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  16. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 <-1A0 excitation into the dipole-bound state of the cyanomethyl anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  17. Frequency-varying synchronous micro-vibration suppression for a MSFW with application of small-gain theorem

    NASA Astrophysics Data System (ADS)

    Peng, Cong; Fan, Yahong; Huang, Ziyuan; Han, Bangcheng; Fang, Jiancheng

    2017-01-01

    This paper presents a novel synchronous micro-vibration suppression method on the basis of the small gain theorem to reduce the frequency-varying synchronous micro-vibration forces for a magnetically suspended flywheel (MSFW). The proposed synchronous micro-vibration suppression method not only eliminates the synchronous current fluctuations to force the rotor spinning around the inertia axis, but also considers the compensation caused by the displacement stiffness in the permanent-magnet (PM)-biased magnetic bearings. Moreover, the stability of the proposed control system is exactly analyzed by using small gain theorem. The effectiveness of the proposed micro-vibration suppression method is demonstrated via the direct measurement of the disturbance forces for a MSFW. The main merit of the proposed method is that it provides a simple and practical method in suppressing the frequency varying micro-vibration forces and preserving the nominal performance of the baseline control system.

  18. Temperature and chain length dependence of ultrafast vibrational dynamics of thiocyanate in alkylimidazolium ionic liquids: A random walk on a rugged energy landscape.

    PubMed

    Brinzer, Thomas; Garrett-Roe, Sean

    2017-11-21

    Ultrafast two-dimensional infrared spectroscopy of a thiocyanate vibrational probe (SCN - ) was used to investigate local dynamics in alkylimidazolium bis-[trifluoromethylsulfonyl]imide ionic liquids ([Im n,1 ][Tf 2 N], n = 2, 4, 6) at temperatures from 5 to 80 °C. The rate of frequency fluctuations reported by SCN - increases with increasing temperature and decreasing alkyl chain length. Temperature-dependent correlation times scale proportionally to temperature-dependent bulk viscosities of each ionic liquid studied. A multimode Brownian oscillator model demonstrates that very low frequency (<10 cm -1 ) modes primarily drive the observed spectral diffusion and that these modes broaden and blue shift on average with increasing temperature. An Arrhenius analysis shows activation barriers for local motions around the probe between 5.5 and 6.5 kcal/mol that are very similar to those for translational diffusion of ions. [Im 6,1 ][Tf 2 N] shows an unexpected decrease in activation energy compared to [Im 4,1 ][Tf 2 N] that may be related to mesoscopically ordered polar and nonpolar domains. A model of dynamics on a rugged potential energy landscape provides a unifying description of the observed Arrhenius behavior and the Brownian oscillator model of the low frequency modes.

  19. Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition

    PubMed Central

    Zhang, Xiangming; Gan, Rong Z.

    2012-01-01

    The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1 to 40 Hz at three different temperatures: 5°, 25° and 37°C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E’ and the loss modulus E” were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element (FE) model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear. PMID:22820983

  20. Coupled analysis of high and low frequency resonant ultrasound spectroscopy: Application to the detection of defects in ceramic balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi

    2009-05-15

    A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. Thismore » kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.« less

  1. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcini, Alessandro; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino; Barland, Stephane

    2006-12-15

    The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realisticmore » values of the linewidth enhancement factor {alpha}, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high {alpha} values.« less

  2. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  3. Improvement in muscle performance after one-year cessation of low-magnitude high-frequency vibration in community elderly.

    PubMed

    Cheung, W-H; Li, C-Y; Zhu, T Y; Leung, K-S

    2016-03-01

    To investigate the effects on muscle performance after one-year cessation of 18-month low-magnitude high-frequency vibration (LMHFV) intervention in the untrained community elderly. This is a case-control study with 59 community elderly women (25 control without any treatment; 34 received 18-month LMHFV but discontinued for 1 year from our previous clinical study). Muscle strength, balancing ability, occurrence of fall/fracture, quality of life (QoL) were assessed 1-year after cessation of intervention. The 30-month results were compared with baseline and 18-month treatment endpoint data between groups. At 30 months (i.e. one year post-intervention), the muscle strengths of dominant and non-dominant legs relative to baseline in treatment group were significantly better than those of control. In balancing ability test, reaction time, movement velocity and maximum excursion of treatment group (relative to baseline) remained significantly better than the control group. The muscle strength, balancing ability and quality of life at 30 months relative to 18 months did not show significant differences between the two groups. The benefits of LMHFV for balancing ability, muscle strength and risk of falling in elderly were retained 1 year after cessation of LMHFV.

  4. A Silicon Disk with Sandwiched Piezoelectric Springs for Ultra-low Frequency Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lu, J.; Zhang, L.; Yamashita, T.; Takei, R.; Makimoto, N.; Kobayashi, T.

    2015-12-01

    Exploiting the sporadic availability of energy by energy harvesting devices is an attractive solution to power wireless sensor nodes and many other distributed modules for much longer operation duration and much lower maintenance cost after they are deployed. MEMS energy harvesting devices exhibit unique advantageous of super-compact size, mass productivity, and easy-integration with sensors, actuators and other integrated circuits. However, MEMS vibration energy harvesting devices are rather difficult to be used practically due to their poor response to most of the ambient vibrations at ultra-low frequency range. In this paper, a micromachined silicon disk with sandwiched piezoelectric springs was successfully developed with resonant frequency of 15.36∼42.42 Hz and quality factor of 39∼55 for energy harvesting. Footprint size of the device was 6 mm × 6 mm, which is less than half of the piezoelectric cantilevers, while the device can scavenge reasonably high power of 0.57 μW at the acceleration of 0.1 g. The evaluation results also suggested that the device was quite sensitive as a sensor for selective monitoring of vibrations at a certain frequency.

  5. Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria.

    PubMed

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-10-01

    We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from 42 dB at 100 Hz to 25 dB at 400 Hz. Since sound thresholds decrease from 72 dB SPL at 100 Hz to 50 dB SPL at 400 Hz the decrease in relative vibration sensitivity reflects an increase in sound sensitivity with frequency, probably due to enhanced tympanic sensitivity at higher frequencies. In contrast, absolute vibration sensitivity is constant in most of the frequency range studied. Only small effects result from the cancellation of sound-induced vibrations. The reason for this probably is that the maximal induced vibrations in the present setup are 6-10 dB below the fibers' vibration threshold at the threshold for sound. However, these results are only valid for the present physical configuration of the setup and the high vibration-sensitivities of the fibers warrant caution whenever the auditory fibers are stimulated with free-field sound. Thus, the experiments suggest that the low-frequency sound sensitivity is not caused by sound-induced vertical vibrations. Instead, the low-frequency sound sensitivity is either tympanic or mediated through bone conduction or sound

  6. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  7. Multi-dynamic range compressional wave detection using optical-frequency comb

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Masuoka, Takashi; Oe, Ryo; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi

    2018-02-01

    Compressional wave detection is useful means for health monitoring of building, detection of abnormal vibration of moving objects, defect evaluation, and biomedical imaging such as echography and photoacoustic imaging. The frequency of the compressional wave is varied from quasi-static to a few tens of megahertz depending on applications. Since the dynamic range of general compressional wave detectors is limited, we need to choose a proper compressional wave detector depending on applications. For the compressional wave detection with wide dynamic range, two or more detectors with different detection ranges is required. However, these detectors with different detection ranges generally has different accuracy and precision, disabling the seamless detection over these detection ranges. In this study, we proposed a compressional wave detector employing optical frequency comb (OFC). The compressional wave was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The compressional wave-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. To enhance the dynamic range of the compressional wave detection, we developed a cavityfeedback-based system and a phase-sensitive detection system, both of which the accuracy and precision are coherently linked to these of the OFC. We provided a proof-of-principle demonstration of the detection of compressional wave from quasi-static to ultrasound wave by using the OFC-based compressional wave sensor. Our proposed approach will serve as a unique and powerful tool for detecting compressional wave versatile applications in the future.

  8. Observations of earth eigen vibrations possibly excited by low frequency gravity waves

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.

    1971-01-01

    A cryogenic gravity meter made of two parts, a magnetic suspension unit and a detection module, was used to monitor earth eigen vibrations. The magnetic field and field gradient are generated by energizing a set of superconducting coils made of niobium-zirconium alloy wire. The detection module is a double Josephson junction magnetometer. The output is printed on a chart recorder and later digitized using a computer; a Fourier transformation is performed on the accumulated data. The measurements of eigen vibrations are summarized in tabular and graphical representations.

  9. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-04-22

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  10. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.

    PubMed

    Zhang, Xiaoyong; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei; Yan, Xiaojun

    2016-06-01

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young's modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz-97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  11. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  12. A contact vibration measurement sensor based on a distributed Bragg reflector fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Jie; Fang, Gan; Lyu, Chengang; Zhang, Shuai

    2017-12-01

    A new contact method to measure vibrations with a frequency range of about 30-110 Hz by a distributed Bragg reflector (DBR) fiber laser sensor, based on a beat frequency modulation, has been proposed. In order to demonstrate the plausibility for a DBR fiber sensor to detect vibrations lower than 110 Hz without any complex structures, it is encapsulated in a rectangular slice composed of an epoxy resin glue, with a Young’s modulus of about 2.9 GPa. In experiments, the packaged DBR fiber sensor is placed on a vibration platform to sense the vibration, with a commercial magnet-electrical vibration velocity transducer as a reference. Experimental results indicate that the single DBR fiber laser is able to measure the low-frequency vibration with a few tens of Hertz and several microns of amplitude, offering potential for a low-frequency vibration measurement.

  13. The Study of Dynamical Potentials of Highly Excited Vibrational States of HOBr

    PubMed Central

    Wang, Aixing; Sun, Lifeng; Fang, Chao; Liu, Yibao

    2013-01-01

    The vibrational nonlinear dynamics of HOBr in the bending and O–Br stretching coordinates with anharmonicity and Fermi 2:1 coupling are studied with dynamical potentials in this article. The result shows that the H–O stretching vibration mode has significantly different effects on the coupling between the O–Br stretching mode and the H–O–Br bending mode under different Polyad numbers. The dynamical potentials and the corresponding phase space trajectories are obtained when the Polyad number is 27, for instance, and the fixed points in the dynamical potentials of HOBr are shown to govern the various quantal environments in which the vibrational states lie. Furthermore, it is also found that the quantal environments could be identified by the numerical values of action integrals, which is consistent with former research. PMID:23462512

  14. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than

  15. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency

  16. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE PAGES

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...

    2016-12-05

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency

  17. Low- and high-frequency Raman investigations on caffeine: polymorphism, disorder and phase transformation.

    PubMed

    Hédoux, Alain; Decroix, Anne-Amandine; Guinet, Yannick; Paccou, Laurent; Derollez, Patrick; Descamps, Marc

    2011-05-19

    Raman investigations are carried out both in crystalline forms of caffeine and during the isothermal transformation of the orientationally disordered form I into the stable form II at 363 K. The time dependence of the Raman spectrum exhibits no significant change in the intramolecular regime (above 100 cm(-1)), resembling the spectrum of the liquid state. By contrast, significant changes are observed below 100 cm(-1), and the low-frequency spectra of forms I and II are observed to be different from that of the liquid. The temperature dependence of the 5-600 cm(-1) spectrum gives information on the static disorder through the analysis of collective motions, while information on dynamic disorder are obtained from the study of the 555 cm(-1) band corresponding to internal vibrations in the pyrimidine ring. This analysis indubitably reveals that form II is also orientationally disordered with a local molecular arrangement that mimics that in form I and the liquid state. The comparison of the low-frequency spectra recorded in theophylline and form II of caffeine allows one to describe the stable form of caffeine from the packing arrangement of anhydrous theophylline with the consideration of reorientational molecular disorder. © 2011 American Chemical Society

  18. Whole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?

    PubMed Central

    Supej, Matej; Ogrin, Jan; Holmberg, Hans-Christer

    2018-01-01

    Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which forms of skiing involve stronger vibrations and whether these exceed safety thresholds set by existing standards and directives. Therefore, this study was designed to examine whole-body vibrations connected with different types of skiing and the associated potential risk of developing low back pain. Eight highly skilled ski instructors, all former competitive ski racers and equipped with five accelerometers and a Global Satellite Navigation System to measure vibrations and speed, respectively, performed six different forms of skiing: straight running, plowing, snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate exposure to periodic, random and transient vibrations the power spectrum density (PSD) and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square acceleration (RMS), crest factor, maximum transient vibration value and the fourth-power vibration dose value (VDV)] were calculated. Ground reaction forces were estimated from data provided by accelerometers attached to the pelvis. The major novel findings were that all of the forms of skiing tested produced whole-body vibrations, with highest PSD values of 1.5–8 Hz. Intensified PSD between 8.5 and 35 Hz was observed only when skidding was involved. The RMS values for 10 min of short swinging or carved turns, as well as all 10-min equivalent VDV values exceeded the limits set by European Directive 2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection with high ground reaction forces, contribute to a high risk for low back pain among active

  19. Structural-Vibration-Response Data Analysis

    NASA Technical Reports Server (NTRS)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  20. Plate-type metamaterials for extremely broadband low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Guo, Xinwei; Chen, Tianning; Yao, Ge

    2018-01-01

    A novel plate-type acoustic metamaterial with a high sound transmission loss (STL) in the low-frequency range ( ≤1000 Hz) is designed, theoretically proven and then experimentally verified. The thin plates with large modulus used in this paper mean that we do not need to apply tension to the plates, which is more applicable to practical engineering, the achievement of noise reduction is better and the installation of plates is more user-friendly than that of the membranes. The effects of different structural parameters of the plates on the sound-proofed performance at low-frequencies were also investigated by experiment and finite element method (FEM). The results showed that the STL can be modulated effectively and predictably using vibration theory by changing the structural parameters, such as the radius and thickness of the plate. Furthermore, using unit cells of different geometric sizes which are responsible for different frequency regions, the stacked panels with thickness ≤16 mm and weight ≤5 kg/m2 showed high STL below 2000 Hz. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  1. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon

    NASA Astrophysics Data System (ADS)

    Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey

    2018-04-01

    Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the

  2. Dynamics modeling and vibration analysis of a piezoelectric diaphragm applied in valveless micropump

    NASA Astrophysics Data System (ADS)

    He, Xiuhua; Xu, Wei; Lin, Nan; Uzoejinwa, B. B.; Deng, Zhidan

    2017-09-01

    This paper presents the dynamical model involved with load of fluid pressure, electric-solid coupling simulation and experimental performance of the piezoelectric diaphragm fabricated and applied in valveless micropump. The model is based on the theory of plate-shell with small deflection, considering the two-layer structure of piezoelectric ceramic and elastic substrate. The high-order non-homogeneous vibration equation of the piezoelectric diaphragm, derived in the course of the study, was solved by being divided into a homogeneous Bessel equation and a non-homogeneous static equation according to the superposition principle. The amplitude of the piezoelectric diaphragm driven by sinusoidal voltage against the load of fluid pressure was obtained from the solution of the vibration equation. Also, finite element simulation of electric-solid coupling between displacement of piezoelectric diaphragm due to an applied voltage and resulting deformation of membrane was considered. The simulation result showed that the maximum deflection of diaphragm is 9.51 μm at a quarter cycle time when applied a peak-to-peak voltage of 150VP-P with a frequency of 90 Hz, and the displacement distribution according to the direction of the radius was demonstrated. Experiments were performed to verify the prediction of the dynamic modeling and the coupling simulation, the experimental data showed a good agreement with the dynamical model and simulation.

  3. Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim

    2018-02-01

    Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.

  4. Reticular lamina and basilar membrane vibrations in the basal turn of gerbil and mouse cochleae

    NASA Astrophysics Data System (ADS)

    Ren, Tianying; He, Wenxuan

    2018-05-01

    Low-coherence interferometry in living cochleae has provided valuable information for understanding cochlear micromechanics. A recent measurement of the reticular lamina and basilar membrane vibrations in mouse cochleae, however, is inconsistent with data collected from guinea pig cochleae. To determine whether a species difference accounts for the observed difference, a custom-built heterodyne low-coherence interferometer was used to measure reticular lamina and basilar membrane vibrations at the basal turn of sensitive gerbil and mouse cochleae. For the gerbil and mouse, both the reticular lamina and basilar membrane vibrations show sharp tuning and nonlinear compressive growth near the best frequency. The magnitude of the reticular lamina vibration is significantly greater than that of the basilar membrane vibration not only near the best frequency, but also at low frequencies. The phase of the reticular lamina vibration leads the basilar membrane phase by up to 180-degrees at low frequencies, and this phase lead decreases with frequency, approaching zero near the best frequency. The best frequency of the reticular lamina and basilar membrane vibrations at the cochlear basal turn in mice is significantly higher than that in gerbils. Besides this difference, cochlear micromechanical responses in the gerbil are similar to those in the mouse. Thus, the current results indicate that gerbil and mouse cochleae detect and process sounds likely through a similar micromechanical mechanism.

  5. Measurement of the time-temperature dependent dynamic mechanical properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Maisel, J. E.

    1978-01-01

    A flexural vibration test and associated equipment were developed to accurately measure the low strain dynamic modulus and damping of composite materials from -200 C to over 500 C. The basic test method involves the forced vibration of composite bars at their resonant free-free flexural modes in a high vacuum cryostat furnace. The accuracy of these expressions and the flexural test was verified by dynamic moduli and damping capacity measurements on 50 fiber volume percent boron/aluminum (B/Al) composites vibrating near 2000 Hz. The phase results were summarized to permit predictions of the B/Al dynamic behavior as a function of frequency, temperature, and fiber volume fraction.

  6. Collisional quenching dynamics and reactivity of highly vibrationally excited molecules

    NASA Astrophysics Data System (ADS)

    Liu, Qingnan

    Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine

  7. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    NASA Astrophysics Data System (ADS)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  8. Dynamic characteristics of two new vibration modes of the disk-shell shaped gear

    NASA Astrophysics Data System (ADS)

    Yan, Litang; Qiu, Shijung; Gao, Xiangqung

    1992-10-01

    Two new vibration modes of the disk-shell-shaped big medium gears placed on three separate medium shafts of a turboprop engine have been found. They have the same nodal diameters as the conventional ones, but their frequencies are higher. The tooth ring vibrates both radially and axially and has greater deflection than the gear hub. The resonance of these two new nodal diameter modes is much more dangerous than that of the conventional nodal diameter modes. Moreover, they occur nearly at the upper and the lower bounds of the gear operating speed range. A special detuning method is developed for removing the resonance of these two new modes out of the upper and the lower bounds, respectively, and the effectiveness of the damping rings in this case has been researched. The vibration responses measured on the reductor casing have been then reduced to a quite low level after the damping rings were applied to the three big medium gears.

  9. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  10. Low frequency noise and whole-body vibration cause increased levels of sister chromatid exchange in splenocytes of exposed mice.

    PubMed

    Silva, M J; Dias, A; Barreta, A; Nogueira, P J; Castelo-Branco, N A A; Boavida, M G

    2002-01-01

    Chronic exposure to low frequency (LF) noise and whole-body vibration (WBV) induces both physiological and psychological alterations in man. Recently, we have shown that long-term occupational exposure to LF noise and WBV produces genotoxic effects in man expressed as an increase in sister chromatid exchange (SCE) levels in lymphocytes. The objectives of the present study were to investigate whether the observed effect could be reproduced in a murine model and, if so, which of the agents, LF noise alone or in combination with WBV, would be instrumental in the SCE induction. SCEs were analyzed in spleen lymphocytes of mice exposed to LF noise alone and in combination with WBV for 300 and 600 hr. An effect at the cell cycle kinetics level was also investigated. The results revealed significant increases in the mean SCE number per cell and in the proportion of cells with high frequency of SCEs (HFCs) in lymphocytes of mice submitted to combined noise and WBV over controls. No significant differences were found between single noise-exposed and control mice. A cell cycle delay was observed exclusively in the noise and WBV exposure groups. In conclusion, we demonstrated that, as in exposed workers, prolonged exposure to the combination of LF noise and WBV determines an increase in SCE level in mice while LF noise alone is not effective in SCE induction. Copyright 2002 Wiley-Liss, Inc.

  11. A novel vibration structure for dynamic balancing measurement

    NASA Astrophysics Data System (ADS)

    Qin, Peng; Cai, Ping; Hu, Qinghan; Li, Yingxia

    2006-11-01

    Based on the conception of instantaneous motion center in theoretical mechanics, the paper presents a novel virtual vibration structure for dynamic balancing measurement with high precision. The structural features and the unbalancing response characteristics of this vibration structure are analyzed in depth. The relation between the real measuring system and the virtual one is emphatically expounded. Theoretical analysis indicates that the flexibly hinged integrative plate spring sets holds fixed vibration center, with the result that this vibration system has the most excellent effect of plane separation. In addition, the sensors are mounted on the same longitudinal section. Thus the influence of phase error on the primary unbalance reduction ratio is eliminated. Furthermore, the performance changes in sensors caused by environmental factor have less influence on the accuracy of the measurement. The result for this system is more accurate measurement with lower requirement for a second correction run.

  12. Low-Frequency Extensions of the Saturn Kilometric Radiation as a Proxy for Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Reed, J. J.; Jackman, C. M.; Lamy, L.; Kurth, W. S.; Whiter, D. K.

    2018-01-01

    Saturn Kilometric Radiation (SKR) is an auroral radio emission which can be detected quasi-continuously by the Cassini spacecraft. It has been shown to respond to magnetotail reconnection and to changes in solar wind conditions and thus offers the potential to be used as a remote proxy for magnetospheric dynamics. This work has developed criteria for the selection of low-frequency extensions (LFEs), powerful intensifications of the main SKR emission, accompanied by an expansion of the SKR to lower frequencies. Upon examination of data from the Cassini Radio and Plasma Wave Science instrument, we detect 282 LFE events which are further grouped into two categories. Shorter events (<20 h) associated with tail reconnection have a median waiting time of ˜10 h, a median duration of 3.1 h and a strong correlation with the northern and southern SKR phase systems. The 60% of the short LFEs have a reconnection event within the preceding 6 h. Longer events (>20 h), associated with increases in solar wind dynamic pressure, can last multiple planetary rotations, have a median waiting time of ˜20 days, and show no relationship with SKR phase. An analysis of the power emitted during LFEs suggests that tail reconnection is not always observed or detected in situ which may partially explain the low correlation between LFEs and tail reconnection. We conclude that short LFEs are a good proxy for reconnection in the tail.

  13. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy.

    PubMed

    Brookes, Jennifer F; Slenkamp, Karla M; Lynch, Michael S; Khalil, Munira

    2013-07-25

    The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.

  14. Behavior of a Light Solid in a Rotating Horizontal Cylinder with Liquid Under Vibration

    NASA Astrophysics Data System (ADS)

    Karpunin, I. E.; Kozlova, A. N.; Kozlov, N. V.

    2018-06-01

    Dynamics of a cylindrical body in a rotating cavity is experimentally studied under transversal translational vibrations of the cavity rotation axis. Experiments are run at high rotation rate, when under the action of centrifugal force the body shifts to the rotation axis (the centrifuged state). In the absence of vibrations, the lagging rotation of the body is observed, due to the body radial shift from the axis of rotation caused by gravity. The body average rotation regime depends on the cavity rotation rate. The vibrations lead to the excitation of different regimes of body differential rotation (leading or lagging) associated with the excitation of its inertial oscillations. The dependence of the differential speed of the body rotation on the vibration frequency is investigated. The body dynamics has a complex character depending on the dimensionless vibration frequency. The analysis of body oscillation trajectory revealed that the body oscillatory motion consists of several modes, which contribute to the averaged dynamics of the body and the flows in the cavity.

  15. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  16. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    NASA Astrophysics Data System (ADS)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  17. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  18. Dynamic near-field optical interaction between oscillating nanomechanical structures

    DOE PAGES

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; ...

    2015-05-27

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequencymore » demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz 1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.« less

  19. Local vibrations in disordered solids studied via single-molecule spectroscopy: Comparison with neutron, nuclear, Raman scattering, and photon echo data

    NASA Astrophysics Data System (ADS)

    Vainer, Yu. G.; Naumov, A. V.; Kador, L.

    2008-06-01

    The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.

  20. Amplification of light in one-dimensional vibrating metal photonic crystal

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2012-04-01

    Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional metal photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analyzed, and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration and is confirmed by numerical works.