Science.gov

Sample records for low-lying quadrupole vibrations

  1. Robust correlations between quadrupole moments of low-lying 2+ states within random-interaction ensembles

    NASA Astrophysics Data System (ADS)

    Lei, Y.

    2016-02-01

    In random-interaction ensembles, three proportional correlations between quadrupole moments of the first two Iπ=2+ states robustly emerge, including Q (21+) =±Q (22+) correlations previously remarked by a realistic nuclear survey, and the Q (22+) =-3/7 Q (21+) correlation, which is only observed in the s d -boson space. These correlations can be microscopically characterized by the rotational SU(3) symmetry and quadrupole vibrational U(5) limit, respectively, according to the Elliott model and the s d -boson mean-field theory. The anharmonic vibration may be another phenomenological interpretation for the Q (21+) =-Q (22+) correlation, whose spectral evidence, however, is insufficient.

  2. On quadrupole vibrations in nearly spherical nuclei

    NASA Astrophysics Data System (ADS)

    Yates, S. W.

    2012-09-01

    A new understanding of low-lying quadrupole vibrations in nuclei is emerging through lifetime measurements performed with fast neutrons at the accelerator laboratory of the University of Kentucky in combination with high-sensitivity measurements with other probes. In the stable cadmium nuclei, which have long been considered to be the best examples of vibrational behavior, we find that many E2 transition probabilities are well below harmonic vibrator expectations, and the B(E2)s cannot be explained with calculations incorporating configuration mixing between vibrational phonon states and intruder excitations. These data place severe limits on the collective models, and it is suggested that the low-lying levels of the Cd isotopes may not be of vibrational origin. An additional example of an apparent quadrupole vibrational nucleus, 62Ni, is considered.

  3. Two-photon excitation of low-lying electronic quadrupole states in atomic clusters

    SciTech Connect

    Nesterenko, V. O.; Reinhard, P.-G.; Halfmann, T.; Pavlov, L. I.

    2006-02-15

    A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the time-dependent local density approximation calculations. As a test case, the deformed cluster Na{sub 11}{sup +} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2x10{sup 10}-2x10{sup 11} W/cm{sup 2} and pulse duration T=200-500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow us to gather full mean-field spectra of valence electrons near the Fermi energy. Besides, the scheme allows us to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.

  4. Anharmonic Resonances among Low-Lying Vibrational Levels of Methyl Iso-Cyanide (H_3CNC)

    NASA Astrophysics Data System (ADS)

    Pracna, P.; Urban, J.; Urban, V. S.; Varga, J.; Horneman, V.-M.

    2010-06-01

    Vibrational levels up to 1000 wn of H_3C-N≡C are currently studied in FTIR spectra together with rotational transitions within these levels. This investigation comprises the low-lying excited vibrational levels of the CNC doubly degenerate bending vibration v8=1^± 1 (267.3 wn), v8=20,± 2 (524.6 wn (A), 545.3 wn (E)), and v8=3^± 1,± 3 (792.5 wn (A1+A2), 833.9 wn (E)), respectively, and the next higher fundamental level of the C-N valence vibration v4=1 (945 wn). All these vibrational levels exhibit cubic and quartic anharmonic resonances localized to moderate values of the rotational quantum number K≤10. Therefore the system of rovibrational levels has to be treated as a global polyad in order to describe all the available data quantitatively. The ground state constants have been improved considerably by extending the assignments to higher J/K rotational states both in the purely rotational spectra recorded in the ground vibrational level and in the ground state combination differences generated from the wavenumbers assigned in the fundamental ν_4 band. Similarities and differences with respect to isoelectronic molecules CH_3CN and CH_3CCH are discussed.

  5. gamma-ray spectroscopic study of calcium-48,49 and scandium-50 focusing on low lying octupole vibration excitations

    NASA Astrophysics Data System (ADS)

    McPherson, David M.

    An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.

  6. Low-lying dipole excitations in vibrational nuclei: The Cd isotopic chain studied in photon scattering experiments

    SciTech Connect

    Kohstall, C.; Belic, D.; Kneissl, U.; Nord, A.; Pitz, H.H.; Scheck, M.; Stedile, F.; Brentano, P. von; Fransen, C.; Gade, A.; Herzberg, R.-D.; Jolie, J.; Linnemann, A.; Pietralla, N.; Werner, V.; Yates, S.W.

    2005-09-01

    High-resolution nuclear resonance fluorescence experiments (NRF) were performed on {sup 110,111,112,114,116}Cd at the bremsstrahlung facility of the 4.3-MV Dynamitron accelerator in Stuttgart to study the low-lying dipole strength distributions in these vibrational nuclei. Numerous excited states, most of them previously unknown, were observed in the excitation energy range up to 4 MeV. Detailed spectroscopic information has been obtained on excitation energies, spins, decay widths, decay branchings, and transition probabilities. For states in the even-even isotopes {sup 110,112,114,116}Cd, parities could be assigned from linear polarization measurements. Together with our previous results for {sup 108,112,113,114}Cd from NRF studies without polarization measurements, systematics was established for the dipole strength distributions of the stable nuclei within the Cd isotopic chain. The results are discussed with respect to the systematics of E1 two-phonon excitations and mixed-symmetry states in even-even nuclei near the Z=50 shell closure and the fragmentation of these excitation modes in the odd-mass Cd isotopes.

  7. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  8. Excitation of the low lying vibrational levels of H2O by O(3P) as measured on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Meyerott, R. E.; Swenson, G. R.; Schweitzer, E. L.; Koch, D. G.

    1994-09-01

    The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.

  9. Excitation of the low lying vibrational levels of H2O by O(3P) as measured on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Meyerott, R. E.; Swenson, G. R.; Schweitzer, E. L.; Koch, D. G.

    1994-01-01

    The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.

  10. Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: Low-lying states v(8) <= 2 of methyl cyanide, CH3CN

    SciTech Connect

    Muller, H. S.; Brown, Linda R.; Drouin, B. J.; Pearson, J. C.; Kleiner, Isabelle; Sams, Robert L.; Sung, Keeyoon; Ordu, Matthias H.; Lewen, Frank

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2v(8) around 717 cm(-1) with assignments covering 684-765 cm-1. Additional spectra in the vs region were used to validate the analysis.

  11. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  12. Rotational Spectroscopy as a Tool to Investigate Interactions Between Vibrational Polyads in Symmetric Top Molecules: Low-Lying States v_8 ≤ 2 OF Methyl Cyanide

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Ordu, Matthias H.; Lewen, Frank; Brown, Linda; Drouin, Brian; Pearson, John; Sung, Keeyoon; Kleiner, Isabelle; Sams, Robert

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627~GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2ν_8 around 717~cm-1 with assignments covering 684-765~cm-1. Additional spectra in the ν _8 region were used to validate the analysis. Using ν _8 data as well as spectroscopic parameters for v_4 = 1, v_7 = 1, and v_8 = 3 from previous studies, we analyzed rotational data involving v = 0, v_8 = 1, and v_8 = 2 up to high J and K quantum numbers. We analyzed a strong Δ v_8 = ± 1, Δ K = 0, Δ l = ±3 Fermi resonance between v_8 = 1-1 and v_8 = 2+2 at K = 14 and obtained preliminary results for two further Fermi resonances between v_8 = 2 and 3. We also found resonant Δ v_8 = ± 1, Δ K = ∓ 2, Δ l = ± 1 interactions between v_8 = 1 and 2 and present the first detailed analysis of such a resonance between v_8 = 0 and 1. We discuss the impact of this analysis on the v_8 = 1 and 2 as well as on the axial v = 0 parameters and compare selected CH_3CN parameters with those of CH_3CCH and CH_3NC. We evaluated transition dipole moments of ν _8, 2ν _8 - ν _8, and 2ν _8 for remote sensing in the IR. Part of this work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. M. Koivusaari et al., J. Mol. Spectrosc. 152 (1992) 377-388. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.

  13. High resolution photoelectron imaging of UO- and UO2- and the low-lying electronic states and vibrational frequencies of UO and UO2

    NASA Astrophysics Data System (ADS)

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-01

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO- and UO2-. The spectra for UO2- are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  14. High resolution photoelectron imaging of UO(-) and UO2(-) and the low-lying electronic states and vibrational frequencies of UO and UO2.

    PubMed

    Czekner, Joseph; Lopez, Gary V; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO(-) and UO2(-). The spectra for UO2(-) are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species. PMID:25554146

  15. The origin of unequal bond lengths in the C̃ (1)B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure.

    PubMed

    Park, G Barratt; Jiang, Jun; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°. PMID:27083727

  16. The origin of unequal bond lengths in the C1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    DOE PAGESBeta

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-14

    Here the C1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v'3 progression. We have recently made the first observation of low-lying levels with odd quanta of v'3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamicallymore » important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the v'3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ~145°.« less

  17. The origin of unequal bond lengths in the C ˜ 1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3' progression. We have recently made the first observation of low-lying levels with odd quanta of v3', which allows us—in the current work—to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the ν3' levels increases with quanta of bending excitation, which is consistent with the approach along the C ˜ state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ˜145°.

  18. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    SciTech Connect

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  19. Low-lying lattice modes of highly uniform pentacene monolayers

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy G.; Blanchet, Graciela B.; Pinczuk, Aron

    2009-06-01

    The authors report that monolayers of pentacene grown on a functionalized polymeric substrate display high uniformity that enable observations of Raman spectra of low-lying optical vibrations. The evolution of the frequencies and widths of the modes has been studied in films reaching the single monolayer level. Raman spectra of low-lying lattice modes display major changes when the film thickness changes from 1 to 2 monolayers, revealing that a phase akin to a thin film phase of pentacene already emerges in films of only 2 monolayers.

  20. Low-lying states of valence-hole nuclei in the 208Pb region

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Shen, J. J.; Zhao, Y. M.; Arima, A.

    2011-04-01

    Systematic calculations of low-lying states for Ir, Pt, Au, Hg and Tl isotopes with neutron numbers between 120 and 125 have been performed within the framework of the SDG-pair approximation of the shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole-type interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate binding energies of the ground states, low energy level schemes, electric quadrupole and magnetic dipole moments, and E2 transition rates. Our results are reasonably consistent with the available experimental data as well as previous theoretical studies, in particular, for low-lying yrast states. We also demonstrate that low-lying states of nuclei studied here are usually well represented by very simple configurations in collective nucleon-pair basis.

  1. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y.

    2010-12-01

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  2. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Not Available

    2010-11-29

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  3. Low-lying states of ruthenium isotopes within the nucleon pair approximation

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Li, B.; Lei, Y.

    2016-05-01

    Low-lying states of even-even and odd-mass ruthenium isotopes with mass numbers from 95 to 102, including level schemes, electric quadrupole and magnetic dipole moments, and E 2 transition rates, are studied within the framework of the nucleon pair approximation (NPA) of the shell model, by using the phenomenological pairing plus quadrupole interactions. Good agreement is obtained between the calculated results and experimental data. The interesting behaviors of g (J1+) factors versus nuclear spin J (and mass number A ) in even-even Ru-10296 nuclei are analyzed. The dominant configurations of yrast low-lying states in odd-mass Ru-10195 isotopes are discussed in the collective nucleon-pair subspace. The calculated electric quadrupole moments and magnetic moments of low-lying states, many of which have not yet been measured for these nuclei, are useful for future studies.

  4. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    SciTech Connect

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  5. Low-lying structure of neutron-rich Zn and Ga isotopes

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Fu, G. J.; Zhao, Y. M.; Arima, A.

    2011-09-01

    Low-lying states of even-even Zn and odd-mass Ga nuclei with neutron numbers between 42 and 50 have been calculated within the framework of the SDG-pair approximation of the nuclear shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate low-lying level schemes, electric quadrupole and magnetic dipole moments, and E2 and M1 transition rates. Reasonable agreement is achieved between the calculated results and experimental data. Dominant configurations in the ground states of odd-mass Ga nuclei are discussed in terms of pair correlations. The weak-coupling picture for some states of odd-mass Ga nuclei is studied.

  6. Fiducialization of the small-aperture quadrupoles based on the vibrating wire method

    NASA Astrophysics Data System (ADS)

    Wang, Baichuan; Zheng, Shuxin; Wu, Lin; Du, Changtong; Xing, Qingzi; Wang, Zhongming; Qiu, Mengtong; Wang, Xuewu

    2016-03-01

    A fiducialization method based on vibrating wire is described dedicated to the problem of locating the magnetic center relative to external fiducials for the small-aperture quadrupoles. The advantage of this method is that the measurement of the wire position, which may be the main error source, is no longer needed. The position of the magnetic center can be directly obtained by measuring the position shift of the magnet fiducials. This method has been validated on small Permanent Magnet Quadrupoles (PMQs). Experiments have confirmed its feasibility of measuring PMQs with good repeatability of about 10 μm, and shown its high sensitivity as well as convenience.

  7. High resolution photoelectron imaging of UO{sup −} and UO{sub 2}{sup −} and the low-lying electronic states and vibrational frequencies of UO and UO{sub 2}

    SciTech Connect

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO{sup −} and UO{sub 2}{sup −}. The spectra for UO{sub 2}{sup −} are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO{sub 2} as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO{sub 2} are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO{sub 2} are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  8. Effects of tensor correlations on low-lying collective states in finite nuclei

    SciTech Connect

    Cao Ligang; Sagawa, H.; Colo, G.

    2011-03-15

    We present a systematic analysis of the effects induced by tensor correlations on low-lying collective states of magic nuclei, by using the fully self-consistent random phase approximation (RPA) model with Skyrme interactions. The role of the tensor correlations is analyzed in detail in the case of quadrupole (2{sup +}) and octupole (3{sup -}) low-lying collective states in {sup 208}Pb. The example of {sup 40}Ca is also discussed, as well as the case of magnetic dipole states (1{sup +}).

  9. Vibration study of the APS storage ring 0. 8 meter quadrupole/girder assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-05-01

    The overall objective of this study is to obtain insights into the dynamic coupled behavior of the quadrupole magnet and the girder assembly, and an assessment of the potential for unacceptable vibration levels which would require redesign of the quadrupole and/or girder mounting system(s). Specific objectives include determination of vibrational characteristics (natural frequencies, damping, mode shapes, and transfer functions) of the coupled magnet/girder system, measurement of response amplitudes of forced excitation and ambient floor motion, and calculation of magnification factors associated with the observed coupled vibration modes. In the Phase 1 tests the 0.8 meter quadrupole was mounted to the girder with a prototypic mount and excitation was primarily by an electromagnetic exciter or the result of ambient floor motion, with the exception of Test 7, which was impulse excited. In the Phase 2 tests the excitation was primarily by impulse with only a few tests with ambient floor excitation. A strong, coupled magnet/girder mode response occurs at frequency of 7.62 Hz resulting in very large magnification factors (low damping values) and large displacements. It appears that a low frequency rigid body mode of the magnet coincides with a girder mode frequency. The Phase 2 tests show the effect of jackscrew conditions on system response. When the pedestal bolts were loose, the jackscrew/pedestal assembly deflected slightly from its initial vertical position, resulting in a shift in position of the jackshaft within the screw assembly. The result was a significant reduction of frequency and a large increase in damping.

  10. Vibration study of the APS storage ring 0.8 meter quadrupole/girder assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-05-01

    The overall objective of this study is to obtain insights into the dynamic coupled behavior of the quadrupole magnet and the girder assembly, and an assessment of the potential for unacceptable vibration levels which would require redesign of the quadrupole and/or girder mounting system(s). Specific objectives include determination of vibrational characteristics (natural frequencies, damping, mode shapes, and transfer functions) of the coupled magnet/girder system, measurement of response amplitudes of forced excitation and ambient floor motion, and calculation of magnification factors associated with the observed coupled vibration modes. In the Phase 1 tests the 0.8 meter quadrupole was mounted to the girder with a prototypic mount and excitation was primarily by an electromagnetic exciter or the result of ambient floor motion, with the exception of Test 7, which was impulse excited. In the Phase 2 tests the excitation was primarily by impulse with only a few tests with ambient floor excitation. A strong, coupled magnet/girder mode response occurs at frequency of 7.62 Hz resulting in very large magnification factors (low damping values) and large displacements. It appears that a low frequency rigid body mode of the magnet coincides with a girder mode frequency. The Phase 2 tests show the effect of jackscrew conditions on system response. When the pedestal bolts were loose, the jackscrew/pedestal assembly deflected slightly from its initial vertical position, resulting in a shift in position of the jackshaft within the screw assembly. The result was a significant reduction of frequency and a large increase in damping.

  11. Low-lying excitations in 72Ni

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoyborg, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Shaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2016-03-01

    Low-lying excited states in 72Ni have been investigated in an in-flight fission experiment at the RIBF facility of the RIKEN Nishina Center. The combination of the state-of-the-art BigRIPS and EURICA setups has allowed for a very accurate study of the β decay from 72Co to 72Ni, and has provided first experimental information on the decay sequence 72Fe→72Co→72Ni and on the delayed neutron-emission branch 73Co→72Ni . Accordingly, we report nearly 60 previously unobserved γ transitions which deexcite 21 new levels in 72Ni. Evidence for the location of the so-sought-after (42+) ,(62+) , and (81+) seniority states is provided. As well, the existence of a low-spin β -decaying isomer in odd-odd neutron-rich Co isotopes is confirmed for mass A =72 . The new experimental information is compared to simple shell-model calculations including only neutron excitations across the f p g shells. It is shown that, in general, the calculations reproduce well the observed states.

  12. Toward a Global Model of Low-Lying Vibrational States of CH_3CN: the v_4 = 1 State at 920 cm-1 and its Interactions with Nearby States

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Drouin, B. J.; Pearson, J. C.; Brown, L. R.; Kleiner, I.; Sams, R. L.

    2010-06-01

    Methyl cyanide, CH_3CN, is an important interstellar molecule, in particular in hot and dense molecular cores, and it may play a role in the atmospheres of planets or of Titan. Therefore, we have recorded extensive rotational and rovibrational spectra up to ˜ 1.6 THz and ˜ 1500 cm-1, respectively. The present investigation extends our analysis of states with v_8 ≤ 2 at vibrational energies below 740 cm-1 and takes into consideration findings from an analysis of the ν _4 band and the higher-lying ν _7 (at ˜1042 cm-1) and 3ν _8 ^1 (at ˜1078 cm-1) bands. The rotational data extend to J = 87 and K = 15, infrared assignments currently extend to 55 and 12, respectively. Parameters affecting only v_7 = 1 or v_8 = 3 as well as some additional interaction parameters were kept fixed to values from (b). The largest perturbations of v_4 = 1 are caused by a Δ k = 0, Δ l = 3 interaction with v_8 = 3 at K = 8. Despite the inclusion of the interaction parameter and a centrifugal distortion correction, residuals amount to more than 200 MHz very close to the resonance. Removal of these residuals probably requires explicit inclusion of v_8 = 3 data. Several additional perturbations exist at lower as well as higher K with v_8 = 2, v_7 = 1 and v_8 = 3. Higher values of K are difficult to reproduce in spite of an extensive set of distortion parameters which, at highest orders, have rather large magnitudes, possibly indicating unaccounted interactions which would probably occur with states even higher than v_8 = 3. H. S. P. Müller et al., contribution WG03, presented at the 62nd International Symposium on Molecular Spectroscopy, June 18-22, 2007, Columbus, Ohio, USA. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.

  13. Designing SSC quadrupole supports to minimize the effects from vibrational noise

    SciTech Connect

    Ritson, D. |

    1993-09-01

    G. Stupakov has shown theoretically that the emittance at the SSC should increase linearly with time and the seismic noise spectrum associated with quadrupole motion at the betatron frequency {approximately} 750--1500 Hz. While the motion is also affected by overtones of the knockout frequencies, the frequencies are so high that the seismic noise becomes vanishingly small. Feedback control would be required to control emittance growth for a power spectrum in excess of 10{sup {minus}12} microns{sup 2}/Hz, assuming unit transmission at the betatron knockout frequency through the quadrupole supports. At the 1991 Corpus Christi Workshop on Beam Dynamics, N. Dikanski predicted unacceptable emittance growths of minutes for the SSC collider in the absence of protective measures. In view of this prediction a workshop was convened in February of 1992 to discuss vibrational issues. At this workshop G. Fischer referred participants to an early study based on the then best compilation from Aki and Richards of seismic measurements. Aki and Richards showed ambient ground noise for a generic site many orders of magnitude lower than the INP measurements for the 750--1500 Hz range. Fischer referred to later extensive measurements in the US and USSR that had confirmed the Aki results and also showed that instrumental noise in the 750--1500 Hz region could dominate measurement precision. Later measurements made by the Russian group at the SSC site measure quiet noise spectra of Hz five orders of magnitude lower than the original values. Under noisy conditions measurements indicate that culturally induced vibrations might still lead to marginal emittance growth, assuming unit transmission in the relevant frequency range, and 100% efficient coupling of resonant modes to the beam. This is certainly an overestimate as relevant wavelengths are small compared with quadrupole dimensions.

  14. On the low-lying states of TiC

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.

    1984-01-01

    The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.

  15. Low-lying Gamow-Teller transitions in spherical nuclei

    SciTech Connect

    Cakmak, N.; Uenlue, S.; Selam, C.

    2012-01-15

    The Pyatov Method has been used to study the low-lying Gamow-Teller transitions in the mass region of 98 Less-Than-Or-Slanted-Equal-To A Less-Than-Or-Slanted-Equal-To 130. The eigenvalues and eigenfunctions of the total Hamiltonian have been solved within the framework of proton-neutron quasiparticle random-phase approximation. The low-lying {beta} decay log(ft) values have been calculated for the nuclei under consideration.

  16. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGESBeta

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; et al

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, $B(E2; 2^+_3 → 0^+_2)$ = 78(13) W.u. and $B(E2; 2^+_4 → 0^+_3)$ = 53(12) W.u. were determined. The $0^+_3$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xemore » measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  17. RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg

    SciTech Connect

    Kuehn, R.; Dewald, A.; Kruecken, R.

    1996-12-31

    The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.

  18. Low-lying isovector 2+ valence-shell excitations of 212Po

    NASA Astrophysics Data System (ADS)

    Kocheva, D.; Rainovski, G.; Jolie, J.; Pietralla, N.; Stahl, C.; Petkov, P.; Blazhev, A.; Hennig, A.; Astier, A.; Braunroth, Th.; Cortés, M. L.; Dewald, A.; Djongolov, M.; Fransen, C.; Gladnishki, K.; Karayonchev, V.; Litzinger, J.; Müller-Gatermann, C.; Scheck, M.; Scholz, Ph.; Stegmann, R.; Thöle, P.; Werner, V.; Witt, W.; Wölk, D.; Van Isacker, P.

    2016-01-01

    We present the results from an experiment dedicated to search for quadrupole-collective isovector valence-shell excitations, states with so-called mixed proton-neutron symmetry (MSS), of 212Po. This nucleus was studied in an α -transfer reaction. The lifetimes of two short-lived excited states, candidates for the one-phonon MSS, were determined by utilizing the Doppler shift attenuation method. The experimental results are in qualitative agreement with a simple single-j shell model calculation, which, together with the observed lack of quadrupole collectivity, indicates that the isovector nature of low-lying states is a property of the leading single-particle valence shell configuration.

  19. Organic semiconductor interfaces: low-lying lattice modes of pentacene monolayers

    NASA Astrophysics Data System (ADS)

    He, Rui; Blanchet, Graciela; Pinczuk, Aron

    2010-03-01

    Highly uniform monolayers of pentacene that are grown on polymeric substrate of poly alpha-methylstyrene exhibit sharp and intense free exciton luminescence. Large enhancements of Raman scattering intensities at the free exciton resonance enable the first observations of low-lying lattice vibration modes in films reaching the single monolayer level.footnotetextRui He, et al. Appl. Phys. Lett. 94, 223310 (2009). The low- lying modes display characteristic changes when going from a single monolayer to two layers, revealing that a phase akin to a thin film phase of pentacene already emerges in structures of only two monolayers. A simple analysis of mode splittings offers estimates of the strength of inter-layer interactions. The results demonstrate novel venues for ultra-thin film characterization and studies of interface effects in organic molecular semiconductor structures.

  20. Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole.

    PubMed

    Kundu, Achintya; Tanaka, Shogo; Ishiyama, Tatsuya; Ahmed, Mohammed; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Sawai, Hiromi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-07-01

    Heterodyne-detected vibrational sum frequency generation spectroscopy was applied to the water surface for measuring the imaginary part of second-order nonlinear susceptibility (Im χ((2))) spectrum in the bend frequency region for the first time. The observed Im χ((2)) spectrum shows an overall positive band around 1650 cm(-1), contradicting former theoretical predictions. We further found that the Im χ((2)) spectrum of NaI aqueous solution exhibits an even larger positive band, which is apparently contrary to the flip-flop orientation of surface water. These unexpected observations are elucidated by calculating quadrupole contributions beyond the conventional dipole approximation. It is indicated that the Im χ((2)) spectrum in the bend region has a large quadrupole contribution from the bulk water. PMID:27322348

  1. Experimental investigation of low-lying states of pionic atoms

    SciTech Connect

    Amian, W.B.; Cloth, P.; Djaloeis, A.; Filges, D.; Gotta, D.; Kilian, K.; Machner, H.; Morsch, H.P.; Protic, D.; Riepe, G.; Roderburg, E.; von Rossen, P.; Turek, P.; Watzlawik, K.H. ); Jarczyk, L.; Smyrski, J.; Stralkowski, A. ); Budzanowski, A.; Dabrowski, H.; Skwirczynska, I. ); Plendl, H. ); Konijn, J. )

    1991-04-10

    We propose to study pionic atoms in low-lying states. The pions will be produced with the help of recoil free kinematics at small energies in the laboratory. A dedicated detector will be applied allowing the measurements of the width as well as the energy shift of these states.

  2. The Low-Lying Electronic States of Mg2(+)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.

    1994-01-01

    The low-lying doublet and quartet states of Mg+ have been studied using a multireference configuration interaction approach. The effect of inner-shell correlation has been included using the core-polarization potential method. The computed spectroscopic constants, lifetimes, and oscillator strengths should help resolve the difference between the recent experiments and previous theoretical calculations.

  3. Low-lying Structure of ^134Xe from Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Peters, E. E.; Crider, B. P.; Ashley, S. F.; McEllistrem, M. T.; Yates, S. W.

    2010-11-01

    Unlike the transition from spherical vibrators to axially symmetric rotors, little is known about the transition from spherical vibrators to gamma-soft nuclei. The stable isotopes of xenon span a region which exhibits this lesser understood shape transition. While ^136Xe shows evidence of being a spherical vibrator, the lighter xenon nuclei demonstrate gamma-soft behavior. Measurements to determine the nuclear structure of the xenon isotopes are difficult, however, since they are gases under ambient conditions, and solid targets are much more amenable to typical methods. Recently, highly enriched (>99.9%) samples of ^132Xe and ^134Xe were converted to solid XeF2. These isotopes were studied at the University of Kentucky 7-MV Van de Graaff accelerator facility using the inelastic neutron scattering reaction with gamma-ray detection. Both excitation function and angular distribution data were obtained for the low-lying levels. First results of the experiments on ^134Xe will be presented.

  4. Low-lying states in 96Nb from the (t,α) reaction

    NASA Astrophysics Data System (ADS)

    Cloessner, Paul F.; Stöffl, Wolfgang; Sheline, Raymond K.; Lanier, Robert G.

    1984-02-01

    The nuclear structure of 96Nb has been studied with the (t,α) reaction at 17 MeV on an isotopically enriched target of 97Mo using a quadrupole-three-dipole spectrometer. Measured angular distributions were compared with distorted-wave Born approximation calculations to assign l transfer values. The results are combined with published data and shell model considerations to reassign the 3- state of the low-lying π(p12)1ν(d52)-1 configuration and to confirm the assignments of the spins and parities of the other levels observed. [NUCLEAR REACTIONS 97Mo(t,α)96Nb, Et=17 MeV, enriched target; measured Eα,σ(θ). DWBA analysis. 96Nb deduced levels, Jπ. Compared 96Nb and 92Nb using Pandya relation.

  5. Theoretical Study of the Low-Lying States of MgN+2

    NASA Technical Reports Server (NTRS)

    Maitre, Philippe; Bauschlicher, Charles W., Jr.; Gross, Anthony R. (Technical Monitor)

    1994-01-01

    The structure and binding energies of the low-lying states of MgN2+ have been computed at the multireference configuration interaction level of theory. The effect of Mg inner-shell correlation have been included using the core-polarization potential method. The charge-quadrupole interaction results in a linear 2Sigma+ ground state as expected. The excited states can arise from either the interaction of the 2-P state of Mg+ with N2 or from charge transfer states with Mg(sup 2+)N2- bonding character. The lowest lying excited state, 2-B2, is mixture of these two mechanisms, which results in a C2v, geometry with Mg atoms sitting at the N2 bond midpoint. The small barrier in the bending potential exists between this state and the 2-II State which is the lowest lying linear excited state.

  6. Reduced transition strengths of low-lying yrast states in chromium isotopes in the vicinity of N =40

    NASA Astrophysics Data System (ADS)

    Braunroth, Thomas; Dewald, A.; Iwasaki, H.; Lenzi, S. M.; Albers, M.; Bader, V. M.; Baugher, T.; Baumann, T.; Bazin, D.; Berryman, J. S.; Fransen, C.; Gade, A.; Ginter, T.; Gottardo, A.; Hackstein, M.; Jolie, J.; Lemasson, A.; Litzinger, J.; Lunardi, S.; Marchi, T.; Modamio, V.; Morse, C.; Napoli, D. R.; Nichols, A.; Recchia, F.; Stroberg, S. R.; Wadsworth, R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.

    2015-09-01

    Background: In neutron-rich nuclei around N =40 rapid changes in nuclear structure can be observed. While 68Ni exhibits signatures of a doubly magic nucleus, experimental data along the isotopic chains in even more exotic Fe and Cr isotopes—such as excitation energies and transition strengths—suggest a sudden rise in collectivity toward N =40 . Purpose: Reduced quadrupole transition strengths for low-lying transitions in neutron-rich 58,60,62Cr are investigated. This gives quantitative new insights into the evolution of quadrupole collectivity in the neutron-rich region close to N =40 . Method: The recoil distance Doppler-shift (RDDS) technique was applied to measure lifetimes of low-lying states in 58,60,62>Cr. The experiment was carried out at the National Superconducting Cyclotron Laboratory (NSCL) with the SeGA array in a plunger configuration coupled to the S800 magnetic spectrograph. The states of interest were populated by means of one-proton knockout reactions. Results: Data reveal a rapid increase in quadrupole collectivity for 58,60,62>Cr toward N =40 and point to stronger quadrupole deformations compared to neighboring Fe isotopes. The experimental B (E 2 ) values are reproduced well with state-of-the-art shell-model calculations using the LNPS effective interaction. A consideration of intrinsic quadrupole moments and B42 ratios suggest an evolution toward a rotational nature of the collective structures in Cr,6260. Compared to 58Cr, experimental B42 and B62 values for 60Cr are in better agreement with the E (5 ) limit. Conclusion: Our results indicate that collective excitations in neutron-rich Cr isotopes saturate at N =38 , which is in agreement with theoretical predictions. More detailed experimental data of excited structures and interband transitions are needed for a comprehensive understanding of quadrupole collectivity close to N =40 . This calls for additional measurements in neutron-rich Cr and neighboring Ti and Fe nuclei.

  7. Ab initio calculations of forbidden transition amplitudes and lifetimes of the low-lying states in V{sup 4+}

    SciTech Connect

    Dixit, Gopal; Majumder, Sonjoy; Sahoo, Bijaya K.; Chaudhuri, Rajat K.

    2007-10-15

    We report electric quadrupole (E2) and magnetic dipole (M1) transition amplitudes of the first few low-lying states of quadruply ionized vanadium (V{sup 4+}), which are important in various experimental applications and astrophysics. To our knowledge, most of these presented results are determined for the first time in the literature. A relativistic multireference Fock-space coupled-cluster theory with single (S), double (D), and partial triple (T) excitations is employed to compute the forbidden transition probabilities and lifetimes of the low-lying states in V{sup 4+}. Estimations of different correlation effects arising through the above formalism have been highlighted by investigating core and valence electron excitations. A long lifetime is found for the first excited 3d {sup 2}D{sub 5/2} state, which suggests that V{sup 4+} may be one of the useful candidates for many important studies.

  8. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  9. Spectroscopic study of low-lying {sup 16}N levels

    SciTech Connect

    Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.

    2008-11-15

    The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.

  10. Low-lying Collective States in {sup 136}Ba

    SciTech Connect

    Scheck, M.; Mukhopadhyay, S.; Crider, B.; Choudry, S. N.; Elhami, E.; Peters, E. E.; McEllistrem, M. T.; Orce, J. N.; Yates, S. W.

    2009-01-28

    Low-lying collective states in {sup 136}Ba were investigated with (n,n'{gamma}) techniques, including Doppler-shift attenuation lifetime measurements. The level spins, lifetimes, branching ratios, multipole-mixing ratios and transition strengths reveal candidates for symmetric-phonon states up to third order. The 2{sub ms}{sup +} mixed-symmetry state was confirmed as unfragmented and a candidate for a [2{sub 1}{sup +} x 2{sub ms}{sup +}]{sub 3}{sup +} two-phonon mixed-symmetry state is proposed.

  11. Noncollisional excitation of low-lying states in gaseous nebulae

    NASA Technical Reports Server (NTRS)

    Rubin, Robert H.

    1986-01-01

    Consideration is given to the effects of processes other than electron collisional excitation on the energy level populations of species of C, N, and O. It is found that dielectronic as well as direct-radiative recombination may contribute significantly and in some cases be the major input to populating the low-lying metastable levels. It is concluded that the most pronounced changes occur when there is a large effective recombination coefficient to a level and when T(e) is low. The most dramatic change among the forbidden lines occurs for the O II forbidden lines.

  12. Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈100

    NASA Astrophysics Data System (ADS)

    Xiang, J.; Yao, J. M.; Fu, Y.; Wang, Z. H.; Li, Z. P.; Long, W. H.

    2016-05-01

    Background: In recent years, the study of triaxiality in the low-lying states of atomic nuclei with transition character or shape coexistence has been of great interest. Previous studies indicate that the neutron-rich nuclei in the A ˜100 mass region with Z ˜40 ,N ˜60 serve as good grounds for examining the role of triaxiality in nuclear low-lying states. Purpose: The aim of this work is to provide a microscopic study of low-lying states for nuclei in the A ˜100 mass regions and to examine in detail the role of triaxiality in the shape-coexistence phenomena and the variation of shape with the isospin and spin values at the beyond mean-field level. Method: The starting point of our method is a set of relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations (β ,γ ) . The excitation energies and electric multipole transition strengths of low-lying states are calculated by solving a five-dimensional collective Hamiltonian (5DCH) with parameters determined by the mean-field wave functions. Results: The low-lying states of Mo isotopes and of N =60 isotones in the A ˜100 mass region are calculated. The results indicate that triaxiality is essential to reproduce the data of excitation energies and electric quadrupole transition strengths in low-lying states and plays an important role in the shape evolution as a function of nucleon number. However, the decrease of nuclear collectivity with the increase of angular momentum in neutron-rich Mo isotopes has not been reproduced. Conclusions: The evolution of nuclear collectivity in the low-lying states of neutron-rich nuclei in the A ˜100 mass region as a function of nucleon number is governed by the novel triaxial structure. However, the mechanism that governs the variation of nuclear shape with spin in Mo isotopes remains unclear and deserves further investigation by taking into account the effects other than the collective motions.

  13. Ozone absorption spectroscopy in search of low-lying electronic states

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Mauersberger, K.

    1995-01-01

    A spectrometer capable of detecting ozone absorption features 9 orders of magnitude weaker than the Hartley band has been employed to investigate the molecule's near-infrared absorption spectrum. At this sensitivity a wealth of information on the low-lying electronically excited states often believed to play a role in atmospheric chemistry is available in the form of vibrational and rotational structure. We have analyzed these spectra using a combination of digital filtering and isotope substitution and find evidence for three electronically excited states below 1.5 eV. The lowest of these states is metastable, bound by approximately 0.1 eV and probably the (3)A2 rather than the (3)B2 state. Its adiabatic electronic energy is 1.24 +/- 0.01 eV, slightly above the dissociation energy of the ground state. Two higher states, at 1.29 +/- 0.03 and 1.48 +/- 0.03 eV are identified as the (3)B2 and the (3)B1, respectively. Combined with other recent theoretical and experimental data on the low-lying electronic states of ozone, these results imply that these are, in fact, the lowest three excited states; that is, there are no electronically excited states of ozone lying below the energy of O(3P) + O2((3)Sigma(-), v = 0). Some of the implications for atmospheric chemistry are considered.

  14. Low-lying Level Structure of 150Nd

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Prados-Estévez, F. M.; Yates, S. W.; Choudry, S. N.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Mynk, M. G.; Peters, E. E.; Garrett, P. E.; Kulp, W. D.; Wood, J. L.

    2011-10-01

    To address the issue of whether the 150Nd nucleus represents an example of a phase transition in the shape degree of freedom or a complex example of shape coexistence, its level structure, up to about 2 MeV excitation and 6 ℏ, has been explored via the (n ,n' γ) reaction at the University of Kentucky accelerator facility. Level lifetimes, in the sub-picosecond regime, were extracted with a Doppler-shift attenuation analysis. A significant extension of the level scheme was possible, and the observed low-lying level structure of 150Nd indicates a close resemblance to its neighboring 152Sm isotone. Results from the ongoing analysis will be presented. This material is based on work supported by the U.S. National Science Foundation under Grant No. PHY-0956310.

  15. On the low lying singlet states of BeO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Lengsfield, B. H.; Yarkony, D. R.

    1980-01-01

    Calculations of the ground and low-lying singlet states of BeO are performed in order to gain an understanding of the techniques needed to treat the excited states of other, more complex, ionic molecules. The MCSCF and CI calculations are based on a Gaussian basis set of slightly better than double zeta plus polarization quality for single configuration descriptions of the states. The calculated X-A and X-B state separations are found to be in agreement with experimental measurements. The 1 Sigma - and 1 Delta states are predicted to lie approximately 40,000 kaysers above the ground state and are identified as the C and D states.The 2 1 Pi state is found to be approximately 15,000 kaysers and the 3 1 Sigma + state is found to be approximately 65,000 kaysers above the ground state.

  16. Vibration study of the APS storage ring 0. 8 meter quadrupole magnet/magnet support assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-06-01

    The objectives of this study are as follows: Determine the vibration characteristics (frequency, damping, and mode shapes) of the magnet on prototypic supports (the actual mounting system used to mount the magnet on the girder). Measure system response to ambient floor motion. Measure the effect of various modifications to determine if the magnet response can be modified to minimize unwanted response characteristics. Modifications investigated include support schemes, increasing system damping, and increasing mechanical rigidity. Measure system response to coolant flow. Determine vibrational characteristics of a large concrete block placed on a concrete floor, including response to ambient floor motions.

  17. Low-lying Structure of 132Xe from Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Peters, E. E.; Chakraborty, A.; Crider, B. P.; Kumar, A.; Prados-Estévez, F. M.; Ashley, S. F.; McEllistrem, M. T.; Yates, S. W.

    2011-10-01

    The stable isotopes of xenon span a region which exhibits the transition from spherical vibrators to gamma-soft nuclei and could thus provide some insight into this lesser understood shape transition. Many measurements to examine the nuclear structure of the xenon isotopes are constrained, however, as xenon is a gas under ambient conditions. Recently, highly enriched samples of 132Xe and 134Xe were converted to solid XeF2 and were studied at the University of Kentucky 7-MV Van de Graaff accelerator facility using inelastic neutron scattering with gamma-ray detection. Lifetimes for some of the low-lying levels were determined via the Doppler-shift attenuation method and reduced transition probabilities were determined. First results of the experiments on 132Xe will be presented. This material is based on work supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  18. Study of low-lying electronic states of ozone by anion photoelectron spectroscopy of O - 3

    NASA Astrophysics Data System (ADS)

    Arnold, Don W.; Xu, Cangshan; Kim, Eun H.; Neumark, Daniel M.

    1994-07-01

    The low-lying electronic states of ozone are studied using anion photoelectron spectroscopy of O-3. The spectra show photodetachment transitions from O-3 to the X˜ 1A1 ground state and to the five lowest lying electronic states of the ozone molecule, namely the 3A2, 3B2, 1A2, 3B1, and 1B1 states. The geometry of the ozonide anion determined from a Franck-Condon analysis of the O3 X 1A1 ground state spectrum agrees reasonably well with previous work. The excited state spectra are dominated by bending vibrational progressions which, for some states, extend well above the dissociation asymptote without noticeable lifetime broadening effects. Preliminary assignments are based upon photoelectron angular distributions and comparison with ab initio calculations. None of the excited states observed lies below the ground state dissociation limit of O3 as suggested by previous experimental and theoretical results.

  19. Ab initio study of low-lying electronic states of SnCl2+.

    PubMed

    Lee, Edmond P F; Dyke, John M; Chow, Wan-ki; Mok, Daniel K W; Chau, Foo-tim

    2007-12-20

    Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and restricted-spin coupled-cluster singles-doubles with perturbative triples [RCCSD(T)] calculations have been carried out on low-lying doublet and quartet states of SnCl2+, employing basis sets of up to aug-cc-pV5Z quality. Effects of core correlation and off-diagonal spin-orbit interaction on computed vertical ionization energies were investigated. The best theoretical estimate of the adiabatic ionization energy (including zero-point vibrational energy correction) to the X2A1 state of SnCl2+ is 10.093+/-0.010 eV. The first photoelectron band of SnCl2 has also been simulated by employing RCCSD(T)/aug-cc-pV5Z potential energy functions and including Duschinsky rotation and anharmonicity. PMID:18034464

  20. Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion

    SciTech Connect

    Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Bandyopadhyay, D. S.; Bianco, L.; Demand, G. A.; Finlay, P.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Austin, R. A. E.; Colosimo, S.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.

    2011-10-28

    The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam {gamma} spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics {beta} decay using the 8{pi} spectrometer at the TRIUMF radioactive beam facility. The decays of {sup 112}In and {sup 112}Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0{sup +} or 2{sup +} three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0{sup +} and 2{sup +} states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.

  1. Low-lying excitations in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus

    2016-05-01

    We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.

  2. Low-lying isomeric levels in 75Cu

    SciTech Connect

    Daugas, J. M.; Faul, T.; Grawe, H.; Pfutzner, M.; Grzywacz, R.; Lewitowicz, M.; Achouri, N. L.; Bentida, R.; Beraud, R.; Borcea, C.; Bingham, C. R.; Catford, W.; Emsallem, A.; De France, G.; Grzywacz, K. L.; Lemmon, R.; Lopez Jimenez, M. J.; de Oliveira Santos, F.; Regan, P. H.; Rykaczewski, Krzysztof Piotr; Sauvestre, J. E.; Sawicka, M.; Stanoiu, M.; Sieja, K.; Nowacki, F.

    2010-01-01

    Isomeric low-lying states were identified and investigated in the 75Cu nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as 75m1Cu and 75m2Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2 , 3/2 , and 5/2 states for the neutron-rich odd-mass Cu isotopes when filling the g9/2. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2 state coexists with more and more collective 3/2 and 1/2 levels at low excitation energies.

  3. Low-lying isomeric levels in {sup 75}Cu

    SciTech Connect

    Daugas, J. M.; Faul, T.; Sauvestre, J. E.; Grawe, H.; Pfuetzner, M.; Sawicka, M.; Grzywacz, R.; Lewitowicz, M.; France, G. de; Lopez Jimenez, M. J.; Oliveira Santos, F. de; Baiborodin, D.; Bentida, R.; Beraud, R.; Emsallem, A.; Bingham, C. R.; Grzywacz, K. L.

    2010-03-15

    Isomeric low-lying states were identified and investigated in the {sup 75}Cu nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as {sup 75m1}Cu and {sup 75m2}Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2{sup -}, 3/2{sup -}, and 5/2{sup -} states for the neutron-rich odd-mass Cu isotopes when filling the nug{sub 9/2}. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2{sup -} state coexists with more and more collective 3/2{sup -} and 1/2{sup -} levels at low excitation energies.

  4. Low-Lying Electronic States of CuAu.

    PubMed

    Alizadeh Sanati, Davood; Andrae, Dirk

    2016-07-28

    Coinage metal diatomic molecules are building blocks for nanostructured materials, electronic devices, and catalytically or photochemically active systems that are currently receiving lively interest in both fundamental and applied research. The theoretical study presented here elucidates the electronic structure in the ground and several low-lying excited states of the diatomic molecule CuAu that result from the combination of the atoms in their ground states nd(10)(n + 1)s(1 2)S and lowest excited d-hole states nd(9)(n + 1)s(2 2)D (n = 3 for Cu, n = 5 for Au). Full and smooth potential energy curves, obtained at the multireference configuration interaction (MRCI) level of theory, are presented for the complete set of the thus resulting 44 Λ-S terms and 86 Ω terms. Our approach is based on a scalar relativistic description using the Douglas-Kroll-Hess (DKH) Hamiltonian, with subsequent perturbative inclusion of spin-orbit (SO) coupling via the spin-orbit terms of the Breit-Pauli (BP) Hamiltonian. The Ω terms span an energy interval of about 7 eV at the ground state's equilibrium distance. Spectroscopic constants, calculated for all terms, are shown to accurately reproduce the observation for those nine terms that are experimentally known. PMID:27379475

  5. On the low-lying states of CuO

    NASA Technical Reports Server (NTRS)

    Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W., Jr.

    1984-01-01

    Self consistent field and correlated wave functions have been computed for the ground and for several low-lying states of CuO. The ground state is X(2)PI and the lowest excited state, at approximately 8,000/cm above X(2)PI, is a previously unidentified 2-sigma(+) state. The separation of these states is compared to that for the similar states of KO and is analysed in terms of integrals between orbitals of the separated free ions. A classification of the states of the molecule based on states of Cu(+) and O(-) which leads to a division into manifolds of states arising from Cu(+) 3d(10) and Cu(+) 3d(9) 4s(1) is considered. It is predicted that the state of the 3d(9) 4s(1) manifold are 10,000 to 30,000/cm above the ground state and assign the observed A2-sigma(+) state at 16,500/cm to this manifold.

  6. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    SciTech Connect

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, $B(E2; 2^+_3 → 0^+_2)$ = 78(13) W.u. and $B(E2; 2^+_4 → 0^+_3)$ = 53(12) W.u. were determined. The $0^+_3$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  7. Vibronic effects on the low-lying electronic excitations in N2O induced by electron impact

    NASA Astrophysics Data System (ADS)

    Watanabe, Noboru; Takahashi, Masahiko

    2014-08-01

    We report a theoretical study on the valence-shell electronic excitations of N2O induced by electron impact. Momentum transfer-dependent generalized oscillator strengths (GOSs) or GOS profiles have been calculated for the low-lying electronic excitations using theoretical wave functions at the equation-of-motion coupled-cluster singles and doubles level. In the calculation, Herzberg-Teller vibronic effects are taken into account. The computed results are in overall agreement with experimental GOS profiles reported in the literature and reveal prominent roles of the bending vibration of N2O in the B1Δ and C1Π transitions.

  8. Collective quadrupole behavior in 46106Pd: deficit of E2 strength of the three-phonon levels

    NASA Astrophysics Data System (ADS)

    Prados-Estévez, F. M.; Chakraborty, A.; Peters, E. E.; Mynk, M. G.; Bandyopadhyay, D.; Boukharouba, N.; Choudry, S. N.; Crider, B. P.; Kumar, A.; Lesher, S. R.; McKay, C. J.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Scheck, M.; Yates, S. W.; Garrett, P. E.; Hicks, S. F.; Vanhoy, J. R.; Wood, J. L.

    2013-10-01

    The low-lying excited states in 106Pd exhibit a structure that resembles a 3-phonon quituplet, thus making 106Pd an excellent candidate for a ``good quadrupole vibrator.'' To examine this possibility, excited states in 106Pd were investigated using the (n ,n' γ) reaction at the University of Kentucky. Level lifetimes, spins, transition multipolarities, and multipole mixing ratios were determined. The feeding to the proposed two-phonon triplet of states Jπ(Ex,keV) = 4+(1229), 2+(1128) and 0+(1134) was studied for states up to ~3 MeV, and observed E2 decay strength sums were < 50% of that expected for low-energy quadrupole vibrational collective behavior. This deficiency of strength cannot be explained by considering the fragmentation of the three-phonon states. This material is based upon work supported by the U.S. NSF under Grant No. PHY-0956310.

  9. The Low-Lying Electronic States of LiB

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the triplet and singlet states of LiB below about 30 000/ cm are determined using an internally contracted multireference configuration interaction approach in conjunction with [6s 5p 3d 2f] atomic natural orbital basis sets. The ground state is (sup 3)Pi as found in previous work. No excited triplet states are found to be ideal for characterizing the ground state; the (1)(sup 3)Sigma(sup -) state has a transition energy that is too small for many experimental approaches and the (2)(sup 3)Pi and (3)(sup 3)Pi states have bond lengths that are significantly longer than the ground state, resulting in transition intensities that are spread out over many vibrational levels of the ground state.

  10. An investigation into low-lying electronic states of HCS{sub 2} via threshold photoelectron imaging

    SciTech Connect

    Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao E-mail: fanhj@dicp.ac.cn; Fan, Hongjun E-mail: fanhj@dicp.ac.cn

    2014-06-07

    Low-energy photoelectron imaging spectra of HCS{sub 2}{sup −} are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS{sub 2}{sup −} to the ground state and low-lying excited states of HCS{sub 2} are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS{sub 2} radical in the gaseous phase. The ground state and two low-lying excited states of HCS{sub 2} radical are assigned as {sup 2}B{sub 2}, {sup 2}A{sub 2}, and {sup 2}A{sub 1} states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T{sub 0} = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

  11. Fourier Transform Emission Spectroscopy of the Low-Lying Electronic States of NbN

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Bernath, P. F.

    2000-06-01

    The high-resolution spectrum of NbN has been investigated in emission in the 3000-15 000 cm-1 region using a Fourier transform spectrometer. The bands were excited in a microwave discharge through a mixture of NbCl5 vapor, ∼5 mTorr of N2, and 3 Torr of He. Numerous bands observed in the near-infrared region have been classified into the following transitions: f1Φ-c1Γ, e1Π-a1Δ, C3Π0+-A3Σ-1, C3Π0--A3Σ-1, C3Π1-a1Δ, C3Π1-A3Σ-0, d1Σ+-A3Σ-0, and d1Σ+-b1Σ+. These observations are consistent with the energy level diagram provided by laser excitation and emission spectroscopy [Y. Azuma, G. Huang, M. P. J. Lyne, A. J. Merer, and V. I. Srdanov, J. Chem. Phys. 100, 4138-4155 (1993)]. The missing d1Σ+ state has been observed for the first time and its spectroscopic parameters are consistent with the theoretical predictions of S. R. Langhoff and W. Bauschlicher, Jr. [J. Mol. Spectrosc. 143, 169-179 (1990)]. Rotational analysis of a number of bands has been obtained and improved spectroscopic parameters have been extracted for the low-lying electronic states. The observation of several vibrational bands with v = 1 has enabled us to determine the vibrational intervals and equilibrium bond lengths for the A3Σ-0, a1Δ, b1Σ+, d1Σ+, and C3Π1 states.

  12. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect

    von Brentano, P.; Zilges, A.; Herzberg, R.D.; Zamfir, N.V.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.

    1992-10-01

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J{sup {pi}},K)=(l{sup {minus}},0) and (J{sup {pi}},K)=(l{sup {minus}},1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus {sup 142}Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3{minus}-octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus {sup 141}Pr and found first evidence for the existence of 3{sup {minus}}{circle_times}2+{circle_times}particle-states.

  13. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Engel, J.

    2016-07-01

    We present a generator-coordinate calculation, based on a relativistic energy-density functional, of the low-lying spectra in the isotopes 150Nd and 150Sm and of the nuclear matrix element that governs the neutrinoless double-β decay of the first isotope to the second. We carefully examine the impact of octupole correlations on both nuclear structure and the double-β decay matrix element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape fluctuations, however, dilute the effects of octupole deformation on the double-β decay matrix element, so that the overall octupole-induced quenching is only about 7 % .

  14. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  15. Taming the low-lying electronic states of FeH.

    PubMed

    DeYonker, Nathan J; Allen, Wesley D

    2012-12-21

    The low-lying electronic states (X (4)Δ, A (4)Π, a (6)Δ, b (6)Π) of the iron monohydride radical, which are especially troublesome for electronic structure theory, have been successfully described using a focal point analysis (FPA) approach that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through hextuple (CCSDTQPH) excitations. Adiabatic excitation energies (T(0)) and spectroscopic constants (r(e), r(0), B(e), B(0), D(e), ω(e), v(0), α(e), ω(e)x(e)) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pwCV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The purely ab initio FPA approach yields the following T(0) results (in eV) for the lowest spin-orbit components of each electronic state: 0 (X (4)Δ) < 0.132 (A (4)Π) < 0.190 (a (6)Δ) < 0.444 (b (6)Π). The computed anharmonic fundamental vibrational frequencies (v(0)) for the (4,6)Δ electronic states are within 3 cm(-1) of experiment and provide reliable predictions for the (4,6)Π states. With the cc-pVDZ basis set, even CCSDTQPH energies give an incorrect ground state of FeH, highlighting the importance of combining high-order electron correlation treatments with robust basis sets when studying transition-metal radicals. The FPA computations provide D(0) = 1.86 eV (42.9 kcal mol(-1)) for the 0 K dissociation energy of FeH and Δ(f)H(298) (∘) [FeH((g))] = 107.7 kcal mol(-1) for the enthalpy of formation at room temperature. Despite sizable multireference character in the quartet states, high-order single-reference coupled cluster computations improve the spectroscopic parameters over previous multireference theoretical studies; for example, the X (4)Δ → A (4)Π and a (6)Δ → b (6)Π transition energies are reproduced to 0

  16. Vibration study of the APS storage ring 0.8 meter quadrupole magnet/magnet support assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-06-01

    The objectives of this study are as follows: Determine the vibration characteristics (frequency, damping, and mode shapes) of the magnet on prototypic supports (the actual mounting system used to mount the magnet on the girder). Measure system response to ambient floor motion. Measure the effect of various modifications to determine if the magnet response can be modified to minimize unwanted response characteristics. Modifications investigated include support schemes, increasing system damping, and increasing mechanical rigidity. Measure system response to coolant flow. Determine vibrational characteristics of a large concrete block placed on a concrete floor, including response to ambient floor motions.

  17. Spectroscopic observations of low-lying gas clouds: sensitivity of detection by method of covariance matrix

    NASA Astrophysics Data System (ADS)

    Margolis, Jack S.; Liu, Karen Y.; Moynihan, Philip I.

    1999-01-01

    The sensitivity of spectroscopic detection of low-lying gas clouds by an arbitrary spectrometer may be determined by simulating the observation using a high spectral resolution radiative transfer code. The instrumental characteristics may be superimposed on the simulation and the accuracy of the retrieval of the desired parameters may be estimated by use of the covariance matrix.

  18. Low-lying 1- and 2+ states in 124Sn via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.

    2016-05-01

    The γ decay of low-lying 1-and 2+ states up to the neutron separation energy in 124Sn populate by the inelastic scattering of 17O was measured. The Angular distributions were measured both for the γ rays and the scattered 17O ions. The results are presented.

  19. New extrapolation method for low-lying states of nuclei in the sd and the pf shells

    SciTech Connect

    Shen, J. J.; Zhao, Y. M.; Arima, A.; Yoshinaga, N.

    2011-04-15

    We study extrapolation approaches to evaluate energies of low-lying states for nuclei in the sd and pf shells, by sorting the diagonal matrix elements of the nuclear shell-model Hamiltonian. We introduce an extrapolation method with perturbation and apply our new method to predict both low-lying state energies and E2 transition rates between low-lying states. Our predicted results arrive at an accuracy of the root-mean-squared deviations {approx}40-60 keV for low-lying states of these nuclei.

  20. Low-lying resonances and relativistic screening in Big Bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Famiano, M. A.; Balantekin, A. B.; Kajino, T.

    2016-04-01

    We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances in the secondary reactions leading to A =7 nuclei during the Big Bang nucleosynthesis. In particular, we investigate and examine possible low-lying resonances in the 7Be (3He,γ ) 10C reaction and examine the resultant destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to be relatively small in the standard Early Universe models.

  1. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  2. Spectroscopic Properties and Potential Energy Curves of Low-lying electronic States of RuC

    SciTech Connect

    Balasubramanian, K; Guo, R

    2003-12-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multi-configuration self-consistent field (CASSCF) followed by multireference configuration interaction (MRCI) methods that included up 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38 000 cm{sup -1}. We find two very closely low-lying electronic states for RuC, viz., {sup 1}{Sigma}{sup +} and {sup 3}{Delta} with the {sup 1}{Sigma}{sup +} being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound X{sup 1}{Sigma}{sup +} state with a large dipole moment and an energetically close {sup 3}{Delta} state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18000 cm{sup -1} agree quite well with those of the corresponding observed states.

  3. A theoretical study of the low-lying states of Ti2 and Zr2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.; Rosi, Marzio

    1991-01-01

    The low-lying states of Ti2 and the valence isoelectronic Zr2 are examined theoretically by means of a multireference configuration-interaction (MRCI) method. MRCI calculations demonstrate that two of the Zr2 states are very low-lying and that the resulting vertical excitation is consistent with the optical spectrum of Zr2. The ground state is predicted for Ti2 on the basis of valence correlation with the MRCI method and the average coupled-pair functional technique. Calculations of the inner-shell correlation effects are estimated and found to lower the 3Delta g state to a ground state, and another to a very low-lying state. The ground state of Ti2 is assigned to 3Delta g since it is lower than the other state at all levels of correlation and is derived from the same atomic asymptote. This conclusion is supported by the lack of an electron-spin resonance signal but contradicts the absence of subcomponents on the Raman spectral lines.

  4. Structure of low-lying states in 128Ba from gamma-gamma angular correlations and polarization measurements

    SciTech Connect

    Wolf, A.; Zamfir, N.V.; Caprio, M.A.; Berant, Z.; Brenner, D.S.; Pietralla, N.; Gill, R.L.; Casten, R.F.; Beausang, C.W.; Kruecken, R.; Zyromski, K.E.; Barton, C.J.; Cooper, J.R.; Hecht, A.A.; Newman, H.; Novak, J.R.; Cederkall, J.

    2002-08-27

    A study of the low-lying levels of 128Ba was performed using three clover detectors in a compact arrangement. The decay properties of several low-lying states were investigated, spin assignments were made for two states, and several E2/M1 mixing ratios were determined.

  5. Low-Lying Structure of 132,134Xe from Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Peters, E. E.; Chakraborty, A.; Crider, B. P.; Kumar, A.; Prados-Estèvez, F. M.; Ashley, S. F.; Elhami, E.; Mukhopadhyay, S.; Orce, J. N.; McEllistrem, M. T.; Yates, S. W.

    2013-03-01

    The low-lying structure of 132Xe and 134Xe has been studied using the (n, n' γ) reaction at the University of Kentucky 7-MV Van de Graaff accelerator facility. Gamma-ray excitation function and angular distribution measurements were performed. Lifetimes were measured using the Doppler-shift attenuation method, and transition probabilities were obtained. Previous assignments of mixed-symmetry states in each nucleus are supported. Also, a tentative Jπ = 0+ state is supported for 134Xe, and a new one is proposed for 134Xe.

  6. {sup 10}Li low-lying resonances populated by one-neutron transfer

    SciTech Connect

    Cavallaro, M. Agodi, C.; Carbone, D.; Cunsolo, A.; De Napoli, M.; Cappuzzello, F.; Bondì, M.; Davids, B.; Galinski, N.; Ruiz, C.; Davinson, T.; Sanetullaev, A.; Foti, A.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.

    2015-10-15

    The {sup 9}Li + {sup 2}H → {sup 10}Li + {sup 1}H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a {sup 9}Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing {sup 9}Li produced by the {sup 10}Li breakup at forward angles and the recoil protons emitted at backward angles. The {sup 10}Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

  7. Microscopic study of low-lying collective bands in 77 Kr

    NASA Astrophysics Data System (ADS)

    Tripathy, K. C.; Sahu, R.; Mishra, S.

    2006-02-01

    The structure of the collective bands in ^{77}Kr is investigated within our deformed shell model (DSM) based on Hartree-Fock states. The different levels are classified into collective bands on the basis of their B(E2) values. The calculated K= 5/2^+ ground band agrees reasonably well with the experiment. An attempt has been made to study the structure of the 3-quasiparticle band based on large J state in this nucleus. The calculated collective bands, the B(E2), and B(M1) values are compared with available experimental data. The nature of alignments in the low-lying bands is also analyzed.

  8. Regularities of low-lying states with random interactions in the fermion dynamical symmetry model

    NASA Astrophysics Data System (ADS)

    Fu, G. J.; Zhao, Y. M.; Arima, A.

    2014-12-01

    In this paper we study low-lying states under random interactions in the framework of the fermion dynamical symmetry model (FDSM), regardless of the ground state spin. Very strong correlations are found for R6 versus R4 (where RI≡EI1+/E21+ ) for the entire ensemble. We present arguments on the origin of these regular patterns in terms of the dynamical symmetries of the FDSM. The regular patterns of B (E 2 ;41+→21+) versus B (E 2 ;21+→01+) are found.

  9. Origin of low-lying enhanced E1 strength in rare-Earth nuclei.

    PubMed

    Spieker, M; Pascu, S; Zilges, A; Iachello, F

    2015-05-15

    The experimental E1 strength distribution below 4 MeV in rare-earth nuclei suggests a local breaking of isospin symmetry. In addition to the octupole states, additional J^{π}=1^{-} states with enhanced E1 strength have been observed in rare-earth nuclei by means of (γ,γ') experiments. By reproducing the experimental results, the spdf interacting boson model calculations provide further evidence for the formation of an α cluster in medium-mass nuclei and might provide a new understanding of the origin of low-lying E1 strength. PMID:26024168

  10. Low-Lying Dirac Eigenmodes, Topological Charge Fluctuations and the Instanton Liquid Model

    SciTech Connect

    I. Horvath; S.J. Dong; T. Draper; F.X. Lee; H.B. Thacker; J.B. Zhang

    2002-05-01

    The local structure of low-lying eigenmodes of the overlap Dirac operator is studied. It is found that these modes cannot be described as linear combinations of 't Hooft ''would-be'' zeromodes associated with instanton excitations that underly the Instanton Liquid Model. This implies that the instanton liquid scenario for spontaneous chiral symmetry breaking in QCD is not accurate. More generally, our data suggests that the vacuum fluctuations of topological charge are not effectively dominated by localized lumps of unit charge with which the topological ''would-be'' zeromodes could be associated.

  11. 10Li low-lying resonances populated by one-neutron transfer

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; De Napoli, M.; Cappuzzello, F.; Agodi, C.; Bondı, M.; Carbone, D.; Cunsolo, A.; Davids, B.; Davinson, T.; Foti, A.; Galinski, N.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.; Ruiz, C.; Sanetullaev, A.

    2015-10-01

    The 9Li + 2H → 10Li + 1H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a 9Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing 9Li produced by the 10Li breakup at forward angles and the recoil protons emitted at backward angles. The 10Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

  12. STS-31 Discovery, OV-103, rockets through low-lying clouds after KSC liftoff

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, rides above the firey glow of the solid rocket boosters (SRBs) and space shuttle main engines (SSMEs) and a long trail of exhaust as it heads toward Earth orbit. Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B is covered in an exhaust cloud moments after the liftoff of OV-103 at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The exhaust plume pierces the low-lying clouds as OV-103 soars into the clear skies above. A nearby waterway appears in the foreground.

  13. STS-31 Discovery, OV-103, is hidden in low-lying clouds after KSC liftoff

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, is hidden in low-lying cloud cover as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B just after its liftoff at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The glow of the solid rocket booster (SRB) and the space shuttle main engine (SSME) firings appears just below the cloud cover and is reflected in the nearby waterway (foreground). An exhaust plume trails from OV-103 and its SRBs and covers the launch pad area.

  14. Computed potential surfaces for six low-lying states of Ni3

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    Selected portions of the potential surfaces for six low lying states of Ni3 are the subject of the present SCF/CCI calculations using the effective core potentials developed by Hay and Wadt (1985); the four states are studied for near-equilateral triangle geometries are within 0.04 eV of each other. Two states are studied for linear geometries, of which the first is 0.16 eV higher than the corresponding near-equilateral triangle state and the second is estimated to be nearly degenerate with the near-equilateral triangle structures.

  15. A numerical study of the thermal stability of low-lying coronal loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.

    1986-01-01

    The nonlinear evolution of loops that are subjected to a variety of small but finite perturbations was studied. Only the low-lying loops are considered. The analysis was performed numerically using a one-dimensional hydrodynamical model developed at the Naval Research Laboratory. The computer codes solve the time-dependent equations for mass, momentum, and energy transport. The primary interest is the active region filaments, hence a geometry appropriate to those structures was considered. The static solutions were subjected to a moderate sized perturbation and allowed to evolve. The results suggest that both hot and cool loops of the geometry considered are thermally stable against amplitude perturbations of all kinds.

  16. Low-Lying Structure of 50Ar and the N =32 Subshell Closure

    NASA Astrophysics Data System (ADS)

    Steppenbeck, D.; Takeuchi, S.; Aoi, N.; Doornenbal, P.; Matsushita, M.; Wang, H.; Utsuno, Y.; Baba, H.; Go, S.; Lee, J.; Matsui, K.; Michimasa, S.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Sakurai, H.; Shiga, Y.; Shimizu, N.; Söderström, P.-A.; Sumikama, T.; Taniuchi, R.; Valiente-Dobón, J. J.; Yoneda, K.

    2015-06-01

    The low-lying structure of the neutron-rich nucleus 50Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ -ray spectroscopy with 9Be (54Ca, 50Ar +γ )X , 9Be (55Sc, 50Ar +γ )X , and 9Be (56Ti, 50Ar +γ )X multinucleon removal reactions at ˜220 MeV /u . A γ -ray peak at 1178(18) keV is reported and assigned as the transition from the first 2+ state to the 0+ ground state. A weaker, tentative line at 1582(38) keV is suggested as the 41+→21+ transition. The experimental results are compared to large-scale shell-model calculations performed in the s d p f model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for 50Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N =32 subshell gap in 50Ar is similar in magnitude to those in 52Ca and 54Ti and, notably, predict an N =34 subshell closure in 52Ar that is larger than the one recently reported in 54Ca.

  17. Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD

    SciTech Connect

    Takahashi, Toru T.; Oka, Makoto

    2010-02-01

    Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).

  18. On the nature of an emergent symmetry in QCD with low-lying Dirac modes removed

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2016-02-01

    Remarkable symmetry properties appear to arise in lattice calculations of correlation functions in which the lowest-lying eigenmodes of the Dirac operator in quark propagators are removed by hand. The Banks-Casher relation ties the chiral condensate to the density of low-lying modes; thus, it is plausible that removal of such modes could lead to a regime where spontaneous chiral symmetry breaking does not occur. Surprising, a pattern of identical correlation functions was observed that is larger than can be explained by a restoration of chiral symmetry. This suggests that a larger symmetry—one that is not present in the QCD Lagrangian—emerges when these modes are removed. Previously it was argued that this emergent symmetry was SU(4). However, when the low-lying modes are removed, the correlation functions of sources in the SU(4) 15-plet of spin-1 mesons appear to coincide with the correlation function of the SU(4) singlet. A natural explanation for this is an emergent symmetry larger than SU(4). In this work, it is shown that there exists no continuous symmetry whose generators in the field theory are spatial integrals of local operators that can account for the full pattern of identical correlation functions unless the apparent coincidence of the singlet channel with the 15-plet is accidental.

  19. Large-amplitude quadrupole collective dynamics of shape coexistence phenomena in proton-rich Se and Kr isotopes

    SciTech Connect

    Hinohara, Nobuo; Nakatsukasa, Takashi; Sato, Koichi; Matsuo, Masayuki

    2010-06-01

    The five-dimensional quadrupole collective Hamiltonian for large-amplitude collective dynamics is microscopically constructed by the constrained Hartree-Fock-Bogoliubov (CHFB) method and local quasiparticle random phase approximation (LQRPA). The excitation spectra and the electric quadrupole transitions between the low-lying states in {sup 68}Se are calculated by solving the collective Schroedinger equation.

  20. Is Preoperative Chemoradiotherapy Beneficial for Sphincter Preservation in Low-Lying Rectal Cancer Patients?

    PubMed Central

    Park, In Ja; Yu, Chang Sik; Lim, Seok-Byung; Lee, Jong Lyul; Kim, Chan Wook; Yoon, Yong Sik; Park, Seong Ho; Kim, Jin Cheon

    2016-01-01

    Abstract The present study explored the benefit of preoperative chemoradiotherapy (PCRT) for sphincter preservation in locally advanced low-lying rectal cancer patients who underwent stapled anastomosis, especially in those with deep and narrow pelvises determined by magnetic resonance imaging. Patients with locally advanced low-lying rectal cancer (≤5 cm from the anal verge) who underwent stapled anastomosis were included. Patients were categorized into two groups (PCRT+ vs. PCRT–) according to PCRT application. Patients in the PCRT+ group were matched to those in the PCRT– group according to potential confounding factors (age, gender, clinical stage, and body mass index) for sphincter preservation. Sphincter preservation, permanent stoma, and anastomosis-related complications were compared between the groups. Pelvic magnetic resonance imaging was used to measure 12 dimensions representing pelvic cavity depth and width with which deep and narrow pelvis was defined. The impact of PCRT on sphincter preservation and permanent stoma in pelvic dimensions defined as deep and narrow pelvis was evaluated, and factors associated with sphincter preservation and permanent stoma were analyzed. One hundred sixty-six patients were one-to-one matched between the PCRT+ and PCRT− groups. Overall, sphincter-saving surgery was performed in 66.3% and the rates were not different between the 2 groups. Anastomotic complications and permanent stoma occurred nonsignificantly more frequently in the PCRT+ group. PCRT was not associated with higher rate of sphincter preservation in all pelvic dimensions defined as deep and narrow pelvis, while PCRT was related to higher rate of permanent stoma in shorter transverse diameter and interspinous distance. On logistic regression analysis, PCRT was not shown to influence both sphincter preservation and permanent stoma, while longer transverse diameter and interspinous distance were associated with lower rate of permanent stoma. PCRT had

  1. Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl)

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Yokoyama, Keiichi

    2012-08-01

    Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X1Σ+, A1Σ+, 3Σ+, 1Π, and 3Π, and then obtain PECs for 13 SO Ω states, X0+, A0+, B0+, 0-(I), 0-(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X1Σ+ and X0+ PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X1Σ+ and X0+ PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics.

  2. Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl).

    PubMed

    Kurosaki, Yuzuru; Yokoyama, Keiichi

    2012-08-14

    Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X(1)Σ(+), A(1)Σ(+), (3)Σ(+), (1)Π, and (3)Π, and then obtain PECs for 13 SO Ω states, X0(+), A0(+), B0(+), 0(-)(I), 0(-)(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X(1)Σ(+) and X0(+) PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X(1)Σ(+) and X0(+) PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics. PMID:22897271

  3. Microscopic structure of low-lying states in {sup 188,190,192}Os

    SciTech Connect

    Lo Iudice, N.; Sushkov, A. V.

    2008-11-15

    The phonon and quasiparticle structure of the low-lying states in {sup 188,190,192}Os is investigated within the microscopic quasiparticle-phonon model. An overall agreement with the data is obtained for energies and transitions. The properties of the 0{sup +} states are found to be correlated with the evolution of the nuclear shape toward the {gamma}-soft region. Special attention is devoted at the 4{sub 3}{sup +} state. This state is found to be composed of a large double-{gamma} phonon component coexisting with an even larger one-phonon hexadecapole piece. Such a mixed phonon structure explains the observed, apparently contradictory, properties of the 4{sub 3}{sup +} states in Os isotopes.

  4. Theoretical study of the low-lying excited states of ABCO, DABCO and homologous cage amines

    NASA Astrophysics Data System (ADS)

    Galasso, V.

    1997-02-01

    The electronic spectra of 1-azabicyclo[2.2.2]octane (ABCO), 1,4-diazabicyclo[2.2.2]octane (DABCO), and their [1.1.1] and [3.3.3] congeners have been studied at the ab initio level using the symmetry adapted cluster configuration interaction method. A comprehensive theoretical prediction of the discrete excitation spectra, up to the HOMO → 5s transition, is presented. All the low-lying singlet and triplet electronic states of these symmetric cage amines are found to have essentially Rydberg nature and originate from excitations out of the n-type molecular orbitals. The theoretical results correlate with the available spectroscopic data satisfactorily and provide quantitative support to a number of experimental assignments based on REMPI and MCD measurements.

  5. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    SciTech Connect

    Jakobsson, U. Cederwall, B.; Uusitalo, J.; Auranen, K.; Badran, H.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; Herzáň, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; and others

    2015-10-15

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2{sup +} state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2{sup +} state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2{sup +} state and the spherical 9/2{sup −} ground state in {sup 203}Fr and {sup 205}Fr.

  6. Regularities in low-lying states of atomic nuclei with random interactions

    NASA Astrophysics Data System (ADS)

    Fu, G. J.; Shen, J. J.; Zhao, Y. M.; Arima, A.

    2015-05-01

    In this paper we study low-lying states of atomic nuclei with random interactions, within the framework of the nuclear shell model. The distributions of R6 versus R4 (where RI≡EI1+/E21+ ), empirical proton-neutron interaction, and charge radius are investigated by using a two-body random ensemble. The Mallmann plot exhibits statistical correlations between R6 and R4. The proton-neutron interaction between the last proton and the last neutron in even-A nuclei is found to be stronger than that in odd-A nuclei, and that in N =Z nuclei is even stronger. Simple relations of nuclear charge radii for neighboring nuclei are found to survive remarkably for the random ensemble.

  7. Low-lying hypernuclei in the relativistic quark-gluon model

    NASA Astrophysics Data System (ADS)

    Gerasyuta, S. M.; Matskevich, E. E.

    2013-06-01

    Low-lying hypernuclei HΛ3, Σ3​0H, HeΛ3, Σ3​0He are described by the relativistic nine-quark equations in the framework of the dispersion relation technique. The approximate solutions of these equations are obtained using a method based on the extraction of leading singularities of the amplitudes. The relativistic nine-quark amplitudes of hypernuclei, including the quarks of three flavors (u,d,s), are calculated. The poles of these amplitudes determine the masses of hypernuclei. The mass of state HΛ3 with the isospin projection I3=0 and the spin-parity JP=(1)/(2)(+)/() is equal to M=2991MeV.

  8. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.

    PubMed

    Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence

    2016-06-14

    The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference. PMID:27144975

  9. Low-lying continuum states of drip-line oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Tsukiyama, Koshiroh; Otsuka, Takaharu; Fujimoto, Rintaro

    2015-09-01

    Low-lying continuum states of exotic oxygen isotopes with A=23-26 are studied, by introducing the continuum-coupled shell model (CCSM) characterized by an infinite wall placed very far away and by an interaction for continuum coupling constructed in a close relation to the realistic shell-model Hamiltonian. Neutron-emission spectra from exotic oxygen isotopes are calculated by the doorway-state approach in heavy-ion multi-nucleon transfer reactions. The results agree with experiment remarkably well, providing evidence that the continuum effects are stronger than ˜ 1 MeV, consistent with the shell evolution in exotic nuclei. The peaks in the neutron spectra are understood as doorway-state resonances. The results by this CCSM doorway-state approach are compared with calculations on neutron-scattering resonance peaks made within the CCSM phase-shift approach and also with those obtained in the Gamow shell model, by taking the same Hamiltonian.

  10. Excitation of the Yb II transitions terminating on the low-lying odd levels

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. M.

    2007-10-01

    Excitation of the transitions from the even levels of a singly charged ytterbium ion that terminate on the low-lying odd levels 4 f 13(2 F °)6 s 2 2 F °, 4 f 14(1 S)6 p 2 P °, and 4 f 13(2 F °7/2) 5 d6 p(3 D)3[3/2]° is experimentally studied by measuring 51 excitation cross sections at an electron energy of 50 eV, and 16 optical excitation functions are determined within the electron energy range 0 200 eV. The largest magnitudes of the measured cross sections exceed 3 × 10-17 cm2.

  11. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    NASA Astrophysics Data System (ADS)

    Jakobsson, U.; Uusitalo, J.; Auranen, K.; Badran, H.; Cederwall, B.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.

    2015-10-01

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2+ state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2+ state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2+ state and the spherical 9/2- ground state in 203Fr and 205Fr.

  12. Investigation of solvatochromism in the low-lying singlet states of dithienyl polyenes

    NASA Astrophysics Data System (ADS)

    Cooper, Thomas M.; Natarajan, Lalgudi V.; Sowards, Laura A.; Spangler, Charles W.

    1999-09-01

    To understand the low-lying singlet states of dithienyl polyenes, we investigated the solvatochromism of a series of α,ω-di(2-dithienyl 3,4-butyl) polyenes having n=1-5 double bonds. Absorption and emission spectra were collected in a series of aprotic solvents. The absorption energy dispersion effect sensitivity increased smoothly with n, reaching asymptotic behavior as n approached 5. The emission energy had less solvent sensitivity. The trends gave evidence for the existence of a 1B∗u absorbing state and a 1A∗g emitting state. We observed sensitivity of the absorbing and emitting states to solute-solvent electrostatic interactions, suggesting the dithienyl polyenes had a polar ground state conformation.

  13. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    1977-01-01

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  14. The fate of water deposited in the low-lying northern plains

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1993-01-01

    Many large outflow channels terminate in the low-lying northern plains. If the outflow channels formed by running water, as appears likely, then standing bodies of water must have accumulated at the ends of the channels. Most of the observed channels, and hence the bodies of water, are post-Noachian. They formed after the period for which we have the most abundant evidence of climate change. While it has been speculated that the post-Noachian period has experienced large, episodic, climatic excursions, this paper takes the more conservative view that the climatic conditions on Mars, at least from mid-Hesperian onward, were mostly similar to the climatic conditions that prevail in the present epoch. Thus obliquity variations are taken into account, but massive climate changes induced by the floods are considered so improbable that they are ignored.

  15. On the low-lying states of MgO. II

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Lengsfield, B. H., III; Silver, D. M.; Yarkony, D. R.

    1981-01-01

    Using a double zeta plus polarization basis set of Slater orbitals, full valence MCSCF (FVMCSCF) calculations were performed for the low-lying states of MgO. For each state the FVMCSCF calculations were used to identify the important configurations which are then used in the MCSCF calculation and subsequently as references in a single and double excitation CI calculation. This approach is found to treat all states equivalently, with the maximum error in the computed transition energies and equilibrium bond lengths of 800/cm and approximately 0.03 A, respectively. The b 3 Sigma + state which has yet to be characterized experimentally is predicted to have a transition energy of approximately 8300/cm and a bond length of 1.79 A. A spectroscopic analysis of the potential curves indicates that their shapes are in quite reasonable agreement with the range of experimental results.

  16. Semirelativistic potential model for low-lying three-gluon glueballs

    SciTech Connect

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2006-09-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J{sup PC} states are computed and compared with recent lattice calculations. A good agreement is found for 1{sup --} and 3{sup --} states, but our model predicts a 2{sup --} state much higher in energy than the lattice result. The 0{sup -+} mass is also computed.

  17. Ground and Low-Lying Collective States of Rotating Three-Boson System

    NASA Astrophysics Data System (ADS)

    Imran, Mohd.; Ahsan, M. A. H.

    2016-04-01

    The ground and low-lying collective states of a rotating system of N = 3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime. The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≥ L ≥ 4N to obtain the ground and low-lying eigenstates. Our numerical results show that breathing modes with N-body eigenenergy spacing of 2ħω⊥, known to exist in strictly 2D system with zero-range (δ-function) interaction potential, may as well exist in quasi-2D system with finite-range Gaussian interaction potential. To gain an insight into the many-body states, the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates. In the rapidly rotating regime the ground state in angular momentum subspaces L = (q/2)N (N ‑ 1) with q = 2, 4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose-Laughlin like state. We further observe that the first breathing mode exhibits features similar to the Bose-Laughlin state in having eigenenergy, von Neumann entropy and internal structure independent of interaction for the three-boson system considered here. On the contrary, for eigenstates lying between the Bose-Laughlin like ground state and the first breathing mode, values of eigenenergy, von Neumann entropy and internal structure are found to vary with interaction.

  18. Cluster correlations for low-lying intruder states of 12Be

    NASA Astrophysics Data System (ADS)

    Ito, M.; Itagaki, N.; Ikeda, K.

    2012-01-01

    The formation of intruder states in the low-lying states of 12Be=α+α+4N is studied by applying the generalized two-center cluster model, which can optimize the excess neutrons' orbits depending on the α-α distance. The correlation energy for the intruder states is analyzed from the viewpoint of two different pictures based on the cluster structure: the covalent picture around two α clusters and the binary He-cluster picture. In the covalent picture, the binding energy of (π32-)2(σ12+)2, corresponding to ν(0p)4(1s0d)2 in a naive shell model, gains largely owing to the spin-triplet pairing of the 0d-wave neutrons, which is induced by the two-body spin-orbit interaction. The spin-triplet pairing gives rise to the reduction of the kinetic energy and the increase of the attractive spin-orbit interaction for the excess neutrons. As a result of these correlation energies, the ν(0p)4(1s0d)2 configuration becomes dominant in the ground state. In the binary cluster picture, the correlation energy is investigated from the coupled channels among α+8He, 6He+6He, and 5He+7He. The coupling to 5He+7He, which is neglected in usual binary-cluster models, plays an important role for a large reduction of kinetic energy and the formation of a pair of the low-lying 0+ states with a close energy spacing recently observed in experiment. The rotational bands are also discussed from the viewpoint of these two cluster pictures.

  19. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  20. Spectroscopic and theoretical studies of the low-lying states of BaO{sup +}

    SciTech Connect

    Bartlett, Joshua H.; VanGundy, Robert A.; Heaven, Michael C.

    2015-07-28

    The BaO{sup +} cation is of interest from the perspectives of electronic structure and the potential for cooling to ultra-cold temperatures. Spectroscopic data for the ion have been obtained using a two-color photoionization technique. The ionization energy for BaO was found to be 6.8123(3) eV. The ground state of BaO{sup +} was identified as X{sup 2}Σ{sup +}, and both vibrational and rotational constants were determined. Vibrationally resolved spectra were recorded for A{sup 2}Π, the first electronically excited state. These data yielded the term energy, vibrational frequency, and the spin-orbit interaction constant. Relativistic electronic structure calculations were carried out using multi-reference configuration interaction (MRCI), coupled cluster and density functional theory methods. Transition moments for the pure vibrational and A{sup 2}Π-X{sup 2}Σ{sup +} transitions were predicted using the MRCI method.

  1. Properties of the low-lying electronic states of phenanthrene: Exact PPP results

    SciTech Connect

    Chakrabarti, A.; Ramasesha, S.

    1996-10-05

    The authors report properties of the exact low-lying states of phenanthrene, its anion and dianion within the Pariser-Parr-Pople (PPP) model. The experimentally known singlet states of the neutral molecule are well reproduced by the model. The intensities for one and two photon absorption to various single states are also in good agreement with experiment. From the bond orders of these states, the authors predict the equilibrium geometries. The relaxation energies of these states, computed from charge-charge correlations and bond orders, are presented. The authors also present results of ring current calculations in the singlet ground state of phenanthrene. The authors have also reported energies, spin densities, bond orders, and relaxation energies of several triplet states and compared then with experiments as well as with other calculations, where available. The fine structure constants D and E, computed in the lowest triplet state, compare well with those obtained from experiments. These properties are also presented for the anions and the dianions. The PPP model in these cases predicts a low-energy (< 1 eV) dipole excitation. 31 refs., 4 figs., 9 tabs.

  2. Low-lying electronic states of LiF molecule with inner electrons correlation

    NASA Astrophysics Data System (ADS)

    Wan, Ming-jie; Huang, Duo-hui; Yang, Jun-sheng; Cao, Qi-long; Jin, Cheng-guo; Wang, Fan-hou

    2015-06-01

    The potential energy curves and dipole moments of the low-lying electronic states of LiF molecule are performed by using highly accurate multi-reference configuration interaction with Awcv5z basis sets. 1s, the inner shell of Li is considered as the closed orbit, which is used to characterise the spectroscopic properties of a manifold of singlet and triplet states. 16 electronic states correlate with two lowest dissociation channels Li(2S)+F(2P) and Li(2P)+F(2P) are investigated. Spectroscopic parameters of the ground state X1Σ+ have been evaluated and critically compared with the available experimental values and the other theoretical data. However, spectroscopic parameters of 13Π, 11Δ, 11Σ-, 11Π, 13Σ+, 23Σ+, 13Δ, 13Σ-, 23Π, 21Π, 33Π, 31Π and 33Σ+ states are studied for the first time. These 13 excited states have shallow potential wells, and the dispersion coefficients of these excited states are predicted. In additional, oscillator strengths of excited states at equilibrium distances are also predicted.

  3. Low-lying dipole strength of the open-shell nucleus 94Mo

    NASA Astrophysics Data System (ADS)

    Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.

  4. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  5. A theoretical study on low-lying electronic states and spectroscopic properties of PH

    NASA Astrophysics Data System (ADS)

    Gao, Yufeng; Gao, Tao

    2014-01-01

    The low-lying electronic states (X3∑-, a1Δ, b1Σ+, A3Π, c1Π and 5∑-) of the PH species correlating with the first three dissociation channels have been investigated at the MRCI + Q/aug-cc-PV5Z level of theory. Accurate adiabatic potential energy curves and spectroscopic constants (Te, Re, ωeχe, ωe, Be, De) of these electronic states have been reported. Effect of the spin-orbit coupling on the A3Π and 5∑- states of the PH has been calculated, which lead to the spin-orbit-induced predissociation of the A3Π state. Electronic transition moment, Einstein coefficients and Franck-Condon factors for the A3Π - X3∑- system have been calculated. Dipole moment functions (μe) and radiative lifetime (τv‧) for the A3Π state has also been determined. The radiative lifetime for A3Π - X3∑- transition is computed and compared with the available data.

  6. The low-lying electronic states of pentacene and their roles in singlet fission.

    PubMed

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) < E (D)) from multireference calculations with an appropriate active orbital space and dynamical correlation being incorporated. In order to understand the mechanism of singlet fission in pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction. PMID:24697685

  7. Structural Optimization by Quantum Monte Carlo: Investigating the Low-Lying Excited States of Ethylene

    PubMed Central

    Barborini, Matteo; Sorella, Sandro; Guidoni, Leonardo

    2014-01-01

    We present full structural optimizations of the ground state and of the low lying triplet state of the ethylene molecule by means of Quantum Monte Carlo methods. Using the efficient structural optimization method based on renormalization techniques and on adjoint differentiation algorithms recently proposed [Sorella, S.; Capriotti, L. J. Chem. Phys. 2010, 133, 234111], we present the variational convergence of both wave function parameters and atomic positions. All of the calculations were done using an accurate and compact wave function based on Pauling’s resonating valence bond representation: the Jastrow Antisymmetrized Geminal Power (JAGP). All structural and wave function parameters are optimized, including coefficients and exponents of the Gaussian primitives of the AGP and the Jastrow atomic orbitals. Bond lengths and bond angles are calculated with a statistical error of about 0.1% and are in good agreement with the available experimental data. The Variational and Diffusion Monte Carlo calculations estimate vertical and adiabatic excitation energies in the ranges 4.623(10)–4.688(5) eV and 3.001(5)–3.091(5) eV, respectively. The adiabatic gap, which is in line with other correlated quantum chemistry methods, is slightly higher than the value estimated by recent photodissociation experiments. Our results demonstrate how Quantum Monte Carlo calculations have become a promising and computationally affordable tool for the structural optimization of correlated molecular systems. PMID:24634617

  8. Low-lying stepwise paths for ethylene 1,3-dipolar cycloadditions: A DFT study

    NASA Astrophysics Data System (ADS)

    Kavitha, K.; Venuvanalingam, P.

    Ethylene reacts with 1,3-dipoles such as diazomethane, nitrile oxide, and nitrone to give a single adduct and the potential energy surfaces of these reactions were completely surveyed with Density Functional Theory at the B3LYP/6-31G(d) level; B3LYP/6-311+G(d,p), QCISD/6-31G(d) level calculations were performed for comparison. These reactions were found to have one concerted and four stepwise paths and all of them were thoroughly examined. Calculations show that anti and syn approaches in the stepwise paths merge at one point in the potential energy surface and the stepwise processes (i.e., through syn transition states) are low-lying and concerted paths that are in close competition with them. A closer examination of the computed barriers of the reactions of ethylene with the above dipoles, cyclopentadiene, 1,3-butadiene, and allyl anion reveals that there is a mechanistic cross-over from concerted to stepwise path. While the neutral cycloaddition partners prefer a concerted path, the charged partners strongly favor a stepwise path. The dipoles have both concerted and stepwise (syn) paths in close competition. Such a mechanistic cross-over has been induced by the polar influence of the charged species and this change-over in mechanism could not be observed with allene cycloadditions with the same set of partners because allene is strongly biased towards the stepwise mechanism.

  9. Impulsive thermal x-ray emission from a low-lying coronal loop

    SciTech Connect

    Liu, Siming; Li, Youping; Fletcher, Lyndsay

    2013-06-01

    Understanding the relationship among different emission components plays an essential role in the study of particle acceleration and energy conversion in solar flares. In flares where gradual and impulsive emission components can be readily identified, the impulsive emission has been attributed to non-thermal particles. We carry out detailed analysis of Hα and X-ray observations of a GOES class B microflare loop on the solar disk. The impulsive hard X-ray emission, however, is found to be consistent with a hot, quasi-thermal origin, and there is little evidence of emission from chromospheric footpoints, which challenges conventional models of flares and reveals a class of microflares associated with dense loops. Hα observations indicate that the loop lies very low in the solar corona or even in the chromosphere and both emission and absorption materials evolve during the flare. The enhanced Hα emission may very well originate from the photosphere when the low-lying flare loop heats up the underlying chromosphere and reduces the corresponding Hα opacity. These observations may be compared with detailed modeling of flare loops with the internal kink instability, where the mode remains confined in space without apparent change in the global field shape, to uncover the underlying physical processes and to probe the structure of solar atmosphere.

  10. Pauli blocking in the low-lying, low-spin states of {sup 141}Pr

    SciTech Connect

    Scheck, M.; Choudry, S. N.; Elhami, E.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Yates, S. W.

    2008-09-15

    The low-lying, low-spin levels of {sup 141}Pr were investigated using (n,n{sup '}{gamma}) techniques. Level energies, branching ratios, and tentative spin assignments for more than 100 states, linked by nearly 300 transitions, were obtained from two angular distributions (E{sub n}=2.0 and 3.0 MeV) and an excitation function measurement (E{sub n}=1.5-3.2 MeV). The application of the Doppler-shift attenuation method led to the determination of lifetimes. The obtained spectroscopic data provide insight into the wave functions of the states observed. A detailed analysis of the [2{sub 1}{sup +} x d{sub 5/2}] and [2{sub 1}{sup +} x g{sub 7/2}] multiplets provides the first quantitative evidence for Pauli blocking in a spherical odd-mass nucleus. The unpaired particle is used to probe the microscopic structure of the first 2{sup +} state of the adjacent core nuclei {sup 140}Ce and {sup 142}Nd.

  11. Structure and spectroscopic properties of low-lying states of the HOC(O)O radical.

    PubMed

    Linguerri, Roberto; Puzzarini, Cristina; Francisco, Joseph S

    2016-02-28

    The HOC(O)O radical is a product of the reaction of HOCO radicals with oxygen atoms. The present study provides theoretical prediction of critical spectroscopic features of this radical that should aid in its experimental characterization. Energies, structures, rotational constants, and harmonic frequencies are presented for the ground and two low-lying excited electronic states of HOC(O)O. The energies for the Ã(2)A(″)←X̃(2)A(') and B̃(2)A(')←X̃(2)A(') electronic transitions are reported. The band origin of the B̃←X̃ transition of HOC(O)O is predicted to occur in the near infrared region of the spectrum at around 1.5 eV and it is suggested to be the most promising one for observing this radical spectroscopically. The structural and spectroscopic similarities between HOC(O)O and the isoelectronic radical FC(O)O are discussed. The abundance of experimental data on the FC(O)O radical should guide the spectroscopic characterization of HOC(O)O and serve as a benchmark for the structural and spectroscopic parameters obtained from theory. PMID:26931701

  12. Process-based model predictions of hurricane induced morphodynamic change on low-lying barrier islands

    USGS Publications Warehouse

    Plant, Nathaniel G.; Thompson, David M.; Elias, Edwin

    2011-01-01

    Using Delft3D, a Chandeleur Island model was constructed to examine the sediment-transport patterns and morphodynamic change caused by Hurricane Katrina and similar storm events. The model setup included a coarse Gulf of Mexico domain and a nested finer-resolution Chandeleur Island domain. The finer-resolution domain resolved morphodynamic processes driven by storms and tides. A sensitivity analysis of the simulated morphodynamic response was performed to investigate the effects of variations in surge levels. The Chandeleur morphodynamic model reproduced several important features that matched observed morphodynamic changes. A simulation of bathymetric change driven by storm surge alone (no waves) along the central portion of the Chandeleur Islands showed (1) a general landward retreat and lowering of the island chain and (2) multiple breaches that increased the degree of island dissection. The locations of many of the breaches correspond with the low-lying or narrow sections of the initial bathymetry. The major part of the morphological change occurred prior to the peak of the surge when overtopping of the islands produced a strong water-level gradient and induced significant flow velocities.

  13. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    USGS Publications Warehouse

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  14. Low-Lying S-States of Two-Electron Systems

    NASA Astrophysics Data System (ADS)

    Khan, Md. Abdul

    2014-04-01

    The energies of the low-lying bound S-states of some two-electron systems (treating them as three-body systems) like negatively charged hydrogen, neutral helium, positively charged-lithium, beryllium, carbon, oxygen, neon, argon and negatively charged muonium and exotic positronium ions have been calculated employing hyperspherical harmonics expansion method. The matrix elements of two-body interactions involve Raynal-Revai coefficients which are particularly essential for the numerical solution of three-body Schrődinger equation when the two-body potentials are other from Coulomb or harmonic. The technique has been applied for to two-electron ions 1H- (Z = 1) to 40Ar16+ (Z = 18), negatively charged-muonium Mu- and exotic positronium ion Ps-(e + e - e -) considering purely Coulomb interaction. The available computer facility restricted reliable calculations up to 28 partial waves (i.e. K m = 28) and energies for higher K m have been obtained by applying an extrapolation scheme suggested by Schneider.

  15. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  16. Low-lying even-parity meson resonances and spin-flavor symmetry

    SciTech Connect

    Garcia-Recio, C.; Geng, L. S.; Nieves, J.; Salcedo, L. L.

    2011-01-01

    Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the {rho} nonet and of the {pi} octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J{sup P}=0{sup +} and 1{sup +} sectors, can be classified according to multiplets of SU(6). The f{sub 0}(1500), f{sub 1}(1420), and some 0{sup +}(2{sup ++}) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I{>=}3/2 and/or |Y|=2) with masses in the range of 1.4-1.6 GeV, which would complete the 27{sub 1}, 10{sub 3}, and 10{sub 3}* multiplets of SU(3) x SU(2).

  17. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1986-01-01

    Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.

  18. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  19. Low-lying levels of 76Ge, a candidate for neutrinoless double- β decay

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; B. P. Crider Team; E. E. Peters Team; F. M. Prados-Este'vez Team; M. T. McEllistrem Team; S. W. Yates Team

    2015-10-01

    The low-spin structure of 76Ge was studied at the University of Kentucky with the (n,n' γ) reaction. This nucleus is a parent in double- β decay and is also a rare example of a nucleus to exhibit rigid triaxial deformation in the low-lying states. Excitation function measurements performed with neutrons from 1.6 to 3.7 MeV helped determine the threshold for the γ rays and hence their placement in the level scheme. Lifetimes, spins,multipolarities, and branching ratios were obtained from angular distributions measured at neutron energies of 3.0 and 3.5 MeV. New levels identified around 2 MeV will give insight to the nuclear structure aspects of 76Ge. It is also important to identify any γ rays around 2039 keV, as the experimental signature for neutrinoless double- β decay is a weak peak at this energy. In a recent study with 4.9-MeV neutrons, a reported 2039-keV γ ray from the 3952-keV level was not observed. However, definitely a new level at 3147 keV with 2584- and 2038-keV γ rays to the 21+ and 22+ states, respectively was established. These findings indicate that backgrounds in the search for the neutrinoless double- β decay of 76Ge may be more complex. This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-1305801.

  20. Testing the tetraquark structure for the X resonances in the low-lying region

    NASA Astrophysics Data System (ADS)

    Kim, Hungchong; Kim, K. S.; Cheoun, Myung-Ki; Jido, Daisuke; Oka, Makoto

    2016-07-01

    Assuming the four-quark structure for the X resonances in the low-lying region, we calculate their masses using the color-spin interaction. Specifically, the hyperfine masses of the color-spin interaction are calculated for the possible states in spin-0, spin-1, spin-2 channels. The two states in spin-0 channel as well as the two states in spin-1 channel are diagonalized in order to generate the physical hyperfine masses. By matching the difference in hyperfine masses with the splitting in corresponding hadron masses and using the X(3872) mass as an input, we estimate the masses corresponding to the states J^{PC}=0^{++} , 1^{+-} , 2^{++} . We find that the masses of two states in 1^{+-} are close to those of X(3823) , X(3900) , and the mass of the 2^{++} state is close to that of X(3940) . For them, the discrepancies are about ˜ 10 MeV. This may suggest that the quantum numbers of the controversial states are X(3823)=1^{+-} , X(3900)=1^{+-} , X(3940)=2^{++} . In this work, we use the same inputs parameters, the constituent quark masses and the strength of the color-spin interaction, that have been adopted in the previous work on the D - or B -meson excited states. There, it was shown that the four-quark structure can be manifested in their excited states. Thus, our results in this work provide a consistent treatment on open- and hidden-charm mesons as far as the four-quark model is concerned.

  1. Searching for low-lying multi-particle thresholds in lattice spectroscopy

    SciTech Connect

    Mahbub, M. Selim; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.

    2014-03-15

    We explore the Euclidean-time tails of odd-parity nucleon correlation functions in a search for the S-wave pion–nucleon scattering-state threshold contribution. The analysis is performed using 2+1 flavor 32{sup 3}×64 PACS-CS gauge configurations available via the ILDG. Correlation matrices composed with various levels of fermion source/sink smearing are used to project low-lying states. The consideration of 25,600 fermion propagators reveals the presence of more than one state in what would normally be regarded as an eigenstate-projected correlation function. This observation is in accord with the scenario where the eigenstates contain a strong mixing of single and multi-particle states but only the single particle component has a strong coupling to the interpolating field. Employing a two-exponential fit to the eigenvector-projected correlation function, we are able to confirm the presence of two eigenstates. The lower-lying eigenstate is consistent with a Nπ scattering threshold and has a relatively small coupling to the three-quark interpolating field. We discuss the impact of this small scattering-state contamination in the eigenvector projected correlation function on previous results presented in the literature. -- Highlights: • Correlation-matrix projected correlators reveal more than one state contributing. • Results are associated with strong mixing of single and multi-particle states in QCD. • A two-exponential fit confirms the presence of two QCD eigenstates. •The lower-lying eigenstate is consistent with a nucleon–pion scattering threshold. •The impact of this small contamination on the higher-lying state is examined.

  2. Collectivity of low-lying states under random two-body interactions

    SciTech Connect

    Zhao, Y. M.; Ping, J. L.; Arima, A.

    2007-11-15

    In this article we study the behavior of collectivity under random two-body interactions in the framework of the fermion dynamical symmetry model (FDSM). We found that a Hamiltonian with the SO(8) symmetry of the FDSM does not give vibrational and rotational modes under random interactions while a Hamiltonian with the SP(6) symmetry does. It is suggested that collective motions such as vibration and rotation are closely related not only to the quadruple-quadruple correlation in the Hamiltonian but also to the dynamical symmetries of the Hamiltonian.

  3. Extrapolation methods for obtaining low-lying eigenvalues of a large-dimensional shell model Hamiltonian matrix

    SciTech Connect

    Yoshinaga, N.; Arima, A.

    2010-04-15

    We propose some new, efficient, and practical extrapolation methods to obtain a few low-lying eigenenergies of a large-dimensional Hamiltonian matrix in the nuclear shell model. We obtain those energies at the desired accuracy by extrapolation after diagonalizing small-dimensional submatrices of the sorted Hamiltonian matrix.

  4. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  5. Structure of low-lying states in 140Sm studied by Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Klintefjord, M.; Hadyńska-KlÈ©k, K.; Görgen, A.; Bauer, C.; Bello Garrote, F. L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; Fink, D. A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.-C.; Libert, J.; Lutter, R.; Marsh, B. A.; Molkanov, P. L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M. D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T. G.; Tveten, G. M.; Van Duppen, P.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-01

    The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 21+ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that 140Sm shows considerable γ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivity in this mass region.

  6. Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes

    SciTech Connect

    Nomura, K.; Otsuka, T.; Rodriguez-Guzman, R.; Sarriguren, P.; Robledo, L. M.; Regan, P. H.; Stevenson, P. D.; Podolyak, Zs.

    2011-05-15

    Structural evolution in neutron-rich Os and W isotopes is investigated in terms of the interacting boson model (IBM) Hamiltonian determined by (constrained) Hartree-Fock-Bogoliubov calculations with the Gogny-D1S energy density functional (EDF). The interaction strengths of the IBM Hamiltonian are produced by mapping the potential energy surface (PES) of the Gogny-EDF with quadrupole degrees of freedom onto the corresponding PES of the IBM system. We examine the prolate-to-oblate shape/phase transition which is predicted to take place in this region as a function of neutron number N within the considered Os and W isotopic chains. The onset of this transition is found to be more rapid compared to the neighboring Pt isotopes. The calculations also allow the prediction of spectroscopic variables (excited state energies and reduced transition probabilities) which are presented for the neutron-rich {sup 192,194,196}W nuclei, for which there is only very limited experimental data available to date.

  7. The water budget of a coastal low-lying wetland area at the German Baltic Coast

    NASA Astrophysics Data System (ADS)

    Bronstert, Axel; Graeff, Thomas; Selle, Benny; Salzmann, Thomas; Franck, Christian; Miegel, Konrad

    2016-04-01

    that despite low slope, sandy soils and forest vegetation, the catchment's hydrology is dominated by quick discharge components, for which the near-surface groundwater and the reaction for open water surfaces are the main cause. The seasonality of the area's discharge is characterized by the formation of quick discharge components mainly during the winter half-year, and by the retention effect of the lowland/fen. This retention is especially high in summer, when the surface and ground water levels have decreased due to high evaporation rates and the discharge out of the area may cease. The magnitude of the area's outflow thus generally depends on the catchment's water level. Due to the possible backlog of surface water caused by high water levels of the Baltic Sea, the direction of flow may reverse episodically. In the subareas between the trenches of the lowland, vertical exchange processes from precipitation and evaporation dominate. The lateral sub-surface interaction from/to the Baltic Sea is rather small due to the particular low local subsurface hydraulic conductivity and the very small hydraulic gradient. In summary, it can be said that this coastal low-lying wetland in the restoration phase shows rather heterogeneous hydrological processes and water balance. Characteristic are the high relevance of the subsurface processes and a strong seasonal variation, i.e. very low discharge rates in summer (except for summer convective rain storms) and considerable discharge rates in winter. The anthropogenic interventions in those coastal areas during the last two centuries have changed their water balance exceedingly. The interaction with the Baltic Sea via groundwater exchange under the dunes is very small.

  8. Low-lying excited states in armchair polyacene within Pariser-Parr-Pople model: a density matrix renormalization group study.

    PubMed

    Das, Mousumi

    2014-03-28

    We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties. PMID:24697451

  9. Low-lying excited states in armchair polyacene within Pariser-Parr-Pople model: A density matrix renormalization group study

    SciTech Connect

    Das, Mousumi

    2014-03-28

    We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.

  10. Theoretical spectroscopic parameters for the low-lying states of the second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    A systematic analysis of the low-lying states of all of the second-row transition metal (TM) hydrides except CdH is reported. The calculations included the dominant relativistic contributions through the use of the relativistic effective core potentials of Hay and Wadt (1985). Electron correlation was incorporated, using single-plus-double configuration interaction, the coupled pair functional (CPF) formalism of Ahlrichs et al. (1985), and the Chong and Langhoff (1986) modified version of the CPF method. The spectroscopic parameters D(e), r(e), and mu(e) determined for the low-lying states are compared with the available experimental data and previous theoretical results. In contrast to the first-row TM hydrides studied earlier (Chong et al., 1986), the spectroscopic constants for the second-row TM hydrides were found to be much less sensitive to the level of correlation treatment.

  11. Impact of the electron environment on the lifetime of the {sup 229}Th{sup m} low-lying isomer

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2007-11-15

    The question of the lifetime of the {sup 229}Th{sup m} low-lying isomer is considered in light of current experimental research. A strong effect of the electron shell on lifetime is demonstrated, depending on the energy of the isomer. Calculations are performed within the framework of the multiconfiguration Dirac-Fock method. The calculated lifetime ranges from around 1 min down to 10{sup -5} s. Prospects for further experimental research of the isomer are discussed.

  12. Probing ground and low-lying excited states for HIO2 isomers

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  13. Probing ground and low-lying excited states for HIO2 isomers.

    PubMed

    de Souza, Gabriel L C; Brown, Alex

    2014-12-21

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10(-3)). PMID:25527931

  14. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  15. Superconductivity in Ban+2Ir4nGe12n+4 (n=1,2) with cage structure and softening of low-lying localized mode

    NASA Astrophysics Data System (ADS)

    Guo, Jiangang; Yamaura, Jun-ichi; Lei, Hechang; Matsuishi, Satoru; Qi, Yanpeng; Hosono, Hideo

    2013-10-01

    We report on new superconductors Ban+2Ir4nGe12n+4 (n = 1, 2) with critical temperatures Tc = 6.1 and 3.2 K, respectively, along with their crystal structures, electron transport, and specific heat. The compounds are composed of alternating Ba@Ir8Ge16 and Ba@Ir2Ge16 cages, both of which are larger in the n = 1 sample than in the n = 2 sample. The normal-state heat capacity reveals two low-lying vibration modes associated with guest Ba cations, and both characteristic temperatures in Ba3Ir4Ge16 are smaller than those in Ba4Ir8Ge28. Meanwhile, the density functional theory calculations reveal that the Ge-4p bands dominated the Fermi level in both samples. We propose that the softening of localized phonons due to expansion of the cage strengthens the electron-phonon coupling between Ba cations and Ge anions, leading to the higher Tc in Ba3Ir4Ge16.

  16. Quantum phase transition in the spherical mean-field plus quadrupole-quadrupole and pairing model in a single-j shell

    NASA Astrophysics Data System (ADS)

    Li, Bo; Pan, Feng; Draayer, J. P.

    2016-04-01

    The quantum-phase-transitional behavior of the spherical shell-model mean field plus the geometric quadrupole-quadrupole and standard pairing model within a single-j shell is analyzed in detail. Various quantities, such as low-lying energy levels, some typical energy ratios, the overlaps of the excited states with those of the corresponding limiting cases, B (E 2 ) values and electric quadrupole moments of some low-lying states and their ratios, as functions of the control parameter of the model in a j =15 /2 shell are calculated as an example, in which only a crossover occurs due to the Pauli exclusion. The results show that there are noticeable changes within the crossover region of the rotation-like to the pair-excitation (superconducting) phase transition, especially in the half-filling case. As an application to realistic nuclear systems, a chain of isotones 212Rn-213Fr-214Ra-215Ac is chosen to be described by the model with valence protons in the 1 h9 /2 shell. As far as the low-lying energy levels, the experimentally observed B (E 2 ) values, and the electric quadrupole moment within the yrast band are concerned, these nuclei seem fitted reasonably well. The results indicate that these nuclei are all within the rotation-like to the pair-excitation phase transition near the crossover point.

  17. MRCI calculations of the low-lying electronic states of CuC

    NASA Astrophysics Data System (ADS)

    Liu, C.; Zhang, S. D.

    2015-06-01

    The four electronic states (2Σ-, 2Π, 4Σ-, and 4Π) of CuC corresponding to the lowest dissociation limits Cu(2 S g ) + C(3 P g ) are calculated by using multi-reference configuration interaction method with Davidson correction (MRCI + Q) approach in combination with the effective core potentials (ECPs) basis sets LANLTZ for the Cu atom and 6-311+g( d) basis sets for the C atom. The calculation covers the internuclear distance ranging from 0.04 to 0.54 nm, and the equilibrium bond length R e and the vertical excited energy T e are determined directly. The potential energy curves (PECs) show that the lowest two states are the 4Σ- and 2Π, and 4Σ- is the ground state where the 2Π state is higher than 4Σ- about 0.28 eV. With the potentials, all of the vibrational levels and rotational constants are predicted by numerically solving the radial Schröbinger equation of nuclear motion. Then the spectroscopic data of ωe, ωe x e, B e, and αe are obtained after data fitting which are compared with theoretical results currently available.

  18. Ab initio study on the low-lying excited states of gas-phase PH(+) cation including spin-orbit coupling.

    PubMed

    Li, Xia; Zhang, Xiaomei; Yan, Bing

    2015-05-01

    Ab initio calculations have been performed on the low-lying excited and ground states of PH(+). The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A(2)Δ-(4)Π and 1(2)Σ(+)-(4)Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15Ω states. The Ω=1/2 state generated from the X(2)Π state is confirmed to the ground Ω state. And the SOC splitting for the X(2)Π is calculated to be 294cm(-1). The SOC effect has large effect on the PECs of the A(2)Δ and 1(2)Σ(+) states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A(2)Δ-X(2)Π and 1(2)Σ(-)-X(2)Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A(2)Δ and 1(2)Σ(-) states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A(2)Δ state is almost uninfluenced by the perturbation via the SOC effect. PMID:25688687

  19. Ab initio study on the low-lying excited states of gas-phase PH+ cation including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Li, Xia; Zhang, Xiaomei; Yan, Bing

    2015-05-01

    Ab initio calculations have been performed on the low-lying excited and ground states of PH+. The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A2Δ-4Π and 12Σ+-4Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15 Ω states. The Ω = 1/2 state generated from the X2Π state is confirmed to the ground Ω state. And the SOC splitting for the X2Π is calculated to be 294 cm-1. The SOC effect has large effect on the PECs of the A2Δ and 12Σ+ states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A2Δ-X2Π and 12Σ--X2Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A2Δ and 12Σ- states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A2Δ state is almost uninfluenced by the perturbation via the SOC effect.

  20. Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine

    SciTech Connect

    Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Leutwyler, Samuel

    2014-01-28

    The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm{sup −1} resolution in a supersonic jet. The electronic origin at 32 252 cm{sup −1} exhibits methyl torsional subbands that originate from the 0A{sub 1}{sup ′′} (l = 0) and 1E{sup ″} (l = ±1) torsional levels. These and further torsional bands that appear up to 0{sub 0}{sup 0}+230 cm{sup −1} allow to fit the threefold (V{sub 3}) barriers of the torsional potentials as |V{sub 3}{sup ′′}|=50 cm{sup −1} in the S{sub 0} and |V{sub 3}{sup ′}|=126 cm{sup −1} in the S{sub 1} state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V{sub 3}{sup ′′}=20 cm{sup −1} and V{sub 3}{sup ′}=115 cm{sup −1}. The 0{sub 0}{sup 0} rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis {sup 1}ππ{sup *} excitation. The residual 25% c-axis polarization may indicate coupling of the {sup 1}ππ{sup *} to the close-lying {sup 1}nπ{sup *} state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated {sup 1}nπ oscillator strength is only 6% of that of the {sup 1}ππ{sup *} transition. The {sup 1}ππ{sup *} vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm{sup −1}. The methyl torsion and the low-frequency out-of-plane ν{sub 1}{sup ′} and ν{sub 2}{sup ′} vibrations are strongly coupled in the {sup 1}ππ{sup *} state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the {sup 1}ππ{sup *} spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian

  1. Evaluating the 100 year floodplain as an indicator of flood risk in low-lying coastal watersheds

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Brody, S.; Bedient, P. B.

    2013-12-01

    The Gulf of Mexico is the fastest growing region in the United States. Since 1960, the number of housing units built in the low-lying coastal counties has increased by 246%. The region experiences some of the most intense rainfall events in the country and coastal watersheds are prone to severe flooding characterized by wide floodplains and ponding. This flooding is further exacerbated as urban development encroaches on existing streams and waterways. While the 100 year floodplain should play an important role in our ability to develop disaster resilient communities, recent research has indicated that existing floodplain delineations are a poor indicator of actual flood losses in low-lying coastal regions. Between 2001 and 2005, more than 30% of insurance claims made to FEMA in the Gulf Coast region were outside of the 100 year floodplain and residential losses amounted to more than $19.3 billion. As population density and investments in this region continue to increase, addressing flood risk in coastal communities should become a priority for engineers, urban planners, and decision makers. This study compares the effectiveness of 1-D and a 2-D modeling approaches to spatially capture flood claims from historical events. Initial results indicate that 2-D models perform much better in coastal environments and may serve better for floodplain modeling helping to prevent unintended losses. The results of this study encourage a shift towards better engineering practices using existing 2-D models in order to protect resources and provide guidance for urban development in low-lying coastal regions.

  2. Primary transitions between the yrast superdeformed band and low-lying normal deformed states in {sup 194}Pb

    SciTech Connect

    Hauschild, K.; Bernstein, L.A.; Becker, J.A.

    1996-12-31

    The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.

  3. Spin (1/2){sup +}, spin (3/2){sup +}, and transition magnetic moments of low lying and charmed baryons

    SciTech Connect

    Sharma, Neetika; Dahiya, Harleen; Chatley, P. K.; Gupta, Manmohan

    2010-04-01

    Magnetic moments of the low lying and charmed spin (1/2){sup +} and spin (3/2){sup +} baryons have been calculated in the SU(4) chiral constituent quark model ({chi}CQM) by including the contribution from cc fluctuations. Explicit calculations have been carried out for the contribution coming from the valence quarks, ''quark sea'' polarizations and their orbital angular momentum. The implications of such a model have also been studied for magnetic moments of the low lying spin (3/2){sup +{yields}}(1/2){sup +} and (1/2){sup +{yields}}(1/2){sup +} transitions as well as the transitions involving charmed baryons. The predictions of {chi}CQM not only give a satisfactory fit for the baryons where experimental data is available but also show improvement over the other models. In particular, for the case of {mu}(p), {mu}({Sigma}{sup +}), {mu}({Xi}{sup 0}), {mu}({Lambda}), Coleman-Glashow sum rule for the low lying spin (1/2){sup +} baryons and {mu}({Delta}{sup +}), {mu}({Omega}{sup -}) for the low lying spin (3/2){sup +} baryons, we are able to achieve an excellent agreement with data. For the spin (1/2){sup +} and spin (3/2){sup +} charmed baryon magnetic moments, our results are consistent with the predictions of the QCD sum rules, light cone sum rules and spectral sum rules. For the cases where light quarks dominate in the valence structure, the sea and orbital contributions are found to be fairly significant however, they cancel in the right direction to give the correct magnitude of the total magnetic moment. On the other hand, when there is an excess of heavy quarks, the contribution of the quark sea is almost negligible, for example, {mu}({Omega}{sub c}{sup 0}), {mu}({Lambda}{sub c}{sup +}), {mu}({Xi}{sub c}{sup +}), {mu}({Xi}{sub c}{sup 0}), {mu}({Omega}{sub cc}{sup +}), {mu}({Omega}{sup -}), {mu}({Omega}{sub c}*{sup 0}), {mu}({Omega}{sub cc}*{sup +}), and {mu}({Omega}{sub ccc}*{sup ++}). The effects of configuration mixing and quark masses have also been

  4. On the low-lying states of WO - A comparison with CrO and MoO

    NASA Technical Reports Server (NTRS)

    Nelin, C. J.; Bauschlicher, C. W., Jr.

    1985-01-01

    The four low-lying states of WO were investigated and compared with similar states of CrO and MoO. For all these systems the ground state is 5 Pi, but the ordering of the upper states is different between WO and either CrO or MoO. The difference in the state ordering arises in part from the fact that in WO all of the states are formed from W(+) in a d4S1 configuration, whereas in both CrO and MoO some states are formed from the d5 configuration and others from the d4S1 configuration.

  5. Low-lying spectra of {sup 9}{Lambda}Be and {sup 9}Be within three-cluster model

    SciTech Connect

    Filikhin, I.; Suslov, V. M.; Vlahovic, B.

    2011-10-24

    An {alpha}-cluster model is applied to study the low-lying spectra of the {sup 9}{Lambda}Be and {sup 9}Be nuclei. The {alpha}{alpha}{Lambda} and {alpha}{alpha}n three-body problems are numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials with spin-orbital {alpha}{Lambda} and {alpha}n interactions taken into account. For the {sup 9}{Lambda}Be hypernucleus we found a set of the potentials that reproduces the experimental data for the ground state (1/2 {sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2 {sup +} states, simultaneously. The LS coupling scheme is used for partial wave analysis. The total orbital momentum is fixed for each energy level. Under this assumption we calculated the {sup 9}Be spectrum within {alpha}{alpha}n model. The experiential data are well reproduced by the model, when a new classification for low-lying levels of {sup 9}Be as members of spin-flip doublets is applied.

  6. Ab initio study of the low lying electronic states of ZnF and ZnF-.

    PubMed

    Hayashi, Shinsuke; Léonard, Céline; Chambaud, Gilberte

    2008-07-28

    Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments. PMID:18681652

  7. Electronic structure of vanadium and chromium carbide cations, VC+ and CrC+. Ground and low-lying states

    NASA Astrophysics Data System (ADS)

    Kerkines, Ioannis S. K.; Mavridis, Aristides

    2004-01-01

    The ground and low-lying states of the monopositive vanadium and chromium carbides, VC+ and CrC+ have been studied by multireference methods and quantitative basis sets. Potential energy curves for 17 (VC+) and 19 (CrC+) states have been fully calculated. A variety of binding modes is revealed in the low-lying spectrum of the two molecular cations, often accompanied with an electronic charge transfer from the metal cation towards carbon. Two states compete for the ground state identity in both systems. One state comprises two π and ½σ bonds (similarly to ScC+ and TiC+), while the other state forms a genuine triple bond. After a rather intricate analysis including core electron effects, scalar relativity and curve shifts, the formal ground states of VC+ and CrC+ are found to be of 3Δ and 2Δ symmetry, with estimated energy differences from the competing 1Σ+ and 4Σ- states of 1-3 and 3-7 kcal/mol, respectively. At the highest level of theory including core/valence correlation and one-electron relativistic effects, the calculated ground-state binding energies are in satisfactory agreement with available experimental values.

  8. Algebraic approach to the structure of the low-lying states in A ≈100 Ru isotopes

    NASA Astrophysics Data System (ADS)

    Kisyov, S.; Bucurescu, D.; Jolie, J.; Lalkovski, S.

    2016-04-01

    The structure of the low-lying states in the odd- and even-mass A ≈100 Ru isotopes is studied in the framework of two algebraic models. The even-mass Ru nuclei are first described within the interacting boson model 1 (IBM-1). The output of these calculations was then used to calculate the odd-A isotopes within the interacting boson-fermion model 1 (IBFM-1), where a coupling of the odd neutron to the even-even core is considered. The level energies and transition probabilities calculated in the present work are tested against the experimental data. One-nucleon transfer spectroscopic factors as well as electromagnetic moments were also calculated for the odd-A Ru and compared to the experimental values. The transitional character of the isotopes is studied. Most of the low-lying positive-parity states in the odd-A Ru nuclei below 2 MeV are interpreted on the basis of ν d5 /2 and ν g7 /2 configurations. The role of the ν s1 /2 orbital in the nuclear structure of the odd-mass Ru nuclei at low energies is also studied. The negative-parity states are interpreted as ν h11 /2 excitations coupled to the core. The evolution of the IBM-1 and IBFM-1 parameters is discussed.

  9. Strong Electron-Phonon Coupling Superconductivity Induced by a Low-Lying Phonon in IrGe

    SciTech Connect

    Hirai, Daigorou; Ali, Mazhar N.; Cava, Robert J.

    2014-02-26

    The physical properties of the previously reported superconductor IrGe and the Rh1-xIrxGe solid solution are investigated. IrGe has an exceptionally high superconducting transition temperature (Tc=4.7 K) among the isostructural 1:1 late-metal germanides MGe (M=Rh, Pd, Ir, and Pt). Specific-heat measurements reveal that IrGe has an anomalously low Debye temperature, originating from a low-lying phonon, compared to the other MGe phases. A large jump at Tc in the specific-heat data clearly indicates that IrGe is a strong coupling superconductor. In the Rh1-xIrxGe solid solution, a relationship between an anomalous change in lattice constants and the Debye temperature is observed. We conclude that the unusually high Tc for IrGe is likely due to strong electron–phonon coupling derived from the presence of a low-lying phonon.

  10. Experimental study of the low-lying structure of {sup 94}Zr with the (n,n{sup '}{gamma}) reaction

    SciTech Connect

    Elhami, E.; Orce, J. N.; Scheck, M.; Mukhopadhyay, S.; Choudry, S. N.; McEllistrem, M. T.; Yates, S. W.; Angell, C.; Boswell, M.; Karwowski, H. J.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Parpottas, Y.; Tonchev, A. P.; Tornow, W.; Kelley, J. H.

    2008-12-15

    The low-lying structure of {sub 40}{sup 94}Zr was studied with the (n,n{sup '}{gamma}) reaction, and a level scheme was established based on excitation function and {gamma}{gamma} coincidence measurements. Branching ratios, multipole mixing ratios, and spin assignments were determined from angular distribution measurements. Lifetimes of levels up to 3.4 MeV were measured by the Doppler-shift attenuation method, and for many transitions the reduced transition probabilities were determined. In addition to the anomalous 2{sub 2}{sup +} state, which has a larger B(E2;2{sub 2}{sup +}{yields}0{sub 1}{sup +}) value than the B(E2;2{sub 1}{sup +}{yields}0{sub 1}{sup +}), the experimental results revealed interesting and unusual properties of the low-lying states in {sup 94}Zr. In a simple interpretation, the excited states are classified in two distinct categories, i.e., those populating the 2{sub 2}{sup +} state and those decaying to the 2{sub 1}{sup +} state.

  11. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    DOE PAGESBeta

    Bross, David H.; Peterson, Kirk A.

    2015-11-13

    Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and themore » PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.« less

  12. Theoretical spectroscopy study of the low-lying electronic states of UX and UX{sup +}, X = F and Cl

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2015-11-14

    Spectroscopic constants (T{sub e}, r{sub e}, B{sub 0}, ω{sub e}, and ω{sub e}x{sub e}) have been calculated for the low-lying electronic states of UF, UF{sup +}, UCl, and UCl{sup +} using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U{sup +} and UF{sup +}. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm{sup −1} as opposed to the same state at 435 cm{sup −1} in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF{sup +} and UCl{sup +} both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl{sup +} than in UF{sup +}, ranging up to 776 cm{sup −1} in UF{sup +} and only 438 cm{sup −1} in UCl{sup +}. As in previous studies, the final PP-based SO-CASPT2 results for UF{sup +} and UF agree well with experiment and are expected to be predictive for UCl and UCl{sup +}, which are reported here for the first time.

  13. Ab initio calculations on SF2 and its low-lying cationic states: Anharmonic Franck-Condon simulation of the uv photoelectron spectrum of SF2

    NASA Astrophysics Data System (ADS)

    Lee, Edmond P. F.; Mok, Daniel K. W.; Chau, Foo-tim; Dyke, John M.

    2006-09-01

    Geometry optimization calculations were carried out on the X˜A11 state of SF2 and the X˜B12, ÃA12, B˜B22, C˜B22, D˜A12, and ẼA22 states of SF2+ employing the restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] method and basis sets of up to the augmented correlation-consistent polarized quintuple-zeta [aug-cc-pV(5+d )Z] quality. Effects of core electron (S 2s22p6 and F 1s2 electrons) correlation and basis set extension to the complete basis set limit on the computed minimum-energy geometries and relative electronic energies (adiabatic and vertical ionization energies) were investigated. RCCSD(T) potential energy functions (PEFs) were calculated for the X˜A11 state of SF2 and the low-lying states of SF2+ listed above employing the aug-cc-pV(5+d )Z and aug-cc-pV5Z basis sets for S and F, respectively. Anharmonic vibrational wave functions of these neutral and cationic states of SF2, and Franck-Condon (FC) factors of the lowest four one-electron allowed neutral photoionizations were computed employing the RCCSD(T) PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the first four photoelectron bands of SF2. The agreement between the simulated and observed first bands in the HeI photoelectron spectrum reported by de Leeuw et al. [Chem. Phys. 34, 287 (1978)] is excellent. Our calculations largely support assignments made by de Leeuw et al. on the higher ionization energy bands of SF2.

  14. The GSAM software: A global search algorithm of minima exploration for the investigation of low lying isomers of clusters

    SciTech Connect

    Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude

    2015-01-22

    The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.

  15. Electronic structure and rovibrational calculation of the low-lying states of the RbYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, S. N.; Korek, M.

    2013-01-01

    Complete Active Space Self Consistent Field (CASSCF) method with Multi Reference Configuration Interaction (MRCI) calculations is used to investigate the potential energy curves of the low-lying 29 electronic states in the representation 2s+1Λ(+/-) of the RbYb molecule (single and double excitations with Davidson corrections). The harmonic frequency ωe, the internuclear distance Re and the electronic energy with respect to the ground state Te have been calculated. The eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. The comparison between the values of the present work and those available in the literature for several states shows a very good agreement. Twenty-six new states have been studied here for the first time.

  16. Spin Tests of a Low-lying Monoplane in Flight and in the Free-spinning Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Mcavoy, William H

    1940-01-01

    Comparative full-scale and model spin tests were made with a low-lying monoplane in order to extend the available information as to the utility of the free-spinning wind tunnel as an aid in predicting full-scale spin characteristics. For a given control disposition the model indicated steeper spins than were actually obtained with the airplane, the difference being most pronounced for spins with elevators up. Recovery characteristics for the model, on the whole, agreed with those for the airplane, but a disagreement was noted for the case of recovery with elevators held full up. Free-spinning wind-tunnel tests are a useful aid in estimating spin characteristics of airplanes, but it must be appreciated that model results can give only general indications of full-scale behavior.

  17. From days to decades: numerical modelling of freshwater lens response to climate change stressors on small low-lying islands

    NASA Astrophysics Data System (ADS)

    Holding, S.; Allen, D. M.

    2015-02-01

    Freshwater lenses on small islands are vulnerable to many climate change-related stressors, which can act over relatively long time periods, on the order of decades (e.g., sea level rise, changes in recharge), or short time periods, such as days (storm surge overwash). This study evaluates the response of the freshwater lens on a small low-lying island to various stressors. To account for the varying temporal and spatial scales of the stressors, two different density-dependent flow and solute transport codes are used: SEAWAT (saturated) and HydroGeoSphere (unsaturated/saturated). The study site is Andros Island in the Bahamas, which is characteristic of other low-lying carbonate islands in the Caribbean and Pacific regions. In addition to projected sea level rise and reduced recharge under future climate change, Andros Island experienced a storm surge overwash event during Hurricane Francis in 2004, which contaminated the main wellfield. Simulations of reduced recharge result in a greater loss of freshwater lens volume (up to 19%), while sea level rise contributes a lower volume loss (up to 5%) due to the flux-controlled conceptualization of Andros Island, which limits the impact of sea level rise. Reduced recharge and sea level rise were simulated as incremental instantaneous shifts. The lens responds relatively quickly to these stressors, within 0.5 to 3 years, with response time increasing as the magnitude of the stressor increases. Simulations of the storm surge overwash indicate that the freshwater lens recovers over time; however, prompt remedial action can restore the lens to potable concentrations up to 1 month sooner.

  18. Vibrational excitations and a separable approximation for Skyrme interactions

    SciTech Connect

    Severyukhin, A. P.; Voronov, V. V.; Nguyen Van Giai

    2009-01-28

    Starting from an effective Skyrme interaction we present the finite rank separable approach for the quasiparticle random phase approximation. The approach is generalized to take into account the residual particle-particle interaction. As an illustration of the method properties of the low-lying quadrupole states in the even-even nuclei around {sup 132}Sn are studied.

  19. Ab initio calculations on SCl2 and low-lying cationic states of SCl2+: Franck-Condon simulation of the UV photoelectron spectrum of SCl2

    NASA Astrophysics Data System (ADS)

    Mok, Daniel K. W.; Chau, Foo-tim; Lee, Edmond P. F.; Dyke, John M.

    2006-09-01

    Geometry optimization calculations were carried out on the X˜A11 state of SCl2 and the X˜B12, ÃB22, B˜A12, C˜A12, D˜A22, and ẼB22 states of SCl2+ at the restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] level with basis sets of up to the augmented correlation-consistent polarized quintuple-zeta [aug-cc-pV(5+d )Z] quality. Effects of core electron correlation, basis set extension to the complete basis set limit, and relativistic contributions on computed minimum-energy geometrical parameters and/or relative electronic energies were also investigated. RCCSD(T) potential energy functions (PEFs) were calculated for the X˜A11 state of SCl2 and the low-lying states of SCl2+ listed above employing the aug-cc-pV(5+d )Z basis set. Anharmonic vibrational wave functions of these neutral and cationic states of SCl2, and Franck-Condon (FC) factors of the lowest four one-electron allowed neutral photoionizations were computed employing the RCCSD(T )/aug-cc-pV(5+d)Z PEFs. Calculated FC factors with allowance for the Duschinsky rotation and anharmonicity were used to simulate the first four photoelectron (PE) bands of SCl2. The agreement between simulated and observed He I PE spectra reported by Colton et al. [J. Electron Spectrosc. Relat. Phenom. 3, 345 (1974)] and Solouki et al. [Chem. Phys. Lett. 26, 20 (1974)] is excellent. However, our FC spectral simulations indicate that the first observed vibrational component in the first PE band of SCl2 is a "hot" band arising from the SCl2+X˜B12(0,0,0)←SCl2X˜A11(1,0,0) ionization. Consequently, the experimental adiabatic ionization energy of SCl2 is revised to 9.55±0.01eV, in excellent agreement with results obtained from state-of-the-art ab initio calculations in this work.

  20. Systematics of low-lying electric dipole excitations in the A{approx_equal}130{endash}200 mass region

    SciTech Connect

    Fransen, C.; von Brentano, P.; Herzberg, R.; Pietralla, N.; Zilges, A.; Beck, O.; Eckert, T.; Kneissl, U.; Maser, H.; Nord, A.; Pitz, H.H.; Zilges, A.

    1998-01-01

    The data from numerous high resolution photon scattering experiments allow an extensive survey of the lowest electric dipole excitations in the A{approx_equal}130{endash}200 mass region. In this mass region one can find spherical as well as transitional and strongly quadrupole deformed nuclei. The measured absolute E1 strengths are typically of the order of several milli Weisskopf units and exhibit in general a smooth variation with mass number. {copyright} {ital 1998} {ital The American Physical Society}

  1. A quantitative evaluation method of flood risks in low-lying areas associated with increase of heavy rainfall in Japan

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2012-12-01

    An increase in flood risk, especially in low-lying areas, is predicted as a consequence of global climate change or other causes. Immediate measures such as strengthening of drainage capacity are needed to minimize the damage caused by more-frequent flooding. Typically, drainage pump capacities of in paddy areas are planned by using a result of drainage analysis with design rainfall (e.g. 3-day rainfall amount with a 10-year return period). However, the result depends on a hyetograph of input rainfall even if a total amount of rainfall is equal, and the flood risk may be different with rainfall patterns. Therefore, it is important to assume various patterns of heavy rainfall for flood risk assessment. On the other hand, a rainfall synthesis simulation is useful to generate many patterns of rainfall data for flood studies. We previously proposed a rainfall simulation method called diurnal rainfall pattern generator which can generate short-time step rainfall and internal pattern of them. This study discusses a quantitative evaluation method for detecting a relationship between flood damage risk and heavy rainfall scale by using the diurnal rainfall pattern generator. In addition, we also approached an estimation of flood damage which focused on rice yield. Our study area was in the Kaga three-lagoon basin in Ishikawa Prefecture, Japan. There are two lagoons in the study area, and the low-lying paddy areas extend over about 4,000 ha in the lower reaches of the basin. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level on channels and paddies. Next, the heavy rainfall data for drainage analysis were generated. Here, the 3-day rainfalls amounts with 9 kinds of different return periods (2-, 3-, 5-, 8-, 10-, 15-, 50-, 100-, and 200-year) were derived, and three hundred hyetograph patterns were generated for each rainfall amount by using the diurnal rainfall pattern generator. Finally, all data

  2. Increasing Risks to China's Coastal Cities with Its Expansion to Low-lying Seaward under Rising Sea level

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Cheng, Xiao

    2014-05-01

    Global sea level rise has certainly accelerated through the 21st and far beyond the previous projections and will continue to rise, while the frequencies and strength of extreme events such like flood and storm will increase due to global warming. Coastal cities where always be with densely population and accumulated social wealth will be under enormous affects. Using Landsat TM/ETM+ satellite images (1990, 2010) to extract urban built-up area, 17 China's developed coastal cities, which account for only 1.2% of total land area but boast 18.3% of urban population and nearly 19.6% of GDP in 2010, are spotted a 550% increase of urban land from 1990 to 2010. Shuttle Radar Topography Mission (SRTM) with 90m resolution data were used to calculate average elevation of extracted urban area. Then we found that these cities are all expanding seaward, occupying the most vulnerable neighborhoods, often in low-lying areas, alongside waterways prone to flooding. 11 cities show a reducing trend of mean elevations with the total average of more than 3 meters. Particularly, Shanghai, Tianjin and Ningbo in Delta area are most serious with the mean urban elevation less than 5 meters in 2010. The rapid expansion to seawards and accumulation of population and social wealth processed in coastal cities will increase the vulnerability and exposure, which will exacerbated the existing risks of rising sea level or extreme events. Referring to Defense Meteorological Satellite Program (DMSP/OLS) city-lights data and SRTM data, we built the Urban Vulnerability Index (UVI) to do semi-quantitative assessment on vulnerabilities of coastal cities. The UVI case study in GuangZhou showed the most vulnerability region concentrated at the low-lying south area where is with the much higher relative South Sea level than other sea area of China. With relative sea level rise of 1-1.5 m by 2100 and increased frequency of extreme sea level due to cyclone propagation, and weak urban drain-off system, Chinese

  3. Nucleosynthesis of 92Nb and the relevance of the low-lying isomer at 135.5 keV

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-06-01

    Background: Because of its half-life of about 35 million years, 92Nb is considered as a chronometer for nucleosynthesis events prior to the birth of our sun. The abundance of 92Nb in the early solar system can be derived from meteoritic data. It has to be compared to theoretical estimates for the production of 92Nb to determine the time between the last nucleosynthesis event before the formation of the early solar system. Purpose: The influence of a low-lying short-lived isomer on the nucleosynthesis of 92Nb is analyzed. The thermal coupling between the ground state and the isomer via so-called intermediate states affects the production and survival of 92Nb. Method: The properties of the lowest intermediate state in 92Nb are known from experiment. From the lifetime of the intermediate state and from its decay branchings, the transition rate from the ground state to the isomer and the effective half-life of 92Nb are calculated as functions of the temperature. Results: The coupling between the ground state and the isomer is strong. This leads to thermalization of ground state and isomer in the nucleosynthesis of 92Nb in any explosive production scenario and almost 100% survival of 92Nb in its ground state. However, the strong coupling leads to a temperature-dependent effective half-life of 92Nb which makes the 92Nb survival very sensitive to temperatures as low as about 8 keV, thus turning 92Nb at least partly into a thermometer. Conclusions: The low-lying isomer in 92Nb does not affect the production of 92Nb in explosive scenarios. In retrospect this validates all previous studies where the isomer was not taken into account. However, the dramatic reduction of the effective half-life at temperatures below 10 keV may affect the survival of 92Nb after its synthesis in supernovae, which are the most likely astrophysical sites for the nucleosynthesis of 92Nb.

  4. Search for two-phonon vibrations in /sup 168/Er

    SciTech Connect

    Kleppinger, E.W.; Yates, S.W.

    1983-08-01

    The low-lying level structure of /sup 168/Er has been examined by the (n,n'..gamma..) reaction and all known levels with J<7 and E/sub x/< or =2.0 MeV are observed. The discovery of a level at 1893 keV calls for a reexamination of the completeness of the level scheme assumed previously for this nucleus. No new low-lying candidates for two-phonon ..gamma.. vibrations are observed.

  5. Heterogeneous vibrations in {sup 112}Sn

    SciTech Connect

    Kumar, A.; Orce, J.N.; Lesher, S.R.; McKay, C.J.; McEllistrem, M.T.; Yates, S.W.

    2005-09-01

    The low-lying structure of {sup 112}Sn has been studied by use of the (n,n{sup '}{gamma}) reaction. Excitation functions and angular distributions of {gamma} rays have been used to characterize the decays of the excited levels, and level lifetimes have been measured with the Doppler-shift attenuation method. A {gamma}-{gamma} coincidence experiment has also been performed to confirm {gamma}-ray placements. Low-lying 1{sup -}, 2{sup (-)},3{sup -}, and 5{sup -} states are suggested as members of a heterogeneous quadrupole-octupole quintuplet. Their excitation energies and decay properties are consistent with a structure formed by the coupling of the lowest quadrupole 2{sub 1}{sup +} and octupole 3{sub 1}{sup -} excitations.

  6. The low-lying {pi}{sigma}* state and its role in the intramolecular charge transfer of aminobenzonitriles and aminobenzethyne

    SciTech Connect

    Lee, Jae-Kwang; Fujiwara, Takashige; Kofron, William G.; Zgierski, Marek Z.; Lim, Edward C.

    2008-04-28

    Electronic absorption spectra of the low-lying {pi}{pi}* and {pi}{sigma}* states of several aminobenzonitriles and 4-dimethylaminobenzethyne have been studied by time-resolved transient absorption and time-dependent density functional theory calculation. In acetonitrile, the lifetime of the {pi}{sigma}*-state absorption is very short (picoseconds or subpicosecond) for molecules that exhibit intramolecular charge transfer (ICT), and very long (nanoseconds) for those that do not. Where direct comparison of the temporal characteristics of the {pi}{sigma}*-state and the ICT-state transients could be made, the formation rate of the ICT state is identical to the decay rate of the {pi}{sigma}* state within the experimental uncertainty. These results are consistent with the {pi}{sigma}*-mediated ICT mechanism, L{sub a} ({pi}{pi}*){yields}{pi}{sigma}*{yields}ICT, in which the decay rate of the {pi}{sigma}* state is determined by the rate of the solvent-controlled {pi}{sigma}*{yields}ICT charge-shift reaction. The {pi}{pi}*{yields}{pi}{sigma}* state crossing does not occur in 3-dimethylaminobenzonitrile or 2-dimethylaminobenzonitrile, as predicted by the calculation, and 4-aminobenzonitrile and 4-dimethylaminobenzethyne does not exhibit the ICT reaction, consistent with the higher energy of the ICT state relative to the {pi}{sigma}* state.

  7. Intrauterine balloon tamponade as management of postpartum haemorrhage and prevention of haemorrhage related to low-lying placenta.

    PubMed

    Patacchiola, F; D'Alfonso, A; Di Fonso, A; Di Febbo, G; Kaliakoudas, D; Carta, G

    2012-01-01

    The aim of the present study was to evaluate the effectiveness of Bakri balloon in preventing and treating postpartum haemorrhage (PPH). Intrauterine Bakri balloon was used in a total of 16 patients with two different purposes: prophylactic placement of the balloon after cesarean section (CS) in six patients with low-lying placenta and therapeutic placement in ten patients with persistent bleeding from uterine atony, after spontaneous delivery, and administration of uterotonics. Intrauterine Bakri balloon was a successful approach in controlling and preventing PPH in all 16 patients. The median nadir hematocrit was 26.6% in six patients who underwent CS and 25.6% in ten patients with persistent bleeding after spontaneous delivery. The intrauterine balloon was in place for a duration of 24 hours. The median balloon infusion volume was 345 ml (range 250-455). No complications were reported. Bakri balloon tamponade was a useful measure in treating PPH unresponsive to pharmacological therapy in patients who delivered vaginally. Moreover, it was able to prevent persistent bleeding in patients who underwent CS for central placenta previa. PMID:23444752

  8. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    SciTech Connect

    Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  9. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule.

    PubMed

    Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254

  10. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan

    2015-03-01

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  11. Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: An assessment of vulnerability.

    PubMed

    Da Lio, Cristina; Carol, Eleonora; Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi

    2015-11-15

    The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater-surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined. PMID:26172603

  12. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  13. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Truhlar, Donald G

    2015-08-21

    Three singlet states, namely a closed-shell ground state and two excited states with (1)ππ* and (1)nσ* character, have been suggested to be responsible for the radiationless decay or photochemical reaction of photoexcited thioanisole. The correct interpretation of the electronic spectrum is critical for understanding the character of these low-lying excited states, but the experimental spectrum is yet to be fully interpreted. In the work reported here, we investigated the nature of those three states and a fourth singlet state of thioanisole using electronic structure calculations by multireference perturbation theory, by completely-renormalized equation-of-motion coupled cluster theory with single and double excitations and noniterative inclusion of connected triples (CR-EOM-CCSD(T)), and by linear-response time-dependent density functional theory (TDDFT). We clarified the assignment of the electronic spectrum by simulating it using a normal-mode sampling approach combined with TDDFT in the Tamm-Dancoff approximation (TDA). The understanding of the electronic states and of the accuracy of the electronic structure methods lays the foundation of our future work of constructing potential energy surfaces. PMID:26088195

  14. Study of low-lying electronic states of ozone by multireference Møller-Plesset perturbation method

    NASA Astrophysics Data System (ADS)

    Tsuneda, T.; Nakano, H.; Hirao, K.

    1995-10-01

    The geometry and relative energy of the seven low-lying electronic states of ozone and the ground state of ozonide anion have been determined in C2v symmetry by the complete active space self-consistent field (CASSCF) and the multireference Møller-Plesset perturbation (MRMP) methods. The results are compared with the photodetachment spectra of O-3 observed recently by Arnold et al. The theoretical electron affinity of ozone is 1.965 eV, which is 0.14 eV below the experimental result of 2.103 eV. The calculated adiabatic excitation energies (assignment of Arnold et al. in parentheses) of ozone are 3A2 0.90 eV (1.18 eV), 3B2, 1.19 eV (1.30 eV), 3B1, 1.18 eV (1.45 eV), 1A2, 1.15 eV (˜1.6 eV), 1B1, 1.65 eV (2.05 eV), and 1B2, 3.77 eV (3.41 eV), respectively. Overall the present theory supports the assignment of Arnold et al. However, the simple considerations of geometry and energy are insufficient to determine a specific assignment of the 3B2 and 3B1 states. The dissociation energy of the ground state of ozone is computed to be 0.834 eV at the present level of theory. The present theory also predicts that none of the excited states lies below the ground state dissociation limit of O3.

  15. Differential Neutron Scattering Cross-Sections for the Low-Lying Levels of THORIUM-232, URANIUM-235 and URANIUM-238.

    NASA Astrophysics Data System (ADS)

    Goswami, Ganesh Chandra

    Differential cross sections have been measured for the ground state and for the low-lying levels of ('232)Th, ('235)U, ('238)U via neutron time-of-flight technique. This work consists of the study of neutron scattering cross sections in the following areas: (i) The cross sections of ('232)Th in the incident energy range 185-2400 keV for ground state rotational band (GSRB) levels 0('+) (ground state), 2('+) (49 keV), and 4('+) (162 keV), (ii) the cross sections of ('235)U at incident energies of 185 keV and 550 keV for groups of levels, ground state + 77 eV + 13 keV and 46 + 52 keV, and (iii) the cross sections of ('238)U in the incident energy range 185-920 keV for GSRB levels 0('+) (ground state), 2('+) (45 keV) and 4('+) (148 keV). The University of Lowell 5.5 MV pulsed Van -de-Graaff accelerator with Mobley bunching system was employed. Neutrons were generated via the ('7)Li(p,n)('7)Be reaction in a metallic lithium target having thickness 8-10 keV. An overall resolution of 15-20 keV was maintained throughout the measurements. The scatterers were disk shaped. Careful attention has been paid to data reduction, angular resolution, multiple scattering corrections, and attenuation corrections. The results are compared with data of other investigators and ENDF/B-V.

  16. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

    SciTech Connect

    Xantheas, Sotiris S.

    2012-08-01

    We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared to DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.

  17. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  18. Observation of nuclear quadrupole hyperfine structure in the infrared spectrum of hydrogen iodide using a tunable-diode laser

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1980-01-01

    Nuclear quadrupole hyperfine structure has been observed in the 1-0 vibration-rotation band of hydrogen iodide with a tunable-diode laser. The measured splittings agree well with microwave measurements of the HI molecule. Evidence for a slight change in the iodine nuclear quadrupole coupling constant from the ground to first excited vibrational state in hydrogen iodide was found.

  19. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach

    NASA Astrophysics Data System (ADS)

    Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar

    2016-06-01

    Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica

  20. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ{sup ∗} states

    SciTech Connect

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}←S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ{sup ∗} character in the vicinity of the lowest valence ππ{sup ∗} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ{sup ∗} and a nearby dissociative πσ{sup ∗} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of πσ{sup ∗} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the

  1. Theoretical Study on Vibronic Interactions and Photophysics of Low-Lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Samala, Nagaprasad Reddy; Mahapatra, S.

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs), in particular, their radical cation (PAH^+), have long been postulated to be the important molecular species in connection with the spectroscopic observations in the interstellar medium. Motivated by numerous important observations by stellar as well as laboratory spectroscopists, we undertook detailed quantum mechanical studies of the structure and dynamics of electronically excited PAH^+ in an attempt to establish possible synergism with the recorded data In this study, we focus on the quantum chemistry and dynamics of the doublet ground (X) and low-lying excited (A, B and C) electronic states of the radical cation of tetracene (Tn), pentacene (Pn), and hexacene (Hn) molecule. This study is aimed to unravel photostability, spectroscopy, and time-dependent dynamics of their excited electronic states. In order to proceed with the theoretical investigations, we construct suitable multistate and multimode Hamiltonian for these systems with the aid of extensive ab initio calculations of their electronic energy surfaces. The diabatic coupling surfaces are derived from the calculated adiabatic electronic energies. First principles nuclear dynamics calculations are then carried out employing the constructed Hamiltonians and with the aid of time-independent and time-dependent quantum mechanical methods. We compared our theoretical results with available photoelectron spectroscopy, zero kinetic energy photoelectron (ZEKE) spectroscopy and matrix isolation spectroscopy (MIS) results. A peak at 8650 Å in the B state spectrum of Tn^+ is in good agreement with the DIB at 8648 Å observed by Salama et al. Similarly in Pn^+, a peak at 8350 Å can be correlated to the DIB at 8321 Å observed by Salama et al. J. Zhang et al., J. Chem. Phys., 128,104301 (2008).; F. Salama, Origins of Life Evol. Biosphere, 28, 349 (1998).; F. Salama et al., Planet. Space Sci., 43, 1165 (1995).; F. Salama et al., Astrophys. J., 526, 265 (1999).; J

  2. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    USGS Publications Warehouse

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.

  3. An Approach to Assessing Flood Risk in Low-lying Paddy Areas of Japan considering Economic Damage on Rice

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2013-12-01

    constructed in a rice paddy plot, which consisted of two zones, one in which the rice was cultivated as usual with normal water levels, and a flood zone, which was used for submerging rice plants. The flood zone, which was designed to reproduce actual flood disaster conditions in paddy fields, can be filled with water to a depth of 0.3, 0.6 or 0.9 m above ground level, and is divided into two plots, a clean water part and a turbid water part. Thus, the experimental conditions can vary according to 1) the development stage of rice, 2) complete or incomplete submersion, 3) clean or turbid water, and 4) duration of submergence. Finally, the reduction scales were formulated by using the resultant data and it was found that rice is most sensitive to damage during the development stage. Flood risk was evaluated by using calculated water level on each paddy. Here, the averaged duration of inundation to a depth of more than 0.3 m was used as the criteria for flood occurrence. The results indicated that the duration increased with larger heavy rainfall amounts. Furthermore, the damage to rice was predicted to increase especially in low-lying paddy fields. Mitigation measures, such as revising drainage planning and/or changing design standards for the capacity of drainage pumps may be necessary in the future.

  4. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  5. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  6. The radical SeCl: A theoretical contribution to the characterization of its low-lying electronic states

    NASA Astrophysics Data System (ADS)

    Hermoso, Willian; Ornellas, Fernando R.

    2012-03-01

    All doublet and quartet electronic states correlating with the first dissociation channel of SeCl and some Rydberg states are investigated theoretically at the CASSCF/MRCI level of theory using extended basis sets, including the contribution of spin-orbit effects. The similarity of the potential energy curves with those of SeF suggests that spectroscopic constants for the ground (X 2Π) and the first excited quartet (a4Σ-) of SeCl could also be determined via an emission resulting from the reaction of selenium with atomic chlorine. The coupling constant of the ground state at Re is estimated as -1610 cm-1. The potential energy curves calculated and the derived spectroscopic constants do not support the interpretation and assignment of the scarce transitions recorded experimentally as due to 2Π-2Π emissions. That the few observed lines might arise from transitions from the state b4∑1/2- to a very high vibrational level of the state a4∑1/2- is an open possibility, however, the number of vibrational states and the calculated ΔG1/2 differ significantly from the reported ones.

  7. Ab initio adiabatic and diabatic permanent dipoles for the low-lying states of the LiH molecule. A direct illustration of the ionic character

    NASA Astrophysics Data System (ADS)

    Berriche, Hamid; Gadea, Florent Xavier

    1995-12-01

    The permanent dipole moments of the eight low-lying 1Σ states of the LiH molecule are calculated by an ab initio approach for both the adiabatic and the diabatic representations. The results shed light on the interplay between the ionic and the neutral states producing a direct illustration of the ionic character of the electronic wavefunction. Our results suggest that the location and the width of the avoided crossings for the potential energy curves could be experimentally derived.

  8. A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.

  9. Direct observation of the solvent effects on the low-lying nπ* and ππ* excited triplet states of acetophenone derivatives in thermal equilibrium.

    PubMed

    Narra, Sudhakar; Shigeto, Shinsuke

    2015-03-01

    Low-lying excited triplet states of aromatic carbonyl compounds exhibit diverse photophysical and photochemical properties of fundamental importance. Despite tremendous effort in studying those triplet states, the effects of substituents and solvents on the energetics of the triplet manifold and on photoreactivity remain to be fully understood. We have recently studied the ordering of the low-lying nπ* and ππ* excited triplet states and its substituent dependence in acetophenone derivatives using nanosecond time-resolved near-IR (NIR) spectroscopy. Here we address the other important issue, the solvent effects, by directly observing the electronic bands in the NIR that originate from the lowest nπ* and ππ* states of acetophenone derivatives in four solvents of different polarity (n-heptane, benzene, acetonitrile, and methanol). The two transient NIR bands decay synchronously in all the solvents, indicating that the lowest nπ* and ππ* states are in thermal equilibrium irrespective of the solvent polarity studied here. We found that the ππ* band increases in intensity relative to the nπ* band as solvent polarity increases. These results are compared with the photoreduction rate constant for the acetophenone derivatives in the solvents to which 2-propanol was added as a hydrogen-atom donor. Based on the present findings, we present a comprehensive, solvent- and substituent-dependent energy level diagram of the low-lying nπ* and ππ* excited triplet states. PMID:25686256

  10. Extensive spectroscopic calculations on 12 low-lying electronic states of AlN molecule including transition properties

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2014-05-01

    Using the CASSCF method followed by the internally contracted MRCI approach in combination with the correlation-consistent basis sets, the potential energy curves (PECs) are calculated for the X3Π, A3Σ-, B3Σ+, C3Π, E3Δ, a1Σ+, b1Π, c1Δ, d1Σ+, e1Π, 23Σ- and 33Σ- electronic states of AlN molecule for internuclear separations from 0.1 to 1.0 nm. All the electronic states correlate to the three dissociation channels, Al(2Pu) + N(4Su), Al(2Pu) + N(2Du) and Al(2Pu) + N(2Pu). Of these 12 electronic states, only the 23Σ- possesses the double well. The PECs determined by the internally contracted MRCI approach are corrected for size-extensivity errors by means of the Davidson correction. The convergent behavior of present calculations is observed with respect to the basis set and level of theory. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is discussed. Scalar relativistic correction calculations are performed by the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated by fitting the first ten vibrational levels when available, which are obtained by solving the ro-vibrational Schrödinger equation with the Numerov's method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Σ-, B3Σ+, C3Π, a1Σ+ and b1Π electronic states to the ground state are calculated for several low vibrational levels, and some necessary discussion has been made.

  11. Two-term formula for ground band energy symmetry in low-lying levels of light Mg-Zr nuclei

    NASA Astrophysics Data System (ADS)

    Devi, Vidya

    2015-12-01

    In this paper, two parameter single-term energy formula EJ = aJb is used to study the energy spin relationship within the ground bands of even-even Mg-Zr nuclei. The formula works better for the γ-soft nuclei as well as vibrational nuclei. We also compared it with other two-parameter formulas: Ejiri, ab, pq and soft rotor formula (SRF). We also study the symmetry of the nuclei in the framework of interacting boson model (IBM-1). The IBM-1 was employed to determine the most appropriate Hamiltonian, the Hamiltonian of the IBM-1 and O(6) symmetry calculation, for the study of these isotopes. We have also calculated energy levels and B(E2) values for number of transitions in these 76-78Se and 76-78Kr isotopes and there is a good agreement between the presented results and the previous experimental data.

  12. Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule

    NASA Astrophysics Data System (ADS)

    Wang, Jie-Min; Liu, Qiang

    2013-09-01

    The potential energy curves (PECs) of four electronic states (X1Σg+, e3Δu, a3Σu-, and d3Πg) of an As2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, αe, βe, γe, and Be) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d3Πg electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate.

  13. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  14. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  15. Accurate spectroscopic properties of 19 low-lying states of PCl radical including the electronic transition properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2015-02-01

    The spectroscopic properties are in detail studied for the 11Σ-, 21Σ-, b1Σ+, c1Π, 21Π, 31Π, a1Δ, 21Δ, X3Σ-, C3Σ-, 33Σ-, 13Σ+, A3Π, B3Π, 33Π, 13Δ, 23Δ, 15Σ- and 15Π states, which are yielded from the first two dissociation limits, P(4Su) + Cl(2Pu) and P(2Du) + Cl(2Pu), of the PCl radical. Of the nineteen states, the 33Σ-, 13Σ+, 13Δ, 23Δ and 15Π states are the repulsive ones. The 21Σ-, 21Δ and 15Σ- states and the second well of A3Π state are very weakly-bound ones. The A3Π and B3Π states, the B3Π and 33Π states, and the 21Π and 31Π states have the avoided crossings. The A3Π state is found to possess the double well. The potential energy curves (PECs) are calculated with the CASSCF method followed by the internally contracted MRCI approach with Davidson correction together with the Dunning's correlation-consistent basis sets, aug-cc-pV6Z. To improve the quality of PECs, core-valence correlation and scalar relativistic correction calculations are included simultaneously. The PECs are extrapolated to the complete basis set limit. The vibrational properties are evaluated for several weakly-bound states. The spectroscopic parameters are determined, and compared with those available in the literature. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Π, B3Π and 33Π states to the X3Σ- state and from the c1Π, 21Π and 31Π states to the a1Δ state are calculated for several low vibrational states. And some necessary discussion is performed. Analyses demonstrate that the spectroscopic properties of PCl radical reported in this paper can be expected to be reliably predicted ones.

  16. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  17. Low-lying electronic states of the OH radical: Potential energy curves, dipole moment functions, and transition probabilities

    NASA Astrophysics Data System (ADS)

    Qin, X.; Zhang, S. D.

    2014-12-01

    The six doublet and the two quartet electronic states (2Σ+(2), 2Σ-, 2Π(2), 2Δ, 4Σ-, and 4Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X2Π and A2Σ+ of OH are predicted by numerical solving the radial Schrödinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X2Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A2Σ+-X2Π transition are discussed and compared with existing experimental values.

  18. The Prevalence and Role of Low Lying Peroneus Brevis Muscle Belly in Patients with Peroneal Tendon Pathologies: A Potential Source for Tendon Subluxation

    PubMed Central

    Mirmiran, Roya; Squire, Chad; Wassell, Daniel

    2015-01-01

    A low lying peroneus brevis muscle belly is a rare anomaly. There are few published studies that support presence of this anomaly as an etiology for peroneal tendon tear. However, the association between a low lying peroneus muscle belly (LLMB) and tendon subluxation is not well explored. In this retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing a primary peroneal tendon surgery, in a five year period, were assessed. The sensitivity and specificity of MRI, in comparison to intraoperative findings for identifying peroneal tendon disease was investigated. Presence of associated peroneal tendon pathologies in patients with and without LLMB was compared. Sensitivity of MRI was high in identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, LLMB was seen in 62.00% of patients with chronic lateral ankle pain and was associated with 64.52% cases of tenosynovitis, 29.03% cases of tendon subluxation, and 80.65% cases of peroneus brevis tendon tear. While presence of a LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, among the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant LLMB. More studies with a larger patient population are needed to better study the role of a low lying muscle belly as a mass occupying lesion resulting in peroneal tendon subluxation. PMID:25998478

  19. Probing the Low-lying Electronic States of Cyclobutanetetraone (C4O4) and its Radical Anion: A Low-Temperature Anion Photoelectron Spectroscopic Approach

    SciTech Connect

    Guo, Jin-Chang; Hou, Gaolei; Li, Si-Dian; Wang, Xue B.

    2012-02-02

    Despite a seemingly simple appearance, cyclobutanetetraone (C{sub 4}O{sub 4}) has four low-lying electronic states. Determining the energetic ordering of these states and the ground state of C{sub 4}O{sub 4}{sup -} theoretically has been proven to be considerably challenging and remains largely unresolved to date. Here we report a low-temperature negative ion photoelectron spectroscopic approach. A well structured spectrum with evenly spaced features was obtained at 193 nm due to excitation of the ring breathing mode of the C{sub 4}O{sub 4} neutral, whereas each 193-nm feature was observed to further split into a three-peak manifold at 266 nm assigned due to three electronic transitions from the ground state of the anion to the ground and two low-lying excited states of the neutral. Combined with recent theoretical studies and our own Franck-Condon factors simulations, the ground state of C{sub 4}O{sub 4}{sup -}, as well as the ground and two low-lying excited states of C{sub 4}O{sub 4} are determined to be {sup 2}A{sub 2u}, and {sup 3}B{sub 2u}, {sup 1}A{sub 1g} (8{pi}), {sup 1}B{sub 2u}, respectively. The frequency of the ring breathing mode (1810 {+-} 20 cm{sup -1}), the electron affinity (3.475 {+-} 0.005 eV), and the term values of {sup 1}A{sub 1g} (8{pi}) (6.27 {+-} 0.5 kJ/mol) and {sup 1}B{sub 2u} (13.50 {+-} 0.5 kJ/mol) are also directly obtained from the experiments.

  20. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGESBeta

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  1. Theoretical Study of Low-Lying Electronic States of PtX (X = F, Cl, Br, and I) Including Spin-Orbit Coupling.

    PubMed

    Zou, Wenli; Suo, Bingbing

    2016-08-18

    The low-lying electronic states of platinum ions (Pt(+)) and platinum monohalides (PtX; X = F, Cl, Br, and I) are calculated using the multireference configuration interaction method with relativistic effective core potentials. The spin-orbit coupling is taken into account through the perturbative state-interaction approach. For the Ω states of PtX below 35000 cm(-1), the potential energy curves and the corresponding spectroscopic constants are reported. It is found that the lowest Ω = 3/2 state is the ground one for the four species of PtX. Overall, the theoretical results are in reasonable agreement with the available experimental data. PMID:27463417

  2. Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy odd-mass 181Ta nucleus

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2016-07-01

    The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.

  3. An SCF and MCSCF description of the low-lying states of MgO. [Configuration State Functions Multiconfiguration Self Consistent Field

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Silver, D. M.; Yarkony, D. R.

    1980-01-01

    The paper presents the multiconfiguration-self-consistent (MCSCF) and configuration state functions (CSF) for the low-lying electronic states of MgO. It was shown that simple description of these states was possible provided the 1 Sigma(+) states are individually optimized at the MCSCF level, noting that the 1(3 Sigma)(+) and 2(1 Sigma)(+) states which nominally result from the same electron occupation are separated energetically. The molecular orbitals obtained at this level of approximation should provide a useful starting point for extended configuration interaction calculations since they have been optimized for the particular states of interest.

  4. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  5. Low-lying spectroscopy of a few even-even silicon isotopes investigated with the multiparticle-multihole Gogny energy density functional

    NASA Astrophysics Data System (ADS)

    Pillet, N.; Zelevinsky, V. G.; Dupuis, M.; Berger, J.-F.; Daugas, J. M.

    2012-04-01

    A multiconfiguration microscopic method has been applied with the Gogny effective interaction to the calculation of low-lying positive-parity states in even-even 26-32Si isotopes. The aim of the study is to compare the results of this approach with those of a standard method of generator coordinate method (GCM) type and to get insight into the predictive power of multiconfiguration methods employed with effective nucleon-nucleon force tailored to mean-field calculations. It is found that the multiconfiguration approach leads to an excellent description of the low-lying spectroscopy of 26Si, 28Si, and 32Si, but gives a systematic energy shift in 30Si. A careful analysis of this phenomenon shows that this discrepancy originates from too large proton-neutron matrix elements supplied by the Gogny interaction at the level of the approximate resolution of the multiparticle-multihole configuration mixing method done in the present study. These proton-neutron matrix elements enter in the definition of both single-particle orbital energies and coupling matrix elements. Finally, a statistical analysis of highly excited configurations in 28Si is performed, revealing exponential convergence in agreement with previous work in the context of the shell model approach. This latter result provides strong arguments toward an implicit treatment of highly excited configurations.

  6. Time-Dependent Density Functional Theory Study of Low-Lying Absorption and Fluorescence Band Shapes for Phenylene-Containing Oligoacenes.

    PubMed

    Jun, Ye

    2015-12-24

    Low-lying band shapes of absorption and fluorescence spectra for a member of a newly synthesized family of phenylene-containing oligoacenes (POA 6) reported in J. Am. Chem. Soc. 2012 , 134 , 15351 are studied theoretically with two different approaches with TIPS-anthracene as a comparison. Underlying photophysics and exciton-phonon interactions in both molecules are investigated in details with the aid of the time-dependent density functional theory and multimode Brownian oscillator model. The first two low-lying excited-states of POA 6 were found to exhibit excitation characteristics spanning entire conjugated backbone despite the presence of antiaromatic phenylene section. Absorption and fluorescence spectra calculated from both time-dependent density functional theory and multimode Brownian oscillator model are shown to reach good agreement with experimental ones. The coupling between phonon modes and optical transitions is generally weak as suggested by the multimode Brownian oscillator model. Broader peaks of POA 6 spectra are found to relate to stronger coupling between low frequency phonon modes such as backbone twisting (with frequency <300 cm(-1)) and optical transitions. Furthermore, POA 6 exhibits weaker exciton-phonon coupling for the phonon modes above 1000 cm(-1) compared to TIPS-anthracene owing to extended conjugated backbone. A significant coupling between an in-plane breathing mode localized around the antiaromatic phenylene segment with frequency at 1687 cm(-1) and optical transitions for the first two excited-states of POA 6 is also observed. PMID:26611665

  7. The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Hui; Zhang, Yan; Guo, Xinxia; Zhang, Jinjin; Mo, Hua

    2015-04-01

    Using the configuration-integration method, we investigated theoretically the low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. The low-lying states and optical absorption properties depend sensitively on the electric field F and the strength of the parabolic confinement ℏω0 . We discuss the linear and third-order nonlinear optical absorption coefficients of the dot (i) with the impurity ion and (ii) without the impurity ion. In the first case, the increase of the parabolic confinement ℏω0 (or the electric field F) can induce the blueshift (or redshift) of the peak of the absorption coefficient. Also the optical intensity can induce the increase of the third-order nonlinear optical absorption coefficients to weaken and even bleach the total optical absorption coefficients. Similar behavior has also been observed in the second case, but there is no redshift of the peak positions of the absorption coefficient with the increase of the electric field F. Compared with the second case, it is easily seen that there are the blueshifts of the peak of the absorption coefficients, which can be used as a technical means for detecting impurities.

  8. Quadrupole effects in tetragonal crystals PrCu₂Si₂ and DyCu₂Si₂.

    PubMed

    Mitsumoto, Keisuke; Goto, Saori; Nemoto, Yuichi; Akatsu, Mitsuhiro; Goto, Terutaka; Dung, Nguyen D; Matsuda, Tatsuma D; Haga, Yoshinori; Takeuchi, Tetsuya; Sugiyama, Kiyohiro; Settai, Rikio; Onuki, Yoshichika

    2013-07-24

    We have investigated quadrupole effects in tetragonal crystals of PrCu2Si2 and DyCu2Si2 by means of low-temperature ultrasonic measurements. The elastic constant C44 of PrCu2Si2 exhibits pronounced softening below 70 K down to a Néel temperature TN = 20 K, which is described in terms of a quadrupole susceptibility for a Γ5 doublet ground state and a Γ3 singlet first excited state located at 15.6 K in the crystalline electric field scheme. The C44 and C66 of DyCu2Si2 also show softening below 70 K down to TN1 = 9.7 K. A low-lying pseudo-sextet state consisting of three Kramers doublets of Γ6⊕2Γ7 brings about softening of C44 and C66 in DyCu2Si2. PMID:23803419

  9. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2015-11-13

    Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.

  10. Nuclear g-factor measurement for the low-lying state in ^109Rh using On-line TDPAC technique and RF-IGISOL technique

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuji; Ouchi, Hiroyuki; Izumi, Sayaka; Sasaki, Ayako; Sato, Nozomi; Tateoka, Miki; Hoshino, Sayo; Nagano, Tetsuya; Yamashita, Wataru; Yamazaki, Akiyoshi; Shimada, Kenzi; Ishida, Takashi; Wakui, Takashi; Shinozuka, Tsutomu; Tanigaki, Minoru

    2009-10-01

    To extend the studies on neutron-rich nuclei, we have developed an RF-IGISOL technique, which is combination of the gas catcher technique and the electrical field guiding technique with a large volume gas cell. As the first step to such approach, we are planning and trying the systematic measurement of g-factor in the neutron rich nuclei extracted as an radioactive beam from our RF-IGISOL at Tohoku University. The g-factor measurement for the low-lying state of ^109Rh (Ex = 225.98 keV, T1/2 = 1.66 μs) is the first on-line experiment with our RF-IGISOL system. The g-factor for this state has been determined to be g = 0.78 ^+0.17-0.03 μN by the on-line TDPAC method. In this contribution, the details of experimental results will be reported.

  11. Double folding analysis of 3He elastic and inelastic scattering to low lying states on 90Zr, 116Sn and 208Pb at 270 MeV

    NASA Astrophysics Data System (ADS)

    Marwa, N. El-Hammamy

    2015-03-01

    The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution (FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This comparison provides information about the similarities and differences of the models used in calculations.

  12. Optical absorptions of the low-lying states with higher angular momenta of a D{sup -} system in a spherical quantum dot

    SciTech Connect

    Xie Wenfang

    2013-01-31

    Optical absorptions of the low-lying states with higher angular momenta of the D{sup -} system in a spherical quantum dot (QD) with the Gaussian potential are studied by using the matrix diagonalisation method and the compact density-matrix approach. The linear, nonlinear third-order and total optical absorption coefficients are calculated for the {sup 1}P{sup -} {yields} {sup 1}D{sup +} and {sup 1}D{sup +} {yields} {sup 1}F{sup -} transitions. Numerical results for GaAs/Ga{sub 1-x}Al{sub x}As QDs are presented. The calculated results show that with increasing quantum numbers describing the angular momenta of transitions the optical absorption peaks shift towards lower energies and their intensities increase. (quantum dots)

  13. Low-lying intruder and tensor-driven structures in 82As revealed by β decay at a new movable-tape-based experimental setup

    NASA Astrophysics Data System (ADS)

    Etilé, A.; Verney, D.; Arsenyev, N. N.; Bettane, J.; Borzov, I. N.; Cheikh Mhamed, M.; Cuong, P. V.; Delafosse, C.; Didierjean, F.; Gaulard, C.; Van Giai, Nguyen; Goasduff, A.; Ibrahim, F.; Kolos, K.; Lau, C.; Niikura, M.; Roccia, S.; Severyukhin, A. P.; Testov, D.; Tusseau-Nenez, S.; Voronov, V. V.

    2015-06-01

    The β decay of 82Ge Ge was re-investigated using the newly commissioned tape station BEDO at the electron-driven ISOL (isotope separation on line) facility ALTO operated by the Institut de Physique Nucléaire, Orsay. The original motivation of this work was focused on the sudden occurrence in the light N =49 odd-odd isotonic chain of a large number of J ≤1 states (positive or negative parity) in 80Ga by providing a reliable intermediate example, viz., 82As. The extension of the 82As level scheme towards higher energies from the present work has revealed three potential 1+ states above the already known one at 1092 keV. In addition our data allow ruling out the hypothesis that the 843 keV level could be a 1+ state. A detailed analysis of the level scheme using both an empirical core-particle coupling model and a fully microscopic treatment within a Skyrme-QRPA (quasiparticle random-phase approximation) approach using the finite-rank separable approximation was performed. From this analysis two conclusions can be drawn: (i) the presence of a large number of low-lying low-spin negative parity states is due to intruder states stemming from above the N =50 shell closure, and (ii) the sudden increase, from 82As to 80Ga, of the number of low-lying 1+ states and the corresponding Gamow-Teller fragmentation are naturally reproduced by the inclusion of tensor correlations and couplings to 2p-2h excitations.

  14. Recent Triplet Vibration Studies in RHIC

    SciTech Connect

    Thieberger, P.; Bonati, R.; Corbin, G.; Jain, A.; Minty, M.; McIntyre, G.; Montag, C.; Muratore, J.; Schultheiss, C.; Seberg, S.; Tuozzolo, J.

    2010-05-23

    We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed.

  15. Transport in rectangular quadrupole channels

    SciTech Connect

    Meier, E.

    1983-08-01

    Multiple electrostatic quadrupole arrays can be produced in many different geometries. However, the fabrication process can be considerably simplified if the poles are rectangular. This is especially true for millimeter sized channels. This paper presents the results of a series of measurements comparing the space charge limits in cylindrical and rectangular quadrupole channels.

  16. Vibration study of the APS magnet support assemblies

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; Chen, S.S.

    1990-11-01

    Stability of the positron closed orbit is a requirement for successful operation of the Advanced Photon Source. The fact that vibration of the storage ring quadrupole magnets can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth provides the motivation for the subject studies. Low frequency vibrations can be controlled with steering magnets using feedback systems, provided the vibration amplitudes are within the dynamic range of the controllers. High frequency vibration amplitudes, on the other hand, are out of the range of the controller and, therefore must be limited to ensure the emittance growth will not exceed a prescribed value. Vibration criteria were developed based on the requirement that emittance growth be limited to 10 percent. Recognizing that the quadrupole magnets have the most significant effect, three different scenarios were considered: vibration of a single quadrupole within the storage ring, random vibration of all the quadrupoles in the ring, and the hypothetical case of a plane wave sweeping across the site and the quadrupoles following the motion of the plane wave. The maximum allowable peak vibration amplitudes corresponding to these three vibration scenarios are given. The criteria associated with the passage of a plane wave is dependent on wavelength, or, alternatively, on frequency given the wave speed. The wave speed used is that measured as a part of the geotechnical investigation at the APS site.

  17. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  18. Nonzero Quadrupole Moments of Candidate Tetrahedral Bands

    SciTech Connect

    Bark, R. A.; Lawrie, E. A.; Lawrie, J. J.; Mullins, S. M.; Murray, S. H. T.; Ncapayi, N. J.; Smit, F. D.; Sharpey-Schafer, J. F.; Lindsay, R.

    2010-01-15

    Negative-parity bands in the vicinity of {sup 156}Gd and {sup 160}Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in {sup 160}Yb and {sup 154}Gd. The properties of these bands are similar to the proposed tetrahedral band of {sup 156}Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for {sup 160}Yb and {sup 154}Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.

  19. Resonance ionization spectroscopy of thorium isotopes-towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of 229Th

    NASA Astrophysics Data System (ADS)

    Raeder, S.; Sonnenschein, V.; Gottwald, T.; Moore, I. D.; Reponen, M.; Rothe, S.; Trautmann, N.; Wendt, K.

    2011-08-01

    In-source resonance ionization spectroscopy was used to identify an efficient and selective three-step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in the preparation of laser spectroscopic investigations for an identification of the low-lying 229mTh isomer predicted at 7.6 ± 0.5 eV above the nuclear ground state. Using a sample of 232Th, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing (AI) states were identified. Level energies were determined with an accuracy of 0.06 cm-1 for intermediate and 0.15 cm-1 for AI states. Using different excitation pathways, an assignment of total angular momenta for several energy levels was possible. One particularly efficient ionization scheme of thorium, exhibiting saturation in all three optical transitions, was studied in detail. For all three levels in this scheme, the isotope shifts of the isotopes 228Th, 229Th and 230Th relative to 232Th were measured. An overall efficiency including ionization, transport and detection of 0.6% was determined, which was predominantly limited by the transmission of the mass spectrometer ion optics.

  20. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  1. Investigating nuclear shell structure in the vicinity of 78Ni: Low-lying excited states in the neutron-rich isotopes Zn,8280

    NASA Astrophysics Data System (ADS)

    Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.

    2016-02-01

    The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.

  2. The genetic legacy of aridification: climate cycling fostered lizard diversification in Australian montane refugia and left low-lying deserts genetically depauperate.

    PubMed

    Pepper, Mitzy; Ho, Simon Y W; Fujita, Matthew K; Scott Keogh, J

    2011-12-01

    It is a widely held assumption that populations historically restricted to mountain refugia tend to exhibit high levels of genetic diversity and deep coalescent histories, whereas populations distributed in surrounding low-lying regions tend to be genetically depauperate following recent expansion from refugia. These predicted genetic patterns are based largely on our understanding of glaciation history in Northern Hemisphere systems, yet remain poorly tested in analogous Southern Hemisphere arid systems because few examples in the literature allow the comparison of widespread taxa distributed across mountain and desert biomes. We demonstrate with multiple datasets from Australian geckos that topographically complex mountain regions harbor high nucleotide diversity, up to 18 times higher than that of the surrounding desert lowlands. We further demonstrate that taxa in topographically complex areas have older coalescent histories than those in the geologically younger deserts, and that both ancient and more recent aridification events have contributed to these patterns. Our results show that, despite differences in the details of climate and landscape changes that occurred in the Northern and Southern hemispheres (ice-sheets versus aridification), similar patterns emerge that illustrate the profound influence of the Pleistocene on contemporary genetic structure. PMID:21871574

  3. Low-lying dipole response in the stable {sup 40,48}Ca nuclei with the second random-phase approximation

    SciTech Connect

    Gambacurta, D.; Catara, F.

    2011-09-15

    Low-energy dipole excitations are analyzed for the stable isotopes {sup 40}Ca and {sup 48}Ca in the framework of the Skyrme-second random-phase approximation. The corresponding random-phase approximation calculations provide a negligible strength distribution for both nuclei in the energy region from 5 to 10 MeV. The inclusion and the coupling of 2 particle-2 hole configurations in the second random-phase approximation lead to an appreciable dipole response at low energies for the neutron-rich nucleus {sup 48}Ca. The presence of a neutron skin in the nucleus {sup 48}Ca would suggest the interpretation of the low-lying response in terms of a pygmy excitation. The composition of the excitation modes (content of 1 particle-1 hole and 2 particle-2 hole configurations), their transition densities and their collectivity (number and coherence of the different contributions) are analyzed. This analysis indicates that, in general, these excitations cannot be clearly interpreted in terms of oscillations of the neutron skin against the core with the exception of the peak with the largest B(E1) value, which is located at 9.09 MeV. For this peak the neutron transition density dominates and the neutron and proton transition densities oscillate out of phase in the internal part of the nucleus leading to a strong mixing of isoscalar and isovector components. Therefore, this state shows some features usually associated to pygmy resonances.

  4. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen

    PubMed Central

    Boucher, Yan; Orata, Fabini D.; Alam, Munirul

    2015-01-01

    Cholera is a diarrheal disease that has changed the history of mankind, devastating the world with seven pandemics from 1817 to the present day. Although there is little doubt in the causative agent of these pandemics being Vibrio cholerae of the O1 serogroup, where, when, and how this pathogen emerged is not well understood. V. cholerae is a ubiquitous coastal species that likely existed for tens of thousands of years. However, the evolution of a strain capable of causing a large-scale epidemic is likely more recent historically. Here, we propose that the unique human and physical geography of low-lying river deltas made it possible for an environmental bacterium to evolve into a deadly human pathogen. Such areas are often densely populated and salt intrusion in drinking water frequent. As V. cholerae is most abundant in brackish water, its favored environment, it is likely that coastal inhabitants would regularly ingest the bacterium and release it back in the environment. This creates a continuous selection pressure for V. cholerae to adapt to life in the human gut. PMID:26539168

  5. Application of recent double-hybrid density functionals to low-lying singlet-singlet excitation energies of large organic compounds

    NASA Astrophysics Data System (ADS)

    Meo, F. Di; Trouillas, P.; Adamo, C.; Sancho-García, J. C.

    2013-10-01

    The present work assesses some recently developed double-hybrid density functionals (B2π-PLYP, PBE0-DH, and PBE0-2) using linear-response Tamm-Dancoff Time-Dependent Density Functional Theory. This assessment is achieved against experimentally derived low-lying excitation energies of large organic dyes of recent interest, including some excitations dominated by charge-transfer transitions. Comparisons are made with some of the best-performing methods established from the literature, such as PBE0 or B3LYP hybrid or the recently proposed B2-PLYP and B2GP-PLYP double-hybrid models, to ascertain their quality and robustness on equal footing. The accuracy of parameter-free or empirical forms of double-hybrid functionals is also briefly discussed. Generally speaking, it turns out that double-hybrid expressions always provide more accurate estimates than corresponding hybrid methods. Double-hybrid functionals actually reach averaged accuracies of 0.2 eV, that can be admittedly considered close to any intended accuracy limit within the present theoretical framework.

  6. Is there any connection between the (Hyper) polarizabilities of the ground state structures of clusters and those of their low lying isomers? A case study of aluminum doped silicon clusters

    NASA Astrophysics Data System (ADS)

    Karamanis, P.; Marchal, R.; Carbonnierre, P.; Pouchan, C.

    2012-12-01

    The (hyper)polarizabilities of the global minima and of low lying isomers of ground doped aluminum clusters of the AlSin type (n=3-9) have been studied within the density functional framework. Our results show that the polarizabilities and first hyperpolarizabilities per atom of these doped Al doped clusters rabidly degrease with the cluster size. Also by tracing a significant number of stable low lying isomers we demonstrate that both the average values of the mean polarizabilities per atom and of the total fist hyperpolarizabilities of those species follow closely the evolution that is observed in the case of their ground state structures.

  7. Observation of b2 symmetry vibrational levels of the SO2 C̃ (1)B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants.

    PubMed

    Park, G Barratt; Jiang, Jun; Saladrigas, Catherine A; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state. PMID:27083725

  8. Observation of b2 symmetry vibrational levels of the SO2C 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE PAGESBeta

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-14

    Here, the C 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X~ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C state below 1600 cm–1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, itmore » allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  9. Observation of b2 symmetry vibrational levels of the SO2 C ˜ 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ˜ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C ˜ state below 1600 cm-1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C ˜ electronic state.

  10. Characterization of the Oxidation State of 229 Th Recoils Implanted in MgF2 for the Search of the Low-lying 229 Th Isomeric State

    NASA Astrophysics Data System (ADS)

    Barker, Beau; Meyer, Edmund; Schacht, Mike; Collins, Lee; Wilkerson, Marianne; Zhao, Xinxin

    2016-05-01

    The low-lying (7.8 eV) isomeric state in 229 Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF2 for use in the direct search of the transition. Of interest is the oxidation state of the implanted 229 Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted 229 Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than + 4. Our search focused on detecting emission from Th3+ ions. The DFT calculations predicted the Th3+ state to be the most likely to be present in the crystal after Th4+. We also calculated the band structure for the Th3+ doped MgF2 crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th3+ in the MgF2 plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th3+ atoms that we could detect is quite small compared to the number of implanted 229 Th recoils. The number of implanted 229 Th recoils was derived from a γ-ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF2 plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442.

  11. Spectroscopic properties of the low-lying electronic states of RbHen (n = 1, 2) and their comparison with lighter alkali metal-helium systems

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anjan

    2012-02-01

    Ab initio-based configuration interaction studies on RbHe and He-Rb-He have explored some key features of the low-lying electronic states of these van der Waals systems. The radiative lifetime of the Rb*He exciplex has been calculated to be around 24.5 ns, which is slightly higher than the HeRb*He lifetime (˜20 ns) and lower than the atomic fluorescence lifetime of Rb, by roughly 3.5 ns. Better exciplex stability of the symmetric triatomic system is evidenced by its higher binding energy value in comparison to the diatomic system by a substantial margin. BSSE-corrected spin-orbit calculations of RbHe have predicted a potential barrier of the 12Π1/2 state with a height of 15 cm-1 and width of 2.57 Å. The 2Πu state of the triatomic molecule shows a conical intersection of its Renner-Teller components (12A1 and 12B2) near a 99° bond angle along the bending path. Their unstable higher excited states (12Σ+1/2 or 12Σ+g,1/2) can trigger the pumping of the blue side of the ns2S1/2 → np2P3/2 transition, and this may eventually lead to the np2P1/2 →ns2S1/2 lasing transition. The broad fluorescence band with a peak near 11 900 cm-1 is found to arise from the 12Π3/2-X2Σ+1/2 transition of RbHe.

  12. Prevalence and Role of a Low-Lying Peroneus Brevis Muscle Belly in Patients With Peroneal Tendon Pathologic Features: A Potential Source of Tendon Subluxation.

    PubMed

    Mirmiran, Roya; Squire, Chad; Wassell, Daniel

    2015-01-01

    A peroneus brevis low-lying muscle belly (LLMB) is a rare anomaly. A few published studies have supported the presence of this anomaly as an etiology for a peroneal tendon tear. However, the association between a peroneus brevis LLMB and tendon subluxation has not been well explored. In the present retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing primary peroneal tendon surgery during a 5-year period were assessed. The sensitivity and specificity of MRI compared with the intraoperative findings for identifying peroneal tendon disease were investigated. The presence of associated peroneal tendon pathologic features in patients with and without a peroneus brevis LLMB was also compared. The sensitivity of MRI was high for identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a peroneus brevis LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, a peroneus brevis LLMB was seen in 62.00% of the patients with chronic lateral ankle pain and was associated with 64.52% of the patients with tenosynovitis, 29.03% of those with tendon subluxation, and 80.65% of those with a peroneus brevis tendon tear. Although the presence of a peroneus brevis LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, of the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant peroneus brevis LLMB. More studies with larger patient populations are needed to better investigate the role of a peroneus brevis LLMB as a mass-occupying lesion resulting in peroneal tendon subluxation. PMID:25998478

  13. An ab initio investigation of the ground and low-lying singlet and triplet electronic states of XNO{sub 2} and XONO (X = Cl, Br, and I)

    SciTech Connect

    Peterson, Kirk A.; Francisco, Joseph S.

    2014-01-28

    A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.

  14. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  15. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  16. Combined Panofsky Quadrupole & Corrector Dipole

    SciTech Connect

    George Biallas; Nathan Belcher; David Douglas; Tommy Hiatt; Kevin Jordan

    2007-07-02

    Two styles of Panofsky Quadrupoles with integral corrector dipole windings are in use in the electron beam line of the Free Electron Laser at Jefferson Lab. We combined steering and focusing functions into single magnets, adding hundreds of Gauss-cm dipole corrector capability to existing quadrupoles because space is at a premium along the beam line. Superposing a one part in 100 dipole corrector field on a 1 part in 1000, weak (600 to 1000 Gauss) quadrupole is possible because the parallel slab iron yoke of the Panofsky Quadrupole acts as a window frame style dipole yoke. The dipole field is formed when two electrically floating “current sources”, designed and made at JLab, add and subtract current from the two opposite quadrupole current sheet windings parallel to the dipole field direction. The current sources also drive auxiliary coils at the yoke’s inner corners that improve the dipole field. Magnet measurements yielded the control system field maps that characterize the two types of fields. Field analysis using TOSCA, construction and wiring details, magnet measurements and reference for the current source are presented.

  17. Muonic x-ray measurement of the monopole and quadrupole charge parameters of 154-158,160Gd

    NASA Astrophysics Data System (ADS)

    Laubacher, D. B.; Tanaka, Y.; Steffen, R. M.; Shera, E. B.; Hoehn, M. V.

    1983-04-01

    Monopole and quadrupole charge distributions of 154Gd, 155Gd, 156Gd, 157Gd, 158Gd, and 160Gd were investigated by muonic-atom K and L x-ray measurements. The model-independent Barrett charge radii Rk and the isotope shifts ΔRk were measured, and values of and Δ were deduced. A pronounced even-odd staggering effect of the nuclear charge radii was observed for the series 156-158Gd. The quadrupole moments of the first excited states of the even-A Gd nuclei were determined to be Q154(2+)=-1.82(4) e b, Q156(2+)=-1.93(4) e b, Q158(2+)=-2.01(4) e b, and Q160(2+)=-2.08(4) e b, and the quadrupole moments of the 32- ground states of the odd-A 155,157Gd nuclei were determined to be Q155(32-)=1.27(3) e b and Q157(32-)=1.35(3) e b. Comparison with a separate measurement of the odd-A ground-state quadrupole moments based on the static hyperfine splitting of the muonic M x rays showed that the model error in the extracted quadrupole moments of these nuclei is less than 2 percent. The quadrupole moments and the B(E2) values obtained in the present experiment for the low-lying Gd states are in satisfactory agreement with the axially symmetric rotational model. However, the 154Gd nucleus exhibits a considerable softness as indicated by the isomer shift of the 2+ excited state and by the experimental value of the ratio Q(2+)B(E2:0+-->2+). NUCLEAR STRUCTURE 154-158,160Gd; measured muonic x-ray spectra; deduced monopole and quadrupole charge parameters; isotope and isomer shifts.

  18. Geo-statistical modeling to evaluate the socio-economic impacts of households in the context of low-lying areas conversion in Colombo metropolitan region-Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hemakumara, GPTS; Rainis, Ruslan

    2015-02-01

    Living in Low-lying areas is a challenging task, but due to the lack of suitable land at affordable prices, thousands of householders have been establishing their own houses on Low-lying areas. Manipulation and conversion of low lying areas have led to an increase in the frequency and severity of micro disasters because the cumulative effect of these settlements is very high. Therefore, it is needed to examine how individual households have been emerging in Low-lying areas. This process is primarily influenced and controlled by Socio-economic factors. In the field survey conducted for this study, 388 householders were interviewed face to face to obtain the primary data. Collected data were applied to the Multivariate binary logistic Model. The Dependent variable of the model was set as Stable Houses and Non-Stable Houses based on the weighted values that were obtained from the field observations. Independent variables of this study are nine key aspects of the socio-economic conditions in these areas. Units of analysis of the study were taken as individual housing plots in the study area. The particular combination of Socio-Economic factors that exerted influence on each housing plot was measured using predicted probability value of logistic model and linked it with GIS land plot's map. Accuracy of Final Model is 86.9 % and probability level of influencing factors given a clear idea about household distribution and status while providing guidance about how the planning authorities should monitor and manage low lying areas, taking into consideration the present housing condition of these areas.

  19. Ab initio MRCI + Q calculations on the low-lying excited states of the MgBr radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wu, Dong-lan; Tan, Bin; Wen, Yu-feng; Zeng, Xue-feng; Xie, An-dong; Yan, Bing

    2016-05-01

    Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI + Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X2Σ+ and the first excited state A2Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B2Σ+ correlated to ion-pair dissociation limit Mg+ (2Sg) + Br- (1Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30 Ω states, and the SOC splitting for the A2Π is calculated to be 102.58 cm- 1. The SOC effect, leading to the double-well potential of the Ω = (3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X2Σ+1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X2Σ+1/2 and (2)3/2-X2Σ+1/2 are particularly important to the observed transitions A2Π-X2Σ+ and C2Π-X2Σ+. The

  20. Geometries and electronic structures of the ground and low-lying excited states of FeCO: An ab initio study

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Okuda, Rei; Nagashima, Umpei; Jensen, Per

    2012-12-01

    FeCO is a molecule of astrophysical interest. We report here theoretical calculations of its geometrical parameters, electronic structures, and molecular constants (such as dipole moment and spin-orbit coupling constant) in the electronic ground state tilde{X}3Σ - and the low-lying triplet and quintet excited states. The calculations were made at the MR-SDCI+Q_DK3/[5ZP ANO-RCC (Fe, C, O)] and MR-AQCC_DK3/[5ZP ANO-RCC (Fe, C, O)] levels of theory. A multi-reference calculation was required to describe correctly the wavefunctions of all states studied. For all triplet states, the σ-donation through the 10σ molecular orbital (MO) as well as the π-back-donation through the 4π MO are observed, and the dipole moment vector points from O toward Fe as expected. However, in the excited quintet states 5Π, 5Φ, and 5Δ, the almost negligible contribution of Fe 4s to the 10σ MO makes the dipole moment vector point from Fe toward O, i.e., in the same direction as in CO. In the tilde{X}3Σ - state, the electron provided by the σ-donation through the 10σ MO is shared between the Fe atom and the C end of the CO residue to form a coordinate-covalent Fe-C bond. In the tilde{a}5Σ - state (the high-spin counterpart of tilde{X}3Σ -), the σ-donation through the 10σ MO is not significant and so the Fe-C bond is rather ionic. The π-back-donation through the 4π MO is found to be of comparable importance in the two electronic states; it has a slightly larger magnitude in the tilde{X}3Σ - state. The difference in the molecular properties of the low-spin tilde{X}3Σ - and the high-spin tilde{a}5Σ - states can be understood in terms of the dynamical electron correlation effects.

  1. Ab initio MRCI+Q calculations on the low-lying excited states of the MgBr radical including spin-orbit coupling.

    PubMed

    Wu, Dong-Lan; Tan, Bin; Wen, Yu-Feng; Zeng, Xue-Feng; Xie, An-Dong; Yan, Bing

    2016-05-15

    Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI+Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X(2)Σ(+) and the first excited state A(2)Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B(2)Σ(+) correlated to ion-pair dissociation limit Mg(+) ((2)Sg)+Br(-) ((1)Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30Ω states, and the SOC splitting for the A(2)Π is calculated to be 102.58cm(-1). The SOC effect, leading to the double-well potential of the Ω=(3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X(2)Σ(+)1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X(2)Σ(+)1/2 and (2)3/2-X(2)Σ(+)1/2 are particularly important to the observed transitions A(2)Π-X(2)

  2. Microscopic derivation of the Bohr–Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

    NASA Astrophysics Data System (ADS)

    Matsuyanagi, Kenichi; Matsuo, Masayuki; Nakatsukasa, Takashi; Yoshida, Kenichi; Hinohara, Nobuo; Sato, Koichi

    2016-06-01

    We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schrödinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.

  3. Effective quadrupole-quadrupole interaction from density functional theory

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Bertsch, G. F.; Fang, L.; Sabbey, B.

    2006-09-01

    The density functional theory of nuclear structure provides a many-particle wave function that is useful for static properties, but an extension of the theory is necessary to describe correlation effects or other dynamic properties. We propose a procedure to extend the theory by mapping the properties of a self-consistent mean-field theory onto an effective shell-model Hamiltonian with quadrupole-quadrupole interaction. In this initial study, we consider the sd-shell nuclei Ne20, Mg24, Si28, and Ar36. The method is first tested with the USD shell-model Hamiltonian, using its mean-field approximation to construct an effective Hamiltonian and partially recover correlation effects. We find that more than half of the correlation energy is due to the quadrupole interaction. We then follow a similar procedure but using the SLy4 Skyrme energy functional as our starting point and truncating the space to the spherical sd shell. The constructed shell-model Hamiltonian is found to satisfy minimal consistency requirements to reproduce the properties of the mean-field solution. The quadrupolar correlation energies computed with the mapped Hamiltonian are reasonable compared with those computed by other methods. The method also provides a well-defined renormalization of the quadrupole operator in the shell-model space, the “effective charge” of the phenomenological shell model.

  4. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  5. Quasiparticle-phonon model and quadrupole mixed-symmetry states of 96Ru

    NASA Astrophysics Data System (ADS)

    Stoyanov, Ch.; Pietralla, N.

    2016-01-01

    The structure of low-lying quadrupole states of 96Ru was calculated within the Quasiparticle-Phonon Model. It is shown that symmetric and mixed-symmetry properties manifest themselves via the structure of the excited states. The first 2+ state is collective and neutron and proton transition matrix elements Mn and Mp are in-phase, while the neutron and proton transition matrix elements Mn and Mp have opposite signs for the third 2+ state. This property of the third 2+ state leads to a large M1 transition between the first and third 2+ states. It is an unambigous demonstration of the mixed-symmetry nature of the third 2+ state. The structure of the first 1+ state is calculated. The state is a member of the two-phonon multiplet generated by the coupling of the [21+]QRPA and the [22+]QRPA states.

  6. Quadrupole interactions in tetraoxoferrates (VI)

    NASA Astrophysics Data System (ADS)

    Dedushenko, Sergey K.; Perfiliev, Yurii D.; Rusakov, Vyacheslav S.; Gapochka, Alexei M.

    2013-05-01

    An applicability of the point charge approach for calculations of quadrupole splittings in Mössbauer spectra of ferrates(VI) was studied. The reasonable correlation between calculated and experimental splittings was observed for the majority of ferrates excepting K3Na(FeO4)2. The comparison of ferrates and chromates was made using calculated nucleus independent coefficient.

  7. Quadrupole magnets for the SSC

    SciTech Connect

    Lietzke, A.; Barale, P.; Benjegerdes, R.; Caspi, S.; Cortella, J.; Dell`Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scanlan, R.; Taylor, C.E.; Wandesforde, A.

    1992-08-01

    At LBL, we have designed, constructed, and tested ten models (4-1meter, 6-5meter) of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211Tesla/meter). The results of this program are herein summarized.

  8. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  9. Vibrational quantisation of the B = 7 Skyrmion

    NASA Astrophysics Data System (ADS)

    Halcrow, C. J.

    2016-03-01

    We consider the inclusion of the most important vibrational modes in the quantisation of the dodecahedral B = 7 Skyrmion. In contrast to a rigid body quantisation, this formalism allows a spin 3/2 state to lie below the spin 7/2 state, in agreement with experimental data. There is also a low lying spin 1/2 state and two spin 5/2 states. We find that the excited spin 7/2 state has a smaller root mean square charge radius than the other states. This prediction is an important signature of the Skyrme model, in conflict with more conventional nuclear models.

  10. Analytic formula for quadrupole-quadrupole matrix elements

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.

    1990-12-01

    An analytic formula is reported for general matrix elements of the microscopic quadrupole-quadrupole operator in the U(3)-boson approximation. The complete infinite-dimensional basis of A-fermion wave functions is compatible with the harmonic-oscillator shell model and consists of np-nh configurations, with spurious center-of-mass excitations removed, which are symmetry adapted to the Elliott U(3) and symplectic Sp(3,R) models. The formula expresses the general Q2.Q2 matrix element with respect to this complete orthonormal basis as a Racah SU(3) U coefficient times a closed-shell matrix element. An oscillator closed-shell matrix element of Q2.Q2 is a square root of a rational function of the integer quantum numbers of the U(3) basis.

  11. Ab-initio calculations of low-lying excited states of water clusters (H2O)n, n = 2-6

    NASA Astrophysics Data System (ADS)

    Zvereva, Natalja A.; Ippolitov, Ivan I.

    1997-03-01

    In recent years there has been a great deal of interest in excited states of the water molecule with a number of experimental and theoretical studies reported. The umber of spectroscopic studies of complexes involving hydrogen bonding has greatly increased. However, most of this research has involved studies of the IR and Raman vibrational spectra of the molecule hydrogen bond formation strongly perturbs the vibrational transitions, but the changes in the electronic spectrum can also be observed. The interaction between water molecules is dominated by hydrogen bonding and the level of the ab initio theory is used because it accurately reproduces the major components of the interaction energy. Ab initio studies of cyclic water clusters (H2O)n, n equals 2 minus 6 and analysis of many-body interactions for ground states of these clusters has been done. The magnitudes of the two-through six-body energy terms and their contribution to the interaction energy of small ring water clusters has been computed at the Hartree-Fock (HF) and second-through fourth-order many-body perturbation (MP2, MP4) levels of theory. In this paper, we investigated the lowest S1 excited electronic states of the cyclic water clusters (H2O)n, n equals 2 minus 6 from the point of changes in the absorption spectra for many-body interactions and examined their trends as the cluster grew.

  12. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  13. Extreme quadrupole deformation and clusterization

    NASA Astrophysics Data System (ADS)

    Darai, J.; Cseh, J.; Adamian, G.; Antonenko, N.

    2012-12-01

    We discuss a simple symmetry-adapted method for the determination of the shape isomers, and for the study of their possible fragmentation. In other words the connection between the quadrupole (collective) and dipole (cluster) degrees of freedom is considered in terms of an easily applicable, yet microscopic method. The energetics is taken into account by the double-folding method. Special attention is focused on those cases in which the theoretical predictions have a direct comparison with experimental observation.

  14. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  15. Low-lying electronic states in bismuth trimer Bi₃ as revealed by laser-induced NIR emission spectroscopy in solid Ne.

    PubMed

    Wakabayashi, Tomonari; Wada, Yoriko; Nakajima, Kyo; Morisawa, Yusuke; Kuma, Susumu; Miyamoto, Yuki; Sasao, Noboru; Yoshimura, Motohiko; Sato, Tohru; Kawaguchi, Kentarou

    2015-03-19

    Laser-induced near-infrared (NIR) emission spectra of neutral bismuth timer, Bi₃, embedded in solid neon matrixes at 3 K were recorded in a range 870-1670 nm. Using photoexcitation with low energy photons at 1064 nm, two emission band systems were newly identified by their origin bands at T₀ = 6600 and 8470 cm⁻¹. Accordingly, spectral assignment for three NIR emission band systems reported recently was partly revised for the one with its origin band at T₀ = 7755 cm⁻¹ and reconfirmed for the others at T₀ = 9625 and 11,395 cm⁻¹. Energy splitting by spin-orbit coupling between the pair of electronic energy levels in the ground state of bismuth trimer, Bi₃, both having a totally symmetric vibrational mode of frequency at ω(e)" = 150 cm⁻¹, was determined to be 1870 ± 1.5 cm⁻¹. Transitions from the pair of electronically excited states, locating at T₀ = 8470 and 9625 cm⁻¹ above the ground state and separated by spin–orbit coupling of 1155 cm⁻¹, have relatively long decay constants of τ ∼0.2 and ∼0.1 ms, respectively. PMID:25357154

  16. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  17. Quadrupole scattering in PrAl2

    NASA Astrophysics Data System (ADS)

    Sablik, M. J.; Pureur, P.; Creuzet, G.; Fert, A.; Levy, P. M.

    1983-10-01

    We derive the spontaneous anisotropy of the resistivity of the ferromagnetic compound PrAl2 from magnetoresistance measurements on a single crystal of PrAl2. We ascribe this spontaneous anisotropy of the resistivity to scattering of the conduction electrons by the thermal quadrupole disorder and we account for our experimental results by using the theoretical model previously developed by us. We find that quadrupole scattering gives a very important contribution to the total magnetic disorder (spin and quadrupole) resistivity but that only a small part of this quadrupole contribution is anisotropic.

  18. Magnetic properties of ISABELLE superconducting quadrupoles

    SciTech Connect

    Willen, E; Engelmann, R; Greene, A F; Herrera, J; Jaeger, K; Kirk, H; Robins, K

    1981-01-01

    A number of superconducting quadrupole magnets have been constructed in the ISABELLE project during the past year. With these quadrupoles, it was intended to test construction techniques, magnet performance and measuring capability in an effort to arrive at a quadrupole design satisfactory for use in the storage ring accelerator. While these magnets are designed to have dimensions and field properties close to those needed for regular cell ISABELLE quadrupoles, no effort was made to make them identical to one another. This report details the performance characteristics of one of these magnets, MQ3005.

  19. Assessment of the accuracy of shape-consistent relativistic effective core potentials using multireference spin-orbit configuration interaction singles and doubles calculations of the ground and low-lying excited states of U(4+) and U(5+).

    PubMed

    Beck, Eric V; Brozell, Scott R; Blaudeau, Jean-Philippe; Burggraf, Larry W; Pitzer, Russell M

    2009-11-12

    Multireference spin-orbit configuration interaction calculations were used to determine the accuracy of 60-, 68-, and 78-electron shape-consistent relativistic effective core potentials (RECPs) for uranium V and VI ground and low-lying excited states. Both 5f(n) and (5f6d)(n), (n = 1, 2) reference spaces were investigated using correlation-consistent double-zeta quality basis sets. Accuracy was assessed against gas-phase experimental spectra. The 68-electron RECP calculations yielded low relative and rms errors and predicted the empirical ordering of states most consistently. PMID:19888778

  20. Density Functional Theory in Transition-Metal Chemistry: Relative Energies of Low-Lying States of Iron Compounds and the Effect of Spatial Symmetry Breaking

    SciTech Connect

    Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.

  1. Application of equation-of-motion coupled-cluster methods to low-lying singlet and triplet electronic states of HBO and BOH

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Li, Se; Yamaguchi, Yukio; Schaefer, Henry F.; Crawford, T. Daniel; King, Rollin A.; Peterson, Kirk A.

    2005-06-01

    The equilibrium structures and physical properties of the X˜Σ+1 linear electronic states, linear excited singlet and triplet electronic states of hydroboron monoxide (HBO) (ÃΣ-1, B˜Δ1, ãΣ+3, and b˜Δ3) and boron hydroxide (BOH) (ÃΣ+1, B˜Π1, and b˜Π3), and their bent counterparts (HBO ãA'3, b˜A″3, ÃA″1, B˜A'1 and BOH X˜A'1, b˜A'3, c˜A″3, ÃA'1, B˜A'1, C˜A″1) are investigated using excited electronic state ab initio equation-of-motion coupled-cluster (EOM-CC) methods. A new implementation of open-shell EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled-cluster wave functions with single and double excitations (CCSD), single, double, and iterative partial triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed with the correlation-consistent quadruple and quintuple zeta basis sets. The linear HBO X˜Σ+1 state is predicted to lie 48.3kcalmol-1 (2.09eV) lower in energy than the BOH X˜Σ+1 linear stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted to lie 3.7kcalmol-1 (0.16eV). With a harmonic zero-point vibrational energy correction, the HBO X˜Σ+1-BOHX˜A'1 energy difference is 45.2kcalmol-1 (1.96eV). The lowest triplet excited electronic state of HBO, ãA'3, has a predicted excitation energy (Te) of 115kcalmol-1 (4.97eV) from the HBO ground state minimum, while the lowest-bound BOH excited electronic state, b˜A'3, has a Te of 70.2kcalmol-1 (3.04eV) with respect to BOH X˜A'1. The Te values predicted for the lowest singlet excited states are ÃA″1←X˜Σ+1=139kcalmol-1 (6.01eV) for HBO and ÃA'1←X˜A'1=102kcalmol-1 (4.42eV) for BOH. Also for BOH, the triplet vertical transition energies are b˜A'3←X˜A'1=71.4kcalmol-1 (3.10eV) and c˜A″3←X˜A'1=87.2kcalmol-1 (3.78eV).

  2. Analysis of manifestation of strong quadrupole light-molecule interaction in the SEHR spectra

    SciTech Connect

    Polubotko, A. M.

    2011-11-15

    It is demonstrated that appearance of strong lines in surface-enhanced hyper-Raman (SEHR) spectra of phenazine and pyrazine, which are associated with totally symmetric vibrations, as well as other details of these spectra, can be explained using the dipole-quadrupole theory. The main point of this theory is the concept of strong quadrupole interaction of light with molecules, which arises in surface fields strongly varying in space near a rough metal surface. The theoretical results make it possible to correctly interpret the SEHR spectra of phenazine and pyrazine (namely, the emergence of the strong lines due to totally symmetric vibrations that are forbidden in usual hyper-Raman scattering), as well as other lines in the spectrum.

  3. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  4. Measurements of ground motion and magnet vibrations at the APS

    SciTech Connect

    Shiltsev, V.

    1996-09-01

    This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators.

  5. Vibrational rainbows

    SciTech Connect

    Drolshagen, G.; Mayne, H.R.; Toennies, J.P.

    1981-07-01

    We extend the theory of inelastic rainbows to include vibrationally inelastic scattering, showing how the existence of vibrational rainbows can be deduced from collinear classical scattering theory. Exact close-coupling calculations are carried out for a breathing sphere potential, and rainbow structures are, in fact, observed. The location of the rainbows generally agrees well with the classical prediction. In addition, the sensitivity of the location of the rainbow to changes in the vibrational coupling has been investigated. It is shown that vibrational rainbows persist in the presence of anisotropy. Experimental results (R. David, M. Faubel, and J. P. Toennies, Chem. Phys. Lett. 18, 87 (1973)) are examined for evidence of vibrational rainbow structure, and it is shown that vibrational rainbow theory is not inconsistent with these results.

  6. An improved model electronic Hamiltonian for potential energy surfaces and spin−orbit couplings of low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+}

    SciTech Connect

    Iuchi, Satoru Koga, Nobuaki

    2014-01-14

    With the aim of exploring excited state dynamics, a model electronic Hamiltonian for several low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+} complex [S. Iuchi, J. Chem. Phys. 136, 064519 (2012)] is refined using density-functional theory calculations of singlet, triplet, and quintet states as benchmarks. Spin−orbit coupling elements are also evaluated within the framework of the model Hamiltonian. The accuracy of the developed model Hamiltonian is determined by examining potential energies and spin−orbit couplings at surface crossing regions between different spin states. Insights into the potential energy surfaces around surface crossing regions are also provided through molecular dynamics simulations. The results demonstrate that the constructed model Hamiltonian can be used for studies on the d−d excited state dynamics of [Fe(bpy){sub 3}]{sup 2+}.

  7. Electromagnetic properties of vibrational bands in 170Er

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Golubev, P.; Mattsson, K.; Rudolph, D.; de Angelis, G.; Aydin, S.; Deo, A. Y.; Farnea, E.; Farrelly, G.; Geibel, K.; He, C.; Iwanicki, J.; Kempley, R.; Marginean, N.; Menegazzo, R.; Mengoni, D.; Orlandi, R.; Podolyak, Z.; Recchia, F.; Reiter, P.; Sahin, E.; Smith, J.; Söderström, P. A.; Torres, D. A.; Tveten, G. M.; Ur, C. A.; Valiente-Dobón, J. J.; Wendt, A.; Zielińska, M.

    2011-02-01

    Excited states of the nucleus 170Er have been studied by Coulomb excitation using the GASP γ -ray detector system at the Laboratori Nazionali di Legnaro. The ground-state band along with a low-lying ensuremath K^{π}=0^+ band and γ -vibrational band were populated during the experiment. Based on the measured γ -ray yields, a set of interband and intraband matrix elements has been extracted using the Coulomb excitation code GOSIA. The resulting E2 matrix elements are compared to collective model predictions.

  8. How do nuclei really vibrate or rotate

    SciTech Connect

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated.

  9. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  10. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  11. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components. PMID:25173260

  12. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  13. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  14. Radiofrequency quadrupole accelerators and their applications

    SciTech Connect

    Stokes, R.H.; Wangler, T.P.

    1988-01-01

    This review of Radiofrequency Quadrupole (RFQ) Acelerators contains a short history of Soviet and Los Alamos RFQ developments, RFQ beam dynamics, resonator structures, and the characteristics and performance of RFQ accelerators. (AIP)

  15. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  16. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  17. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  18. Quadrupole magnet field mapping for FRIB

    NASA Astrophysics Data System (ADS)

    Portillo, M.; Amthor, A. M.; Chouhan, S.; Cooper, K.; Gehring, A.; Hausmann, M.; Hitchcock, S.; Kwarsick, J.; Manikonda, S.; Sumithrarachchi, C.

    2013-12-01

    Extensive magnetic field map measurements have been done on a newly built superconducting quadrupole triplet with sextupole and octupole coils nested within every quadrupole. The magnetic field multipole composition and fringe field distributions have been analyzed and an improved parameterization of the field has been developed within the beam transport simulation framework. Parameter fits yielding standard deviations as low as 0.3% between measured and modeled values are reported here.

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  20. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  1. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs.

  2. Low-lying electronic states of carotenoids.

    PubMed

    DeCoster, B; Christensen, R L; Gebhard, R; Lugtenburg, J; Farhoosh, R; Frank, H A

    1992-08-28

    Four all-trans carotenoids, spheroidene, 3,4-dihydrospheroidene, 3,4,5,6-tetrahydrospheroidene, and 3,4,7,8-tetrahydrospheroidene, have been purified using HPLC techniques and analyzed using absorption, fluorescence and fluorescence excitation spectroscopy of room temperature solutions. This series of molecules, for which the extent of pi-electron conjugation decreases from 10 to seven carbon-carbon double bonds, exhibits a systematic crossover from S2----S0 (1(1)Bu----1(1)Ag) to S1----S0 (2(1)Ag----1(1)Ag) emission with decreasing chain length. Extrapolation of the S1----S0 transition energies indicates that the 2(1)Ag states of longer carotenoids have considerably lower energies than previously thought. The energies of the S1 states of spheroidenes and other long carotenoids are correlated with the S1 energies of their chlorophyll partners in antenna complexes of photosynthetic systems. Implications for energy transfer in photosynthetic antenna are discussed. PMID:1510992

  3. Vibration isolation

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on vibration isolation are presented. Techniques to control and isolate centrifuge disturbances were identified. Topics covered include: disturbance sources in the microgravity environment; microgravity assessment criteria; life sciences centrifuge; flight support equipment for launch; active vibration isolation system; active balancing system; and fuzzy logic control.

  4. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  5. Vibrational Coupling

    SciTech Connect

    2011-01-01

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  6. Quantum Monte Carlo for vibrating molecules

    SciTech Connect

    Brown, W.R. |

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.

  7. Induced CMB quadrupole from pointing offsets

    SciTech Connect

    Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  8. Induced CMB quadrupole from pointing offsets

    NASA Astrophysics Data System (ADS)

    Moss, Adam; Scott, Douglas; Sigurdson, Kris

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y2, -1 component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  9. Seawater-overwash impacts on freshwater-lens water supplies of low-lying oceanic islands: example from Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Voss, C. I.; Gingerich, S. B.

    2015-12-01

    Low-lying oceanic islands host thin freshwater lenses subject to long-term aquifer salinization by seawater overwash. The lens is often the sole-source water supply for inhabitants. As maximum elevation for these islands is only a few meters above sea level, overwash can occur during high tides and storm surges. Sea level rise due to climate change will make overwash events even more common. The thin freshwater lenses, a few meters thick, are underlain by seawater, so pumping must be done carefully, often with horizontal skimming wells. Even a small amount of downward seawater infiltration from an overwash event can render the water supply non-potable. Where permeability is high, seawater infiltrates quickly, but seawater that infiltrates lower-permeability zones may remain for many months causing groundwater to remain non-potable, leaving residents without a reliable freshwater source. Initial post-overwash salinization is driven by the higher density of the invading saltwater, which sinks and mixes into the fresher water in potentially-complex patterns determined by: distribution of flooding and post-flood ponding, locations of permeable paths, and the inherently complex flow fields generated when fluid of higher density overlies lower-density fluid. The flow patterns cannot generally be measured or predicted in detail. This study develops basic understanding of overwash salinization processes impacting water supply on low-level islands, using a rare example of a monitored seawater overwash event that occurred in December 2008 at Roi-Namur Island in Kwajalein Atoll, Republic of the Marshall Islands, in which the salinity evolution of well water was measured. Due to typical lack of field data on such islands, a set of plausible alternative simulation-model descriptions of the hydrogeology and overwash event are created for analysis of the monitored salinization and recovery. Despite inability to know the 'true and complete' description of the event and the

  10. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    NASA Astrophysics Data System (ADS)

    Nadirbekov, M. S.; Minkov, N.; Strecker, M.; Scheid, W.

    2016-03-01

    In this work, we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom, we suppose that the structure of the positive- and negative-parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity, we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  11. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  12. Vibrational solvatochromism and electrochromism. II. Multipole analysis.

    PubMed

    Lee, Hochan; Choi, Jun-Ho; Cho, Minhaeng

    2012-09-21

    Small infrared probe molecules have been widely used to study local electrostatic environment in solutions and proteins. Using a variety of time- and frequency-resolved vibrational spectroscopic methods, one can accurately measure the solvation-induced vibrational frequency shifts and the timescales and amplitudes of frequency fluctuations of such IR probes. Since the corresponding frequency shifts are directly related to the local electric field and its spatial derivatives of the surrounding solvent molecules or amino acids in proteins, one can extract information on local electric field around an IR probe directly from the vibrational spectroscopic results. Here, we show that, carrying out a multipole analysis of the solvatochromic frequency shift, the solvatochromic dipole contribution to the frequency shift is not always the dominant factor. In the cases of the nitrile-, thiocyanato-, and azido-derivatized molecules, the solvatochromic quadrupole contributions to the corresponding stretch mode frequency shifts are particularly large and often comparable to the solvatochromic dipole contributions. Noting that the higher multipole moment-solvent electric field interactions are short range effects in comparison to the dipole interaction, the H-bonding interaction-induced vibrational frequency shift can be caused by such short-range multipole-field interaction effects. We anticipate that the present multipole analysis method specifically developed to describe the solvatochromic vibrational frequency shifts will be useful to understand the intermolecular interaction-induced vibrational property changes and to find out a relationship between vibrational solvatochromism and electrochromism of IR probes in condensed phases. PMID:22998262

  13. Vibrational solvatochromism and electrochromism. II. Multipole analysis

    NASA Astrophysics Data System (ADS)

    Lee, Hochan; Choi, Jun-Ho; Cho, Minhaeng

    2012-09-01

    Small infrared probe molecules have been widely used to study local electrostatic environment in solutions and proteins. Using a variety of time- and frequency-resolved vibrational spectroscopic methods, one can accurately measure the solvation-induced vibrational frequency shifts and the timescales and amplitudes of frequency fluctuations of such IR probes. Since the corresponding frequency shifts are directly related to the local electric field and its spatial derivatives of the surrounding solvent molecules or amino acids in proteins, one can extract information on local electric field around an IR probe directly from the vibrational spectroscopic results. Here, we show that, carrying out a multipole analysis of the solvatochromic frequency shift, the solvatochromic dipole contribution to the frequency shift is not always the dominant factor. In the cases of the nitrile-, thiocyanato-, and azido-derivatized molecules, the solvatochromic quadrupole contributions to the corresponding stretch mode frequency shifts are particularly large and often comparable to the solvatochromic dipole contributions. Noting that the higher multipole moment-solvent electric field interactions are short range effects in comparison to the dipole interaction, the H-bonding interaction-induced vibrational frequency shift can be caused by such short-range multipole-field interaction effects. We anticipate that the present multipole analysis method specifically developed to describe the solvatochromic vibrational frequency shifts will be useful to understand the intermolecular interaction-induced vibrational property changes and to find out a relationship between vibrational solvatochromism and electrochromism of IR probes in condensed phases.

  14. Laboratory automation of a quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, J. M.

    1983-12-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  15. Laboratory Automation of a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Thompson, J. M.

    1983-01-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  16. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  17. The large quadrupole of water molecules.

    PubMed

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshiko

    2011-04-01

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical∕molecular mechanical (QM∕MM) calculations at the MP2∕aug-cc-pVQZ level on a B3LYP∕aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM∕MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM∕MM multipoles is much closer than that from the site models to the potential from the QM∕MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment. PMID:21476758

  18. The Large Quadrupole of Water Molecules

    SciTech Connect

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshhiko

    2011-04-07

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical/molecular mechanical (QM/MM) calculations at the MP2/aug-cc-pVQZ level on a B3LYP/aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM/MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM/MM multipoles is much closer than that from the site models to the potential from the QM/MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment

  19. The large quadrupole of water molecules

    NASA Astrophysics Data System (ADS)

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshiko

    2011-04-01

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical/molecular mechanical (QM/MM) calculations at the MP2/aug-cc-pVQZ level on a B3LYP/aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM/MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM/MM multipoles is much closer than that from the site models to the potential from the QM/MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment.

  20. Structures, energetics and vibrational spectra of (H2O)32 clusters: a journey from model potentials to correlated theory

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Khire, Subodh S.; Gadre, Shridhar R.

    2015-10-01

    Empirical model potentials are found to be very useful for generating most competitive minima of large water clusters, whereas correlated (e.g. second order-Møller-Plesset perturbation (MP2) theory or higher) calculations are necessary for predicting their accurate energetics and vibrational features. The present study reports the structures and energetics of (H2O)32 clusters at MP2 level using aug-cc-pvDZ basis set, starting with low-lying structures generated from model potentials. Such high-end and accurate calculations are made feasible by the cost-effective fragment-based molecular tailoring approach (MTA) in conjunction with the grafting procedure. The latter is found to yield electronic energies with a sub-millihartree accuracy with reference to their full calculation counterparts. The vibrational spectra of nine low-lying (H2O)32 isomers are obtained from the corresponding MTA-based Hessian matrix. All these low-lying isomers show almost similar spectral features, which are in fair agreement with the experiment. The experimental spectrum of (H2O)32 is thus better understood from the vibrational features of this set of very closely spaced isomers. The present case study of (H2O)32 clearly demonstrates the efficacy in obtaining accurate structures, energetics and spectra at correlated level of theory by combining model potential-based structures with fragmentation methods.

  1. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-07-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  2. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  3. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed. PMID:24806277

  4. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS.

    SciTech Connect

    PARKER,B.

    2001-06-18

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing.

  5. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  6. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  7. Pairing and vibrational correlations in the higher Tamm-Dancoff approximation (HTDA) approach

    SciTech Connect

    Naiedja, H.; Quentin, P.; Samsoen, D.

    2010-04-15

    The higher Tamm-Dancoff Approximation (HTDA) is extended to include vibrational correlations with or without pairing correlations. The residual interaction in use is of the delta (in the T=1 channel) plus multipole-multipole type. In this paper we have limited our study to the mere case of isoscalar quadrupole correlations. The approach is illustrated by the consideration of ground state and isoscalar giant quadrupole resonance properties in the {sup 40}Ca nucleus.

  8. Effect of deformation and vibration on the α decay half-life

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Gholami, E.

    2016-05-01

    In this work, we expand upon our previous study of the effect of surface vibrations (low-lying vibrational states) on the calculation of penetration probability in α decay of spherical isotopes [Phys. Rev. C 91, 034611 (2015), 10.1103/PhysRevC.91.034611]. For this pupose, the Coulomb and proximity potential model, taking into account the ground state deformations of the involved nuclei along with the surface vibrations in the daughter nucleus, is used to evaluate the α decay probability. The results are compared with those obtained with a spherical potential barrier, which shows the dramatic effect of employing the ground state deformations in case of deformed nuclei. As well, inclusion of surface vibrations gives rise to an increase in the value of tunneling probability in better agreement with experimental data.

  9. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  10. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    DOE PAGESBeta

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  11. Coupling of nuclear quadrupole and octupole degrees of freedom in an angular momentum dependent potential of two deformation variables

    SciTech Connect

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    2006-04-26

    We propose a collective rotation-vibration Hamiltonian of nuclei in which the axial quadrupole {beta}2 and octupole {beta}3 variables are coupled through the centrifugal interaction. We consider that the system oscillates between positive and negative {beta}3-values by rounding a potential core in the ({beta}2,{beta}3)- space. We examine the effect of the 'rounding' in the structure of the spectrum.

  12. Density functional theory calculations of nuclear quadrupole coupling constants with calibrated 14N quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sicilia, E.; de Luca, G.; Chiodo, S.; Russo, N.; Calaminici, P.; Koster, A. M.; Jug, K.

    Density functional calculations of the electric field gradient tensor at the nitrogen nucleus in 13 test molecules, containing 14 nitrogen sites, have been performed using the linear combination of Gaussian-type orbital Kohn-Sham density functional theory (LCGTO-KSDFT) approach. Local and gradient corrected functionals were used for all-electron calculations. All the molecular structures were optimized at their respective levels of theory with extended basis sets. Calibrated 14N nuclear quadrupole moments were obtained through a fitting procedure between calculated electric field gradients and experimental nuclear quadrupole coupling constants of the test set of molecules for each basis set and functional considered. With these calibrated 14N nuclear quadrupole moments, the nuclear quadrupole coupling constants of the following selected systems were determined: fluoromethylisonitrile, pyridine, pyrrole, imadazole, pyrazole, 1,8-bis(dimethyl-amino)naphthalene, cyclotetramethylenetetranitramine, cocaine and heroin.

  13. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  14. Modal response of 4-rod type radio frequency quadrupole linac

    SciTech Connect

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-15

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  15. Structure and quadrupole coupling measurements on ClF3

    NASA Astrophysics Data System (ADS)

    Haubrich, S. T.; Roehrig, M. A.; Kukolich, S. G.

    1990-07-01

    Seventy-nine new microwave transitions for 35ClF3 and 37ClF3 in the 6-18 GHz range were measured using a Flygare-Balle-type spectrometer. Rotational transition frequencies were used to obtain ``effective'' structure parameters for the ground vibrational state zCl-F (along C2 axis)=1.5985(4) Å, rCl-F =1.700 73(5) Å and ΘF-Cl-F =87.48(4)°. Analysis of hyperfine structure due to chlorine quadrupole coupling and observed transition frequencies yield the following molecular parameters for 35ClF3: A=13 748.25(1) MHz, B=4611.719(2) MHz, C=3448.629(3) MHz, eQqaa=82.03(3) MHz, and eQqbb=65.35(2) MHz. Molecular parameters obtained for 37ClF3 are: A=13 653.54(1) MHz, B=4611.866(2) MHz, C=3442.719(4) MHz, eQqaa=64.66(4) MHz, and eQqbb=51.53(3) MHz.

  16. VIBRATIONALLY EXCITED C{sub 6}H

    SciTech Connect

    Gottlieb, C. A.; McCarthy, M. C.; Thaddeus, P.

    2010-08-15

    Rotational spectra of the linear carbon chain radical C{sub 6}H in two low-lying excited vibrational states were observed both at millimeter wavelengths in a low-pressure glow discharge and at centimeter wavelengths in a supersonic molecular beam. Two series of harmonically related lines with rotational constants within 0.3% of the {sup 2{Pi}} ground state were assigned to the {sup 2{Sigma}} and {sup 2{Delta}} vibronic components of an excited bending vibrational level. Measurements of the intensities of the lines in the glow discharge indicate that the {sup 2{Sigma}} component lies very close to ground, but the {sup 2{Delta}} component is much higher in energy. The standard Hamiltonian for an isolated {sup 2{Delta}} state with five spectroscopic constants reproduces the observed rotational spectrum, but several high-order distortion terms in the spin-rotation interaction are needed to reproduce the spectrum of the {sup 2{Sigma}} component in C{sub 6}H and C{sub 6}D. The derived spectroscopic constants allow astronomers to calculate the rotational spectra of the {sup 2{Sigma}} and {sup 2{Delta}} states up to 260 GHz to within 0.1 km s{sup -1} or better in equivalent radial velocity.

  17. Permanent-magnet quadrupoles in RFQ Linacs

    SciTech Connect

    Lysenko, W.P.; Wang, T.F.

    1985-10-01

    We investigated the possibility of increasing the current-carrying capability of radio-frequency quadrupole (RFQ) linear accelerators by adding permanentmagnet quadrupole (PMQ) focusing to the existing transverse focusing provided by the rf electric field. Increased transverse focusing would also allow shortening RFQ linacs by permitting a larger accelerating gradient, which is normally accompanied by an undesirable increased transverse rf defocusing effect. We found that PMQs were not helpful in increasing the transverse focusing strength in an RFQ. This conclusion was reached after some particle tracing simulations and some analytical calculations. In our parameter regime, the addition of the magnets increases the betatron frequency but does not result in improved focusing because the increased flutter more than offsets the gain from the increased betatron frequency.

  18. Nuclear quadrupole resonance single-pulse echoes.

    PubMed

    Prescott, David W; Miller, Joel B; Tourigny, Chris; Sauer, Karen L

    2008-09-01

    We report the first detection of a spin echo after excitation of a powder sample by a single pulse at the resonance frequency during nuclear quadrupole resonance (NQR). These echoes can occur in samples that have an inhomogeneously broadened line, in this case due to the distribution of electric field gradients. The echoes are easily detectable when the Rabi frequency approaches the linewidth and the average effective tipping angle is close to 270 degrees. When limited by a weak radio-frequency field, the single-pulse echo can be used to increase the signal to noise ratio over conventional techniques. These effects can be used to optimize the NQR detection of contraband containing quadrupole nuclei and they are demonstrated with glycine hemihydrochloride and hexhydro-1,3,5-trinitro-1,3,5-triazine (RDX). PMID:18571445

  19. Quench antennas for RHIC quadrupole magnets

    SciTech Connect

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-05-01

    Quench antennas for RHIC quadrupole magnets are being developed jointly by KEK and BNL. A quench antenna is a device to localize a quench origin using arrays of pick-up coils lined up along the magnet bore. Each array contains four pick-up coils: sensitive to normal sextupole, skew sextupole, normal octupole, and skew octupole field. This array configuration allows an azimuthal localization of a quench front while a series of arrays gives an axial localization and a quench propagation velocity. Several antennas have been developed for RHIC magnets and they are now routinely used for quench tests of production magnets. The paper discusses the description of the method and introduces a measured example using an antenna designed for quadrupole magnets.

  20. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  1. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  2. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  3. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  4. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low-lying excited states and radiationless deactivation. Part I: A mechanistic overview of the parent system ABN.

    PubMed

    Segado, Mireia; Gómez, Isabel; Reguero, Mar

    2016-03-01

    Recent theoretical and experimental studies on the Intramolecular Charge Transfer (ICT) reaction of some members of the aminobezonitrile family (ABN) suggest the involvement of a (π-σ*) excited state (called ICT(CN) in this work) in the ICT process and the existence of a partially twisted ICT species that could be responsible for the anomalous fluorescence observed. These suggestions made us to revise our previous study on the photophysics of ABN and dimethyl-ABN (DMABN), based on the analysis of the potential energy surfaces of the low-lying excited states by means of ab initio calculations, using the CASSCF/CASPT2 protocol. We have first focused our attention to ABN. We have found that the (π-σ*) excited state can be in fact an intermediary state in the path to populate the ICT bright state, although its involvement in the process is not very probable. Our results suggest that the ICT most stable species is the twisted ICT(TICT) and that the partially twisted ICT minimum found in previous studies could be an artefact of the computational method. We have also found that radiationless deactivation is a competitive reaction that must be taken into account to explain the fluorescence patterns of these systems. To confirm our theories, we have also studied other systems with a similar architecture but with a very different luminescence behaviour: dimethyl-ABN, and the 2,3,4,5-tetrafluoro derivatives of ABN and DMABN (ABN-4F and DMABN-4F). The extension of the work and the different approaches in the study of the parent system and of the derivatives make the division of the work in two parts advisable. Part I collects the characterization of the minima and reaction paths connecting the critical points of the potential energy surfaces of the states involved in the ICT reaction of ABN. We have obtained, for the first time, the pathways of radiationless deactivation for this compound. We have also computed transition energies from the excited minima, to interpret the

  5. Modeled changes in extreme wave climates in the Pacific Ocean during the 21st century and implications for low-lying U.S. and U.S.-affiliated atoll islands

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.

    2014-12-01

    . As most atoll islets accrete during large wave events, decreasing wave heights during other seasons may inhibit atoll islet accretion such that the low-lying islets may not be able to keep up with projected sea-level rise.

  6. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  7. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  8. Gas phase vibrational spectroscopy of cold (TiO 2 ) n - (n = 3-8) clusters

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Song, Xiaowei; Fagiani, Matias R.; Debnath, Sreekanta; Gewinner, Sandy; Schöllkopf, Wieland; Neumark, Daniel M.; Asmis, Knut R.

    2016-03-01

    We report infrared photodissociation (IRPD) spectra for the D2-tagged titanium oxide cluster anions (TiO 2 ) n - with n = 3-8 in the spectral region from 450 to 1200 cm-1. The IRPD spectra are interpreted with the aid of harmonic spectra from BP86/6-311+G* density functional theory calculations of energetically low-lying isomers. We conclusively assign the IRPD spectra of the n = 3 and n = 6 clusters to global minimum energy structures with Cs and C2 symmetry, respectively. The vibrational spectra of the n = 4 and n = 7 clusters can be attributed to contributions of at most two low-lying structures. While our calculations indicate that the n = 5 and n = 8 clusters have many more low-lying isomers than the other clusters, the dominant contributions to their spectra can be assigned to the lowest energy structures. Through comparison between the calculated and experimental spectra, we can draw conclusions about the size-dependent evolution of the properties of (TiO 2 ) n - clusters, and on their potential utility as model systems for catalysis on a bulk TiO2 surface.

  9. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  10. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Nixon, K. L.; Oliveira, E. M. de; Lima, M. A. P.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Silva, G. B. da; Brunger, M. J.

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  11. Thermal conductance associated with six types of vibration modes in quantum wire modulated with quantum dot

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Fang; Wang, Xin-Jun; Chen, Li-Qun; Li, Jian-Bo; Zhou, Wu-Xing; Zhang, Gui; Chen, Ke-Qiu

    2014-06-01

    We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.

  12. Status of vibrational structure in {sup 62}Ni

    SciTech Connect

    Chakraborty, A.; Orce, J. N.; Ashley, S. F.; Crider, B. P.; Elhami, E.; McEllistrem, M. T.; Mukhopadhyay, S.; Brown, B. A.; Peters, E. E.; Singh, B.; Yates, S. W.

    2011-03-15

    Measurements consisting of {gamma}-ray excitation functions and angular distributions were performed using the (n,n{sup '{gamma}}) reaction on {sup 62}Ni. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From {gamma}-ray angular distributions, the lifetimes of levels up to {approx}3.8 MeV in excitation energy were extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities were compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the fp shell configuration space. Two-phonon states were found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z=28 proton core excitations played a major role in understanding the observed structure.

  13. Quantum vibrational dynamics of the Ar2ICl cluster

    NASA Astrophysics Data System (ADS)

    Valdés, Álvaro; Prosmiti, Rita

    2016-03-01

    Quantum mechanical multiconfiguration time-dependent Hartree (MCTDH) calculations are presented for the Ar2ICl cluster. The Hamiltonian operator is expressed in satellite coordinates, with its potential term being represented as a sum of the three-body ArICl ab initio parameterized interactions plus the Ar-Ar ones. The potential surface shows different type of low-lying minima (global and local), that influence the vibrational dynamics of the system. The vibrational ground state properties and specific vibrationally excited states are obtained from improved relaxation MCTDH calculations employing a large number of basis set functions, especially for the angular part, to achieve convergence. By analyzing the spatial density distributions of the vibrational states we are able to characterize the corresponding states to different isomers, such as tetrahedral, linear, bending type ones. The binding energy of each isomer is also computed, and they contribute to evaluate their relative stability, as well as the importance of the underlying multiple minima of the potential surface.

  14. Spatially periodic radio-frequency quadrupole focusing linac

    NASA Astrophysics Data System (ADS)

    Kolomiets, A. A.; Plastun, A. S.

    2015-12-01

    The new design for a spatially periodical rf quadrupole focusing linac is proposed. It consists of accelerating gaps formed between conventional cylindrical drift tubes, between drift tubes and rf quadrupoles with nonzero axial potential, and inside these rf quadrupoles, formed in the same way as in a conventional radio-frequency quadrupole (RFQ) linac with modulated electrodes. Such a combination provides both higher energy gain rate than conventional RFQ and stability of transverse motion for ion beams. The structure can be designed using various combinations of quadrupoles and drift tubes. Some options are considered in the paper using the smooth approximation method and computer simulation of beam dynamics. Transverse stability of particles has been studied. The proposed structure can provide suppression of rf defocusing effects on transverse beam dynamics. Some limitations of the spatially periodic rf quadrupole structure are mentioned.

  15. Ab initio correlated calculations of rare-gas dimer quadrupoles

    NASA Astrophysics Data System (ADS)

    Donchev, Alexander G.

    2007-10-01

    This paper reports ab initio calculations of rare gas ( RG=Kr , Ar, Ne, and He) dimer quadrupoles at the second order of Møller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG2 quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG2 quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG3 quadrupoles is discussed.

  16. Decay of quadrupole-octupole 1- states in 40Ca and 140Ce

    NASA Astrophysics Data System (ADS)

    Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.

    2016-03-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.

  17. Effective field theory for nuclear vibrations with quantified uncertainties

    NASA Astrophysics Data System (ADS)

    Coello Pérez, E. A.; Papenbrock, T.

    2015-12-01

    We develop an effective field theory (EFT) for nuclear vibrations. The key ingredients—quadrupole degrees of freedom, rotational invariance, and a breakdown scale around the three-phonon level—are taken from data. The EFT is developed for spectra and electromagnetic moments and transitions. We employ tools from Bayesian statistics for the quantification of theoretical uncertainties. The EFT consistently describes spectra and electromagnetic transitions for 62Ni,100,98Ru,108,106Pd, 110,112,114Cd, and 118,120,122Te within the theoretical uncertainties. This suggests that these nuclei can be viewed as anharmonic vibrators.

  18. Aberrations caused by mechanical misalignments in electrostatic quadrupole lens systems

    NASA Astrophysics Data System (ADS)

    Baranova, L. A.; Read, F. H.

    Image aberrations resulting from small misalignments in quadrupole lenses multiplets have been analysed. Analytical formulas for the coefficients of the beam displacement, astigmatism and coma associated with misalignments in a general quadrupole lens system have been derived. Numerical computations of systems of three and four quadrupole lenses have also been carried out. The aberration figures obtained for systems with and without a mechanical defect are compared. The aberration coefficients that have been obtained can be used for estimating tolerance limits for lens misalignments.

  19. Two methods of computing molecular dipole and quadrupole derivatives

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Zanasi, R.; Fowler, P. W.

    1988-01-01

    Polarized basis sets are used to compute dipole and quadrupole derivatives of the hydrides LiH, CH4, NH3, H2O, and HF. Analytic calculation of derivatives is compared with calculation via the dipole and quadrupole electric shielding tensors. With these basis sets, violation of the Hellmann-Feynman theorem is only about 0.01 a.u. in dipole derivatives and 0.02 a.u. in quadrupole derivatives.

  20. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  1. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  2. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  3. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  4. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  5. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  6. Classical trajectories and RRKM modeling of collisional excitation and dissociation of benzylammonium and tert-butyl benzylammonium ions in a quadrupole-hexapole-quadrupole tandem mass spectrometer.

    PubMed

    Knyazev, Vadim D; Stein, Stephen E

    2010-03-01

    Collision-induced dissociation of the benzylammonium and the 4-tert-butyl benzylammonium ions was studied experimentally in an electrospray ionization quadrupole-hexapole-quadrupole tandem mass spectrometer. Ion fragmentation efficiencies were determined as functions of the kinetic energy of ions and the collider gas (argon) pressure. A theoretical Monte Carlo model of ion collisional excitation, scattering, and decomposition was developed. The model includes simulation of the trajectories of the parent and the product ions flight through the hexapole collision cell, quasiclassical trajectory modeling of collisional activation and scattering of ions, and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the parent ion decomposition. The results of modeling demonstrate a general agreement between calculations and experiment. Calculated values of ion fragmentation efficiency are sensitive to initial vibrational excitation of ions, scattering of product ions from the collision cell, and distribution of initial ion velocities orthogonal to the axis of the collision cell. Three critical parameters of the model were adjusted to reproduce the experimental data on the dissociation of the benzylammonium ion: reaction enthalpy and initial internal and translational temperatures of the ions. Subsequent application of the model to decomposition of the t-butyl benzylammonium ion required adjustment of the internal ion temperature only. Energy distribution functions obtained in modeling depend on the average numbers of collisions between the ion and the atoms of the collider gas and, in general, have non-Boltzmann shapes. PMID:20060316

  7. An Investigation of low beta triplet vibrational issues at Fermilab's Collider Detector

    SciTech Connect

    Michael W. McGee

    2004-06-08

    The vibrational aspects of recent disturbances at the low beta focusing quadrupoles, which caused proton beam loss at the Collider Detector at Fermilab (CDF), are discussed. Two low beta focusing quadrupoles are supported by a girder, which is extended over the CDF collision hall pit on each side. The low beta girder has a ledge mount support at an alcove's face and two Invar rods near the opposite end. Forced response measurements were taken on the low beta girder, where the power spectral density (PSD) function was used to obtain RMS displacement. The effects of local excitation due to operating equipment and near-field excitation due to ambient ground motion caused by local traffic are examined. The discussion explores dynamic response characteristics of the low beta quadrupoles and supporting girder using beam loss as the vibrational stability criteria. This paper also presents practical problem-solving approaches for similar accelerator components.

  8. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  9. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  10. Optical emission and vibrational modes of uniform pentacene monolayers (*)

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy; Blanchet, Graciela; Pinczuk, Aron

    2006-03-01

    Pentacene monolayers are probed by photoluminescence and resonant Raman spectroscopies below 10K. Monolayers grown on polymeric substrate of poly-alpha-methyl-styrene (PAMS) exhibit high uniformity within micron size clusters. These films show sharp exciton luminescence bands, and the energy of the exciton optical emission displays a red-shift as the average film thickness increases. The large resonance enhancements of Raman scattering intensities enable the measurements of low-lying (40- 200cm-1) optical lattice vibrations from these monolayers. These experiments demonstrate that luminescence and resonant Raman scattering from single pentacene monolayers are venues for probing 2D properties, studies of interface effects, and thin film characterization. (*) Supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award No. CHE-0117752 and by the New York State Office of Science, Technology, and Academic Research (NYSTAR), and by a research grant of the W. M. Keck Foundation.

  11. Free exciton emission and vibrations in pentacene monolayers

    NASA Astrophysics Data System (ADS)

    He, Rui

    2011-03-01

    Pentacene is a benchmark organic semiconductor material because of its potential applications in electronic and optoelectronic devices. Recently we demonstrated that optical and vibrational characterizations of pentacene films can be carried out down to the sub-monolayer limit. These milestones were achieved in highly uniform pentacene films that were grown on a compliant polymeric substrate. Films with thickness ranging from sub- monolayer to tens of monolayers were studied at low temperatures. The intensity of the free exciton (FE) luminescence band increases quadratically with the number of layers N when N is small. This quadratic dependence is explained as arising from the linear dependence of the intensity of absorption and the probability of emission on the number of layers N. Large enhancements of Raman scattering intensities at the FE resonance enable the first observations of low-lying lattice modes in the monolayers. The measured low- lying modes (in the 20 to 100 cm-1 range) display characteristic changes when going from a single monolayer to two layers. The Raman intensities by high frequency intra-molecular vibrations display resonance enhancement double-peaks when incident or scattered photon energies overlap the FE optical emission. The double resonances are about the same strength which suggests that Franck-Condon overlap integrals for the respective vibronic transitions have the same magnitude. The interference between scattering amplitudes in the Raman resonance reveals quantum coherence of the symmetry-split states (Davydov doublet) of the lowest intrinsic singlet exciton. These results demonstrate novel venues for ultra-thin film characterization and studies of fundamental physics in organic semiconductor structures. In collaboration with Nancy G. Tassi (Dupont), Graciela B. Blanchet (Nanoterra, Cambridge, MA), and Aron Pinczuk (Columbia University).

  12. Electric quadrupole excitations in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Calculations are presented for electric quadrupole excitations in relativistic nucleus-nucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei.

  13. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  14. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  15. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  16. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  17. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations. PMID:27104691

  18. Development of a quadrupole resonance confirmation system

    NASA Astrophysics Data System (ADS)

    Barrall, Geoffrey A.; Derby, Kevin A.; Drew, Adam J.; Ermolaev, Konstantine V.; Huo, Shouqin; Lathrop, Daniel K.; Petrov, Todor R.; Steiger, Matthew J.; Stewart, Stanley H.; Turner, Peter J.

    2004-09-01

    Quantum Magnetics has developed a Quadrupole Resonance (QR) system for the detection of anti-tank and anti-vehicle landmines. The QR confirmation sensor (QRCS) is a part of the Army GSTAMIDS Block 1 program and is designed to confirm the presence of landmines initially flagged by a primary sensor system. The ultimate goal is to significantly reduce the number of sites that require neutralization or other time consuming investigation into the presence of a landmine. Government tests in 2002 and 2003 demonstrated the performance of the system in a wide variety of conditions including high radio frequency interference (RFI) and piezo electric ringing (PER) environments. Field test results are presented along with an overall description of the system design and methods used to solve prior issues with RFI and PER.

  19. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  20. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  1. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  2. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  3. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling

    NASA Astrophysics Data System (ADS)

    Shaniv, R.; Akerman, N.; Ozeri, R.

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on mj2, where mj2 is the angular momentum of level |j ⟩ along the quantization axis, from large noisy shifts that are linear in mj, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4 D5 /2 level in 88Sr+ to be 2.97 3-0.033+0.026e a02 . Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  4. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  5. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  6. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  7. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  8. Surface hopping simulation of vibrational predissociation of methanol dimer

    NASA Astrophysics Data System (ADS)

    Jiang, Ruomu; Sibert, Edwin L.

    2012-06-01

    The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.

  9. Vibrational ratchets

    NASA Astrophysics Data System (ADS)

    Borromeo, M.; Marchesoni, F.

    2006-01-01

    Transport in one-dimensional symmetric devices can be activated by the combination of thermal noise and a biharmonic drive. For the study case of an overdamped Brownian particle diffusing on a periodic one-dimensional substrate, we distinguish two apparently different biharmonic regimes: (i) Harmonic mixing, where the two drive frequencies are commensurate and of the order of some intrinsic relaxation rate. Earlier predictions based on perturbation expansions seem inadequate to interpret our simulation results; (ii) Vibrational mixing, where one harmonic drive component is characterized by high frequency but finite amplitude-to-frequency ratio. Its effect on the device response to either a static or a low-frequency additional input signal is accurately reproduced by rescaling each spatial Fourier component of the substrate potential, separately. Contrary to common wisdom, based on the linear response theory, we show that extremely high-frequency modulations can indeed influence the response of slowly (or dc) operated devices, with potential applications in sensor technology and cellular physiology. Finally, the mixing of two high-frequency beating signal is also investigated both numerically and analytically.

  10. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  11. Renner-Teller interactions in the vibrational autoionization of polyatomic molecules.

    SciTech Connect

    Jungen, Ch.; Pratt, S. T.; Chemical Sciences and Engineering Division; Universite de Paris-Sud

    2008-01-01

    Vibrational autoionization induced by the Renner-Teller interaction in linear polyatomic molecules is considered in the context of the three-state electrostatic model developed by Gauyacq and Jungen [Mol. Phys. 41, 383 (1980)]. For small interactions, simple formulas are derived for the quantum defect matrix elements and the autoionization rates in terms of the more common Renner-Teller parameters derived from spectroscopic analyses of low-lying Rydberg states. These formulas should provide guidance for empirical fitting of quantum defect parameters to spectra of high Rydberg states. Consideration of typical values of the Renner-Teller parameters also allows the estimation of vibrational autoionization rates induced by these interactions. These estimates support the validity of the {Delta}v = -1 propensity rule for vibrational autoionization. Constraints on the vibrational autoionization rates for the symmetric stretching vibration are also discussed. In the following paper, electron capture by polyatomic molecular ions into vibrationally autoionizing Rydberg states is considered from the same perspective, and a simple formula is derived to allow the estimation of the effect of this process on dissociative recombination cross sections.

  12. Quadrupole and monopole transition properties of 0+2 in Gd isotopes

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Masayuki; Ueno, Tomoya

    2016-04-01

    The longstanding problem of characterization of the 0^+_2 states in Gd isotopes is revisited by adopting the Nilsson+BCS mean field and the random-phase approximation. The interband electric quadrupole transition strengths varying almost two orders of magnitude are nicely reproduced at the same time as other observables. These results indicate that the 0^+_2 states, in particular those in lighter isotopes, are well described as β vibrations excited on top of deformed ground states without recourse to the shape-coexistence picture.

  13. Measurement of the electric quadrupole moment of CO

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.

    2011-04-01

    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous carbon monoxide are presented. The measurements span the temperature range 301.2-473.9 K, which allows for separation of the temperature-independent hyperpolarizability contribution from the temperature-dependent quadrupole contribution. It is demonstrated that in the case of carbon monoxide, quantization of the rotational motion of the molecules needs to be considered, the analysis yielding a quadrupole moment of Θ = (-8.77 ± 0.31) × 10-40 C m2 and a hyperpolarizability term of b' = (-0.1243 ± 0.0078) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center. Comparison of this value with the center-of-mass quadrupole moment obtained from other experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, which contributes (7.0 ± 0.6)% to the EFGIB at room temperature, is by no means insignificant, and must necessarily be accounted for if the quadrupole moment is to be definitively established. The measured Θ and b' are compared with the best available ab initio calculated values.

  14. Measurement of the electric quadrupole moment of N2O

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.

    2011-04-01

    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous nitrous oxide are presented. Measurements span the temperature range 298.5-473.9 K, which allows for separation of the temperature-independent hyperpolarizability term from the temperature-dependent quadrupole term, yielding a quadrupole moment of Θ = (-11.03 ± 0.41) × 10-40 C m2, and a hyperpolarizability term of b = (-0.638 ± 0.063) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center (EQC). Comparison of this value with the center of mass (CM) quadrupole moment obtained from MBER experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, previously assumed to contribute negligibly to the EFGIB, is found to contribute some (5.2 ± 0.6)% to the effect at room temperature and clearly needs to be accounted for if the quadrupole moment is to be definitively established.

  15. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    SciTech Connect

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. The analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.

  16. Microwave spectrum and quadrupole coupling constant tensor of gauche-isobutyl chloride

    NASA Astrophysics Data System (ADS)

    Niide, Yuzuru; Ohkoshi, Ichiro

    1991-04-01

    The microwave spectra of two 35Cl and 37Cl species of isobutyl chloride have been measured in the frequency region of 14-39 GHz. Both the a-type R-branch and the b-type Q-branch transitions for the 35Cl species, and a-type R-branch transitions for the 37Cl species of one conformer, gauche, were assigned. The values of the rotational constants of the gauche form in the ground vibrational state were determined to be A = 7498.57 ± 0.62 MHz, B = 2146.321 ± 0.016 MHz, and C = 1793.715 ± 0.009 MHz for the 35Cl species; and A = 7527.6 ± 2.2 MHz, B = 2091.774 ± 0.032 MHz, and C = 1755.493 ± 0.018 MHz for the 37Cl species, respectively. From the quadrupole hyperfine splittings of the 35Cl and 37Cl nuclei, the nuclear quadrupole coupling constants in the principal axes system for the gauche were determined to be χ aa = -51.6 ± 5.4 MHz, χ bb = 16.9 ± 2.8 MHz, χ cc = 34.7 ± 6.0 MHz for the 35Cl species; and χ aa = -39.3 ± 9.9 MHz, χ bb = 14.3 ± 7.7 MHz, χ cc = 25.0 ± 12.5 MHz for the 37Cl species, respectively.

  17. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    PubMed

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. PMID:25776345

  18. High-Efficiency Resonant Cavity Quadrupole Moment Monitor

    SciTech Connect

    Barov, N.; Nantista, C.D.; Miller, R.H.; Kim, J.S.; /FARTECH, San Diego /SLAC

    2007-04-13

    Measurement of the beam quadrupole moment at several locations can be used to reconstruct the beam envelope and emittance parameters. The measurements can be performed in a non-intercepting way using a set of quadrupole-mode cavities. We present a cavity design with an optimized quadrupole moment shunt impedance. The cavity properties can be characterized using a wire test method to insure symmetry about the central axis, and alignment to nearby position sensing cavities. The design and characterization of the prototype structure is discussed.

  19. Time-resolved measurement of quadrupole wakefields in corrugated structures

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Fu, Feichao; Jiang, Tao; Liu, Shengguang; Shi, Libin; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Zhang, Zhen; Xiang, Dao

    2016-02-01

    Corrugated structures have recently been widely used for manipulating electron beam longitudinal phase space and for producing THz radiation. Here we report on time-resolved measurements of the quadrupole wakefields in planar corrugated structures. It is shown that while the time-dependent quadrupole wakefield produced by a planar corrugated structure causes significant growth in beam transverse emittance, it can be effectively canceled with a second corrugated structure with orthogonal orientation. The strengths of the time-dependent quadrupole wakefields for various corrugated structure gaps are also measured and found to be in good agreement with theories. Our work should forward the applications of corrugated structures in many accelerator based scientific facilities.

  20. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  1. Static quadrupole moments of 106Agm and 109Agm and the electric field gradient of Ag in Zn and Cd

    NASA Astrophysics Data System (ADS)

    Berkes, I.; Hlimi, B.; Marest, G.; Sayouty, E. H.; Coussement, R.; Hardeman, F.; Put, P.; Scheveneels, G.

    1984-12-01

    Low temperature nuclear orientation of 106Agm and 110Agm in Zn and Fe and level mixing resonances on 109Agm have been measured in order to deduce Q and Vzz values. A fourth-order resonance in 109AgmZn has been found with a full width at half maximum of 1.9 × 10-9 eV, and Vzz(AgCd)Vzz(AgZn)=1.0064(34) was deduced. The electric quadrupole moments found in the literature, reevaluated for Sternheimer correction Q(108Agm)=+1.32(7) b and Q(110Agm)=+1.44(10) b, are used for the calibration of Vzz and yield Q(106Agm)=+1.11(11) b, Q(109Agm)=(+)0.97(11) b, and Vzz(AgZn)=+4.2(5)×1017 V/cm2. Furthermore, μ(106Agm)=(+)3.82(8)μN and several δ(E 2M 1) mixing ratios in 106Pd are also determined. The quadrupole moments are in good agreement with Yukawa-plus-exponential macroscopic model and folded-Yukawa microscopic model calculations. The particle states can be described in terms of deformed Nilsson orbitals or three valence-proton holes coupled to a quadrupole vibrator.

  2. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  3. Beam based alignment of C-shaped quadrupole magnets

    SciTech Connect

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 {micro}m.

  4. Autonomously Calibrating a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Bornstein, Benjamin J.

    2009-01-01

    A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.

  5. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  6. Fano quadrupole in a nanoscale ring

    NASA Astrophysics Data System (ADS)

    Satanin, Arkady; Klimeck, Gerhard

    2005-03-01

    In solid state systems such as Aharonov-Bohm (AB) rings, two-dimensional electronic waveguides, and barriers, interference of a localized wave with propagating states produces Fano resonances in the conductance. The scattering amplitude near a Fano zero-pole pair behaves like the amplitude of a dipole when the pole and the zero play the roles of a particle and an antiparticle, respectively [1]. This separate Fano-dipole has been already observed in the AB ring with an embedded quantum dot (QD) [2]. In the present work, we examine new effects on the collision of Fano dipoles and its manifestation in the transmission. The numerical results for a realistic AB ring with two embedded QD's will be presented. We show that the two Fano-dipoles form a new quasi-particle, which behaves as a coupled object -- the Fano quadrupole. This property gives an additional possibility of manipulating transmission resonances (a collapse of particle and hole) in a nanoscale ring by changing the parameters of the system. We discuss an analogy of Fano collision in an AB ring and a γ-X barrier [3]. [1] Z. Shao et al., PRB 49, 7453 (1994). [2] K. Kobayashi, et al. PRL, 85, 256806 (2002). [3] R. C. Bowen, et al. PRB 52, 2754 (1995).

  7. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy. PMID:17026023

  8. Application of the Thermal Quadrupoles Method to Semitransparent Solids

    NASA Astrophysics Data System (ADS)

    Salazar, A.; Fuente, R.; Mendioroz, A.; Apiñaniz, E.; Celorrio, R.

    2012-11-01

    In this study, the thermal quadrupoles method is extended to semitransparent layered solids. Using this method, the surface temperature of semitransparent multilayered materials is calculated as a function of the optical and thermal properties of each layer. This result eventually leads to determination of the thermal diffusivity, thermal resistance, and/or optical absorption coefficient of layered materials using photothermal techniques. The thermal quadrupoles method is applied to determine the thermal contact resistance in glass stacks.

  9. Dynamics of a charged drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Mayya, Y. S.; Thaokar, Rochish

    2015-07-01

    Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.

  10. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  11. Nuclear Schiff moment and soft vibrational modes

    SciTech Connect

    Zelevinsky, Vladimir; Volya, Alexander; Auerbach, Naftali

    2008-07-15

    The atomic electric dipole moment (EDM) currently searched by a number of experimental groups requires that both parity and time-reversal invariance be violated. According to current theoretical understanding, the EDM is induced by the nuclear Schiff moment. The enhancement of the Schiff moment by the combination of static quadrupole and octupole deformation was predicted earlier. Here we study a further idea of the possible enhancement in the absence of static deformation but in a nuclear system with soft collective vibrations of two types. Both analytical approximation and numerical solution of the simplified problem confirm the presence of the enhancement. We discuss related aspects of nuclear structure which should be studied beyond mean-field and random phase approximations.

  12. Vibration ride comfort criteria

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1976-01-01

    Results are presented for an experimental study directed to derive equal vibration discomfort curves, to determine the influence of vibration masking in order to account for the total discomfort of any random vibration, and to develop a scale of total vibration discomfort in the case of human response to whole-body vertical vibration. Discomfort is referred to as a subjective discomfort associated with the acceleration level of a particular frequency band. It is shown that passenger discomfort to whole-body vibration increases linearly with acceleration level for each frequency. Empirical data provide a mechanism for determining the degree of masking (or summation) of the discomfort of multiple frequency vibration. A scale for the prediction of passenger discomfort is developed.

  13. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. PMID:25381184

  14. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  15. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  16. Higher Order Parametric Excitation Modes for Spaceborne Quadrupole Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Gershman, D. J.; Block, B. P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2011-01-01

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system.When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  17. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    SciTech Connect

    Gershman, D. J.; Block, B. P.; Rubin, M.; Zurbuchen, T. H.; Benna, M.; Mahaffy, P. R.

    2011-12-15

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  18. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    SciTech Connect

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size.

  19. Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V.

    2015-02-01

    Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at the absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.

  20. Passive Measurement of Hydrogen Ground State Rotational and Vibrational Temperatures in Kinetic Plasmas

    SciTech Connect

    D.R. Farley, D.P. Ludberg and S.A. Cohen

    2010-09-21

    A dipole-quadrupole electron-impact excitation model, consistent with molecular symmetry rules, is presented to fit ro-vibronic spectra of the hydrogen Fulcher-α Q-branch line emissions for passively measuring the rotational temperature of hydrogen neutral molecules in kinetic plasmas with the coronal equilibrium approximation. A quasi-rotational temperature and quadrupole contribution factor are adjustable parameters in the model. Quadrupole excitation is possible due to a violation of the 1st Born approximation for low to medium energy electrons (up to several hundred eV). The Born-Oppenheimer and Franck-Condon approximations are implicitly shown to hold. A quadrupole contribution of 10% is shown to fit experimental data at several temperatures from different experiments with electron energies from several to 100 eV. A convenient chart is produced to graphically determine the vibrational temperature of the hydrogen molecules from diagonal band intensities, if the ground state distribution is Boltzmann. Hydrogen vibrational modes are long-lived, surviving up to thousands of wall collisions, consistent with multiple other molecular dynamics computational results. The importance of inter-molecular collisions during a plasma pulse are also discussed.

  1. Vibrational energy levels of the simplest Criegee intermediate (CH{sub 2}OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations

    SciTech Connect

    Yu, Hua-Gen E-mail: dawesr@mst.edu; Ndengue, Steve; Dawes, Richard E-mail: dawesr@mst.edu; Li, Jun; Guo, Hua E-mail: dawesr@mst.edu

    2015-08-28

    Accurate vibrational energy levels of the simplest Criegee intermediate (CH{sub 2}OO) were determined on a recently developed ab initio based nine-dimensional potential energy surface using three quantum mechanical methods. The first is the iterative Lanczos method using a conventional basis expansion with an exact Hamiltonian. The second and more efficient method is the multi-configurational time-dependent Hartree (MCTDH) method in which the potential energy surface is refit to conform to the sums-of-products requirement of MCTDH. Finally, the energy levels were computed with a vibrational self-consistent field/virtual configuration interaction method in MULTIMODE. The low-lying levels obtained from the three methods are found to be within a few wave numbers of each other, although some larger discrepancies exist at higher levels. The calculated vibrational levels are very well represented by an anharmonic effective Hamiltonian.

  2. Spin dependence of intrinsic and transition quadrupole moments

    SciTech Connect

    Jolos, R.V.; Brentano, P. von; Dewald, A.; Pietralla, N.

    2005-08-01

    The relation connecting an angular momentum dependence of the {gamma}-transition energies with the reduced transition probabilities B[E2;(I+2){sub gr}{yields}I{sub gr}] in the ground-state rotational band is derived based on the Bohr Hamiltonian. The relation is applicable to both {beta}-rigid and {beta}-soft both being {gamma}-rigid nuclei. Based on this result the approximate expression is obtained for the intrinsic quadrupole moment and, therefore, for the spectroscopic quadrupole moment in terms of the reduced E2 transition probabilities. It is shown that an angular momentum dependence of the intrinsic quadrupole moment can be well approximated by a linear function of I. The results obtained are direct consequences of the Bohr Hamiltonian with the Davidson potential.

  3. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  4. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  5. Mechanical Design of a Second Generation LHC IR Quadrupole

    SciTech Connect

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff,A.D.; Sabbi, G.; Scanlan, R.M.

    2003-11-10

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb{sub 3}Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb{sub 3}Sn dipoles built at LBNL, and it is for the first time applied to a cos(2{var_theta}) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS.

  6. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer.

    PubMed

    Wright, Steven; Malcolm, Andrew; Wright, Christopher; O'Prey, Shane; Crichton, Edward; Dash, Neil; Moseley, Richard W; Zaczek, Wojciech; Edwards, Peter; Fussell, Richard J; Syms, Richard R A

    2015-03-17

    Miniaturized mass spectrometers are becoming increasingly capable, enabling the development of many novel field and laboratory applications. However, to date, triple quadrupole tandem mass spectrometers, the workhorses of quantitative analysis, have not been significantly reduced in size. Here, the basis of a field-deployable triple quadrupole is described. The key development is a highly miniaturized ion optical assembly in which a sequence of six microengineered components is employed to generate ions at atmospheric pressure, provide a vacuum interface, effect ion guiding, and perform fragmentation and mass analysis. Despite its small dimensions, the collision cell efficiently fragments precursor ions and yields product ion spectra that are very similar to those recorded using conventional instruments. The miniature triple quadrupole has been used to detect thiabendazole, a common pesticide, in apples at a level of 10 ng/g. PMID:25708099

  7. OPERATIONAL MEASUREMENT OF COUPLING BY SKEW QUADRUPOLE MODULATION.

    SciTech Connect

    LUO.Y.CAMERON,P.LEE,R.ET AL.

    2004-07-05

    The measurement and correction of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of the skew quadrupole families the two eigentune modulations are precisely measured with a high resolution phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation direction are determined. The residual linear coupling could be corrected according the measurement. We report the results from the dedicated beam studies carried on at RHIC injection, store and on the ramp. A capability of measuring coupling on the ramp opens possibility of continuous coupling corrections during acceleration.

  8. Mechanical design of a large bore quadrupole triplet magnet

    SciTech Connect

    Abbott, S.; Caylor, R.; Fong, E.; Tanabe, J.

    1987-03-01

    The mechanical design and construction of a 1 meter bore, low gradient quadrupole triplet is described. The magnet will be used for focussing a proton beam in accelerator studies of neutral particle at the Los Alamos National Laboratory. A significant feature of this magnet design is the precision location of the coil conductors within the steel yoke tube. Each of the quadrupole coils have been fabricated from water cooled aluminum conductor, wound in a cosine 2-theta geometry. The conductor bundles have been wound to a positional accuracy within +-0.050 cm which was required to reduce the harmonic content to less than 0.04% of the quadrupole field. Important aspects of the design, construction and assembly are described.

  9. Design and performance of the SRRC quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Chen, H. H.; Hwang, C. S.; Hwang, G. J.; Tseng, P. K.

    1994-07-01

    Forty-eight quadrupole magnets have been manufactured in this present work for the SRRC storage ring. Four families of quadrupole magnets with various magnetic lengths are used in the storage ring. The same pole contour with a bore diameter of 76 mm is computed via the 'MAGNET' program. The magnet design and procedure of mechanical fabrication and assembly are also described. The auxiliary coils are incorporated in the main coils for trimming the field strength of each individual magnet. Pole tip ends have a 6 mm x 6 mm chamfer so as to reduce the dodecapole in the end of magnet. Field mapping results having achieved the deviation of integral quadrupole field within +/-1 x 10(exp - 3) in a 30 mm bore radius region is also confirmed.

  10. Theoretical electric quadrupole transition probabilities for Ca, Sr and Ba

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Jaffe, R. L.; Partridge, H.

    1984-01-01

    The 1D-1S quadrupole transition probabilities for Ca, Sr and Ba have been computed using extended GTO and STO valence basis sets and configuration-interaction wavefunctions that include the important core-valence correlation effects. For Ba and Sr, the relativistic contraction of the core orbitals was accounted for in the GTO calculations by a relativistic effective-core potential. The computed Einstein coefficient for Ca of 39.6/s is in excellent agreement with the recent experimental value of 40 + or - 8/s. The best Einstein coefficients for Sr (44.7/s) and Ba (2.98/s) imply increasing quadrupole line strengths down the column. Relativistic effects substantially increase the quadrupole Einstein coefficient for Ba.

  11. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  12. Vibration balanced miniature loudspeaker

    NASA Astrophysics Data System (ADS)

    Schafer, David E.; Jiles, Mekell; Miller, Thomas E.; Thompson, Stephen C.

    2002-11-01

    The vibration that is generated by the receiver (loudspeaker) in a hearing aid can be a cause of feedback oscillation. Oscillation can occur if the microphone senses the receiver vibration at sufficient amplitude and appropriate phase. Feedback oscillation from this and other causes is a major problem for those who manufacture, prescribe, and use hearing aids. The receivers normally used in hearing aids are of the balanced armature-type that has a significant moving mass. The reaction force from this moving mass is the source of the vibration. A modification of the balanced armature transducer has been developed that balances the vibration of its internal parts in a way that significantly reduces the vibration force transmitted outside of the receiver case. This transducer design concept, and some of its early prototype test data will be shown. The data indicate that it should be possible to manufacture transducers that generate less vibration than equivalent present models by 15-30 dB.

  13. High and ulta-high gradient quadrupole magnets

    SciTech Connect

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  14. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  15. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  16. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  17. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  18. Adaptive vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Behrens, Sam; Ward, John; Davidson, Josh

    2007-04-01

    By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.

  19. Excited vibrational level rotational constants for SiC2: A sensitive molecular diagnostic for astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Müller, Holger S. P.

    2015-11-01

    Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v3 = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm-1 and 3 MHz, respectively in some cases. In addition, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3ν3, the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v3 = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v3 ≤ 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the ν3 mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity.

  20. Electric quadrupole excitations in the interactions of Y-89 with relativistic nuclei

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    The first complete calculations of electric quadrupole excitations in relativistic nucleus-nucleus collisions are presented herein. Neutron emission from Y-89 is studied and quadrupole effects are found to be a significant fraction of the cross section.

  1. Conformational landscape and low lying excited states of imatinib.

    PubMed

    Vinţeler, Emil; Stan, Nicoleta-Florina; Luchian, Raluca; Căinap, Călin; Ramalho, João P Prates; Chiş, Vasile

    2015-04-01

    The conformational changes of imatinib (IMT) are crucial for understanding the ligand-receptor interaction and its mechanism of action [Agofonov et al. (2014) Nature Struct Mol Biol 21:848-853]. Therefore, here we investigated the free energy conformational landscape of the free IMT base, aiming to describe the three-dimensional structures and energetic stability of its conformers. Forty-five unique conformers, within an energy window of 4.8 kcal mol(-1) were identified by a conformational search in gas-phase, at the B3LYP/6-31G(d) theoretical level. Among these, the 20 most stable, as well as 4 conformers resulting from optimization of experimental structures found in the two known polymorphs of IMT and in the c-Abl complex were further refined using the 6-31+G(d,p) basis set and the polarizable continuum solvation model. The most stable conformers in gas-phase and water exhibit a V-shaped structure. The major difference between the most stable free conformers and the bioactive conformers consists in the relative orientation of the pyrimidine-pyridine groups responsible for hydrogen bonding interactions in the ATP-binding pocket. The ratio of mole fractions corresponding to the two known (α and β) polymorphic forms of IMT was estimated from the calculated thermochemical data, in quantitative agreement with the existing experimental data related to their solubility. The electronic absorption spectrum of this compound was investigated in water and explained based on the theoretical TD-DFT results, considering the Boltzmann population-averaged computed data at CAM-B3LYP/6-31+G(d,p) level of theory for the nine most stable conformers. PMID:25764326

  2. Scattering of low lying states in the black hole atmosphere

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2016-07-01

    We investigate finite α' effects in string theory on a black hole background. By explicitly computing tree-level scattering amplitudes, we confirm a duality between seemingly different states recently conjectured by Giveon, Itzhaki, and Kutasov. We verify that the relevant 3-point functions factorize in such a way that the duality between oscillator and winding states becomes manifest. This leads us to determine the precise normalization of the dual vertex operators, and confirms at the level of the interacting theory the identification of states suggested by the analysis of the spectrum. This result implies a duality between two seemingly distinct mechanisms driving the violation of the string winding number in the black hole atmosphere.

  3. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Simon Taylor

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a {bar K}N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small ({approx}1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p {yields} K{sup +} Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma{sup 0}(1385) relative to the Sigma{sup 0}(1385) {yields} Lambda pi{sup 0} channel was measured to be 0.021 {+-} 0.008{sub -0.007}{sup +0.004}, corresponding to a partial width of 640 {+-} 270{sub -220}{sup +130} keV.

  4. Xanadu Is Old, Rugged And Low-lying

    NASA Astrophysics Data System (ADS)

    Wood, Charles; Kirk, R. L.; Stofan, E.; Stiles, B.; Zebker, H.; Ostro, S.; Radebaugh, J.; Lorenz, R. D.; Callahan, P.; Wall, S.

    2007-10-01

    Xanadu was the first surface feature discovered on Titan. It is anomalously bright in the IR, and is also radar bright with unusual physical properties. Xanadu is continent size ( 4000 km wide) with a sharp boundary to the west against the dark dunes of Shangri-La, and less distinct boundaries in other areas. Because of its size and reflectivity it had been proposed that Xanadu is an elevated continent. But it is not. A new topography-from-SAR technique shows that along the T13 Radar swath which completely transects Xanadu, the average topographic elevation is indistinguishable from that of the surrounding terrain. There are many mountains with peaks locally rising up to 1-2 km, but the average elevation of the T13 pass is 200 m +/- 300 m lower than the radius of Titan. The highest point is near the swath center. Photogeologic interpretation suggests that Xanadu slopes to the south; three major river systems begin in the north and flow southward. The lack of significant average elevation means that it is not necessary to create models to explain how Xanadu is dynamically supported. Its eroded-looking terrain, large number of possible eroded impact craters, dune encroachment on its western edge, and apparent detached patches of similar material near its margins all suggest that Xanadu is a relict terrain, currently being disaggregated. The only sign of current activity is the river channels. We speculate that Xanadu was originally a landform of higher elevation (2 km higher if the mountain tops are remnants of an original surface) that has been modified by erosion and/or isostatic adjustment. If the observed river systems have eroded and removed the putative higher terrain there may be significant sediment deposits in the central or southern parts of Xanadu, and/or this material may have been redistributed by winds.

  5. Low-lying levels in /sup 148/Pm

    SciTech Connect

    Norman, E.B.; Lesko, K.T.; Champagne, A.E.

    1988-02-01

    The /sup 149/Sm(d,/sup 3/He) reaction has been used to populate levels in /sup 148/Pm. Nineteen new excited states have been observed below 1 MeV excitation energy in /sup 148/Pm. The possible astrophysical implications of these results are discussed.

  6. Low-lying states in {sup 8}B

    SciTech Connect

    Mitchell, J. P.; Rogachev, G. V.; Johnson, E. D.; Baby, L. T.; Kemper, K. W.; Peplowski, P. N.; Volya, A.; Wiedenhoever, I.; Moro, A. M.

    2010-07-15

    Excitation functions of elastic and inelastic {sup 7}Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in {sup 8}B. A new 2{sup +} state at an excitation energy of 2.55 MeV was observed, and a new 0{sup +} state at 1.9 MeV is tentatively suggested. The R-matrix and time-dependent continuum shell model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.

  7. The low-lying electronic states of LiC

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the doublet and quartet states of LiC below about 30,000/cm are determined using an internally contracted multireference configuration-interaction approach in conjunction with a [6s 5p 3d 2f] atomic natural orbital basis sets. All of the strongly bound states, X(sup 4)(SIGMA)(sup -),(1)(sup 2)(DELTA), (1)(sup 2)(SIGMA)(sup +), and (2)(sup 2) II, very ionic in character. The only bound-bound quartet transition in this energy range is (2)(sup 4)SIGMA(sup -) and Franck-Condon factors, Einstein A values, and lifetimes are reported for this transition.

  8. The Low-Lying Electronic States of YCu

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the singlet and triplet states of YCu below about 15 000 per centimeter are determined using an internally contracted multireference configuration-interaction approach. These calculations are calibrated by studies of fewer states using higher levels of correlation treatment and/or larger basis sets. The computed T(sub e) values and radiative lifetimes are in reasonable agreement with experiment. The calculations confirm the previous experimental assignment for all but one state, where theory helps resolve between two possible assignments.

  9. On the low-lying states of TiN

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1983-01-01

    A series of CAS SCF and multi-reference CI calculations are used to describe the lowest states of TiN. The bonding in all states is described as a triple bond involving the Ti 3d orbitals. The system has some ionic character as seen from both population analysis and dipole moment. The origins of the excited states are discussed.

  10. Measured Effects of a Longitudinal Solenoidal Field on an Iron Quadrupole

    NASA Astrophysics Data System (ADS)

    Ecklund, S.; Seeman, J. T.; Wolf, Z.

    1997-05-01

    We have measured the effects of a longitudinal solenoidal field on the field harmonics of an iron dominated quadrupole. These measurements are useful when designing a colliding beam interaction region where the first quadrupole is very near the solenoidal field of the physics detector. The effects of mirror plates, quadrupole excition, skew quadrupole windings, dipole windings, and solenoidal fields that enter at an angle have been measured. Conclusions and interpretations are given.

  11. Application of switched-power techniques to quadrupoles

    SciTech Connect

    Aronson, S.H.; Fernow, R.C.

    1988-01-01

    Electric fields on the order of 1 GV/m may be achievable with very short (few ps) pulses. A field of 0.3 GV/m is equivalent in deflecting strength to a magnetic field of 1 Tesla. We consider here the possibility of replacing magnets (specifically final focus quadrupoles) with laser-switched devices. 7 refs., 3 figs.

  12. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2010-01-08

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960?s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are ?Proof-of-Principle? magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  13. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  14. Rotating magnetic quadrupole current drive for field-reversed configurations

    SciTech Connect

    Milroy, Richard D.; Guo, H.Y.

    2005-07-15

    In the translation, confinement, and sustainment experiment [A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002)], field-reversed configurations (FRCs) are created and sustained using a rotating magnetic field (RMF). The RMF is usually in the form of a rotating dipole, which in vacuum penetrates uniformly to the axis of symmetry. However, plasma conditions in the FRC normally adjust so that the RMF only partially penetrates the plasma column. We have investigated the possibility of using a rotating quadrupole rather than a rotating dipole magnetic field. The vacuum field from a quadrupole is proportional to radius and cannot penetrate to the axis of symmetry; however, this is not a disadvantage if the current drive is confined to the outer region of the FRC. It was found that the quadrupole drive efficiency is comparable to that of a dipole, but the rotating dipole is more effective at stabilizing the n=2 rotational instability. A strong internal oscillation in B{sub {theta}} is often observed in FRCs sustained by a quadrupole field. The spectral content of the signals indicates that an internal n=1 magnetic structure forms and corotates with the electrons. Similar but much lower amplitude structures can form when a rotating dipole is employed (edge-driven mode)

  15. Quadrupole transport experiment with space charge dominated cesium ion beam

    SciTech Connect

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel.

  16. Measurement of an atomic quadrupole moment using dynamic decoupling

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Shaniv, Ravid; Ozeri, Roee

    2016-05-01

    Some of the best clocks today are ion-based optical clocks. These clocks are referenced to a narrow optical transition in a trapped ion. An example for such a narrow transition is the electric quadrupole E 2 transition between states with identical parity. An important systematic shift of such a transition is the quadrupole shift resulting from the electric field gradient inherent to the ion trap. We present a new dynamic decoupling method that rejects magnetic field noise while measuring the small quadrupole shift of the optical clock transition. Using our sequence we measured the quadrupole moment of the 4D5/2 level in a trapped 88 Sr+ ion to be 2 .973-0 . 033 + 0 . 026 ea02 , where e is the electron charge and a0 is the Bohr radius. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88 Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  17. 14N nuclear quadrupole resonance in carcinostatic phosphamides

    NASA Astrophysics Data System (ADS)

    Greenbaum, S. G.; Bray, P. J.

    1980-02-01

    Nitrogen-14 nuclear quadrupole resonance spectra of the anti-cancer drugs cyclophosphamide monohydrate, isonphosphamide and triphosphamide have been detected at 77 K. The electron distribution in the vicinity of the nitrogens possessing trigonal bonding configurations have been calculated in the framework of the Townes and Dailey theory.

  18. Two-stream instability model with electrons trapped in quadrupoles

    NASA Astrophysics Data System (ADS)

    Channell, P. J.

    2009-08-01

    We formulate the theory of the two-stream instability (e-cloud instability) with electrons trapped in quadrupole magnets. We show that a linear instability theory can be sensibly formulated and analyzed. The growth rates are considerably smaller than the linear growth rates for the two-stream instability in drift spaces and are close to those actually observed.

  19. The low-energy quadrupole mode of nuclei

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2015-08-01

    The phenomenological classification of collective quadrupole excitations by means of the Bohr-Hamiltonian (BH) is reviewed with focus on signatures for triaxility. The variants of the microscopic BH derived by means of the Adiabatic Time-Dependent Mean Field theory from the Pairing-plus-quadrupole-quadrupole interaction, the Shell Correction Method, the Skyrme Energy Density Functional, the Relativistic Mean Field Theory and the Gogny interaction are discussed and applications to concrete nuclides reviewed. The Generator Coordinate Method for the five-dimensional quadrupole deformation space and first applications to triaxial nuclei are presented. The phenomenological classification in the framework of the Interacting Boson Model is discussed with a critical view on the boson number counting rule. The recent success in calculating the model parameters by mapping the mean field deformation energy surface on the bosonic one is discussed and the applications listed. A critical assessment of the models is given with focus on the limitations due to the adiabatic approximation. The Tidal Wave approach and the Triaxial Projected Shell Model are presented as practical approaches to calculate spectral properties outside the adiabatic region.

  20. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  1. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  2. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.

    1991-08-27

    An apparatus is discussed for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 {degrees} around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  3. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.; Priddy, T.G.

    1990-03-21

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis. 1 fig.

  4. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed. PMID:24303716

  5. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  6. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  7. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  8. Accelerator vibration issues

    SciTech Connect

    Tennant, R.A.

    1985-01-01

    Vibrations induced in accelerator structures can cause particle-beam jitter and alignment difficulties. Sources of these vibrations may include pump oscillations, cooling-water turbulence, and vibrations transmitted through the floor to the accelerator structure. Drift tubes (DT) in a drift tube linac (DTL) are components likely to affect beam jitter and alignment because they normally have a heavy magnet structure on the end of a long and relatively small support stem. The natural vibrational frequencies of a drift tube have been compared with theoretical predictions. In principle, by knowing natural frequencies of accelerator components and system vibrational frequncies, an accelerator can be designed that does not have these frequencies coinciding. 2 refs., 2 figs., 2 tabs.

  9. Nuclear magnetic and quadrupole resonance in metallic powders in the presence of strong quadrupole interaction: Rhenium metal

    SciTech Connect

    Dimitropoulos, C.; Maglione, M.; Borsa, F.

    1988-03-01

    The nuclear-magnetic-resonance and nuclear-quadrupole-resonance (NQR-NMR) spectra of /sup 187/Re and /sup 185/Re in a powder of rhenium metal were measured in the temperature range 5--10 K both in zero field and with an external magnetic field. The zero-field NQR spectrum is severely broadened by a nonuniform distribution of quadrupole interactions. The average quadrupole coupling frequencies measured at 5 K are, for the two isotopes, ..nu../sub Q/ = 39 +- 0.2 MHz (/sup 187/Re) and ..nu../sub Q/ = 40.8 +- 0.3 MHz (/sup 185/Re). The spectra obtained in the presence of an external magnetic field can be interpreted satisfactorily in terms of transitions among the eigenstates of the full Hamiltonian (Zeeman plus quadrupolar). Measurements of relaxation rates yield T/sub 1/T = 0.03 sK, indicating a relaxation mechanism driven by the hyperfine interaction with the conduction electrons. The feasibility of NQR-NMR studies in small metal particles in the presence of strong inhomogeneous quadrupole interactions is assessed

  10. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  11. Electrorheological vibration system

    NASA Astrophysics Data System (ADS)

    Korobko, Evguenia V.; Shulman, Zinovy P.; Korobko, Yulia O.

    2001-07-01

    The present paper is devoted to de3velopment and testing of an active vibration system. The system is intended for providing efficient motion of a piston in a hydraulic channel for creation of shocks and periodic vibrations in a low frequency range by means of the ER-valves based on an electrosensitive working me dium, i.e. electrorheological fluids. The latter manifests the electrorheological (ER) effect, i.e. a reversible change in the rheological characteristics of weak-conducting disperse compositions in the presence of constant and alternating electric fields. As a result of the experimental study of the dependence of viscoelastic properties of the ER-fluid on the magnitude and type of an electric field, the optimum dimensions of the vibrator and the its valves characteristics of the optimal electrical signal are determined. For control of an ER- vibrator having several valves we have designed a special type of a high-voltage two-channel impulse generator. Experiments were conducted at the frequencies ranged from 1- 10 Hz. It has been shown, that a peak force made 70% of the static force exercised by the vibrator rod. A phase shift between the input voltage and the load acceleration was less than 45 degree(s)C which allowed servocontrol and use of the vibrator for attendant operations. It was noted that a response of the vibrator to a stepwise signal has a delay only of several milliseconds.

  12. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  13. Damping Vibration at an Impeller

    NASA Technical Reports Server (NTRS)

    Hager, J. A.; Rowan, B. F.

    1982-01-01

    Vibration of pump shaft is damped at impeller--where vibration-induced deflections are greatest--by shroud and seal. Damping reduces vibrational motion of shaft at bearings and load shaft places on them. Flow through clearance channel absorbs vibration energy.

  14. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  15. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  16. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  17. Measurement reports for the cryogenically-cooled drift tube quadrupoles

    SciTech Connect

    1993-12-31

    This compilation contains quadrupole measurement reports for LANL type A and type E drift tube cryoquads. The cryoquad information gives s/n, vendor, field strength, phase, b3/b2, b4/b2, b5/b2, b6/b2, center wire location. The measurements for the harmonic measuring system gives time and date of measurements, magnet p/n, coil p/n, coil radii, coil turns, low and high gain, and temperature. Quadrupole information includes effective B` X L, and magnetic center. Bucked and unbucked calculations give signal in {mu}V{center_dot}sec, field in Tesla{center_dot}meter, B(n)/B(2), absolute and relative phase.

  18. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  19. Permanent-magnet quadrupoles in an RFQ linacs

    SciTech Connect

    Lysenko, W.P.; Wang, T.F.

    1985-01-01

    We investigated the possibility of increasing the current-carrying capability of radio-frequency quadrupole (RFQ) linear accelerators by adding permanent-magnet quadrupole (PMQ) focusing to the existing transverse focusing provided by the rf electric field. Increased transverse focusing would also allow shortening RFQ linacs by permitting a larger accelerating gradient, which is normally accomplished by an undesirable increased transverse rf defocusing effect. We found that PMQs were not helpful in increasing the transverse focusing strength in an RFQ. This conclusion was reached after some particle tracing simulations and some analytical calculations. In our parameter regime, the addition of the magnets increases the betatron frequency but does not result in improved focusing because the increased flutter more than offsets the gain from the increased betatron frequency.

  20. 3D simulations of an electrostatic quadrupole injector

    SciTech Connect

    Grote, D.P. |; Friedman, A.; Yu, S.

    1993-02-01

    Analysis of the dynamics of a space charge dominated beam in a lattice of electrostatic focusing structures requires a full three-dimensional conic that includes self-consistent space charge fields and the fields from the complex conductor shapes. The existing WARP3d code, a particle simulation code which has been developed for heavy-ion fusion (HIF) applications contains machinery for handling particles in three-dimensional fields. A successive overrelaxation field solver with subgrid-scale placement of boundaries for rounded surface and four-fold symmetry has been added to the code. The electrostatic quadrupole (ESQ) injector for the ILSE accelerator facility being planned at Lawrence Berkeley Laboratory is shown as an application. The issue of concern is possible emittance degradation because the focusing voltages are a significant fraction of the particles` energy and because there are significant nonlinear fields arising from the shapes of the quadrupole structures.

  1. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    SciTech Connect

    Felice, Helene

    2008-05-19

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb{sub 3}Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  2. Diabatization based on the dipole and quadrupole: The DQ method

    SciTech Connect

    Hoyer, Chad E.; Xu, Xuefei; Ma, Dongxia; Gagliardi, Laura E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu

    2014-09-21

    In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.

  3. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  4. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide

    NASA Astrophysics Data System (ADS)

    Sickafoose, S. M.; Wikrent, P.; Drouin, B. J.; Kukolich, S. G.

    1996-12-01

    Microwave rotational transitions for J' ← J = 1 ← 0 and 2 ← 1 were measured in the 6-14 GHz range for methyl rhenium trioxide using a Flygare-Balle type, pulsed-beam spectrometer. The rotational constants for the most abundant isotopomers are B( 187Re) = 3466.964(2) MHz and B( 185Re) = 3467.049(3) MHz. The quadrupole coupling strengths are eQq( 187Re) = 716.55(2) MHz and eQq( 185Re) = 757.19(3) MHz. Transitions were also observed for 13C isotopomers and 18O isotopomers. The value for the ReC bond length obtained from a Kraitchman analysis is R( ReC) = 2.080 Å. The rhenium quadrupole coupling strengths are about 20% smaller than those obtained for HRe(CO) 5.

  5. 120-mm supercondcting quadrupole for interaction regions of hadron colliders

    SciTech Connect

    Zlobin, A.V.; Kashikhin, V.V.; Mokhov, N.V.; Novitski, I.; /Fermilab

    2010-05-01

    Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  6. Test results of LHC interaction regions quadrupoles produced by Fermilab

    SciTech Connect

    Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab

    2004-10-01

    The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.

  7. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  8. Nuclear quadrupole moment of the {sup 99}Tc ground state

    SciTech Connect

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-05-15

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2{sup +} ground state of {sup 99}Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc{sub 2} and ZrTc{sub 2}. If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the {sup 99}Tc ground state quadrupole moment could be further reduced.

  9. Beta function measurement in the Tevatron using quadrupole gradient modulation

    SciTech Connect

    Jansson, A.; Lebrun, P.; Volk, J.T.; /Fermilab

    2005-05-01

    Early in Run2, there was an effort to compare the different emittance measurements in the Tevatron (flying wires and synchrotron light) and understand the origin of the observed differences. To measure the beta function at a few key locations near the instruments, air-core quadrupoles were installed. By modulating the gradient of these magnets and measuring the effect on the tune, the lattice parameters can be extracted. Initially, the results seem to disagree with other methods. At the time, the lattice was strongly coupled due to a skew component in the main dipoles, caused by sagging of the cryostat. After a large fraction of the superconducting magnets were shimmed to remove a strong skew quadrupole component, the results now agree with the theoretical values to within 20%.

  10. SKEW QUADRUPOLES IN RHIC DIPOLE MAGNETS AT HIGH FIELDS.

    SciTech Connect

    JAIN, A.; GUPTA, P.; THOMPSON, P.; WANDERER, P.

    1995-06-11

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RDIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  11. Skew quadrupole in RHIC dipole magnets at high fields

    SciTech Connect

    Jain, A.; Gupta, P.; Thompson, P.; Wanderer, P.

    1995-07-01

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RHIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  12. Development and test of LARP technological quadrupole (TQC) magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  13. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  14. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  15. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  16. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  17. Nuclear quadrupole interaction of 199mHg mercaptides

    NASA Astrophysics Data System (ADS)

    Butz, T.; Völkel, Th.; Nuyken, O.

    1991-01-01

    The strength and symmetry of the nuclear quadrupole interaction of the following 199mHg mercaptides were measured at room temperature by-γ-γ-perturbed angular correlations: dithiotreitol (DTT), benzylmercaptan (BEM), 1,3-dimercaptobenzene (DMB), glycoldimercaptoacetate (GDMA), and an oligomer synthesized from 1,3-dimercaptobenzene and norbornadiene, having an average number of repeating units of seven and mercapto end groups (dimercaptotelechel:TEL7). The data suggest an almost linear SHgS bond in all cases.

  18. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  19. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  20. Design and Measurement of the NSLS II Quadrupole Prototypes

    SciTech Connect

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.