Sample records for low-mass extrasolar planets

  1. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  2. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (mass) using a combination of analytic and numerical calculations, and I will show that all low-mass planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  3. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  4. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  5. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  6. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  7. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  8. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  9. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  10. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  11. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  12. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable

  13. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    NASA Astrophysics Data System (ADS)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  14. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  15. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  16. Optical Spectra of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam

    2004-01-01

    The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.

  17. Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.

    2010-01-01

    With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets

  18. Planet formation: constraints from transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    Ten extrasolar planets with masses between 105 and 430M⊕ are known to transit their star. The knowledge of their mass and radius allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. This is illustrated by HD209458b and XO-1b, two planets that appear to be larger than models would predict. Using a relatively simple evolution model, we show that the radius anomaly, i.e. the difference between the measured and theoretically calculated radii, is anticorrelated with the metallicity of the parent star. This implies that the present size, structure and composition of these planets is largely determined by the initial metallicity of the protoplanetary disk, and not, or to a lesser extent, by other processes such as the differences in the planets' orbital evolutions, tides due to finite eccentricities/inclinations and planet evaporation. Using evolution models including the presence of a core and parametrized missing physics, we show that all nine planets belong to a same ensemble characterized by a mass of heavy elements MZ that is a steep function of the stellar metallicity: from ˜ 10 M⊕ around a solar composition star, to ˜ 100 M⊕ for twice the solar metallicity. Together with the observed lack of giant planets in close orbits around metal-poor stars, these results imply that heavy elements play a key role in the formation of close-in giant planets. The large values of MZ and of the planet enrichments for metal-rich stars shows the need for alternative theories of planet formation including migration and subsequent collection of planetesimals.

  19. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  20. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.ed

    2010-11-01

    We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period ofmore » equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.« less

  1. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  2. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  3. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  4. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  5. Extrasolar Planets & The Power of the Dark Side

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, David

    It is only in the last decade that we have direct evidence for planets orbiting nearby Sun-like stars. If such planets happen to pass in front of their stars, we are presented with a golden opportunity to learn about the nature of these objects. Measurements of the dimming of starlight and gravitational wobble allow us to derive the planetary radius and mass, and, by inference, its composition. Recently, we used the Hubble Telescope to detect and study the atmosphere of an extrasolar planet for the first time. I will describe what we have learned about these planets 

  6. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Ida, S.; Lin, D. N. C.

    2004-03-01

    In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extrasolar planetary systems. We evaluate the cores' mass growth rate Mc through runaway planetesimal accretion and oligarchic growth. The accretion rate of cores is estimated with a two-body approximation. In the inner regions of disks, the cores' eccentricity is effectively damped by their tidal interaction with the ambient disk gas and their early growth is stalled by ``isolation.'' In the outer regions, the cores' growth rate is much smaller. If some cores can acquire more mass than a critical value of several Earth masses during the persistence of the disk gas, they would be able to rapidly accrete gas and evolve into gas giant planets. The gas accretion process is initially regulated by the Kelvin-Helmholtz contraction of the planets' gas envelope. Based on the assumption that the exponential decay of the disk gas mass occurs on the timescales ~106-107 yr and that the disk mass distribution is comparable to those inferred from the observations of circumstellar disks of T Tauri stars, we carry out simulations to predict the distributions of masses and semimajor axes of extrasolar planets. In disks as massive as the minimum-mass disk for the solar system, gas giants can form only slightly outside the ``ice boundary'' at a few AU. However, cores can rapidly grow above the critical mass inside the ice boundary in protostellar disks with 5 times more heavy elements than those of the minimum-mass disk. Thereafter, these massive cores accrete gas prior to its depletion and evolve into gas giants. The limited persistence of the disk gas and the decline in the stellar gravity prevent the formation of cores capable of

  7. Topics in Extrasolar Planet Characterization

    NASA Astrophysics Data System (ADS)

    Howe, Alex Ryan

    I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.

  8. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.

  9. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  10. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  11. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  12. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  13. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  14. Searching for and characterising extrasolar Earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2002-10-01

    The physical bases of the detection and characterisation of extrasolar Earth-like planets and moons in the reflected light and thermal emission regimes are reviewed. They both have their advantages and disadvantages, including artefacts, in the determination of planet physical parameters (mass, size, albedo, surface and atmospheric conditions etc.). After a short panorama of detection methods and the first findings, new perspectives for these different aspects are also presented. Finally brief account of the ground based programmes and space-based projects and their potentialities for Earth-like planets is made and discussed.

  15. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  16. The Survival of Water Within Extrasolar Minor Planets

    NASA Astrophysics Data System (ADS)

    Jura, M.; Xu, S.

    2010-11-01

    We compute that extrasolar minor planets can retain much of their internal H2O during their host star's red giant evolution. The eventual accretion of a water-rich body or bodies onto a helium white dwarf might supply an observable amount of atmospheric hydrogen, as seems likely for GD 362. More generally, if hydrogen pollution in helium white dwarfs typically results from accretion of large parent bodies rather than interstellar gas as previously supposed, then H2O probably constitutes at least 10% of the aggregate mass of extrasolar minor planets. One observational test of this possibility is to examine the atmospheres of externally polluted white dwarfs for oxygen in excess of that likely contributed by oxides such as SiO2. The relatively high oxygen abundance previously reported in GD 378 can be explained plausibly but not uniquely by accretion of an H2O-rich parent body or bodies. Future ultraviolet observations of white dwarf pollutions can serve to investigate the hypothesis that environments with liquid water that are suitable habitats for extremophiles are widespread in the Milky Way.

  17. New Extra-Solar Planet - thermal state and structure

    NASA Astrophysics Data System (ADS)

    Valencia, D.; O'Connell, R. J.; Sasselov, D.

    2005-12-01

    For the last decade astronomers have found more than 160 planets orbiting stars other than our sun. All but three of them are gaseous planets. The variety of characteristics of these newly discovered planets opens a new field with questions about planetary formation, structure and evolution, as well as the possibility of existence of life beyond our solar system. Planetary formation models suggested the existence of terrestrial extra-solar planets with masses up to 10 times the mass of the Earth. In June of 2005 the first Super-Earth was discovered orbiting a star 15 light years away with a mass that is about 7.5 times the mass of the Earth and a period of 1.94 days. The composition of this planet is unknown but probably has an Earth-like composition. Astronomers believe the surface temperature ranges between ~500 K and ~700 K. Liquid water can exist at temperatures above T=400K at high pressures (above 10 MPa) allowing for the possibility of a water layer on top of a rocky core. Our work focuses on determining scaling relationships with mass, internal structure parameters and thermal state. We explore the effects of a water/icy layer above a rocky core as well as other types of compositions in determining the internal structure. This water layer may convect causing the planet to have two layer convection. We explore the effects of a layer convection mode versus whole mantle convection for a Super-Earth. Due to the closeness of this planet to its parent star we can expect substantial tidal heating that can affect the thermal state of this planet. We explore the effects of tidal heating in the internal structure of a planet. Differences in composition have much larger effects in the mass-radius relationship than the uncertainties in thermodynamic parameters of the minerals composing the planet.

  18. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  19. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  20. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  1. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  2. From Hot Jupiters to Super-Earths: Characterizing the Atmospheres of Extrasolar Planets with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2009-05-01

    The Spitzer Space Telescope has been a remarkably successful platform for studies of exoplanet atmospheres, with notable results including the first detection of the light emitted by an extrasolar planet (Deming et al. 2005, Charbonneau et al. 2005), the first spectrum of an extrasolar planet (Richardson et al. 2007, Grillmair et al. 2007), and the first map of the flux distribution across the surface of an extrasolar planet (Knutson et al. 2007). These observations have allowed us to characterize the pressure-temperature profiles, chemistry, clouds, and circulation patterns of a select subset of the massive, close-in planets known as hot Jupiters, along with the hot Saturn HD 149026b and the cooler Neptune-mass planet GJ 436b. In my talk I will review the current status of Spitzer observations of transiting planets at the end of the cryogenic mission and look ahead to the observations planned for the two-year warm mission, which will begin this summer after the last of Spitzer's cryogen is exhausted.

  3. Direct Imaging of Warm Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  4. Earthshine and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Kaltenegger, L.; Turnbull, M. C.; Jucks, K. W.

    2006-05-01

    The search for life on extrasolar planets requires first that we find terrestrial-mass planets around nearby stars, and second that we determine habitability and search for signs of life. The Terrestrial Planet Finder missions, a Coronagraph (TPF-C) and an Interferometer (TPF-I in the US, also Darwin in Europe) are designed to carry out these tasks. This talk will focus on how we could determine habitability and search for signs of life with these missions. In the visible and near-infrared, TPF-C could measure O2, H2O, O3, Rayleigh scattering, and the red-edge reflection of land planet leaves; on an early-Earth twin it also could measure CO2 and CH4. In the mid-infrared, TPF-I/Darwin could measure CO2, O3, H2O, and temperature. To validate some of these expectations, we observed Earthshine spectra in the visible and near-infrared, and modeled these spectra with our line-by-line radiative transfer code. We find that the major gas and reflection components are present in the data, and that a simple model of the Earth is adequate to represent the data, within the observational uncertainties. We determined that the Earth appears to be habitable, and also shows signs of life. However to validate the time variable features, including the continent-ocean differences, the presence of weather patterns, the large-scale variability of cloud types and altitude, and the rotation period of the planet, we need to obtain a continuous time-series of observations covering multiple rotations; these observations could be carried out in the coming years, using, for example, a site at the South Pole.

  5. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  6. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  7. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Harwit, Martin O.; Jucks, Kenneth W.; Kasting, James F.; Lin, Douglas N C.; Lunine, Jonathan I.; Schneider, Jean; Seager, Sara; Traub, Wesley A.; Woolf, Neville J.

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  8. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.

    PubMed

    Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  9. Evidence for water in the rocky debris of a disrupted extrasolar minor planet.

    PubMed

    Farihi, J; Gänsicke, B T; Koester, D

    2013-10-11

    The existence of water in extrasolar planetary systems is of great interest because it constrains the potential for habitable planets and life. We have identified a circumstellar disk that resulted from the destruction of a water-rich and rocky extrasolar minor planet. The parent body formed and evolved around a star somewhat more massive than the Sun, and the debris now closely orbits the white dwarf remnant of the star. The stellar atmosphere is polluted with metals accreted from the disk, including oxygen in excess of that expected for oxide minerals, indicating that the parent body was originally composed of 26% water by mass. This finding demonstrates that water-bearing planetesimals exist around A- and F-type stars that end their lives as white dwarfs.

  10. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  11. Habitability in the Solar System and on Extrasolar Planets and Moons

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  12. Habitability in The Solar System and on Extrasolar Planets and Moons

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    2015-12-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitable environments in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  13. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    both U.S. and foreign sources. The MMA will be capable of imaging planetary systems in the earliest stages of their formation. The MMA will be able to detect many more young, low-mass stellar systems and to examine them to determine if they have the disks from which planetary systems are formed. In addition, the MMA could be used to examine the properties of these disks in detail. The properties that could be examined include size, temperature, dust density and chemistry. A number of enhancements have been proposed to the MMA, including longer baselines for greater resolution, the ability to observe at higher frequencies, and greater signal bandwidth. This enhanced MMA would have the sensitivity to directly detect very young giant planets in the nearest star-forming regions, the resolving power to distinguish them from their central stars, and the ability to detect giant planets by measuring their gravitational effect upon their parent stars and thus determine their masses. The VLA, dedicated in 1980, also could contribute to the search for extrasolar planets if proposed upgrades are implemented. Though originally designed to operate at a highest frequency of 24 GHz, the VLA recently has been equipped with receivers for 40-50 GHz. Funding for receivers in this range, at a wavelength of 7 millimeters, was provided in 1993 by the government of Mexico. The VLA now has 13 of its 27 antennas equipped with these 40-50 GHz receivers. Plans for upgrading the VLA include equipping all remaining antennas with such receivers, improving its electronics, and improving its resolution by adding antennas at extended distances. The upgraded VLA will be able to study the inner parts of the dust disks surrounding young stars -- disks that are believed to be the precursors to planetary systems. The inner parts of such disks are obscured at shorter wavelengths. The enhanced VLA will be able to reveal processes occurring in these disks at scales comparable to the size of our own Solar

  14. The Planets Around Low-Mass Stars (PALMS) Direct Imaging Survey

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, M. C.; Shkolnik, E.; Mann, A.; Tamura, M.

    2013-01-01

    Direct imaging is the only method to study the outer architecture (>10 AU) of extrasolar planetary systems in a targeted fashion. Previous imaging surveys have primarily focused on intermediate- and high-mass stars because of the relative dearth of known nearby young M dwarfs. As a result, even though M dwarfs make up 70% of stars in our galaxy, there are few constraints on the population of giant planets at moderate separations (10-100 AU) in this stellar mass regime. We present results from an ongoing high-contrast adaptive optics imaging survey targeting newly identified nearby (<35 pc) young (<300 Myr) M dwarfs with Keck-2/NIRC2 and Subaru/HiCIAO. We have already discovered four young brown dwarf companions with masses between 30-70 Mjup; two of these are members of the ~120 Myr AB Dor moving group, and another one will yield a dynamical mass in the near future. Follow-up optical and near-infrared spectroscopy of these companions reveal spectral types of late-M to early-L and spectroscopic indicators of youth such as angular H-band morphologies, weak J-band alkali lines, and Li absorption and Halpha emission in one target. Altogether our survey is sensitive to planet masses a few times that of Jupiter at separations down to ~10 AU. With a sample size of roughly 80 single M dwarfs, this program represents the deepest and most extensive imaging search for planets around young low-mass stars to date.

  15. Three regimes of extrasolar planet radius inferred from host star metallicities.

    PubMed

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  16. Three regimes of extrasolar planet radius inferred from host star metallicities

    PubMed Central

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.

    2014-01-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544

  17. Rapid heating of the atmosphere of an extrasolar planet.

    PubMed

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  18. The upper atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Lellouch, E.

    2003-04-01

    Over 100 extrasolar planets have been already detected, the vast majority of which by radial velocity measurements. While numerous models have been developed to describe their thermal structure, composition, spectrum, dynamics and evolution, the physical characterization of these objects remains remarkably poor, since in most cases only an estimate of the object's mass is available. Most observational efforts have so far been focused on close, short-period exoplanets ("hot Jupiters"), in particular on HD 209458B which appears to transit across its parent star and was confirmed to be as a genuine hydrogen-rich exoplanet . A highlight of these observations was the detection of sodium in its atmosphere (Charbonneau et al. 2002). Observational results and prospects will be briefly reviewed.

  19. Automatic Telescope Search for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.

    1998-01-01

    We are using automatic photoelectric telescopes at the Tennessee State University Center for Automated Space Science to search for planets around nearby stars in our galaxy. Over the past several years, wc have developed the capability to make extremely precise measurements of brightness changes in Sun-like stars with automatic telescopes. Extensive quality control and calibration measurements result in a precision of 0.l% for a single nightly observation and 0.0270 for yearly means, far better than previously thought possible with ground-based observations. We are able, for the first time, to trace brightness changes in Sun-like stars that are of similar amplitude to brightness changes in the Sun, whose changes can be observed only with space-based radiometers. Recently exciting discoveries of the first extrasolar planets have been announced, based on the detection of very small radial-velocity variations that imply the existence of planets in orbit around several Sun-like stars. Our precise brightness measurements have been crucial for the confirmation of these discoveries by helping to eliminate alternative explanations for the radial-velocity variations. With our automatic telescopes, we are also searching for transits of these planets across the disks of their stars in order to conclusively verify their existence. The detection of transits would provide the first direct measurements of the sizes, masses, and densities of these planets and, hence, information on their compositions and origins.

  20. Fast spin of the young extrasolar planet β Pictoris b.

    PubMed

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  1. Infrared spectroscopy of the transiting extrasolar planet HD 209458 b during secondary eclipse

    NASA Astrophysics Data System (ADS)

    Richardson, Lee Jeremy

    2003-10-01

    We present spectroscopic observations that place strong limits on the atmospheric structure of the transiting extrasolar planet HD 209458 b. The discovery of the transit has led to several new observations that have provided the most de tailed information on the physical properties of a planet outside the solar system. These observations have concentrated on the primary eclipse, the time at which the planet crosses in front of the star as seen from Earth. The measurements have determined the basic physical characteristics of the planet, including radius, mass, average density, and orbital inclination, and have even refined values of the stellar mass and radius. Transmission spectroscopy of the system during primary eclipse resulted in the first detection of the atmosphere of an extrasolar planet, with the measurement of the sodium doublet. The present work discusses the first reported attempts to detect the secondary eclipse, or the disappearance of the planet behind the star, in the infrared. We devise the method of ‘occultation spectroscopy’ to detect the planetary spectrum, by searching in combined light for subtle changes in the shape of the spectrum as the planet passes behind the star. Predicted secondary eclipse events were observed from the Very Large Telescope (VLT) on UT 8 and 15 July 2001 using the Infrared Spectrometer and Array Camera (3.5 3.7 μm). Further observations from the NASA Infrared Telescope Facility (IRTF) using the SpeX instrument (1.9 4.2 μm) included two predicted secondary eclipse events on UT 20 and 27 September 2001. Analysis of these data reveal a statistically significant non- detection of the planetary spectrum. The results place strong limits on the structure of the planetary atmosphere and reject widely-accepted models for the planet that assume the incident stellar radiation is completely absorbed and re-emitted in the substellar hemisphere. Situations that remain consistent with our data include an isothermal atmosphere or

  2. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  3. A Moire Fringing Spectrometer for Extra-Solar Planet Searches

    NASA Astrophysics Data System (ADS)

    van Eyken, J. C.; Ge, J.; Mahadevan, S.; De Witt, C.; Ramsey, L. W.; Berger, D.; Shaklan, S.; Pan, X.

    2001-12-01

    We have developed a prototype moire fringing spectrometer for high precision radial velocity measurements for the detection of extra-solar planets. This combination of Michelson interferometer and spectrograph overlays an interferometer comb on a medium resolution stellar spectrum, producing Moire patterns. Small changes in the doppler shift of the spectrum lead to corresponding large shifts in the Moire pattern (Moire magnification). The sinusoidal shape of the Moire fringes enables much simpler measurement of these shifts than in standard echelle spectrograph techniques, facilitating high precision measurements with a low cost instrument. Current data analysis software we have developed has produced short-term repeatability (over a few hours) to 5-10m/s, and future planned improvements based on previous experiments should reduce this significantly. We plan eventually to carry out large scale surveys for low mass companions around other stars. This poster will present new results obtained in the lab and at the HET and Palomar 5m telescopes, the theory of the instrument, and data analysis techniques.

  4. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  5. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert A.

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevantmore » 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be

  6. Electrodynamics on extrasolar giant planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of Hmore » and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can

  7. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N. C.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    2006-07-01

    Context.Nine extrasolar planets with masses between 110 and 430 M_⊕ are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately.Aims.We seek to better understand the composition of transiting extrasolar planets by considering them as an ensemble, and by comparing the obtained planetary properties to that of the parent stars.Methods.We use evolution models and constraints on the stellar ages to derive the mass of heavy elements present in the planets. Possible additional energy sources like tidal dissipation due to an inclined orbit or to downward kinetic energy transport are considered.Results.We show that the nine transiting planets discovered so far belong to a quite homogeneous ensemble that is characterized by a mass of heavy elements that is a relatively steep function of the stellar metallicity, from less than 20 earth masses of heavy elements around solar composition stars, to up to ~100 M_⊕ for three times the solar metallicity (the precise values being model-dependant). The correlation is still to be ascertained however. Statistical tests imply a worst-case 1/3 probability of a false positive.Conclusions.Together with the observed lack of giant planets in close orbits around metal-poor stars, these results appear to imply that heavy elements play a key role in the formation of close-in giant planets. The large masses of heavy elements inferred for planets orbiting metal rich stars was not anticipated by planet formation models and shows the need for alternative theories including migration and subsequent collection of planetesimals.

  9. Portraits of distant worlds: Characterizing the atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Knutson, Heather Ann

    2009-06-01

    This thesis presents observational studies of the atmospheres of extrasolar planets, including the first longitudinal temperature profile of an extrasolar planet and the first detection of a temperature inversion in the atmosphere of an extrasolar planet. Our observations target four eclipsing gas-giant planets known as "hot Jupiters"; as a result of their short orbital periods we expect these planets to be tidally locked, with day-night circulation patterns and atmospheric chemistries that differ significantly from those of Jupiter. The first two chapters of this thesis describe infrared observations of the secondary eclipses of HD 209458b and TrES-4 with the Spitzer Space Telescope . By measuring the decrease in flux as the planet passes behind its parent star, we can characterize the infrared emission spectra of these planets and from that learn something about their dayside pressure-temperature profiles. Our observations reveal that these two planets have spectra with water bands in emission, requiring the presence of an atmospheric temperature inversion between 0.1 - 0.01 bars. The third chapter describes a ground-based search for thermal emission from TrES-1 using L -band grism spectroscopy with the NIRI instrument on Gemini North. Unlike Spitzer photometry, which is limited to broad bandpasses at these wavelengths, grism spectroscopy offers the opportunity to resolve specific features in the planetary emission spectrum. We find that our precision is limited by our ability to correct for time-varying slit losses from pointing drift and seeing changes, and place an upper limit on the depth of the planet's secondary eclipse in this band. The fourth and fifth chapters describe observations of the infrared phase variations of the hot Jupiter HD 189733b in the 8 and 24 mm Spitzer bands. By monitoring the changes in the brightness of this planet as it rotates around its parent star we can determine how much energy is circulated from the perpetually-illuminated day

  10. Infrared radiation from an extrasolar planet.

    PubMed

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  11. Division F Commission 53: Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lecavelier Des Etangs, Alain; Minniti, Dante; Boss, Alan; Mayor, Michel; Bodenheimer, Peter; Collier-Cameron, Andrew; Jayawardhana, Ray; Kokubo, Eiichiro; Mardling, Rosemary; Queloz, Didier; Rauer, Heike; Zhao, Gang

    2016-04-01

    The IAU Working Group on Extrasolar Planets (WGESP) was created by the Executive Council as a Working Group of Division III. This decision took place in June 1999, that is only 7 years after the discovery of planets around the pulsar PSR B1257+12 and 4 years after the discovery of 51 Peg b. This working group was renewed for 3 years at the General Assembly in 2003 in Sydney, Australia. It was chaired by Alan Boss from Carnegie Institution of Washington. The WGESP members were Paul Butler, William Hubbard, Philip Ianna, Martin Kürster, Jack Lissauer, Michel Mayor, Karen Meech, Francois Mignard, Alan Penny, Andreas Quirrenbach, Jill Tarter, and Alfred Vidal-Madjar.

  12. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  13. Project Orion: A Design Study of a System for Detecting Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Black, D. C. (Editor)

    1980-01-01

    A design concept for a ground based astrometric telescope that could significantly increase the potential accuracy of astrometric observations is considered. The state of current techniques and instrumentation is examined in the context of detecting extrasolar planets. Emphasis is placed on the direct detection of extrasolar planets at either visual or infrared wavelengths. The design concept of the imaging stellar interferometer (ISI), developed under Project Orion, is described. The Orion ISI employs the state-of-the-art technology and is theoretically capable of attaining 0.00010 arc sec/yr accuracy in relative astrometric observations.

  14. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  15. An adaptive optics search for young extrasolar planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Becklin, E. E.; Kaisler, D.; Lowrance, P.; Max, C. E.; Olivier, S.

    2000-10-01

    In the past five years, many extrasolar planets have been detected indirectly, through radial velocity variations induced in their parent stars. Advances in technology now open up the possibility of directly detecting extrasolar planets through the photons they emit. Direct detection would allow determination of the temperature, radius, and composition of a planet, particularly one in a wide orbit - an important complement to radial velocity techniques. Seeing a planet against the halo of scattered light from its parent star is extremely challenging, but adaptive optics (AO) on 8-10 m telescopes can make this possible. The first such large-telescope AO system is now operational on the 10-m W.M. Keck II telescope. Its current performance is sufficient to detect objects at contrast ratios of 105 at separations of 1" and 106 at 2". This is insufficient to detect the reflected light from a mature Jupiter-like planet, but we can easily detect the near-infrared thermal emission from young (<10-50 MYr) planets, or older brown dwarfs. We are carrying out a search for such planetary companions to young nearby stars, including the TW Hydrae association. We present preliminary results from this survey, including sensitivity limits and follow-up of candidate companions originally detected by NICMOS. We have also imaged the Epsilon Eridani system, and present upper limits on the brightness of the planet detected via radial velocity variations by Cochran et al. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive Optics under the STC Program of the National Science Foundation under Agreement No. AST-9876783

  16. Discovering Extrasolar Planets with Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Wambsganss, J.

    2016-06-01

    An astronomical survey is commonly understood as a mapping of a large region of the sky, either photometrically (possibly in various filters/wavelength ranges) or spectroscopically. Often, catalogs of objects are produced/provided as the main product or a by-product. However, with the advent of large CCD cameras and dedicated telescopes with wide-field imaging capabilities, it became possible in the early 1990s, to map the same region of the sky over and over again. In principle, such data sets could be combined to get very deep stacked images of the regions of interest. However, I will report on a completely different use of such repeated maps: Exploring the time domain for particular kinds of stellar variability, namely microlens-induced magnifications in search of exoplanets. Such a time-domain microlensing survey was originally proposed by Bohdan Paczynski in 1986 in order to search for dark matter objects in the Galactic halo. Only a few years later three teams started this endeavour. I will report on the history and current state of gravitational microlensing surveys. By now, routinely 100 million stars in the Galactic Bulge are monitored a few times per week by so-called survey teams. All stars with constant apparent brightness and those following known variability patterns are filtered out in order to detect the roughly 2000 microlensing events per year which are produced by stellar lenses. These microlensing events are identified "online" while still in their early phases and then monitored with much higher cadence by so-called follow-up teams. The most interesting of such events are those produced by a star-plus-planet lens. By now of order 30 exoplanets have been discovered by these combined microlensing surveys. Microlensing searches for extrasolar planets are complementary to other exoplanet search techniques. There are two particular advantages: The microlensing method is sensitive down to Earth-mass planets even with ground-based telecopes, and it

  17. Photometric Detection of Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Hatzes, Artie P.; Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported the TEMPEST Texas McDonald Photometric Extrasolar Search for Transits) program at McDonald Observatory, which searches for transits of extrasolar planets across the disks of their parent stars. The basic approach is to use a wide-field ground-based telescope (in our case the McDonald Observatory 0.76m telescope and it s Prime Focus Corrector) to search for transits of short period (1-15 day orbits) of close-in hot-Jupiter planets in orbit around a large sample of field stars. The next task is to search these data streams for possible transit events. We collected our first set of test data for this program using the 0.76 m PFC in the summer of 1998. From those data, we developed the optimal observing procedures, including tailoring the stellar density, exposure times, and filters to best-suit the instrument and project. In the summer of 1999, we obtained the first partial season of data on a dedicated field in the constellation Cygnus. These data were used to develop and refine the reduction and analysis procedures to produce high-precision photometry and search for transits in the resulting light curves. The TeMPEST project subsequently obtained three full seasons of data on six different fields using the McDonald Observatory 0.76m PFC.

  18. Detecting tree-like multicellular life on extrasolar planets.

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  19. The changing phases of extrasolar planet CoRoT-1b.

    PubMed

    Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon

    2009-05-28

    Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.

  20. Intercomparison of general circulation models for hot extrasolar planets

    NASA Astrophysics Data System (ADS)

    Polichtchouk, I.; Cho, J. Y.-K.; Watkins, C.; Thrastarson, H. Th.; Umurhan, O. M.; de la Torre Juárez, M.

    2014-02-01

    We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: (1) steady-state, (2) nonlinearly evolving baroclinic wave, and (3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should-except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably different. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively different behavior-although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

  1. Astrometric Detection of Extrasolar Planets: Results of a Feasibility Study with the Palomar 5 Meter Telescope

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Shaklan, Stuart B.

    1996-01-01

    The detection of extrasolar planets around stars like the Sun remains an important goal of astronomy. We present results from Palomar 5 m observations of the open cluster NGC 2420 in which we measure some of the sources of noise that will be present in an astrometric search for extrasolar planets. This is the first time that such a large aperture has been used for high-precision astrometry. We find that the atmospheric noise is 150 micro-arcsec hr(exp 1/2) across a 90 sec field of view and that differential chromatic refraction (DCR) can be calibrated to 128 micro-arcsec for observations within 1 hr of the meridian and 45 deg of zenith. These results confirm that a model for astrometric measurements can be extrapolated to large apertures. We demonstrate, based upon these results, that a large telescope achieves the sensitivity required to perform a statistically significant search for extra solar planets. We describe an astrometric technique to detect planets, the astrometric signals expected, the role of reference stars, and the sources of measurement noise: photometric noise, atmospheric motion between stars, sky background, instrumental noise, and DCR. For the latter, we discuss a method to reduce the noise further to 66 micro-arcsecond for observations within 1 hr of the meridian and 45 deg of zenith. We discuss optimal lists of target stars taken from the latest Gliese & Jahreiss catalog of nearby stars with the largest potential astrometric signals, declination limits for both telescope accessibility and reduced DCR, and galactic latitude limits for a sufficiant number of reference stars. Two samples are described from which one can perform statistically significant searches for gas giant planets around nearby stars. One sample contains 100 "solar class" stars with an average stellar mass of 0.82 solar mass; the other maximizes the number of stars, 574, by searching mainly low-mass M stars. We perform Monte Carlo simulations of the statistical significance of

  2. DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca

    2016-02-20

    The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less

  3. Polarimetry Of Planetary Atmospheres: From The Solar System Gas Giants To Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Buenzli, Esther; Bazzon, A.; Schmid, H. M.

    2011-09-01

    The polarization of light reflected from a planet provides unique information on the atmosphere structure and scattering properties of particles in the upper atmosphere. The solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Polarimetry is also a promising differential technique to search for and characterize extra-solar planets, e.g. with the future VLT planet finder instrument SPHERE. For the preparation of the SPHERE planet search program we have made a suite of polarimetric observations and models for the solar system gas giants. The phase angles for the outer planets are small for Earth bound observations and the integrated polarization is essentially zero due to the symmetric backscattering situation. However, a second order scattering effect produces a measurable limb polarization for resolved planetary disks. We have made a detailed model for the spectropolarimetric signal of the limb polarization of Uranus between 520 and 935 nm to derive scattering properties of haze and cloud particles and to predict the polarization signal from an extra-solar point of view. We are also investigating imaging polarimetry of the thick haze layers on Titan and the poles of Jupiter. Additionally, we have calculated a large grid of intensity and polarization phase curves for simpler atmosphere models of extrasolar planets.

  4. Direct Imaging Search for Extrasolar Planets in the Pleiades

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; hide

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  5. Microlensing for extrasolar planets : improving the photometry

    NASA Astrophysics Data System (ADS)

    Bajek, David J.

    2013-08-01

    Gravitational Microlensing, as a technique for detecting Extrasolar Planets, is recognised for its potential in discovering small-mass planets similar to Earth, at a distance of a few Astronomical Units from their host stars. However, analysing the data from microlensing events (which statistically rarely reveal planets) is complex and requires continued and intensive use of various networks of telescopes working together in order to observe the phenomenon. As such the techniques are constantly being developed and refined; this project outlines some steps of the careful analysis required to model an event and ensure the best quality data is used in the fitting. A quantitative investigation into increasing the quality of the original photometric data available from any microlensing event demonstrates that 'lucky imaging' can lead to a marked improvement in the signal to noise ratio of images over standard imaging techniques, which could result in more accurate models and thus the calculation of more accurate planetary parameters. In addition, a simulation illustrating the effects of atmospheric turbulence on exposures was created, and expanded upon to give an approximation of the lucky imaging technique. This further demonstrated the advantages of lucky images which are shown to potentially approach the quality of those expected from diffraction limited photometry. The simulation may be further developed for potential future use as a 'theoretical lucky imager' in our research group, capable of producing and analysing synthetic exposures through customisable conditions.

  6. All in the Family: What Brown Dwarfs Teach Us About Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, M.

    2003-01-01

    As we await the first direct image of an extrasolar giant planet, we can turn to theory and the experience gained in the campaign to detect and understand brown dwarfs for guidance on what to expect. As with any new arrival to a family, there should be a strong family resemblance (one hopes) along with notable unique features and interesting peculiarities. The 300 or so known L and T dwarfs, combined with our own giant planets, already span much of the effective temperature range within which extrasolar planets will be found. Only objects with thick, easily detectable, water clouds have yet to be seen. Thus we already know much of the family. I will describe what we have learned from studying these objects, focusing on the important roles clouds and atmospheric chemistry play in affecting their atmospheres and emergent spectra. Relying on these findings and theoretical models, I'll sketch out what we can expect from extrasolar giant planets, focusing on easily detectable features. Some wild cards, of course, are to be expected. Photochemical hazes, in particular, may obscure the family traits on the faces of Jupiter's distant cousins and may make one wonder, at least momentarily, about the milkman.

  7. The Problem of Extraterrestrial Civilizations and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.

  8. Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2010-11-01

    I derive the physical properties of 30 transiting extrasolar planetary systems using a homogeneous analysis of published data. The light curves are modelled with the JKTEBOP code, with special attention paid to the treatment of limb darkening, orbital eccentricity and error analysis. The light from some systems is contaminated by faint nearby stars, which if ignored will systematically bias the results. I show that it is not realistically possible to account for this using only transit light curves: light-curve solutions must be constrained by measurements of the amount of contaminating light. A contamination of 5 per cent is enough to make the measurement of a planetary radius 2 per cent too low. The physical properties of the 30 transiting systems are obtained by interpolating in tabulated predictions from theoretical stellar models to find the best match to the light-curve parameters and the measured stellar velocity amplitude, temperature and metal abundance. Statistical errors are propagated by a perturbation analysis which constructs complete error budgets for each output parameter. These error budgets are used to compile a list of systems which would benefit from additional photometric or spectroscopic measurements. The systematic errors arising from the inclusion of stellar models are assessed by using five independent sets of theoretical predictions for low-mass stars. This model dependence sets a lower limit on the accuracy of measurements of the physical properties of the systems, ranging from 1 per cent for the stellar mass to 0.6 per cent for the mass of the planet and 0.3 per cent for other quantities. The stellar density and the planetary surface gravity and equilibrium temperature are not affected by this model dependence. An external test on these systematic errors is performed by comparing the two discovery papers of the WASP-11/HAT-P-10 system: these two studies differ in their assessment of the ratio of the radii of the components and the

  9. Homogeneous Studies of Transiting Extrasolar Planets: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Taylor, John

    2011-09-01

    We now know of over 500 planets orbiting stars other than our Sun. The jewels in the crown are the transiting planets, for these are the only ones whose masses and radii are measurable. They are fundamental for our understanding of the formation, evolution, structure and atmospheric properties of extrasolar planets. However, their characterization is not straightforward, requiring extremely high-precision photometry and spectroscopy as well as input from theoretical stellar models. I summarize the motivation and current status of a project to measure the physical properties of all known transiting planetary systems using homogeneous techniques (Southworth 2008, 2009, 2010, 2011 in preparation). Careful attention is paid to the treatment of limb darkening, contaminating light, correlated noise, numerical integration, orbital eccentricity and orientation, systematic errors from theoretical stellar models, and empirical constraints. Complete error budgets are calculated for each system and can be used to determine which type of observation would be most useful for improving the parameter measurements. Known correlations between the orbital periods, masses, surface gravities, and equilibrium temperatures of transiting planets can be explored more safely due to the homogeneity of the properties. I give a sneak preview of Homogeneous Studies Paper 4, which includes the properties of thirty transiting planetary systems observed by the CoRoT, Kepler and Deep Impact space missions. Future opportunities are discussed, plus remaining problems with our understanding of transiting planets. I acknowledge funding from the UK STFC in the form of an Advanced Fellowship.

  10. Models of very-low-mass stars, brown dwarfs and exoplanets.

    PubMed

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  11. Intercomparison of General Circulation Models for Hot Extrasolar Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Cho, James

    2013-11-01

    In this collaborative work with I. Polichtchouk, C. Watkins, H. Th. Thrastarson, O. M. Umurhan, and M. de la Torre-Juárez, we compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ``cubed-sphere'' grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should--except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in spectral models (only). However, exact numerical convergence is still not achieved across the spectral models: amplitudes and phases are observably different. When subject to a typical ``hot-Jupiter''-like forcing, all five models show quantitatively different behavior--although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, spectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst. This work has been supported by the Science and Technology Facilities Council, Westfield Small Grant, NASA Postdoctoral

  12. Fixed Delay Interferometry for Doppler Extrasolar Planet Detection

    NASA Astrophysics Data System (ADS)

    Ge, Jian

    2002-06-01

    We present a new technique based on fixed delay interferometry for high-throughput, high-precision, and multiobject Doppler radial velocity (RV) surveys for extrasolar planets. The Doppler measurements are conducted by monitoring the stellar fringe phase shifts of the interferometer instead of absorption-line centroid shifts as in state-of-the-art echelle spectroscopy. High Doppler sensitivity is achieved through optimizing the optical delay in the interferometer and reducing photon noise by measuring multiple fringes over a broad band. This broadband operation is performed by coupling the interferometer with a low- to medium-resolution postdisperser. The resulting fringing spectra over the bandpass are recorded on a two-dimensional detector, with fringes sampled in the slit spatial direction and the spectrum sampled in the dispersion direction. The resulting total Doppler sensitivity is, in theory, independent of the dispersing power of the postdisperser, which allows for the development of new-generation RV machines with much reduced size, high stability, and low cost compared to echelles. This technique has the potential to improve RV survey efficiency by 2-3 orders of magnitude over the cross-dispersed echelle spectroscopy approach, which would allow a full-sky RV survey of hundreds of thousands of stars for planets, brown dwarfs, and stellar companions once the instrument is operated as a multiobject instrument and is optimized for high throughput. The simple interferometer response potentially allows this technique to be operated at other wavelengths independent of popular iodine reference sources, being actively used in most of the current echelles for Doppler planet searches, to search for planets around early-type stars, white dwarfs, and M, L, and T dwarfs for the first time. The high throughput of this instrument could also allow investigation of extragalactic objects for RV variations at high precision.

  13. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (<1200 K) giant exoplanets at 3.6 and 4.5 microns using the Spitzer Space Telescope, which allow us to constrain their relative abundances of CH4 and CO and corresponding atmospheric metallicities. We discuss the implications of our results for the proposed correlation between planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  14. EXOFIT: orbital parameters of extrasolar planets from radial velocities

    NASA Astrophysics Data System (ADS)

    Balan, Sreekumar T.; Lahav, Ofer

    2009-04-01

    Retrieval of orbital parameters of extrasolar planets poses considerable statistical challenges. Due to sparse sampling, measurement errors, parameters degeneracy and modelling limitations, there are no unique values of basic parameters, such as period and eccentricity. Here, we estimate the orbital parameters from radial velocity data in a Bayesian framework by utilizing Markov Chain Monte Carlo (MCMC) simulations with the Metropolis-Hastings algorithm. We follow a methodology recently proposed by Gregory and Ford. Our implementation of MCMC is based on the object-oriented approach outlined by Graves. We make our resulting code, EXOFIT, publicly available with this paper. It can search for either one or two planets as illustrated on mock data. As an example we re-analysed the orbital solution of companions to HD 187085 and HD 159868 from the published radial velocity data. We confirm the degeneracy reported for orbital parameters of the companion to HD 187085, and show that a low-eccentricity orbit is more probable for this planet. For HD 159868, we obtained slightly different orbital solution and a relatively high `noise' factor indicating the presence of an unaccounted signal in the radial velocity data. EXOFIT is designed in such a way that it can be extended for a variety of probability models, including different Bayesian priors.

  15. A common mass scaling for satellite systems of gaseous planets.

    PubMed

    Canup, Robin M; Ward, William R

    2006-06-15

    The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.

  16. The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti

    NASA Astrophysics Data System (ADS)

    Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.

    2017-09-01

    Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin I = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin I = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11

  17. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  18. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2012-12-01

    Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  19. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2011-12-01

    Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  20. Giant Transiting Planets Observations GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  1. Tidal Barrier and the Asymptotic Mass of Proto-Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian; Li, Shu Lin; Lin, D. N. C.

    2007-05-01

    According to the conventional sequential accretion scenario, observed extrasolar planets acquired their current masses via efficient gas accretion onto super-Earth cores with accretion timescales that rapidly increase with mass. Gas accretion in weak-line T Tauri disks may be quenched by global depletion of gas, but such a mechanism is unlikely to have stalled the growth in planetary systems that contain relatively low-mass, close-in planets together with more massive, longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both its Bondi and Roche radii. Above the critical mass where the Roche and Bondi radii are equal to the disk thickness, the protoplanet's tidal perturbation induces the formation of a gap. However, despite continued diffusion into the gap, the azimuthal flux across the protoplanet's Roche lobe will be quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Gas accretion is quenched, yielding relatively low protoplanetary masses, in regions with low aspect ratios. This becomes important for determining the gas giant planet's mass function, the distribution of their masses within multiple-planet systems, and for suppressing the emergence of gas giants around low-mass stars. Finally, we find that accretion rates onto protoplanets declines gradually on a characteristic timescale of a few Myr, during which the protracted accretion timescale onto circumplanetary disks may allow for the formation and retention of regular satellites.

  2. Study of Extra-Solar Planets with the Advanced Fiber Optic Echelle

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)

    2002-01-01

    This is the final report of NASA Grant NAG5-7505, for 'Study of Extra-solar Planets with the Advanced Fiber Optic Echelle'. This program was funded in response to our proposal submitted under NASA NRA 97-OSS-06, with a total period of performance from June 1, 1998 through Feb 28 2002. Principal Investigator is Robert W. Noyes; co-Investigators are Sylvain G. Korzennik (SAO), Peter Niserison (SAO), and Timothy M. Brown (High Altitude Observatory). Since the start of this program we have carried out more than 30 observing runs, typically of 5 to 7 days duration. We obtained a total of around 2000 usable observations of about 150 stars, where a typical observation consists of 3 exposures of 10 minutes each. Using this data base we detected thc two additional planetary companions to the star Upsilon Andromedae. This detection was made independently of, and essentially simultaneously with, a similar detection by the Berkeley group (Marcy et al): the fact that two data sets were completely independent and gave essentially the same orbital parameters for this three-planet system gave a strong confirmation of this important result. We also extended our previous detection of the planet orbiting Rho Coronae Borealis to get a better determination of its orbital eccentricity: e=0.13 +/- 0.05. We detected a new planet in orbit around the star HD 89744, with orbital period 256 days, semi-major axis 0.88 AU, eccentricity 0.70, and minimum mass m sini = 7.2 m(sub Jup). This discovery is significant because of the very high orbital eccentricity, arid also because HD 89744 has both high metallicity [Fe/H] and at the same time a low [C/Fe] abundance ratio.

  3. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  4. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.edu

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute tomore » the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.« less

  5. Production of Star-Grazing and Star-Impacting Planetestimals via Orbital Migration of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; Holman, M.

    2000-01-01

    During the orbital migration of a giant extrasolar planet via ejection of planetesimals (as studied by Murray et al. in 1998), inner mean-motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean-motion resonances of a migrating Jupiter-mass planet. We find that many particles can be trapped in the 3:1 or 4:1 resonances and pumped to high enough eccentricities that they impact the star. This implies that for a planet migrating a substantial fraction of its semimajor axis, a fraction of its mass in planetesimals could impact the star. This process may be capable of enriching the metallicity of the star at a time when the star is no longer fully convective. Upon close approaches to the star, the surfaces of these planetesimals will be sublimated. Orbital migration should cause continuing production of evaporating bodies, suggesting that this process should be detectable with searches for transient absorption lines in young stars. The remainder of the particles will not impact the star but can be ejected subsequently by the planet as it migrates further inward. This allows the planet to migrate a substantial fraction of its initial semimajor axis by ejecting planetesimals.

  6. Glimpses of far away places: Intensive atmosphere characterization of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    Exoplanet atmosphere characterization has the potential to reveal the origins, nature, and even habitability of distant worlds. This thesis represents a step towards realizing that potential for a diverse group of four extrasolar planets. Here, I present the results of intensive observational campaigns with the Hubble and Spitzer Space Telescopes to study the atmospheres of the super-Earth GJ 1214b and the hot Jupiters WASP-43b, WASP-12b, and WASP-103b. I measured an unprecedentedly precise near-infrared transmission spectrum for GJ 1214b that definitively reveals the presence of clouds in the planet's atmosphere. For WASP-43b and WASP-12b, I also measured very precise spectra that exhibit water features at high confidence (>7 sigma). The retrieved water abundance for WASP-43b extends the well-known Solar System trend of decreasing atmospheric metallicity with increasing planet mass. The detection of water for WASP-12b marks the first spectroscopic identification of a molecule in the planet's atmosphere and implies that it has solar composition, ruling out carbon-to-oxygen ratios greater than unity. For WASP-103b, I present preliminary results from the new technique of phase-resolved spectroscopy to determine the planet's temperature structure, dynamics, and energy budget. In addition to these observations, I also describe the BATMAN code, an open-source Python package for fast and flexible modeling of transit light curves. Taken together, these results provide a foundation for comparative planetology beyond the Solar System and the investigation of Earth-like, potentially habitable planets with future observing facilities.

  7. Extrasolar Planet Inferometric Survey (EPIcS)

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander

    2004-01-01

    The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.

  8. From Extrasolar Planets to Exo-Earths

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  9. Measuring the Infrared Spectrum of the Transiting Extrasolar Planet HD 209458b

    NASA Astrophysics Data System (ADS)

    Richardson, L. Jeremy; Cho, James; Deming, Drake; Hansen, Brad; Harrington, Joseph; Menou, Kristen; Seager, Sara

    2005-06-01

    Researchers from two independent groups recently detected the first infrared signal from an extrasolar planet. Deming et. al. (2005a) detected the 24-micron flux density of HD 209458b using MIPS at secondary eclipse, and Charbonneau et. al. (2005) detected the infrared signal of TrES-1 using IRAC at 4.5 and 8 microns. These results have dramatically demonstrated the ability of Spitzer to characterize extrasolar planets. We propose to build on these observations with IRS spectroscopy of HD 209458b from 7.4 to 14.5 microns. By observing the system both during and outside of secondary eclipse, we will derive the planetary spectrum from the change in the shape of the continuum spectrum in combined light. These observations will lead directly to a measurement of the temperature gradient in the planetary atmosphere and the column density of water above the clouds, and we will search for variability due to atmospheric dynamics.

  10. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV

  11. Giant Transiting Planets Observations - GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.

    2006-08-01

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  12. Formation, Habitability, and Detection of Extrasolar Moons

    PubMed Central

    Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I.

    2014-01-01

    Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1–0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology—Extrasolar planets—Habitability—Planetary science—Tides. Astrobiology 14, 798–835. PMID:25147963

  13. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  14. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory.

    PubMed

    Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M

    1996-06-25

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  15. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory

    NASA Technical Reports Server (NTRS)

    Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.

    1996-01-01

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  16. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraintsmore » on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.« less

  17. The NGCSU Extrasolar Planet Transit Project

    NASA Astrophysics Data System (ADS)

    Jones, J. H.

    2000-12-01

    Since the first published reports of the detection of the extra-solar planet transit of HD 209458 (Henry, et al. 2000, ApJ, 529, L41; Charbonneau, et al. 2000, ApJ, 529, L45), we have been attempting to detect and measure the transits with high enough accuracy for useful data analysis of the light curves. Our goal is to improve our observational and data analysis techniques, and hopefully upgrade our equipment, until we are able to reliably acquire milli-magnitude multiband photometry of HD 209458 both on and off transit. We believe our observatory can fill a useful niche in the long term monitoring of HD 209458 and other such planet-transit stars that will surely be discovered in the future. There is also an important astronomy education component to our project as well. The chance for our undergraduate Physics majors to participate in important publishable research can be a great motivating factor for them to continue their academic careers into graduate school. Furthermore, the fact that they have participated in such a project makes our graduates more "marketable" to the graduate schools. We also have a high school teacher and student currently participating in our project. This shows the project is useful in providing astronomy outreach beyond our local institution. We report here on our first detection of the planet-transit during the night of August 15-16, 2000 and also present our data from a series of transits during the month of October, 2000. Finally, we will present the project's current status at the time of the meeting.

  18. Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.

    2011-08-01

    After centuries of wondering about the presence of other worlds outside our Solar System, the first extrasolar planets were discovered about fifteen years ago. Since the quest continued. The greatest discovery of our new line of research, exoplanetology, has probably been the large diversity that those new worlds have brought forward; a diversity in mass, in size, in orbital periods, as well as in the architecture of the systems we discover. Planets very different from those composing our system have been detected. As such, we found hot Jupiters, gas giants which orbital period is only of a few days, mini-Neptunes, bodies five to ten time the mass of the Earth but covered by a thick gas layer, super-Earths of similar masses but rocky, lava worlds, and more recently, maybe the first ocean planet. Many more surprises probably await us. This thesis has for subject this very particular planet class: the hot Jupiters. Those astonishing worlds are still badly understood. Yet, thanks to the evolution of observational techniques and of the treatment of their signals, we probably have gathered as much knowledge from these worlds, than what was known of our own gas giants prior to their visit by probes. They are laboratories for a series of intense physical phenomena caused by their proximity to their star. Notably, these planets are found in average much larger than expected. In addition to these curiosities, their presence so close to their star is abnormal, the necessary conditions for the formation of such massive bodies, this close, not being plausible. Thus it is more reasonable to explain their current orbits by a formation far from their star, followed by an orbital migration. It is on this last subject that this thesis is on: the origin of hot Jupiters. The laws of physics are universal. Therefore, using the same physical phenomena, we need to explain the existence of hot Jupiters, while explaining why the Jupiter within our Solar System is found five times the

  19. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  20. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  1. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  2. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin I of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  3. The Potential Feasibility of Chlorinic Photosynthesis on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Haas, Johnson

    2009-09-01

    It is highly likely that the first convincing evidence of extrasolar life will arrive in the form of atmospheric absorption spectra. The modern search for life-bearing extrasolar planets emphasizes the potential detection of O2 and O3 absorption spectra in exoplanetary atmospheres as archetypal signatures of biology. However, oxygenic photosynthesis apparently failed to evolve independently more than once on Earth, and is thus unlikely to be reliably ubiquitous throughout the universe. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This study examines the potential feasibility of one such exotic metabolism: chlorinic photosynthesis (CPS), defined as biologically-mediated halogenation of aqueous chloride to HClO, Cl2 or partially-oxidized intermediates (e.g. haloalkanes, haloacids, haloaromatics), coupled with photosynthetic CO2 fixation. This metabolic couple is feasible thermodynamically and appears to be geochemically plausible under approximately terrestrial conditions. This study hypothesizes that planetary biospheres dominated by CPS would develop atmospheres enriched with dihalogens and other halogenated compounds, evolve a highly oxidizing surface geochemical environment, and foster biological selection pressures favoring halogen resistance and eventual metazoan heterotrophy based on dihalogen and halocarbon respiration. Planets favoring the evolution of CPS would probably receive equivalent or greater surface UV flux than Earth did in the Paleoarchean (promoting abiotic photo-oxidation of aqueous halides, and establishing a strong biological selective pressure toward their accommodation), and would orbit stars having equivalent or greater bulk metallicities (promoting greater planetary halide abundances) relative to the Sun. Directed searches for such worlds should probably focus on A, F and G0 spectral class stars having bulk

  4. Survival of extrasolar giant planet moons in planet-planet scattering

    NASA Astrophysics Data System (ADS)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  5. DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David, E-mail: robinson@astro.washington.ed

    2010-09-20

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability ofmore » glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.« less

  6. Detecting Oceans on Extrasolar Planets Using the Glint Effect

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David

    2010-09-01

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

  7. On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.; Burrows, Christopher J.

    1990-01-01

    The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.

  8. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    PubMed

    Arbesman, Samuel; Laughlin, Gregory

    2010-10-04

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  9. A super-Earth transiting a nearby low-mass star.

    PubMed

    Charbonneau, David; Berta, Zachory K; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stéphane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry

    2009-12-17

    A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.

  10. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a

  11. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  12. On the Role of Dissolved Gases in the Atmosphere Retention of Low-mass Low-density Planets

    NASA Astrophysics Data System (ADS)

    Chachan, Yayaati; Stevenson, David J.

    2018-02-01

    Low-mass low-density planets discovered by Kepler in the super-Earth mass regime typically have large radii for their inferred masses, implying the presence of H2–He atmospheres. These planets are vulnerable to atmospheric mass loss due to heating by the parent star’s XUV flux. Models coupling atmospheric mass loss with thermal evolution predicted a bimodal distribution of planetary radii, which has gained observational support. However, a key component that has been ignored in previous studies is the dissolution of these gases into the molten core of rock and iron that constitute most of their mass. Such planets have high temperatures (>2000 K) and pressures (∼kbars) at the core-envelope boundary, ensuring a molten surface and a subsurface reservoir of hydrogen that can be 5–10 times larger than the atmosphere. This study bridges this gap by coupling the thermal evolution of the planet and the mass loss of the atmosphere with the thermodynamic equilibrium between the dissolved H2 and the atmospheric H2 (Henry’s law). Dissolution in the interior allows a planet to build a larger hydrogen repository during the planet formation stage. We show that the dissolved hydrogen outgasses to buffer atmospheric mass loss. The slow cooling of the planet also leads to outgassing because solubility decreases with decreasing temperature. Dissolution of hydrogen in the interior therefore increases the atmosphere retention ability of super-Earths. The study highlights the importance of including the temperature- and pressure-dependent solubility of gases in magma oceans and coupling outgassing to planetary evolution models.

  13. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  14. Planets around Low-mass Stars. III. A Young Dusty L Dwarf Companion at the Deuterium-burning Limit

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 (≈52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R ≈ 3800) 1.5-2.4 μm spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ~120 Myr AB Dor young moving group based on the photometric distance to the primary (36 ± 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I λ6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ~10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where "hot-start" evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, κ And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is ≈12-13 M Jup or ≈22-27 M Jup if it is an AB Dor member, or possibly as low as 11 M Jup if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition (≈1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being retained to cooler temperatures at low surface gravities, as seen in the spectra of young (8-30 Myr) planetary

  15. A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth

    PubMed Central

    Arbesman, Samuel; Laughlin, Gregory

    2010-01-01

    Background The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Methodology/Principal Findings Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Conclusions/Significance Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields. PMID:20957226

  16. Transit spectroscopy of the extrasolar planet HD 209458B: The search for water

    NASA Astrophysics Data System (ADS)

    Rojo, Patricio Michel

    This dissertation describes an attempt to detect water in the atmosphere of the extrasolar planet HD 209458b using transit spectroscopy. It first discusses the importance of water detection and reviews the state of knowledge about extrasolar planets. This review discusses the main statistical trends and describes the detection methods employed to this date. The importance of the transiting planets and the many measurements of the known ones are also discussed. A radiative transfer model designed and built specifically for this project predicts, given a planetary temperature/pressure/composition profile, the dependence in wavelength of the stellar spectrum modulation due to a transiting planet. A total of 352 spectra around 1.8 [mu]m were obtained on four nights (three in transit) of observations on August 3--4, September 26, and October 3 of 2002 using ISAAC at the Very Large Telescope. Correlating the modeled modulation with the infrared spectra yields a nondetection of water in the atmosphere of HD 209458b. It is found that the nondetection is due to an unfortunate choice of observing parameters and conditions that made it impossible to reach the required sensitivity. Nonetheless, the results are scaled with synthetic spectra to place strong limits on the planetary system configurations for which the observing parameters and telluric conditions would have yielded a successful detection. None of the 10 other known transiting planets would be detectable with the choice of parameters and conditions for this observation. A quantitative model of an improved observing strategy for future observations of this kind is developed. The improvements include: airmass and timing constraints, the simultaneous observation of a calibrator star, and a new method to find the optimal wavelength range. The data-reduction process includes several original techniques that were developed during this work, such as a method to remove fringes from flat fields and several methods to correct

  17. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the

  18. Planets around Low-mass Stars (PALMS). VI. Discovery of a Remarkably Red Planetary-mass Companion to the AB Dor Moving Group Candidate 2MASS J22362452+4751425*

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Mawet, Dimitri; Ngo, Henry; Malo, Lison; Mace, Gregory N.; McLane, Jacob N.; Lu, Jessica R.; Tristan, Isaiah I.; Hinkley, Sasha; Hillenbrand, Lynne A.; Shkolnik, Evgenya L.; Benneke, Björn; Best, William M. J.

    2017-01-01

    We report the discovery of an extremely red planetary-mass companion to 2MASS J22362452+4751425, a ≈0.6 M⊙ late-K dwarf likely belonging to the ˜120 Myr AB Doradus moving group. 2M2236+4751 b was identified in multi-epoch NIRC2 adaptive optics imaging at Keck Observatory at a separation of 3\\buildrel{\\prime\\prime}\\over{.} 7, or 230 ± 20 AU in projection at the kinematic distance of 63 ± 5 pc to its host star. Assuming membership in the AB Dor group, as suggested from its kinematics, the inferred mass of 2M2236+4751 b is 11-14 MJup. Follow-up Keck/OSIRIS K-band spectroscopy of the companion reveals strong CO absorption similar to other faint red L dwarfs and lacks signs of methane absorption, despite having an effective temperature of ≈900-1200 K. With a (J-K)MKO color of 2.69 ± 0.12 mag, the near-infrared slope of 2M2236+4751 b is redder than all of the HR 8799 planets and instead resembles the ≈23 Myr isolated planetary-mass object PSO J318.5-22, implying that similarly thick photospheric clouds can persist in the atmospheres of giant planets at ages beyond 100 Myr. In near-infrared color-magnitude diagrams, 2M2236+4751 b is located at the tip of the red L dwarf sequence and appears to define the “elbow” of the AB Dor substellar isochrone separating low-gravity L dwarfs from the cooler young T dwarf track. 2M2236+4751 b is the reddest substellar companion to a star and will be a valuable benchmark to study the shared atmospheric properties of young low-mass brown dwarfs and extrasolar giant planets. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  19. Extrasolar planets as a probe of modified gravity

    NASA Astrophysics Data System (ADS)

    Vargas dos Santos, Marcelo; Mota, David F.

    2017-06-01

    We propose a new method to test modified gravity theories, taking advantage of the available data on extrasolar planets. We computed the deviations from the Kepler third law and use that to constrain gravity theories beyond General Relativity. We investigate gravity models which incorporate three screening mechanisms: the Chameleon, the Symmetron and the Vainshtein. We find that data from exoplanets orbits are very sensitive to the screening mechanisms putting strong constraints in the parameter space for the Chameleon models and the Symmetron, complementary and competitive to other methods, like interferometers and solar system. With the constraints on Vainshtein we are able to work beyond the hypothesis that the crossover scale is of the same order of magnitude than the Hubble radius rc ∼ H0-1, which makes the screening work automatically, testing how strong this hypothesis is and the viability of other scales.

  20. Habitable moons around extrasolar giant planets

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.; Wade, R. A.

    1997-01-01

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  1. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  2. Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Miranda, Ryan; Lai, Dong

    2018-02-01

    We investigate the migration of a low-mass (≲10 M⊕) planet near the inner edge of a protoplanetary disc using two-dimensional viscous hydrodynamics simulations. We employ an inner boundary condition representing the truncation of the disc at the stellar corotation radius. As described by Tsang, wave reflection at the inner disc boundary modifies the Type I migration torque on the planet, allowing migration to be halted before the planet reaches the inner edge of the disc. For low-viscosity discs (α ≲ 10-3), planets may be trapped with semi-major axes as large as three to five times the inner disc radius. In general, planets are trapped closer to the inner edge as either the planet mass or the disc viscosity parameter α increases, and farther from the inner edge as the disc thickness is increased. This planet trapping mechanism may impact the formation and migration history of close-in compact multiplanet systems.

  3. THE PROJECT: an Observatory / Transport Spaceship for Discovering and Populating Habitable Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Kilston, S.

    1998-12-01

    Recent extrasolar planet discoveries and related progress in astrophysics have refined our knowledge of the implications of the Drake equation. The Space Interferometry Mission and the planned Terrestrial Planet Finder will deepen this understanding, and begin pointing the way to places we need to explore at closer range. If the correct resolution of the Fermi paradox regarding intelligent extraterrestrials (``where are they?") is found to lie in the actual scarcity of such beings, it may turn out that we are more advanced than most other life-forms in our galaxy. In this case, a main purpose in finding planets may be to find places for us to go: astronomy will once again play a major role in human navigation and migration. We describe a strawman design concept for an astronomical observatory ship designed for launch beyond our solar system within several hundred years. This ship design would employ plausible physics, biology, technology, sociology, and economics to carry one million passengers in a one-G environment shielded from space radiation. A cruising speed under 0.01 c, slower than in many science-fiction concepts, minimizes power requirements and the danger from collisional impacts. The ship would contain all subsystems needed to sustain multi-generational life on a voyage of thousands of years, as well as the observatories to identify for human settlement a habitable extrasolar planet. Even the modestly advanced technology described here could spread intelligent life throughout our galaxy within 40 million years, a very small fraction of the galaxy's age. Motivation for such an ambitious project is three-fold: expanding our knowledge of the universe, enlisting the efforts and enthusiasms of humankind toward a very grand goal which will stimulate progress in all aspects of our cultures and technologies, and participating in the process of spreading life so its survivability and fruition are enhanced.

  4. Early Direct Imaging and Spectral Characterization of Extrasolar Planets with the SCExAO/CHARIS

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Kasdin, Jeremy; Brandt, Timothy; Groff, Tyler; Jovanovic, Nemanja; Lozi, Julien; Chilcote, Jeffrey K.; Uyama, Taichi; Ascensio-Torres, Ruben; Tamura, Motohide; Norris, Barnaby

    2018-01-01

    We present selected direct imaging/spectroscopy results from Subaru’s extreme adaptive optics system, SCExAO, coupled with the CHARIS integral field spectrograph obtained from the first full year of CHARIS’s operation. SCExAO/CHARIS yields high signal-to-noise detections and 1.1—2.4 micron spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We describe these results and multi-epoch, multi-wavelength imaging of LkCa 15 to assess the (non-)existence of protoplanetary companions, and briefly describe upgrades to SCExAO that will allow it to image and characterize even fainter self-luminous extrasolar planets and eventually mature planets in reflected light.

  5. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  6. The Discovery of Extrasolar Planets via Transits

    NASA Astrophysics Data System (ADS)

    Dunham, Edward W.; Borucki, W. J.; Jenkins, J. M.; Batalha, N. M.; Caldwell, D. A.; Mandushev, G.

    2014-01-01

    The goal of detecting extrasolar planets has been part of human thought for many centuries and several plausible approaches for detecting them have been discussed for many decades. At this point in history the two most successful approaches have been the reflex radial velocity and transit approaches. These each have the additional merit of corroborating a discovery by the other approach, at least in some cases, thereby producing very convincing detections of objects that can't be seen. In the transit detection realm the key enabling technical factors were development of: - high quality large area electronic detectors - practical fast optics with wide fields of view - automated telescope systems - analysis algorithms to correct for inadequacies in the instrumentation - computing capability sufficient to cope with all of this This part of the equation is relatively straightforward. The more important part is subliminal, namely what went on in the minds of the proponents and detractors of the transit approach as events unfolded. Three major paradigm shifts had to happen. First, we had to come to understand that not all solar systems look like ours. The motivating effect of the hot Jupiter class of planet was profound. Second, the fact that CCD detectors can be much more stable than anybody imagined had to be understood. Finally, the ability of analysis methods to correct the data sufficiently well for the differential photometry task at hand had to be understood by proponents and detractors alike. The problem of capturing this changing mind-set in a collection of artifacts is a difficult one but is essential for a proper presentation of this bit of history.

  7. The HARPS search for southern extra-solar planets. III. Three Saturn-mass planets around HD 93083, HD 101930 and HD 102117

    NASA Astrophysics Data System (ADS)

    Lovis, C.; Mayor, M.; Bouchy, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Udry, S.; Benz, W.; Bertaux, J.-L.; Mordasini, C.; Sivan, J.-P.

    2005-07-01

    We report on the detection of three Saturn-mass planets discovered with the HARPS instrument. HD 93083 shows radial-velocity (RV) variations best explained by the presence of a companion of 0.37 MJup orbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 days and a minimum mass of 0.30 MJup. For HD 102117, we present the independent detection of a companion with m2 sin{i} = 0.14 MJup and orbital period P = 20.7 days. This planet was recently detected by Tinney et al. (ApJ, submitted). Activity and bisector indicators exclude any significant RV perturbations of stellar origin, reinforcing the planetary interpretation of the RV variations. The radial-velocity residuals around the Keplerian fits are 2.0, 1.8 and 0.9 m s-1 respectively, showing the unprecedented RV accuracy achieved with HARPS. A sample of stable stars observed with HARPS is also presented to illustrate the long-term precision of the instrument. All three stars are metal-rich, confirming the now well-established relation between planet occurrence and metallicity. The new planets are all in the Saturn-mass range, orbiting at moderate distance from their parent star, thereby occupying an area of the parameter space which seems difficult to populate according to planet formation theories. A systematic exploration of these regions will provide new constraints on formation scenarios in the near future.

  8. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  9. HAT-P-18b AND HAT-P-19b: TWO LOW-DENSITY SATURN-MASS PLANETS TRANSITING METAL-RICH K STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. D.; Bakos, G. A.; Torres, G.

    2011-01-01

    We report the discovery of two new transiting extrasolar planets. HAT-P-18b orbits the V = 12.759 K2 dwarf star GSC 2594-00646, with a period P = 5.508023 {+-} 0.000006 days, transit epoch T{sub c} = 2454715.02174 {+-} 0.00020 (BJD), and transit duration 0.1131 {+-} 0.0009 days. The host star has a mass of 0.77 {+-} 0.03 M{sub sun}, radius of 0.75 {+-} 0.04 R{sub sun}, effective temperature 4803 {+-} 80 K, and metallicity [Fe/H] = +0.10 {+-} 0.08. The planetary companion has a mass of 0.197 {+-} 0.013 M{sub J} and radius of 0.995 {+-} 0.052 R{sub J}, yielding amore » mean density of 0.25 {+-} 0.04 g cm{sup -3}. HAT-P-19b orbits the V = 12.901 K1 dwarf star GSC 2283-00589, with a period P = 4.008778 {+-} 0.000006 days, transit epoch T{sub c} = 2455091.53417 {+-} 0.00034 (BJD), and transit duration 0.1182 {+-} 0.0014 days. The host star has a mass of 0.84 {+-} 0.04 M{sub sun}, radius of 0.82 {+-} 0.05 R{sub sun}, effective temperature 4990 {+-} 130 K, and metallicity [Fe/H] = +0.23 {+-} 0.08. The planetary companion has a mass of 0.292 {+-} 0.018 M{sub J} and radius of 1.132 {+-} 0.072 R{sub J}, yielding a mean density of 0.25 {+-} 0.04 g cm{sup -3}. The radial velocity residuals for HAT-P-19 exhibit a linear trend in time, which indicates the presence of a third body in the system. Comparing these observations with theoretical models, we find that HAT-P-18b and HAT-P-19b are each consistent with a hydrogen-helium-dominated gas giant planet with negligible core mass. HAT-P-18b and HAT-P-19b join HAT-P-12b and WASP-21b in an emerging group of low-density Saturn-mass planets, with negligible inferred core masses. However, unlike HAT-P-12b and WASP-21b, both HAT-P-18b and HAT-P-19b orbit stars with super-solar metallicity. This calls into question the heretofore suggestive correlation between the inferred core mass and host star metallicity for Saturn-mass planets.« less

  10. The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.

    2017-05-01

    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the

  11. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    2011-01-10

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less

  12. A new statistical method for characterizing the atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Henderson, Cassandra S.; Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.

    2017-10-01

    By detecting light from extrasolar planets, we can measure their compositions and bulk physical properties. The technologies used to make these measurements are still in their infancy, and a lack of self-consistency suggests that previous observations have underestimated their systemic errors. We demonstrate a statistical method, newly applied to exoplanet characterization, which uses a Bayesian formalism to account for underestimated errorbars. We use this method to compare photometry of a substellar companion, GJ 758b, with custom atmospheric models. Our method produces a probability distribution of atmospheric model parameters including temperature, gravity, cloud model (fsed) and chemical abundance for GJ 758b. This distribution is less sensitive to highly variant data and appropriately reflects a greater uncertainty on parameter fits.

  13. Estrellas asociadas con planetas extrasolares vs. estrellas de tipo β Pictoris

    NASA Astrophysics Data System (ADS)

    Chavero, C.; Gómez, M.

    In this contribution we initially confront physical properties of two groups of stars: the Planet Host Stars and the Vega-like objects. The Planet Host Star group has one or more planet mass object associated and the Vega-like stars have circumstellar disks. We have compiled magnitudes, colors, parallaxes, spectral types, etc. for these objects from the literature and analyzed the distribution of both groups. We find that the samples are very similar in metallicities, ages, and spatial distributions. Our analysis suggests that the circumstellar environments are probably different while the central objects have similar physical properties. This difference may explain, at least in part, why the Planet Host Stars form extra-solar planetary objects such as those detected by the Doppler effect while the Vega-like objects are not commonly associated with these planet-mass bodies.

  14. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Barman, T.; De Rosa, R. J.; Konopacky, Q.; Marley, M. S.; Marois, C.; Nielsen, E. L.; Pueyo, L.; Rajan, A.; Rameau, J.; Saumon, D.; Wang, J. J.; Patience, J.; Ammons, M.; Arriaga, P.; Artigau, E.; Beckwith, S.; Brewster, J.; Bruzzone, S.; Bulger, J.; Burningham, B.; Burrows, A. S.; Chen, C.; Chiang, E.; Chilcote, J. K.; Dawson, R. I.; Dong, R.; Doyon, R.; Draper, Z. H.; Duchêne, G.; Esposito, T. M.; Fabrycky, D.; Fitzgerald, M. P.; Follette, K. B.; Fortney, J. J.; Gerard, B.; Goodsell, S.; Greenbaum, A. Z.; Hibon, P.; Hinkley, S.; Cotten, T. H.; Hung, L.-W.; Ingraham, P.; Johnson-Groh, M.; Kalas, P.; Lafreniere, D.; Larkin, J. E.; Lee, J.; Line, M.; Long, D.; Maire, J.; Marchis, F.; Matthews, B. C.; Max, C. E.; Metchev, S.; Millar-Blanchaer, M. A.; Mittal, T.; Morley, C. V.; Morzinski, K. M.; Murray-Clay, R.; Oppenheimer, R.; Palmer, D. W.; Patel, R.; Perrin, M. D.; Poyneer, L. A.; Rafikov, R. R.; Rantakyrö, F. T.; Rice, E. L.; Rojo, P.; Rudy, A. R.; Ruffio, J.-B.; Ruiz, M. T.; Sadakuni, N.; Saddlemyer, L.; Salama, M.; Savransky, D.; Schneider, A. C.; Sivaramakrishnan, A.; Song, I.; Soummer, R.; Thomas, S.; Vasisht, G.; Wallace, J. K.; Ward-Duong, K.; Wiktorowicz, S. J.; Wolff, S. G.; Zuckerman, B.

    2015-10-01

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10-6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.

  15. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  16. Hot Science with a "Warm" Telescope: Observations of Extrasolar Planets During the Spitzer Warm Mission

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.

    2007-12-01

    The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.

  17. Elemental Compositions of Extrasolar Planetesimals

    NASA Astrophysics Data System (ADS)

    Xu, Siyi; Jura, M.

    2014-01-01

    The composition of extrasolar rocky planets is essential for understanding the formation and evolution of these alien worlds. Studying externally-polluted white dwarfs provides the only method to directly measure the elemental compositions of extrasolar planetesimals, the building blocks of planets. The standard model is that some planetesimals can survive to the white dwarf phase, get perturbed, enter into the tidal radius of the white dwarf and get accreted, polluting its pure hydrogen or helium atmosphere. We have been performing high-resolution spectroscopic observations on a number of polluted white dwarfs to measure the bulk compositions of the accreted objects. To have a full picture of the abundance pattern, we gathered data from both Keck/HIRES and HST/COS. I will present the analysis for one of the most interesting objects -- G29-38. It is the first white dwarf identified with an infrared excess from debris of pulverized planetesimals and among the very first identified polluted hydrogen atmosphere white dwarfs. Our analysis indicates that the accreted extrasolar planetesimal is enhanced in refractory elements and depleted in volatile elements. A detailed comparison with solar system objects show that the observed composition can be best interpreted as a blend of chondritic object with some refractory-rich material, a result from post-nebular processing. When all polluted white dwarfs are viewed as an ensemble, we find that the elemental compositions of accreted extrasolar planetesimals resemble to those of solar system objects to zeroth order. (i) The big four elements, O, Fe, Mg and Si are also dominant. Objects with exotic compositions, e.g. diamond planets and refractory-dominated planets, are yet to be found. (ii) Volatiles, such as carbon and water, are only trace constituents. In terms of bulk composition, solar system objects are essentially normal.

  18. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  19. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  20. Atmospheric circulations of terrestrial planets orbiting low-mass stars

    NASA Astrophysics Data System (ADS)

    Edson, Adam; Lee, Sukyoung; Bannon, Peter; Kasting, James F.; Pollard, David

    2011-03-01

    Circulations and habitable zones of planets orbiting low-mass stars are investigated. Many of these planets are expected to rotate synchronously relative to their parent stars, thereby raising questions about their surface temperature distributions and habitability. We use a global circulation model to study idealized, synchronously rotating (tidally locked) planets of various rotation periods, with surfaces of all land or all water, but with an Earth-like atmosphere and solar insolation. The dry planets exhibit wide variations in surface temperature: >80 °C on the dayside to <-110 °C on the nightside for the 240-h rotator, for example. The water-covered aquaplanets are warmer and exhibit narrower ranges of surface temperatures, e.g., ∼40 °C to >-60 °C for the 240-h orbiter. They also have a larger habitable area, defined here as the region where average surface temperatures are between 0 °C and 50 °C. This concept has little relevance for either dry or aquaplanets, but might become relevant on a planet with both land area and oceans. The circulations on these tidally locked planets exhibit systematic changes as the rotation period is varied. However, they also reveal abrupt transitions between two different circulation regimes and multiple equilibria. For the dry planet, the transition occurs between a 4-day and a 5-day period, while for the aquaplanet, it occurs between a 3-day and a 4-day period. For both dry and aqua planets, this transition occurs when the Rossby deformation radius exceeds half the planetary radius. Further investigation on the dry planet reveals that multiple equilibria exist between 100- and 221-h periods. These multiple equilibria may be relevant for real planets within the habitable zones of late K and M stars, because these planets are expected to have rotation periods between 8 and 100 Earth days.

  1. Optimized Strategies for Detecting Extrasolar Space Weather

    NASA Astrophysics Data System (ADS)

    Hallinan, Gregg

    2018-06-01

    Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically <100 MHz), that are produced as the resulting shockwave propagates through the corona and interplanetary medium.; searches for similar emissions are ongoing from nearby stellar systems. Exoplanets that encounter CMEs can increase in radio luminosity by orders of magnitude at kHz-MHz frequencies. A detection of this radio emission allows the direct measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.

  2. Magnetospheric Emission from Extrasolar Planets

    DTIC Science & Technology

    2010-01-01

    their habitability—can only be accomplished from space. The most promising location for a telescope designed to detect AKR from extrasolar...Laboratory A . Lecacheux, Observatoire de Paris W. Majid, Jet Propulsion Laboratory R. Osten, STScI E. Shkolnik, Carnegie Institute of Washington I. Stevens...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a

  3. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  4. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  5. A map of the day-night contrast of the extrasolar planet HD 189733b.

    PubMed

    Knutson, Heather A; Charbonneau, David; Allen, Lori E; Fortney, Jonathan J; Agol, Eric; Cowan, Nicolas B; Showman, Adam P; Cooper, Curtis S; Megeath, S Thomas

    2007-05-10

    'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.

  6. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager.

    PubMed

    Macintosh, B; Graham, J R; Barman, T; De Rosa, R J; Konopacky, Q; Marley, M S; Marois, C; Nielsen, E L; Pueyo, L; Rajan, A; Rameau, J; Saumon, D; Wang, J J; Patience, J; Ammons, M; Arriaga, P; Artigau, E; Beckwith, S; Brewster, J; Bruzzone, S; Bulger, J; Burningham, B; Burrows, A S; Chen, C; Chiang, E; Chilcote, J K; Dawson, R I; Dong, R; Doyon, R; Draper, Z H; Duchêne, G; Esposito, T M; Fabrycky, D; Fitzgerald, M P; Follette, K B; Fortney, J J; Gerard, B; Goodsell, S; Greenbaum, A Z; Hibon, P; Hinkley, S; Cotten, T H; Hung, L-W; Ingraham, P; Johnson-Groh, M; Kalas, P; Lafreniere, D; Larkin, J E; Lee, J; Line, M; Long, D; Maire, J; Marchis, F; Matthews, B C; Max, C E; Metchev, S; Millar-Blanchaer, M A; Mittal, T; Morley, C V; Morzinski, K M; Murray-Clay, R; Oppenheimer, R; Palmer, D W; Patel, R; Perrin, M D; Poyneer, L A; Rafikov, R R; Rantakyrö, F T; Rice, E L; Rojo, P; Rudy, A R; Ruffio, J-B; Ruiz, M T; Sadakuni, N; Saddlemyer, L; Salama, M; Savransky, D; Schneider, A C; Sivaramakrishnan, A; Song, I; Soummer, R; Thomas, S; Vasisht, G; Wallace, J K; Ward-Duong, K; Wiktorowicz, S J; Wolff, S G; Zuckerman, B

    2015-10-02

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter. Copyright © 2015, American Association for the Advancement of Science.

  7. Possible formation pathways for the low-density Neptune-mass planet HAT-P-26b

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad; Lakhlani, Gunjan

    2018-01-01

    We investigate possible pathways for the formation of the low-density Neptune-mass planet HAT-P-26b. We use two different formation models based on pebble and planetesimal accretion, and includes gas accretion, disc migration and simple photoevaporation. The models track the atmospheric oxygen abundance, in addition to the orbital period, and mass of the forming planets, which we compare to HAT-P-26b. We find that pebble accretion can explain this planet more naturally than planetesimal accretion that fails completely unless we artificially enhance the disc metallicity significantly. Pebble accretion models can reproduce HAT-P-26b with either a high initial core mass and low amount of envelope enrichment through core erosion or pebbles dissolution, or the opposite, with both scenarios being possible. Assuming a low envelope enrichment factor as expected from convection theory and comparable to the values we can infer from the D/H measurements in Uranus and Neptune, our most probable formation pathway for HAT-P-26b is through pebble accretion starting around 10 au early in the disc's lifetime.

  8. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  9. Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification

    NASA Astrophysics Data System (ADS)

    Abe, F.; Bennett, D. P.; Bond, I. A.; Eguchi, S.; Furuta, Y.; Hearnshaw, J. B.; Kamiya, K.; Kilmartin, P. M.; Kurata, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Noda, S.; Okajima, K.; Rakich, A.; Rattenbury, N. J.; Sako, T.; Sekiguchi, T.; Sullivan, D. J.; Sumi, T.; Tristram, P. J.; Yanagisawa, T.; Yock, P. C. M.; Gal-Yam, A.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Udalski, A.; Szewczyk, O.; Żebruń, K.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, L.

    2004-08-01

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

  10. Search for low-mass exoplanets by gravitational microlensing at high magnification.

    PubMed

    Abe, F; Bennett, D P; Bond, I A; Eguchi, S; Furuta, Y; Hearnshaw, J B; Kamiya, K; Kilmartin, P M; Kurata, Y; Masuda, K; Matsubara, Y; Muraki, Y; Noda, S; Okajima, K; Rakich, A; Rattenbury, N J; Sako, T; Sekiguchi, T; Sullivan, D J; Sumi, T; Tristram, P J; Yanagisawa, T; Yock, P C M; Gal-Yam, A; Lipkin, Y; Maoz, D; Ofek, E O; Udalski, A; Szewczyk, O; Zebrun, K; Soszynski, I; Szymanski, M K; Kubiak, M; Pietrzynski, G; Wyrzykowski, L

    2004-08-27

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

  11. Jovian Planet Finder optical system

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Clampin, Mark; Petro, Larry; Woodruff, Robert A.; Ford, Holland C.; Illingworth, Garth D.; Ftaclas, Christ

    2003-02-01

    The Jovian Planet Finder (JPF) is a proposed NASA MIDEX mission to place a highly optimized coronagraphic telescope on the International Space Station (ISS) to image Jupiter-like planets around nearby stars. The optical system is an off-axis, unobscured telescope with a 1.5 m primary mirror. A classical Lyot coronagraph with apodized occulting spots is used to reduce diffracted light from the central star. In order to provide the necessary contrast for detection of a planet, scattered light from mid-spatial-frequency errors is reduced by using super-smooth optics. Recent advances in polishing optics for extreme-ultraviolet lithography have shown that a factor of >30 reduction in midfrequency errors relative to those in the Hubble Space Telescope is possible (corresponding to a reduction in scattered light of nearly 1000x). The low level of scattered and diffracted light, together with a novel utilization of field rotation introduced by the alt-azimuth ISS telescope mounting, will provide a relatively low-cost facility for not only imaging extrasolar planets, but also circumstellar disks, host galaxies of quasars, and low-mass substellar companions such as brown dwarfs.

  12. Comparative Study on Hot Atom Coronae of Solar and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery

    Solar/stellar forcing on the upper atmospheres of the solar and extrasolar planets via both absorption of the XUV (soft X-rays and extreme ultraviolet) radiation and atmospheric sputtering results in the formation of an extended neutral corona populated by the suprathermal (hot) H, C, N, and O atoms (see, e.g., Johnson et al., 2008). The hot corona, in turn, is altered by an inflow of the solar wind/magnetospheric plasma and local pick-up ions onto the planetary exosphere. Such inflow results in the formation of the superthermal atoms (energetic neutral atoms - ENAs) due to the charge exchange with the high-energy precipitating ions and can affect the long-term evolution of the atmosphere due to the atmospheric escape. The origin, kinetics and transport of the suprathermal H, C, N, and O atoms in the transition regions (from thermosphere to exosphere) of the planetary atmospheres are discussed. Reactions of dissociative recombination of the ionospheric ions CO _{2} (+) , CO (+) , O _{2} (+) , and N _{2} (+) with thermal electrons are the main photochemical sources of hot atoms. The dissociation of atmospheric molecules by the solar/stellar XUV radiation and accompanying photoelectron fluxes and the induced exothermic photochemistry are also the important sources of the suprathermal atoms. Such kinetic systems with the non-thermal processes are usually investigated with the different (test particles, DSMC, and hybrid) versions of the kinetic Monte Carlo method. In our studies the kinetic energy distribution functions of suprathermal and superthermal atoms were calculated using the stochastic model of the hot planetary corona (Shematovich, 2004, 2010; Groeller et al., 2014), and the Monte Carlo model (Shematovich et al., 2011, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere respectively. These functions allowed us to estimate the space distribution of suprathermals in the planetary transition regions. An application of these

  13. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  14. Transits of extrasolar moons around luminous giant planets

    NASA Astrophysics Data System (ADS)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  15. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  16. Missing Title

    NASA Astrophysics Data System (ADS)

    Cook, T. A.; Chakrabarti, S.; Bifano, T. G.; Lane, B.; Levine, B. M.; Shao, M.

    2004-05-01

    The study of extrasolar planets is one of the most exciting research endeavors of modern astrophysics. While the list of known planets continues to grow, no direct image of any extrasolar planet has been obtained to date. Ground-breaking radial velocity measurements have identified many potential targets but other measurements are needed to obtain physical parameters of the extrasolar planets. For example, for most extrasolar giant planets we only know their minimum projected mass (M sin i). Even a single image of one extrasolar planet will fully determine its orbital parameters and thus its true mass. A single image would also provide albedo information which would begin to constrain their atmospheric properties. This is the objective of PICTURE, a low-cost space mission specifically designed to obtain the first direct image of extrasolar giant planets.

  17. ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Sarah J.; Kratter, Kaitlin M., E-mail: morrison@lpl.arizona.edu, E-mail: kkratter@email.arizona.edu

    2016-06-01

    In the coming years, high-contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR 8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an ordermore » of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean-motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet–star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.« less

  18. Toward a Model for Detecting Life on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Rye, R.; Storrie-Lombardi, M.

    2001-12-01

    The search for life extraterrestrial life has rapidly expanded during the past several years. In addition to missions to Mars and Europa, NASA now envisions launching an orbiting telescope, Terrestrial Planet Finder (TPF), capable of resolving Earth-sized planets around stars as far away as 50 parsecs within the next 10-15 years. By that time we need to develop our understanding of the effects of life on such planets in order to confidently distinguish inhabited planets from barren ones. Our group is in the process of developing a fully coupled generalized 1-D radiative transfer-atmospheric chemistry model. Around this core we are building the Virtual Planetary Laboratory (VPL) to generate synthetic spectra of hypothetical extrasolar terrestrial planets. Computational modules mimicking the influence of life on atmospheric chemistry/climate are of central importance for analyzing data from TPF and related missions. Here we describe our rationale and initial efforts to parameterize the effects of life using a Virtual Microbial Community (VMC). At first glance, the task of modeling hypothetical inhabited planets appears intractable. However, we may assume that most planets settle into a fairly small number of stable climate/chemistry regimes during their history. These regimes are maintained by negative feedback loops. Transitions from one stable solution to another are singularities, times during which the system is unregulated and may vary wildly. In this context, life is one of several processes modifying the chemical composition of a planetary atmosphere, potentially modifying climate. We seek to elucidate those processes and signatures unique to life and visible from space. The VMC is a first attempt at quantifying the possible range of effects of life on the atmosphere of a planet. We start from the presumption that kinetics and thermodynamics are the same throughout the universe. Given the remarkable metabolic diversity of life on Earth, we assume that all

  19. The Maximum Mass of a Planet

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-06-01

    Giant planet occurrence is a steeply increasing function of FGK dwarf host star metallicity, and this is interpreted as support for the core-accretion model of giant planet formation. On the other hand, the occurrence of low-mass stellar companions to FGK dwarf stars does not appear to depend on stellar metallicity. The mass at which objects no longer prefer metal-rich FGK dwarf host stars can therefore be used to infer the maximum mass of objects that form like planets through core accretion. I'll show that objects more massive than about 10 M_Jup do not orbit metal-rich host stars and that this transition is coincident with a minimum in the occurrence rate of such objects. These facts suggest that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 M_Jup. This observation can be used to infer the properties of protoplanetary disks and reveals that the Type I and Type II disk migration problems---two major issues for the modern model of planet formation---are not problems at all.

  20. The Chemical Composition of an Extrasolar Kuiper-Belt-Object

    NASA Astrophysics Data System (ADS)

    Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M.

    2017-02-01

    The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ∼2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ∼1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf’s tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  1. A rocky planet transiting a nearby low-mass star.

    PubMed

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  2. Development and Application of the Transit Timing Planet Detection Technique

    NASA Astrophysics Data System (ADS)

    Steffen, J. H.; Agol, E.

    2005-12-01

    We present the development and application of a new planet detection technique that uses the transit timing of a known, transiting planet. The transits of a solitary planet orbiting a star occur at equally spaced intervals in time. If a second planet is present, then dynamical interactions within the system will cause the time interval between transits to vary. These transit time variations (TTV) can be used to infer the orbital elements and mass of the unseen, perturbing planet. In some cases, particularly near mean-motion resonances, this technique could detect planets with masses less than the mass of the Earth---a capability not yet achieved by other planet detection schemes. We present an analysis of the set of transit times of the TrES-1 system given by Charbonneau et al. (2005). While no convincing evidence for a second planet in the TrES-1 system was found from that data, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within about 1% fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth--showing that this data is the first to have sensitivity to sub Earth-mass planets. We present results from our studies that use simulated data and from an ongoing analysis of the HD209458 system. These results show that TTV will be an important tool in the detection and characterization of extrasolar planetary systems.

  3. Gemini Planet Imager: Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2007-05-10

    For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetarymore » atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is

  4. An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler-87

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver

    2014-01-01

    Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable

  5. Jupiter and the Extrasolar Giant Planets: Composition and origin of atmospheres

    NASA Astrophysics Data System (ADS)

    Atreya, S.; Wong, A.; Mahaffy, P.; Niemann, H.; Wong, M.; Owen, T.

    In this paper, we will discuss the related issues of the composition and origin of Jupiter's atmosphere, and how this can help in understanding the atmospheres of the extrasolar giant planets (EGP). In the case of Jupiter, a wealth of data on the planet's atmosphere is available, largely as a result of the successful spacecraft observations by the Galileo Orbiter and Probe, ISO and Voyager, complemented by ground-based observations (Atreya et al., PSS 47, 1243, 1999; Encrenaz et al., PSS, 47, 1223, 1999; Atreya et al., PSS, 2002, in press). Although the atmosphere is made up of mostly H and He, trace amounts of CH4 and its products, H O, NH 3, H2S,22 heavy noble gases (Ne, Ar, Kr, Xe), and disequilibrium species (PH3, CO, CO2, GeH4, AsH3), are also detected. From measurements of the trace constituents in Jupiter's upper and the deep well-mixed troposphere by the Galileo Probe, it has been possible to determine the "bulk" abundance of the heavy elements, which is key to understanding the origin and evolution of the planet's atmosphere. C, N, S, Ar, Kr and Xe are all found to be enriched by a factor of 2-4 relative to their solar ratios to H. This unexpected finding led Owen et al. (Nature, 402, 269, 1999) to suggest that the icy planetesimals that formed Jupiter must have had a low temperature (=30 K) origin in order for them to trap the volatiles containing the heavy elements. An alternate hypothesis - according to which the volatiles were trapped in clathrate hydrates instead (Gautier et al., Ap. J., 550, L227, 2001) - overestimates Jupiter's sulfur abundance, and it too requires a remarkably low temperature of =38 K for argon clathration (Gautier et al., Ap. J., 559, L183, 2001) Could the known composition of Jupiter help in understanding the atmospheres of the EGP's? So far, only sodium has been detected in the atmosphere of an EGP that orbits a sun-like star, HD 209458, at 0.0468 AU (Charbonneau et al., Ap. J., 568, 377, 2002). However, sodium has not been

  6. DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Gregory, E-mail: kbatygin@gps.caltech.ed

    Tidal dissipation within a short-period transiting extrasolar planet perturbed by a companion object can drive orbital evolution of the system to a so-called tidal fixed point, in which the apses of the transiting planet and its perturber are aligned, and variations in orbital eccentricities vanish. Significant contribution to the apsidal precession rate is made by gravitational quadrupole fields, created by the transiting planets tidal and rotational distortions. The fixed-point orbital eccentricity of the inner planet is therefore a strong function of its interior structure. We illustrate these ideas in the specific context of the recently discovered HAT-P-13 exoplanetary system, andmore » show that one can already glean important insights into the physical properties of the inner transiting planet. We present structural models of the planet, which indicate that its observed radius can be maintained for a one-parameter sequence of models that properly vary core mass and tidal energy dissipation in the interior. We use an octupole-order secular theory of the orbital dynamics to derive the dependence of the inner planet's eccentricity, e{sub b} , on its tidal Love number, k {sub 2b}. We find that the currently measured eccentricity, e{sub b} = 0.021 +- 0.009, implies 0.116 < k {sub 2b} < 0.425, 0 M {sub +} < M {sub core} < 120 M {sub +}, and 10, 000 < Q{sub b} < 300, 000. Improved measurement of the eccentricity will soon allow for far tighter limits to be placed on all of these quantities, and will provide an unprecedented probe into the interior structure of an extrasolar planet.« less

  7. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    .9+/-0.4 degrees, making the planet misaligned by 2.9+/-0.5 degrees from the main disk, consistent with other observations that beta Pic b is misaligned with the main disk, and part of the misaligned inner disk. In 2009 & 2012 we find a projected orbital separation of 312.8 +/- 18.3 and 466.35 +/- 8.4 milliarcseconds consistent with an orbital period of ˜ 20 years, and a semi-major axis of ˜ 9 AU as found by Macintosh et al. (2014). During the first commissioning observations with the Gemini Planet Imager (GPI), my collaborators and I took the first H-band spectrum of the planetary companion to the nearby young star beta Pictoris. The spectrum has a resolving power of ˜ 45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1650 +/- 50K and a surface gravity of log(g) = 4.0 +/- 0.25 (cgs units). These values agree well with predictions from planetary evolution models for a gas giant with mass between 10 and 12 MJup and age between 10 and 20 Myrs. The spectrum is very similar to a known low mass field brown dwarf but has more flux at the long wavelength end of the filters compared to models. Given the very high signal-to-noise of our spectrum this likely indicates additional physics such as patchy clouds that need to be included in the model.

  8. A Universal Spin–Mass Relation for Brown Dwarfs and Planets

    NASA Astrophysics Data System (ADS)

    Scholz, Aleks; Moore, Keavin; Jayawardhana, Ray; Aigrain, Suzanne; Peterson, Dawn; Stelzer, Beate

    2018-06-01

    While brown dwarfs show similarities to stars early in their lives, their spin evolutions are much more akin to those of planets. We have used light curves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-forming region. Our sample spans masses from 0.02 to 0.08 M ⊙ and has been characterized extensively in the past. To search for periods, we utilize three different methods (autocorrelation, periodogram, Gaussian processes). The median period for brown dwarfs with disks is twice as long as for those without (3.1 versus 1.6 days), a signature of rotational braking by the disk, albeit with small numbers. With an overall median period of 1.9 days, brown dwarfs in Taurus rotate slower than their counterparts in somewhat older (3–10 Myr) star-forming regions, consistent with spin-up of the latter due to contraction and angular momentum conservation, a clear sign that disk braking overall is inefficient and/or temporary in this mass domain. We confirm the presence of a linear increase of the typical rotation period as a function of mass in the substellar regime. The rotational velocities, when calculated forward to the age of the solar system, assuming angular momentum conservation, fit the known spin–mass relation for solar system planets and extra-solar planetary-mass objects. This spin–mass trend holds over six orders of magnitude in mass, including objects from several different formation paths. Our result implies that brown dwarfs by and large retain their primordial angular momentum through the first few Myr of their evolution.

  9. Leveraging the power of a planet population: Mass-radius relation, host star multiplicity, and composition distribution of Kepler's sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie K.

    With the advent of large, dedicated planet hunting surveys, the search for extrasolar planets has evolved into an effort to understand the properties and formation of a planet population whose characteristics continue to surprise the provincial perspective we've derived from our own Solar System. The Kepler Mission in particular has enabled a large number of these studies, as it was designed to stare simultaneously at thousands of stars for several years and its automated transit search pipeline enables fairly uniform detection criteria and characterizable completeness and false positive rates. With the detection of nearly 5000 planet candidates, 80% of which are smaller than 4 REarth, Kepler has especially illuminated the unexpectedly vast sub-Neptune population. Such a rich dataset provides an unprecedented opportunity for rigorous statistical study of the physics of these planets that have no analogs in our Solar System. Contributing to this endeavor, I present the statistical characterization of several aspects of this population, including the comparison between Kepler's planet candidates and low-mass occurrence rates inferred from radial velocity detections, the relationship between a sub-Neptune's mass and its radius, the frequency of Kepler planet candidate host stars which have nearby visual companions as revealed by follow-up high resolution imaging, and the distribution of gaseous mass fractions that these sub-Neptunes could possess given a rock-plus-hydrogen composition. To do so, I have used sophisticated statistical analyses such as Monte Carlo simulations and hierarchical Bayesian modeling to tie theory more closely to observations and have acquired near infrared laser guide star adaptive optics imaging of 196 Kepler Objects of Interest. I find that even within this sub-Neptune population these planets are very diverse in nature: there is intrinsic scatter in masses at a given radius, the planet host stars have visual companions at a wide range of

  10. Discovery and Mass Measurements of a Cold, Sub-Neptune Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K., Jr.

    2011-01-01

    The gravitational microlensing exoplanet detection method is uniquely sensitive to cold, low-mass planets which orbit beyond the snow-line, where the most massive planets are thought to form. The early statistical results from microlensing indicate that Neptune-Saturn mass planets located beyond the snow-line are substantially more common than their counterparts in closer orbits that have found by the Doppler radial velocity method. We present the discovery of the planet MOA-2009-BLG-266Lb, which demonstrates that the gravitational microlensing method also has the capability to measure the masses of cold, low-mass planets. The mass measurements of the host star and the planet are made possible by the detection of the microlensing parallax signal due to the orbital motion or the Earth as well as observations from the EPOXI spacecraft in a Heliocentric orbit. The microlensing light curve indicates a planetary host star mass of M(sun) = 0.54 + / - 0.05M(sun) located at a distance of DL= 2.94 _ 0.21 kpc, orbited by a planet of mass mp= 9.8 +/-1.1M(Earth) with a semi-major axis of a = 3.1(+1.9-0.4)MAU.

  11. A Demonstration Setup to Simulate Detection of Planets outside the Solar System

    ERIC Educational Resources Information Center

    Choopan, W.; Ketpichainarong, W.; Laosinchai, P.; Panijpan, B.

    2011-01-01

    We constructed a simple demonstration setup to simulate an extrasolar planet and its star revolving around the system's centre of mass. Periodic dimming of light from the star by the transiting planet and the star's orbital revolution simulate the two major ways of deducing the presence of an exoplanet near a distant star. Apart from being a…

  12. Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, Christa

    2015-12-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.

  13. A Search for Transiting Neptune-Mass Extrasolar Planets in High-Precision Photometry of Solar-Type Stars

    NASA Technical Reports Server (NTRS)

    Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.

    2005-01-01

    Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.

  14. Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, Christa L.

    2015-11-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog, and assuming a Gausian distribution for the eigenmode amplitudes and a uniform distribution for the eigenmode phases, I have predicted what range of precession rates the planets may have. Generally, planets that have more than one eigenmode significantly contribute to their eccentricity ('groupies') can have a wide range of possible precession rates, while planets that are 'loners' have a narrow range of possible precession rates. One might have assumed that in any given system, the planets with shorter periods would have faster precession rates. However, I show that in systems where the planets suffer strong secular interactions this is not necessarily the case.

  15. Energy flux determines magnetic field strength of planets and stars.

    PubMed

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  16. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  17. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  18. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  19. Capture of terrestrial-sized moons by gas giant planets.

    PubMed

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  20. OGLE-2017-BLG-1434Lb: Eighth q<1×10-4 Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Ryu, Y.-H.; Sajadian, S.; Gould, A.; Mrǎłz, P.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y., K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Bozza, V.; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Burgdorf, M.; Campbell-White, J.; Ciceri, S.; Evans, D.; Figuera Jaimes, R.; Fujii, Y. I.; Haikala, L. K.; Henning, T.; Hinse, T. C.; Mancini, L.; Peixinho, N.; Rahvar, S.; Rabus, M.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; von Essen, C.

    2018-03-01

    We report the discovery of a cold Super-Earth planet (mp=4.4±0.5 M⊙) orbiting a low-mass (M=0.23±0.03) M⊙ dwarf at projected separation a⊥=1.18±0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, DL=0.86±0.09 kpc. Indeed, it was the large lens-source relative parallax πrel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, "microlens parallax" πE∝(πrel/M)1/2 that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q<1×10-4. We apply a new planet-detection sensitivity method, which is a variant of "V/Vmax", to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d lnq ∝ qp, with p=1.05+0.78-0.68, which confirms the "turnover" in the mass function found by Suzuki et al. relative to the power law of opposite sign n=-0.93±0.13 at higher mass ratios q≳2×10-4. We combine our result with that of Suzuki et al. to obtain p=0.73+0.42-0.34.

  1. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  2. HAT-P-18b and HAT-P-19b: Two Low-density Saturn-mass Planets Transiting Metal-rich K Stars

    NASA Astrophysics Data System (ADS)

    Hartman, J. D.; Bakos, G. Á.; Sato, B.; Torres, G.; Noyes, R. W.; Latham, D. W.; Kovács, G.; Fischer, D. A.; Howard, A. W.; Johnson, J. A.; Marcy, G. W.; Buchhave, L. A.; Füresz, G.; Perumpilly, G.; Béky, B.; Stefanik, R. P.; Sasselov, D. D.; Esquerdo, G. A.; Everett, M.; Csubry, Z.; Lázár, J.; Papp, I.; Sári, P.

    2011-01-01

    We report the discovery of two new transiting extrasolar planets. HAT-P-18b orbits the V = 12.759 K2 dwarf star GSC 2594-00646, with a period P = 5.508023 ± 0.000006 days, transit epoch Tc = 2454715.02174 ± 0.00020 (BJD), and transit duration 0.1131 ± 0.0009 days. The host star has a mass of 0.77 ± 0.03 M sun, radius of 0.75 ± 0.04 R sun, effective temperature 4803 ± 80 K, and metallicity [Fe/H] = +0.10 ± 0.08. The planetary companion has a mass of 0.197 ± 0.013 M J and radius of 0.995 ± 0.052 R J, yielding a mean density of 0.25 ± 0.04 g cm-3. HAT-P-19b orbits the V = 12.901 K1 dwarf star GSC 2283-00589, with a period P = 4.008778 ± 0.000006 days, transit epoch Tc = 2455091.53417 ± 0.00034 (BJD), and transit duration 0.1182 ± 0.0014 days. The host star has a mass of 0.84 ± 0.04 M sun, radius of 0.82 ± 0.05 R sun, effective temperature 4990 ± 130 K, and metallicity [Fe/H] = +0.23 ± 0.08. The planetary companion has a mass of 0.292 ± 0.018 M J and radius of 1.132 ± 0.072 R J, yielding a mean density of 0.25 ± 0.04 g cm-3. The radial velocity residuals for HAT-P-19 exhibit a linear trend in time, which indicates the presence of a third body in the system. Comparing these observations with theoretical models, we find that HAT-P-18b and HAT-P-19b are each consistent with a hydrogen-helium-dominated gas giant planet with negligible core mass. HAT-P-18b and HAT-P-19b join HAT-P-12b and WASP-21b in an emerging group of low-density Saturn-mass planets, with negligible inferred core masses. However, unlike HAT-P-12b and WASP-21b, both HAT-P-18b and HAT-P-19b orbit stars with super-solar metallicity. This calls into question the heretofore suggestive correlation between the inferred core mass and host star metallicity for Saturn-mass planets. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO (A146Hr, A201Hr

  3. Does the Presence of Planets Affect the Frequency and Properties of Extrasolar Kuiper Belts? Results from the Herschel Debris and Dunes Surveys

    NASA Astrophysics Data System (ADS)

    Moro-Martín, A.; Marshall, J. P.; Kennedy, G.; Sibthorpe, B.; Matthews, B. C.; Eiroa, C.; Wyatt, M. C.; Lestrade, J.-F.; Maldonado, J.; Rodriguez, D.; Greaves, J. S.; Montesinos, B.; Mora, A.; Booth, M.; Duchêne, G.; Wilner, D.; Horner, J.

    2015-03-01

    The study of the planet-debris disk connection can shed light on the formation and evolution of planetary systems and may help “predict” the presence of planets around stars with certain disk characteristics. In preliminary analyses of subsamples of the Herschel DEBRIS and DUNES surveys, Wyatt et al. and Marshall et al. identified a tentative correlation between debris and the presence of low-mass planets. Here we use the cleanest possible sample out of these Herschel surveys to assess the presence of such a correlation, discarding stars without known ages, with ages \\lt 1 Gyr, and with binary companions \\lt 100 AU to rule out possible correlations due to effects other than planet presence. In our resulting subsample of 204 FGK stars, we do not find evidence that debris disks are more common or more dusty around stars harboring high-mass or low-mass planets compared to a control sample without identified planets. There is no evidence either that the characteristic dust temperature of the debris disks around planet-bearing stars is any different from that in debris disks without identified planets, nor that debris disks are more or less common (or more or less dusty) around stars harboring multiple planets compared to single-planet systems. Diverse dynamical histories may account for the lack of correlations. The data show a correlation between the presence of high-mass planets and stellar metallicity, but no correlation between the presence of low-mass planets or debris and stellar metallicity. Comparing the observed cumulative distribution of fractional luminosity to those expected from a Gaussian distribution in logarithmic scale, we find that a distribution centered on the solar system’s value fits the data well, while one centered at 10 times this value can be rejected. This is of interest in the context of future terrestrial planet detection and characterization because it indicates that there are good prospects for finding a large number of debris

  4. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of

  5. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Sheppard, Kyle

    2017-05-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar-planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope/WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  6. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  7. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  8. HAT-P-20b-HAT-P-23b: FOUR MASSIVE TRANSITING EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakos, G. A.; Hartman, J.; Torres, G.

    We report the discovery of four relatively massive (2-7 M{sub J}) transiting extrasolar planets. HAT-P-20b orbits the moderately bright V = 11.339 K3 dwarf star GSC 1910-00239 on a circular orbit, with a period P = 2.875317 {+-} 0.000004 days, transit epoch T{sub c} = 2455080.92661 {+-} 0.00021 (BJD{sub UTC}), and transit duration 0.0770 {+-} 0.0008 days. The host star has a mass of 0.76 {+-} 0.03 M{sub Sun }, radius of 0.69 {+-} 0.02 R{sub Sun }, effective temperature 4595 {+-} 80 K, and metallicity [Fe/H] = +0.35 {+-} 0.08. The planetary companion has a mass of 7.246 {+-}more » 0.187 M{sub J} and a radius of 0.867 {+-} 0.033 R{sub J} yielding a mean density of 13.78 {+-} 1.50 g cm{sup -3}. HAT-P-21b orbits the V = 11.685 G3 dwarf star GSC 3013-01229 on an eccentric (e = 0.228 {+-} 0.016) orbit, with a period P = 4.124481 {+-} 0.000007 days, transit epoch T{sub c} = 2454996.41312 {+-} 0.00069, and transit duration 0.1530 {+-} 0.0027 days. The host star has a mass of 0.95 {+-} 0.04 M{sub Sun }, radius of 1.10 {+-} 0.08 R{sub Sun }, effective temperature 5588 {+-} 80 K, and metallicity [Fe/H] = +0.01 {+-} 0.08. The planetary companion has a mass of 4.063 {+-} 0.161 M{sub J} and a radius of 1.024 {+-} 0.092 R{sub J} yielding a mean density of 4.68{sup +1.59}{sub -0.99} g cm{sup -3}. HAT-P-21b is a borderline object between the pM and pL class planets, and the transits occur near apastron. HAT-P-22b orbits the bright V = 9.732 G5 dwarf star HD 233731 on a circular orbit, with a period P = 3.212220 {+-} 0.000009 days, transit epoch T{sub c} = 2454930.22001 {+-} 0.00025, and transit duration 0.1196 {+-} 0.0014 days. The host star has a mass of 0.92 {+-} 0.03 M{sub Sun }, radius of 1.04 {+-} 0.04 R{sub Sun }, effective temperature 5302 {+-} 80 K, and metallicity [Fe/H] = +0.24 {+-} 0.08. The planet has a mass of 2.147 {+-} 0.061 M{sub J} and a compact radius of 1.080 {+-} 0.058 R{sub J} yielding a mean density of 2.11{sup +0.40}{sub -0.29} g cm{sup -3}. The host star

  9. Eccentricity Evolution of Migrating Planets

    NASA Technical Reports Server (NTRS)

    Murray, N.; Paskowitz, M.; Holman, M.

    2002-01-01

    We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which either the outer or both planets lose energy and angular momentum. The sink of energy and angular momentum could be a gas or planetesimal disk. We analytically calculate the eccentricity damping rate in the case of a single planet migrating through a planetesimal disk. When the planetesimal disk is cold (the average eccentricity is much less than 1), the circularization time is comparable to the inward migration time, as previous calculations have found for the case of a gas disk. If the planetesimal disk is hot, the migration time can be an order of magnitude shorter. We show that the eccentricity of both planetary bodies can grow to large values, particularly if the inner body does not directly exchange energy or angular momentum with the disk. We present the results of numerical integrations of two migrating resonant planets showing rapid growth of eccentricity. We also present integrations in which a Jupiter-mass planet is forced to migrate inward through a system of 5-10 roughly Earth-mass planets. The migrating planets can eject or accrete the smaller bodies; roughly 5% of the mass (averaged over all the integrations) accretes onto the central star. The results are discussed in the context of the currently known extrasolar planetary systems.

  10. Microlensing Discovery of an Earth-Mass Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195

  11. Searching for Extrasolar Trojan Planets: A Status Report

    NASA Astrophysics Data System (ADS)

    Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.

    2001-05-01

    We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France

  12. Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Nagasawa, M.; Lin, D. N. C.; Ida, S.

    2003-04-01

    Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.

  13. MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars

    NASA Astrophysics Data System (ADS)

    Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley

    2017-01-01

    Results from Kepler and ground-based exoplanet surveys suggest that M-dwarfs host numerous small sized planets. Additionally, the discovery of the Earth-sized exoplanets orbiting Proxima Centauri and Trappist 1 demonstrate that these stars can host terrestrial planets in their habitable zones. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining 1 m/s Doppler resolution to detect their planetary companions remains a challenge for instruments designed for sun-like stars. We describe a novel, high-cadence approach aimed at detecting and characterizing planets orbiting the closest low-mass stars to the Sun. MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm, where M-dwarfs are brightest. The spectrograph will be temperature controlled at 20C +/- 10mk and in a vacuum chamber which maintains a pressure below 0.01 mbar while using a Fabry-Perot etalon and U/Ne lamp for wavelength calibration. The spectrometer will operate with a robotic, 0.7-meter telescope at Mt. Hopkins, Arizona. We expect first light in 2017.

  14. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  15. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  16. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deming, Drake; Sheppard, Kyle

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at highmore » spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.« less

  17. European astronomers observe first evaporating planet

    NASA Astrophysics Data System (ADS)

    2003-03-01

    planet’s upper atmosphere under the searing heat from the star. "The atmosphere is heated, the hydrogen escapes the planet's gravitational pull and is pushed away by the starlight, fanning out in a large tail behind the planet - like that of a comet," says Alain Lecavelier des Etangs, of the Institut d’Astrophysique de Paris. Astronomers estimate the amount of hydrogen gas escaping from HD 209458b to be at least 10 000 tonnes per second, but possibly much more. The planet may therefore already have lost quite a lot of its mass. HD 209458b belongs to a type of extrasolar planet known as ‘hot Jupiters’. These planets orbit precariously close to their stars. They are giant gaseous planets that must have formed in the cold outer reaches of the star system and then spiralled into their close orbits. This new discovery might help explain why ‘hot Jupiters’ so often orbit a few million kilometres from their parent stars. They are not usually found much closer than 7 million kilometres, the distance in the case of HD 209458b. Currently, the closest is 5.7 million kilometres. Hot Jupiters have orbits as brief as 3 days, but no less. Perhaps the evaporation of the atmosphere plays a role in setting an inner boundary for orbits of hot Jupiters. Notes for editors HD 209458b has a diameter 1.3 times that of Jupiter, and two-thirds the mass. Its orbit is one-eighth the size of Mercury's orbit around the Sun. The parent star is similar to our Sun and lies 150 light-years from Earth. It is visible with binoculars as a seventh magnitude star in the constellation of Pegasus. In 1999, this star suddenly entered the astronomical Hall of Fame when the extrasolar planet HD 209458b passed in front of it and partly eclipsed it. This was the first confirmed transiting extrasolar planet ever discovered. In 2001, Hubble detected the element sodium in the lower part of HD 209458b’s atmosphere, the first signature of an atmosphere on any extrasolar planet. The team is composed of A

  18. First Planet Confirmation with a Dispersed Fixed-Delay Interferometer

    NASA Astrophysics Data System (ADS)

    van Eyken, J. C.; Ge, J.; Mahadevan, S.; DeWitt, C.

    2004-01-01

    The Exoplanet Tracker is a prototype of a new type of fiber-fed instrument for performing high-precision relative Doppler measurements to detect extrasolar planets. A combination of Michelson interferometer and medium-resolution spectrograph, this low-cost instrument facilitates radial velocity measurements with high throughput over a small bandwidth (~300 Å) and has the potential to be designed for multiobject operation with moderate bandwidths (~1000 Å). We present the first planet detection with this new type of instrument, a successful confirmation of the well-established planetary companion to 51 Peg, showing an rms precision of 11.5 m s-1 over 5 days. We also show comparison measurements of the radial velocity stable star, η Cas, showing an rms precision of 7.9 m s-1 over 7 days. These new results are starting to approach the precision levels obtained with traditional radial velocity techniques based on cross-dispersed echelles. We anticipate that this new technique could have an important impact in the search for extrasolar planets.

  19. Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    NASA Technical Reports Server (NTRS)

    Sada, Pedro V.; Jennings, Donald E.; Deming, Drake; Jennings, Donald E.; Jackson, Brian; Hamilton, Catrina M.; Fraine, Jonathan; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; hide

    2012-01-01

    We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z0-band and B-band photometry (plus two H(alpha) filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO's 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being RpRJ0:0017 0:979RpRvis. (2) We observe starspot crossings during the transit of WASP-11HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems.

  20. Line Bisector Variations in Stars with Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Povich, M. S.; Giampapa, M. S.; Valenti, J. A.; Tilleman, T.

    1999-12-01

    We present the results from a high-resolution, synoptic spectroscopic program of observation of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations attributed to the presence of one or more substellar companions. The observations were obtained from 1998 March to 1999 February using the 1.52-m NSO McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph. The spectra were acquired with a resolving power of approximately 1.2 x 105. The line bisector was then derived from unblended photospheric features. In particular, we define the velocity displacement of the spectral line bisector and determine the bisector amplitude for the Fe I absorption line at 625.26 nm in order to search for variations in the line asymmetry over time. Such variations could mimic Doppler shifts in observations with lower spectral resolution. Examination of the bisector velocity displacement over the time span of our observations reveals no substantial difference between stars with planetary companions and those without reported companions. We find no correlation between the bisector variations and the orbital phase of a substellar companion in any of our target stars. Simulations of a periodic signal with noise levels based on our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m s-1. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity. This work was supported by a NASA grant to the NOAO under the auspices of the Origins of Solar Systems Program. MP gratefully acknowledges support from the NSF-sponsored Research Experience for Undergraduates (REU) program at the NOAO. The NOAO is operated by AURA, Inc., under a cooperative agreement with the NSF.

  1. A Program to Detect and Characterize Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lindstrom, David (Technical Monitor); Noyes, Robert W.

    2003-01-01

    We initiated a significant hardware upgrade to the AFOE, to increase its efficiency for precise radial velocity studies to the level where we can continue to contribute usefully to extrasolar planet research on relatively bright stars. The AFOE, at a 1.5-m telescope, will of course not have the sensitivity of radial velocity instruments at larger telescopes, such as the HIRES on Keck or the Hectochelle on the MMT telescope (about to come on line). However, it has been possible to increase its efficiency for precise radial velocity studies by a factor of 4 to 5, which-combined with the large amount of telescope time available at the 1.5-m telescope-will permit us to do intensive follow-up observations of stars brighter than about 8 magnitude. The AFOE was originally designed primarily for asteroseismology using a ThAr reference. This provided useful wavelength stability over tens of minutes as required for asteroseismology, but we were unable to get a long-term (month-to-month) velocity precision better than about 15 m/s with that setup. Hence, we implemented an iodine cell as a wavelength reference for extrasolar planet studies. However, the optical design of the original AFOE did not completely span the wavelength range covered by the iodine absorption spectrum, and furthermore the optics suffered significant light loss through optical obscuration in the camera secondary. To remedy this, we replaced the AFOE grating with a new one that covered the entire iodine spectral range at somewhat lower spectral resolution, and replaced the camera with a transmitting lens. (The use of a lens was made possible by restricting the spectral range covered by the upgraded AFOE to only the iodine region.) These upgrades were successfully completed, and the instrument was tested for three nights in fall of 2002. The expected improvement in sensitivity by a factor of 4 to 5 was observed: that is, the same velocity precision as previously attained (of order 5 to 7 m/s) was now

  2. Convection and plate tectonics on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Grasset, O.; Schubert, G.

    2012-04-01

    The number of potential Earth-like exoplanets is still very limited compared to the overall number of detected exoplanets. But the different methods keep improving, giving hope for this number to increase significantly in the coming years. Based on the relationship between mass and radius, two of the easiest parameters that can be known for exoplanets, four categories of planets have been identified: (i) the gas giants including hot Jupiters, (ii) the icy giants that can be like their solar system cousins Uranus and Neptune or that can have lost their H2-He atmosphere and have become the so-called ocean planets, (iii) the Earth-like planets with a fraction of silicates and iron similar to that of the Earth, and (iv) the Mercury like planet that have a much larger fraction of iron. The hunt for exoplanets is very much focused on Earth-like planets because of the desire to find alien forms of life and the science goal to understand how life started and developed on Earth. One science question is whether heat transfer by subsolidus convection can lead to plate tectonics, a process that allows material to be recycled in the interior on timescales of hundreds of millions of years. Earth-like exoplanets may have conditions quite different from Earth. For example, COROT-7b is so close to its star that it is likely locked in synchronous orbit with one very hot hemisphere and one very cold hemisphere. It is also worth noting that among the three Earth-like planets of the solar system (Earth, Venus and Mars), only Earth is subject to plate tectonics at present time. Venus may have experienced plate tectonics before the resurfacing event that erased any clue that such a process existed. This study investigates some of the parameters that can influence the transition from stagnant-lid convection to mobile-lid convection. Numerical simulations of convective heat transfer have been performed in 3D spherical geometry in order to determine the stress field generated by convection

  3. Parent Stars of Extrasolar Planets. VII. New Abundance Analyses of 30 Systems

    NASA Astrophysics Data System (ADS)

    Laws, Chris; Gonzalez, Guillermo; Walker, Kyle M.; Tyagi, Sudhi; Dodsworth, Jeremey; Snider, Keely; Suntzeff, Nicholas B.

    2003-05-01

    The results of new spectroscopic analyses of 30 stars with giant planet and/or brown dwarf companions are presented. Values for Teff and [Fe/H] are used in conjunction with Hipparcos data and Padua isochrones to derive masses, ages, and theoretical surface gravities. These new data are combined with spectroscopic and photometric metallicity estimates of other stars harboring planets and published samples of F, G, and K dwarfs to compare several subsets of planet bearing stars with similarly well-constrained control groups. The distribution of [Fe/H] values continues the trend uncovered in previous studies in that stars hosting planetary companions have a higher mean value than otherwise similar nearby stars. We also investigate the relationship between stellar mass and the presence of giant planets, and we find statistically marginal but suggestive evidence of a decrease in the incidence of radial velocity companions orbiting relatively less massive stars. If confirmed with larger samples, this would represent a critical constraint to both planetary formation models, as well as to estimates of the distribution of planetary systems in our Galaxy.

  4. The Frequency of Low-Mass Exoplanets

    NASA Astrophysics Data System (ADS)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.

    2009-08-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.

  5. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  6. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  7. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  8. A low mass for Mars from Jupiter's early gas-driven migration.

    PubMed

    Walsh, Kevin J; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Mandell, Avi M

    2011-06-05

    Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ∼100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought. ©2011 Macmillan Publishers Limited. All rights reserved

  9. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  10. The magnetic field inside a protoplanetary disc gap opened by planets of different masses

    NASA Astrophysics Data System (ADS)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W.

    2017-12-01

    We perform magnetohydrodynamic simulations of protoplanetary disc gaps opened by planets of various masses, with the aim of calculating the strength of the vertical magnetic field threading such gaps. We introduce a gravitational potential at the centre of a shearing box to compute the tidal interaction between the planets and the disc gas, which is turbulent due to the magnetorotational instability. Two types of simulations are executed: 1) In type 'Z', the initial magnetic field has only a uniform, vertical component, and ten planet masses between 0.66 and 6.64 thermal masses are used; 2) In type 'YZ', the initial magnetic field has both toroidal and vertical components, and five planet masses covering the same mass range are used. Our results show that, for low planet masses, higher values of the vertical magnetic field occur inside the gaps than outside, in agreement with the previous work. However, for massive planets, we find that the radial profiles of the field show dips near the gap centre. The interior of the Hill sphere of the most massive planet in the Z runs contains more low-plasma β values (i.e. high magnetic pressure) compared to lower-mass planets. Values of β at a distance of one Hill radius from each planet show a moderate decrease with planet mass. These results are relevant for the magnetic structure of circumplanetary discs and their possible outflows, and may be refined to aid future observational efforts to infer planet masses from high-resolution polarimetric observations of discs with gaps.

  11. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P., E-mail: tsasaki@vandals.uidaho.edu, E-mail: jwbarnes@uidaho.edu, E-mail: obrien@psi.edu

    2012-07-20

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion ofmore » lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.« less

  12. Review of methodology and technology available for the detection of extrasolar planetary systems

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Black, D. C.; Billingham, J.

    1985-01-01

    Four approaches exist for the detection of extrasolar planets. According to the only direct method, the planet is imaged at some wavelength in a manner which makes it possible to differentiate its own feeble luminosity (internal energy source plus reflected starlight) from that of the nearby host star. The three indirect methods involve the detection of a planetary mass companion on the basis of the observable effects it has on the host star. A search is conducted regarding the occurrence of regular, periodic changes in the stellar spatial motion (astrometric method) or the velocity of stellar emission line spectra (spectroscopic method) or in the apparent total stellar luminosity (photometric method). Details regarding the approaches employed for implementing the considered methods are discussed.

  13. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    NASA Astrophysics Data System (ADS)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff < 2700 K and has a significant effect on the structure and the spectrum of the atmosphere for Teff < 2400 K. We have compared the synthetic spectra of our models with observed spectra and found that they fit the spectra of mid- to late-type M-dwarfs and early-type L-dwarfs well. The geometrical extension of the atmospheres (at τ = 1) changes with wavelength resulting in a flux variation of 10%. This translates into a change in geometrical extension of the atmosphere of about 50 km, which is the quantitative basis for exoplanetary transit spectroscopy. We also test DRIFT-MARCS for an example exoplanet and demonstrate that our simulations reproduce the Spitzer observations for WASP-19b rather well for Teff = 2600 K, log (g) = 3.2 and solar abundances. Our model points at an exoplanet with a deep cloud-free atmosphere with a substantial

  14. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio andmore » the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.« less

  15. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planetmore » radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.« less

  16. Formation of Giant Planets and Brown Dwarves

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2003-01-01

    According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models predict that rocky planets should form in orbit about most stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. Ongoing theoretical modeling of accretion of giant planet atmospheres, as well as observations of protoplanetary disks, will help decide this issue. Observations of extrasolar planets around main sequence stars can only provide a lower limit on giant planet formation frequency . This is because after giant planets form, gravitational interactions with material within the protoplanetary disk may cause them to migrat inwards and be lost to the central star. The core instability model can only produce planets greater than a few jovian masses within protoplanetary disks that are more viscous than most such disks are believed to be. Thus, few brown dwarves (objects massive enough to undergo substantial deuterium fusion, estimated to occur above approximately 13 jovian masses) are likely to be formed in this manner. Most brown dwarves, as well as an unknown number of free-floating objects of planetary mass, are probably formed as are stars, by the collapse of extended gas/dust clouds into more compact objects.

  17. The ExtraSolar Planetary Imaging Coronagraph

    NASA Astrophysics Data System (ADS)

    Clampin, M.; Lyon, R.

    2010-10-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a 1.65-m telescope employing a visible nulling coronagraph (VNC) to deliver high-contrast images of extrasolar system architectures. EPIC will survey the architectures of exosolar systems, and investigate the physical nature of planets in these solar systems. EPIC will employ a Visible Nulling Coronagraph (VNC), featuring an inner working angle of ≤2λ/D, and offers the ideal balance between performance and feasibility of implementation, while not sacrificing science return. The VNC does not demand unrealistic thermal stability from its telescope optics, achieving its primary mirror surface figure requires no new technology, and pointing stability is within state of the art. The EPIC mission will be launched into a drift-away orbit with a five-year mission lifetime.

  18. Title: Characterizing a Frozen Extrasolar World

    NASA Technical Reports Server (NTRS)

    Skemer, Andrew J.; Morley, Caroline V.; Allers, Katelyn N.; Geballe, Thomas R.; Marley, Mark S.; Fortney, Jonathan J.; Faherty, Jacqueline K.; Bjoraker, Gordon L.

    2016-01-01

    The recently discovered brown dwarf WISE 0855 presents our first opportunity to study an object outside the Solar System that is nearly as cold as our own gas giant planets. However the traditional methodology for characterizing brown dwarfs-near infrared spectroscopy-is not currently feasible as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 micrometers spectrum, the same bandpass long used to study Jupiter's deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter. The spectrum is high enough quality to allow the investigation of dynamical and chemical processes that have long been studied in Jupiter's atmosphere, but this time on an extrasolar world.

  19. Simulations of planet migration driven by planetesimal scattering

    NASA Astrophysics Data System (ADS)

    Kirsh, David R.; Duncan, Martin; Brasser, Ramon; Levison, Harold F.

    2009-01-01

    Evidence has mounted for some time that planet migration is an important part of the formation of planetary systems, both in the Solar System [Malhotra, R., 1993. Nature 365, 819-821] and in extrasolar systems [Mayor, M., Queloz, D., 1995. Nature 378, 355-359; Lin, D.N.C., Bodenheimer, P., Richardson, D.C., 1996. Nature 380, 606-607]. One mechanism that produces migration (the change in a planet's semi-major axis a over time) is the scattering of comet- and asteroid-size bodies called planetesimals [Fernandez, J.A., Ip, W.-H., 1984. Icarus 58, 109-120]. Significant angular momentum exchange can occur between the planets and the planetesimals during local scattering, enough to cause a rapid, self-sustained migration of the planet [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445]. This migration has been studied for the particular case of the four outer planets of the Solar System (as in Gomes et al. [Gomes, R.S., Morbidelli, A., Levison, H.F., 2004. Icarus 170, 492-507]), but is not well understood in general. We have used the Miranda [McNeil, D., Duncan, M., Levison, H.F., 2005. Astron. J. 130, 2884-2899] computer simulation code to perform a broad parameter-space survey of the physical variables that determine the migration of a single planet in a planetesimal disk. Migration is found to be predominantly inwards, and the migration rate is found to be independent of planet mass for low-mass planets in relatively high-mass disks. Indeed, a simple scaling relation from Ida et al. [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445] matches well with the dependencies of the migration rate: |{da}/{dt}|=aT{4πΣa/M; with T the orbital period of the planet and Σ the surface density of the planetesimal disk. When the planet's mass exceeds that of the planetesimals within a few Hill radii (the unit of the planet's gravitational reach), the migration rate decreases strongly with planet mass. Other trends are

  20. Habitable Planetary Systems (un)like our own: Which of the Known Extra-Solar Systems Could Harbor Earth-like Planets?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean; Mandell, A.; Sigurdsson, S.

    2006-12-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).

  1. Subaru HDS transmission spectroscopy of the transiting extrasolar planet HD209458b

    NASA Astrophysics Data System (ADS)

    Narita, N.; Suto, Y.; Winn, J. N.; Turner, E. L.; Aoki, W.; Leigh, C. J.; Sato, B.; Tamura, M.; Yamada, T.

    2006-02-01

    We have searched for absorption in several common atomic species due to the atmosphere or exosphere of the transiting extrasolar planet HD 209458b, using high precision optical spectra obtained with the Subaru High Dispersion Spectrograph (HDS). Previously we reported an upper limit on Hα absorption of 0.1% (3σ) within a 5.1Å band. Using the same procedure, we now report upper limits on absorption due to the optical transitions of Na D, Li, Hα, Hβ, Hγ, Fe, and Ca. The 3σ upper limit for each transition is approximately 1% within a 0.3Å band (the core of the line), and a few tenths of a per cent within a 2Å band (the full line width). The wide-band results are close to the expected limit due to photon-counting (Poisson) statistics, although in the narrow-band case we have encountered unexplained systematic errors at a few times the Poisson level. These results are consistent with all previously reported detections (Charbonneau et al. 2002, ApJ, 568, 377) and upper limits (Bundy & Marcy 2000, PASP, 112, 1421; Moutou et al. 2001, A&A, 371, 260), but are significantly more sensitive yet achieved from ground based observations.

  2. Limits on Line Bisector Variability for Stars with Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Povich, M. S.; Giampapa, M. S.; Valenti, J. A.; Tilleman, T.; Barden, S.; Deming, D.; Livingston, W. C.; Pilachowski, C.

    2000-01-01

    We present an analysis of high-resolution synoptic spectra of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations due to the presence of one or more substellar companions. We searched for subtle periodic variations in photospheric line asymmetry, as characterized by line bisectors. In principle, periodic variations in line asymmetry observed at lower spectral resolution could mimic the radial velocity signature of a companion, but we find no significant evidence of such behavior in our data. Observations were obtained from 1998 March to 1999 February using the National Solar Observatory (NSO) 1.52-m McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph, achieving a resolving power of 1.2x10(exp5). To characterize line asymmetry, we first measured line bisectors for the unblended Fe I photospheric line at 625.26 nm. To improve sensitivity to small fluctuations, we then combined points in each bisector to form a velocity displacement with respect to the line core. We searched for periodic variations in this displacement, finding no substantial difference between stars with substellar companions and those without reported companions. We find no correlation between bisector velocity displacement and the known orbital phase of substellar companions around our target stars. Simulations of a periodic signal with noise levels that mimic our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m/s. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity.

  3. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  4. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  5. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H-more » and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  6. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert S.

    1991-01-01

    Radial velocity measurements are being made to search for planets orbiting stars other than the Sun. The reflex acceleration induced on stars by planets can be sensed by measuring the small, slow changes in the line-of-site velocities of stars. To detect these planetary perturbations, the data series must be made on a uniform instrumental scale for as long as it takes a planet to orbit its star. A spectrometer of extreme stability and unprecedented sensitivity to changes in stellar radial velocities was operated.

  7. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b.

    PubMed

    Snellen, Ignas A G; de Kok, Remco J; de Mooij, Ernst J W; Albrecht, Simon

    2010-06-24

    For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass estimate of the star and subsequently of the orbiting planet. If the orbital velocity of the planet could be determined, the masses of both star and planet could be calculated using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report high-dispersion ground-based spectroscopy of a transit of the extrasolar planet HD 209458b. We see a significant wavelength shift in absorption lines from carbon monoxide in the planet's atmosphere, which we conclude arises from a change in the radial component of the planet's orbital velocity. The masses of the star and planet are 1.00 +/- 0.22M(Sun) and 0.64 +/- 0.09M(Jup) respectively. A blueshift of the carbon monoxide signal of approximately 2 km s(-1) with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a carbon monoxide mixing ratio of (1-3) x 10(-3) in this planet's upper atmosphere.

  8. Star Masses and Star-Planet Distances for Earth-like Habitability.

    PubMed

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ < M < 1.04 M ⊙ , and the range for planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  9. Star Masses and Star-Planet Distances for Earth-like Habitability

    PubMed Central

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  10. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    PubMed

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  11. The Physics of Extrasolar Gaseous Planets : from Theory to Observable Signatures

    NASA Astrophysics Data System (ADS)

    Chabrier, G.; Allard, F.; Baraffe, I.; Barman, T.; Hauschildt, P. H.

    2004-12-01

    We review our present understanding of the physical properties of substellar objects, brown dwarfs and irradiated or non-irradiated gaseous exoplanets. This includes a description of their internal properties, mechanical structure and heat content, their atmospheric properties, thermal profile and emergent spectrum, and their evolution, in particular as irradiated companions of a close parent star. The general theory can be used to make predictions in term of detectability for the future observational projects. Special attention is devoted to the evolution of the two presently detected transit planets, HD 209458b and OGLE-TR-56B. For this latter, we present a consistent evolution for its recently revised mass and show that we reproduce the observed radius within its error bars. We briefly discuss differences between brown dwarfs and gaseous planets, both in terms of mass function and formation process. We outline several arguments to show that the minimum mass for deuterium burning, recently adopted officially as the limit to distinguish the two types of objects, is unlikely to play any specific role in star formation, so that such a limit is of purely semantic nature and is not supported by a physical justification.

  12. TeMPEST: the Texas, McDonald Photometric Extrasolar Search for Transits

    NASA Astrophysics Data System (ADS)

    Baliber, N. R.; Cochran, W. D.

    2001-11-01

    The TeMPEST project is a photometric search for transits of extrasolar giant planets orbiting at distances < ~ 0.1 AU to their parent stars. As is the case with HD 209458, the only known transiting system, measurements of the photometric dimming of stars with transiting planets, along with radial velocity (RV) data, will provide information on physical characteristics (mass, radius, and mean density) of these planets. Further study of HD 209458 b and planets like it might reveal their reflectivity, putting further constraints on their surface temperatures, as well as allow measurement of the composition of their outer atmospheres. To detect these types of systems, we use the McDonald Observatory 0.76m Prime Focus Camera (PFC), which provides a 46.2 arcmin square field. We are currently obtaining our first full season of data, and by early 2002 will have sufficient data to follow approximately 5,000 stars with the precision necessary to detect transits of close-orbiting Jovian planets. We also present data of the detection of the transit of the planet orbiting HD 209458 using the 0.76m PFC. These data are consistent with the partial occultation of the light from the star caused by the transit of an opaque disc of radius 1.4 R Jup. The TeMPEST project is funded by the NASA Origins program.

  13. Planetary system formation: Effects of planet-disk tidal interaction

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey

    The standard theory of planet formation begins with the coagulation of solid planetesimals (Safronov 1969, Wetherill & Stewart 1989) followed by the accretion of disk gas once the solid core reaches a critical mass >~10M⊕ (Perri & Cameron 1974, Mizuno 1980, Bodenheimer & Pollack 1986). The classic picture of planet formation, in which each planet's position in the nebula remain fixed, is challenged by the observed distribution of extra-solar planets (e.g. Mayor & Queloz 1995, Butler et al. 1999). The majority of these planets are on short-period orbits ( P<~10 days) very close to their central stars ( ap<~0.1 AU), suggesting that orbital migration plays an important role in the formation of planetary systems. The intent of this thesis is to explore the inclusion of protoplanetary tidal forces into the classical theory of planetary system formation. Protoplanetary interaction with the surrounding gaseous nebulae directly determines giant planets' semi-major axes, masses, gas/solid ratio, and relative spacing. In essence, the process of gap formation determines the primary observational characteristics of both individual planets and their composite systems. Detailed simulations of gap formation produce a range of planetary masses consistent with the observed distribution. Fully self-interacting models of planetary system formation can be used to create a wide variety of planetary systems, ranging from the solar system to Upsilon Andromeda (Butler et al. 1999).

  14. The CARMENES Search for Exoplanets around M Dwarfs: A Low-mass Planet in the Temperate Zone of the Nearby K2-18

    NASA Astrophysics Data System (ADS)

    Sarkis, Paula; Henning, Thomas; Kürster, Martin; Trifonov, Trifon; Zechmeister, Mathias; Tal-Or, Lev; Anglada-Escudé, Guillem; Hatzes, Artie P.; Lafarga, Marina; Dreizler, Stefan; Ribas, Ignasi; Caballero, José A.; Reiners, Ansgar; Mallonn, Matthias; Morales, Juan C.; Kaminski, Adrian; Aceituno, Jesús; Amado, Pedro J.; Béjar, Victor J. S.; Hagen, Hans-Jürgen; Jeffers, Sandra; Quirrenbach, Andreas; Launhardt, Ralf; Marvin, Christopher; Montes, David

    2018-06-01

    K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first discovered by the K2 mission and later confirmed with Spitzer Space Telescope observations. With a radius of ∼2 R ⊕ and an orbital period of ∼33 days, the planet lies in the temperate zone of its host star and receives stellar irradiation similar to that of Earth. Here we perform radial velocity follow-up observations with the visual channel of CARMENES with the goal of determining the mass and density of the planet. We measure a planetary semi-amplitude of K b ∼ 3.5 {{m}} {{{s}}}-1 and a mass of M b ∼ 9 M ⊕, yielding a bulk density around {ρ }b∼ 4 {{g}} {cm}}-3. This indicates a low-mass planet with a composition consistent with a solid core and a volatile-rich envelope. A signal at 9 days was recently reported using radial velocity measurements taken with the HARPS spectrograph. This was interpreted as being due to a second planet. We see a weaker, time- and wavelength-dependent signal in the CARMENES data set and thus favor stellar activity for its origin. K2-18 b joins the growing group of low-mass planets detected in the temperate zone of M dwarfs. The brightness of the host star in the near-infrared makes the system a good target for detailed atmospheric studies with the James Webb Space Telescope.

  15. Near-infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates

    NASA Technical Reports Server (NTRS)

    Plavchan, Peter; Jura, M.; Kirkpatrick, J. Davy; Cutri, Roc M.; Gallagher, S. C.

    2008-01-01

    The Two Micron All Sky Survey (2MASS) photometric calibration observations cover approximately 6 square degrees on the sky in 35 'calibration fields,' each sampled in nominal photometric conditions between 562 and 3692 times during the 4 years of the 2MASS mission. We compile a catalog of variables from the calibration observations to search for M dwarfs transited by extrasolar planets. We present our methods for measuring periodic and nonperiodic flux variability. From 7554 sources with apparent K(sub s) magnitudes between 5.6 and 16.1, we identify 247 variables, including extragalactic variables and 23 periodic variables. We have discovered three M dwarf eclipsing systems, including two candidates for transiting extrasolar planets.

  16. Propiedades espectroscópicas de planetas extrasolares y de enanas marrones

    NASA Astrophysics Data System (ADS)

    Martínez, C. F.; Gómez, M.

    In this contribution we present a comparison of the spectroscopic properties of three groups of objects: brown dwarfs, "Hot Jupiter" extrasolar planets and giant solar system planets, in particular Jupiter and Saturn. We col- lect all published spectra from the literature and compare their characteris- tics. Elements such as water vapor (H2 O) and methane (CH4 ) are present in practical all analyzed objects. On the contrary molecules such as carbon monoxide (CO) and carbon dioxide (CO2 ) are only detected in the spectra of planets. FULL TEXT IN SPANISH

  17. VizieR Online Data Catalog: Four new transiting planets (Hebrard+, 2014)

    NASA Astrophysics Data System (ADS)

    Hebrard, G.; Santerne, A.; Montagnier, G.; Bruno, G.; Deleuil, M.; Havel, M.; Almenara, J.-M.; Damiani, C.; Barros, S. C. C.; Bonomo, A. S.; Bouchy, F.; Diaz, R. F.; Moutou, C.

    2014-10-01

    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2-days, and masses of 0.25 and 0.34MJup, respectively. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29MJup) but a longer orbital period of 10.3 days. This places it in a domain where only few planets are known. KOI-830b, finally, with a mass of 1.27MJup and a period of 3.5-days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08RJup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the whole datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is a false positive. (2 data files).

  18. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  19. Towards an initial mass function for giant planets

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2018-07-01

    The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn-type planets. While the present-day distribution appears to be bimodal, with peaks around ˜1MJ and ˜20M⊕, this bimodality does not seem to be primordial. Instead, planets around ˜60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn-type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.

  20. Toward an initial mass function for giant planets

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2018-05-01

    The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn type planets. While the present-day distribution appears to be bimodal, with peaks around ˜1MJ and ˜20M⊕, this bimodality does not seem to be primordial. Instead, planets around ˜60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.

  1. Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager

    DOE PAGES

    Macintosh, B.; Graham, J. R.; Barman, T.; ...

    2015-10-02

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10 –6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a massmore » twice that of Jupiter. As a result, this planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.« less

  2. Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B.; Graham, J. R.; Barman, T.

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10 –6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a massmore » twice that of Jupiter. As a result, this planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.« less

  3. Tidally-induced thermal runaway on extrasolar Earth: Impact on habitability

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.

    2010-12-01

    Low mass extrasolar bodies start to be discovered owing to the increased precision of detection surveys. As the detection probability decreases with the star-body distance, these planets (and the numerous candidates already announced for the coming years) are likely to orbit their parent stars in a close distance. These short-period planets undergo a strong tidal forcing and their orbits are tidally locked. The associated heat production may influence the internal thermal evolution of these bodies: it has even been suggested that the habitable zone could be influenced by tidal heating (Barnes et al. 2008; Henning et al. 2009). In this study, we further investigate the effect of tidal heating on thermal evolution of tidally locked Earth-like planets. Owing to the strong temperature dependence of the mechanical properties of both the long-term evolution and the tidal deformations, the two processes are coupled. Nevertheless, the tidal deformation has no direct effect on the convective flow and only the dissipative part is included as a heat source for mantle dynamics since the time scales of the two processes strongly differs. For significant tidal dissipation rates, the strong positive feedback leads, in some cases, to thermal runaways. We focus here on the susceptibility of Earth-like planets to tidal dissipation for fixed orbital parameters (eccentricity, orbital period and the spin-orbit resonance type) and on the associated timescales for runaway (if any). In order to describe this behavior and the three dimensional nature of both the tidal forcing and the temperature anomalies, a fully three-dimensional approach solving the two processes simultaneously is employed (Běhounková et al., JGR, in press). We consider an extrasolar planet having the internal properties similar to the Earth. Two modes for heat transfer are modeled through the choice of convective parameters (Rayleigh number and temperature dependence of viscosity, amount of radiogenic heating): a

  4. The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia

    2017-01-01

    The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (<0.01mTorr) with precisely controlled temperature (~1 mK), TOU has delivered ~ 0.5 m/s (RMS) long-term instrument stability, which is a factor of two times more stable than any of existing Doppler instruments to our best knowledge. DPS aims at reaching better than 0.5 m/s (a goal of 0.2 m/s) Doppler measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.

  5. Giant Planet Occurrence Rate as a Function of Stellar Mass

    NASA Astrophysics Data System (ADS)

    Reffert, Sabine; Bergmann, Christoph; Quirrenbach, Andreas; Trifonov, Trifon; Künstler, Andreas

    2013-07-01

    For over 12 years we have carried out a Doppler survey at Lick Observatory, identifying 15 planets and 20 candidate planets in a sample of 373 G and K giant stars. We investigate giant planet occurrence rate as a function of stellar mass and metallicity in this sample, which covers the mass range from about 1 to 3.5-5.0 solar masses. We confirm the presence of a strong planet-metallicity correlation in our giant star sample, which is fully consistent with the well-known planet-metallicity correlation for main-sequence stars. Furthermore, we find a very strong dependence of the giant planet occurrence rate on stellar mass, which we fit with a gaussian distribution. Stars with masses of about 1.9 solar masses have the highest probability of hosting a giant planet, whereas the planet occurrence rate drops rapidly for masses larger than 2.5 to 3.0 solar masses. We do not find any planets around stars more massive than 2.7 solar masses, although we have 113 stars with masses between 2.7 and 5.0 solar masses in our sample (planet occurrence rate in that mass range: 0% +1.6% at 68.3% confidence). This result is not due to a bias related to planet detectability as a function of stellar mass. We conclude that larger mass stars do not form giant planets which are observable at orbital distances of a few AU today. Possible reasons include slower growth rate due to the snow-line being located further out, longer migration timescale and faster disk depletion.

  6. Spectroscopic characterization of HD 95086 b with the Gemini Planet Imager

    DOE PAGES

    De Rosa, Robert J.; Rameau, Julien; Patience, Jenny; ...

    2016-06-21

    Here, we present new H (1.5–1.8 μm) photometric and K 1 (1.9–2.2 μm) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The H-band magnitude has been significantly improved relative to previous measurements, whereas the low-resolution K 1 (more » $$\\lambda /\\delta \\lambda \\approx 66$$) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature $$L^{\\prime} $$ photometry, we compare the spectral energy distribution (SED) of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in $${K}_{1}-L^{\\prime} $$ color than 2MASS J12073346–3932539 b and HR 8799 c and d, despite having a similar $$L^{\\prime} $$ magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature ($${T}_{{\\rm{eff}}}$$ = 800–1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color–magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.« less

  7. PASTIS: Bayesian extrasolar planet validation - I. General framework, models, and performance

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Almenara, J. M.; Santerne, A.; Moutou, C.; Lethuillier, A.; Deleuil, M.

    2014-06-01

    A large fraction of the smallest transiting planet candidates discovered by the Kepler and CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using currently available observing facilities. To establish their planetary nature, the concept of planet validation has been advanced. This technique compares the probability of the planetary hypothesis against that of all reasonably conceivable alternative false positive (FP) hypotheses. The candidate is considered as validated if the posterior probability of the planetary hypothesis is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed to perform a rigorous model comparison of the hypotheses involved in the problem of planet validation, and to fully exploit the information available in the candidate light curves. PASTIS self-consistently models the transit light curves and follow-up observations. Its object-oriented structure offers a large flexibility for defining the scenarios to be compared. The performance is explored using artificial transit light curves of planets and FPs with a realistic error distribution obtained from a Kepler light curve. We find that data support the correct hypothesis strongly only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case) and remain inconclusive otherwise. PLAnetary Transits and Oscillations of stars (PLATO) shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on hypotheses priors is needed.

  8. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2006-05-01

    This volume addresses fundamental questions concerning the formation of planetary systems in general, and of our solar system in particular. Drawing from recent advances in observational, experimental, and theoretical research, it summarises our current understanding of the planet formation processes, and addresses major open questions and research issues. Chapters are written by leading experts in the field of planet formation and extrasolar planet studies. The book is based on a meeting held at Ringberg Castle in Bavaria, where experts gathered together to present and exchange their ideas and findings. It is a comprehensive resource for graduate students and researchers, and is written to be accessible to newcomers to the field.

  9. A Model of the Temporal Variability of Optical Light from Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Ford, E. B.; Seager, S.; Turner, E. L.

    2001-05-01

    New observatories such as TPF (NASA) and Darwin (ESA) are being designed to detect light directly from terrestrial-mass planets. Such observations will provide new data to constrain theories of planet formation and may identify the possible presence of liquid water and even spectroscopic signatures suggestive of life. We model the light scattered by Earth-like planets focusing on temporal variability due to planetary rotation and weather. Since a majority of the scattered light comes from only a small fraction of the planet's surface, significant variations in brightness are possible. The variations can be as large as a factor of two for a cloud-free planet which has a range of albedos similar to those of the different surfaces found on Earth. If a significant fraction of the observed light is scattered by the planet's atmosphere, including clouds, then the amplitude of variations due to surface features will be diluted. Atmospheric variability (e.g. clouds) itself is extremely interesting because it provides evidence for weather. The planet's rotation period, fractional ice and cloud cover, gross distribution of land and water on the surface, large scale weather patterns, large regions of unusual reflectivity or color (such as major desserts or vegetation's "red edge") as well as the geometry of its spin, orbit, and illumination relative to the observer all have substantial effects on the planet's rotational light curve.

  10. The observational case for Jupiter being a typical massive planet.

    PubMed

    Lineweaver, Charles H; Grether, Daniel

    2002-01-01

    We identify a subsample of the recently detected extrasolar planets that is minimally affected by the selection effects of the Doppler detection method. With a simple analysis we quantify trends in the surface density of this subsample in the period-Msin(i) plane. A modest extrapolation of these trends puts Jupiter in the most densely occupied region of this parameter space, thus indicating that Jupiter is a typical massive planet rather than an outlier. Our analysis suggests that Jupiter is more typical than indicated by previous analyses. For example, instead of MJup mass exoplanets being twice as common as 2 MJup exoplanets, we find they are three times as common.

  11. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana E.; Freedman, Richard; Visscher, Channon

    2017-06-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure.In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations.We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 ≤ Teff ≤ 2400 K and 2.5 ≤ log g ≤ 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  12. Extrasolar Planets: Towards Comparative Planetology beyond the Solar System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2012-09-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  13. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.

    PubMed

    Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-06-18

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.

  14. THE STATISTICAL MECHANICS OF PLANET ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Scott, E-mail: tremaine@ias.edu

    2015-07-10

    The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region ofmore » phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.« less

  15. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    PubMed Central

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO2 could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3–10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Key Words: Extrasolar planets—M stars—Habitable zone—Snowball Earth. Astrobiology 13, 715–739. PMID:23855332

  16. Systems of Multiple Planets

    NASA Astrophysics Data System (ADS)

    Marcy, G. W.; Fischer, D. A.; Butler, R. P.; Vogt, S. S.

    To date, 10 stars are known which harbor two or three planets. These systems reveal secular and mean motion resonances in some systems and consist of widely separated, eccentric orbits in others. Both of the triple planet systems, namely Upsilon And and 55 Cancri, exhibit evidence of resonances. The two planets orbiting GJ 876 exhibit both mean-motion and secular resonances and they perturb each other so strongly that the evolution of the orbits is revealed in the Doppler measurements. The common occurrence of resonances suggests that delicate dynamical processes often shape the architecture of planetary systems. Likely processes include planet migration in a viscous disk, eccentricity pumping by the planet-disk interaction, and resonance capture of two planets. We find a class of "hierarchical" double-planet systems characterized by two planets in widely separated orbits, defined to have orbital period ratios greater than 5 to 1. In such systems, resonant interactions are weak, leaving high-order interactions and Kozai resonances plausibly important. We compare the planets that are single with those in multiple systems. We find that neither the two mass distributions nor the two eccentricity distributions are significantly different. This similarity in single and multiple systems suggests that similar dynamical processes may operate in both. The origin of eccentricities may stem from a multi-planet past or from interactions between planets and disk. Multiple planets in resonances can pump their eccentricities pumping resulting in one planet being ejected from the system or sent into the star, leaving a (more massive) single planet in an eccentric orbit. The distribution of semimajor axes of all known extrasolar planets shows a rise toward larger orbits, portending a population of gas-giant planets that reside beyond 3 AU, arguably in less perturbed, more circular orbits.

  17. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    PubMed

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  18. Very high-density planets: a possible remnant of gas giants.

    PubMed

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  19. An overabundance of low-density Neptune-like planets

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G.

    2017-04-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to Mp < 30 M⊕). For each planet, we compute the restricted Jeans escape parameter, Λ, for a hydrogen atom evaluated at the planetary mass, radius, and equilibrium temperature. Values of Λ ≲ 20 suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates (Lhy) of these planets with tailored atmospheric hydrodynamic models. We compare Lhy to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15 per cent of the sample) exhibit extremely high mass-loss rates (Lhy > 0.1 M⌖ Gyr-1), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass-radius distribution of exoplanets for example.

  20. One or more bound planets per Milky Way star from microlensing observations.

    PubMed

    Cassan, A; Kubas, D; Beaulieu, J-P; Dominik, M; Horne, K; Greenhill, J; Wambsganss, J; Menzies, J; Williams, A; Jørgensen, U G; Udalski, A; Bennett, D P; Albrow, M D; Batista, V; Brillant, S; Caldwell, J A R; Cole, A; Coutures, Ch; Cook, K H; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Hill, K; Kains, N; Kane, S; Marquette, J-B; Martin, R; Pollard, K R; Sahu, K C; Vinter, C; Warren, D; Watson, B; Zub, M; Sumi, T; Szymański, M K; Kubiak, M; Poleski, R; Soszynski, I; Ulaczyk, K; Pietrzyński, G; Wyrzykowski, L

    2012-01-11

    Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

  1. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  2. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  3. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  4. On the mass and orbit of the ninth planet

    NASA Astrophysics Data System (ADS)

    Ugwoke, Azubike Christian

    2016-07-01

    ON THE MASS AND ORBIT OF THE NINTH PLANET A new planet is currently being proposed in the literature.This yet to be observed planet has its mass and orbit yet to be determined. However, if this planet is to escape being labelled a plutinoid, it must posses all the characteristics of a planet as currently set by the IAU. In addition it must be massive enough to enable it couple into the gravitational potential of the sun. Our earlier paper on this issue has suggested that no new planets are expected beyond Neptune , due to the vanishing gravitational potential of the sun within that orbit.Any new planet must be indeed very massive to be gravitationally linked sufficiently to the sun. In the current paper we have obtained estimates for planet 9 orbit and mass using this method.

  5. A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)

    1998-01-01

    The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.

  6. Refractory Abundances of Terrestrial Planets and Their Stars: Testing [Si/Fe] Correlations with TESS and PLATO

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Fortney, Jonathan

    2018-01-01

    In standard models for planet formation, solid material in protoplanetary disks coagulate and collide to form rocky bodies. It therefore seems reasonable to assume that their chemical composition will follow the abundances of refractory elements, such as Si and Fe, in the host star, which has also accreted material from the disk. Backed by planet formation simulations which validate this assumption, planetary internal structure models have begun to use stellar abundances to break degeneracies in low-mass planet compositions inferred only from mass and radius. Inconveniently, our own Solar System contradicts this approach, as its terrestrial bodies exhibit a range of rock/iron ratios and the Sun's [Si/Fe] ratio is offset from the mean planetary [Si/Fe]. In this work, we explore what number and quality of observations we need to empirically measure the exoplanet-star [Si/Fe] correlation, given future transit missions, RV follow-up, and stellar characterization. Specifically, we generate synthetic datasets of terrestrial planet masses and radii and host star abundances assuming that the planets’ bulk [Si/Fe] ratio exactly tracks that of their host stars. We assign measurement uncertainties corresponding to expected precisions for TESS, PLATO, Gaia, and future RV instrumentation, and then invert the problem to infer the planet-star [Si/Fe] correlation given these observational constraints. Comparing the result to the generated truth, we find that 1% precision on the planet radii is needed to test whether [Si/Fe] ratios are correlated between exoplanet and host star. On the other hand, lower precisions can test for systematic offsets between planet and star [Si/Fe], which can constrain the importance of giant impacts for extrasolar terrestrial planet formation.

  7. Characterization of Low-mass K2 planet hosts using Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, Romy; Ballard, Sarah

    2017-01-01

    The raw number of discovered exoplanets now exceeds several thousand, but we must understand the stars if we aim to understand their planets in detail. Of particular interest are M dwarf stars, which are often favored for exoplanet study because (1) they host small planets in greatest abundance, (2) they make up about 70% of stars in our galaxy, and (3) the planets that orbit them that are comparatively easier to find and study than planets around larger stars. Our work aims to characterize the infrared spectra of 50 M dwarfs with new and unstudied transiting planets discovered by NASA’s K2 Mission. We employ empirical relations from the literature with magnesium, aluminum and sodium absorption lines in H and K band to determine the temperatures, radii and luminosities. In addition, we measure the deformation of the spectra in K band by water (another empirical metric for M dwarfs) which, in tandem with absorption features, is linked to [Fe/H] metallicity. We have found from a preliminary sample of 36 stars, that the temperatures range from 2,900 to 4,100 K, with radii between 0.2 R⊙ to 0.6R⊙ and log(L/L⊙) values from -3.4 to -0.5. The determination of all these properties improves our understanding of the planet’s properties, such as its size, mass, and surface temperature, and provides clues about the formation of the star and its planets.

  8. Measuring the Masses of K2 Planets with HARPS-N to Determine the Conditions Under Which Planets Retain, or Lose, their Primordial Envelopes

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes

    One of the main findings of NASA's Kepler Mission has been an abundance of planets with radii between that of Neptune and Earth around solar type stars, the so-called miniNeptunes and super-Earths. There is no equivalent of those planets in our Solar System, but about 80 percent of the candidates in the Kepler catalog are in this size range. Therefore, they appear to be the most common type of planets around solar type stars. In spite of their large numbers, we still know very little about the masses of mini-Neptunes and super-Earths, and their densities. There has been some recent progress on this topic, for e.g. as part of an ongoing XRP proposal (14-XRP14_20071; P.I. Charbonneau), our team has measured precise masses for 8 planets with radii between 1 and 2.5 Earths with HARPS-N, and found that all planets smaller than 1.6 Earth radii have core masses consistent with Earth's, while all planets larger than 1.6 Earth radii have H/He envelopes. The current hypothesis is that this is an insolation effect, since all the rocky planets with precise mass measurements are in very short orbits. However, that hypothesis has not been fully tested, and many other questions about the formation and evolution of these small planets remain unsolved, i.e. what is the rocky/non-rocky ratio of these planets? Are the observed rocky planets evaporated cores of sub-Neptunes, or did they form as bare cores? Can very short period planets retain a significant envelope? Is the currently hypothesized non-rocky/rocky transition at 1.5-1.7 Earth radii real? Precision radial velocity mass measurements so far suffer from an observational bias, in which larger radius planets with small radial velocity signals have been overlooked. These cases would form a population of very low-mass, gaseous planets, which 1) disagree with the current conclusion that all low mass planets below 6 Earth masses are rocky, 2) serve to test current formation/gas accretion and evaporation models, and 3) have large

  9. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  10. On the Radii of Close-in Giant Planets.

    PubMed

    Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky

    2000-05-01

    The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

  11. Transit visibility zones of the Solar system planets

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.; Heller, R.

    2018-01-01

    The detection of thousands of extrasolar planets by the transit method naturally raises the question of whether potential extrasolar observers could detect the transits of the Solar system planets. We present a comprehensive analysis of the regions in the sky from where transit events of the Solar system planets can be detected. We specify how many different Solar system planets can be observed from any given point in the sky, and find the maximum number to be three. We report the probabilities of a randomly positioned external observer to be able to observe single and multiple Solar system planet transits; specifically, we find a probability of 2.518 per cent to be able to observe at least one transiting planet, 0.229 per cent for at least two transiting planets, and 0.027 per cent for three transiting planets. We identify 68 known exoplanets that have a favourable geometric perspective to allow transit detections in the Solar system and we show how the ongoing K2 mission will extend this list. We use occurrence rates of exoplanets to estimate that there are 3.2 ± 1.2 and 6.6^{+1.3}_{-0.8} temperate Earth-sized planets orbiting GK and M dwarf stars brighter than V = 13 and 16, respectively, that are located in the Earth's transit zone.

  12. Statistics of Low-Mass Companions to Stars: Implications for Their Origin

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Black, D. C.

    2001-01-01

    One of the more significant results from observational astronomy over the past few years has been the detection, primarily via radial velocity studies, of low-mass companions (LMCs) to solar-like stars. The commonly held interpretation of these is that the majority are "extrasolar planets" whereas the rest are brown dwarfs, the distinction made on the basis of apparent discontinuity in the distribution of M sin i for LMCs as revealed by a histogram. We report here results from statistical analysis of M sin i, as well as of the orbital elements data for available LMCs, to rest the assertion that the LMCs population is heterogeneous. The outcome is mixed. Solely on the basis of the distribution of M sin i a heterogeneous model is preferable. Overall, we find that a definitive statement asserting that LMCs population is heterogeneous is, at present, unjustified. In addition we compare statistics of LMCs with a comparable sample of stellar binaries. We find a remarkable statistical similarity between these two populations. This similarity coupled with marked populational dissimilarity between LMCs and acknowledged planets motivates us to suggest a common origin hypothesis for LMCs and stellar binaries as an alternative to the prevailing interpretation. We discuss merits of such a hypothesis and indicate a possible scenario for the formation of LMCs.

  13. DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, Peter; D'Angelo, Gennaro; Lissauer, Jack J.

    Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50%more » of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.« less

  14. From Stars to Super-Planets: The Low-Mass IMF in the Young Cluster IC348

    NASA Technical Reports Server (NTRS)

    Najita, Joan R.; Tiede, Glenn P.; Carr, John S.

    2000-01-01

    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approximately 0.7 solar mass to 0.015 solar mass. The mass function derived for the cluster in this interval, dN/d log M alpha M(sup 0.5), is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.

  15. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  16. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  17. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-01-01

    Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.

  18. A Bayesian re-analysis of HD 11964 extrasolar planet data

    NASA Astrophysics Data System (ADS)

    Gregory, Philip C.

    2007-05-01

    A Bayesian multi-planet Kepler periodogram has been developed for the analysis of precision radial velocity data (Gregory, ApJ, 631, 1198, 2005 and Astro-ph/0609229). The periodogram employs a parallel tempering Markov chain Monte Carlo algorithm. The HD 11964 data (Butler et al. ApJ, 646, 505, 2006) has been re-analyzed using 1, 2, 3 and 4 planet models. Each model incorporates an extra noise parameter which can allow for additional independent Gaussian noise beyond the known measurement uncertainties. The most probable model exhibits three periods of 38.02-0.05+0.06, 360-4+4 and 1924-43+44d, and eccentricities of 0.22-0.22+0.11, 0.63-0.17+0.34 and 0.05-0.05+0.03, respectively. Assuming the three signals (each one consistent with a Keplerian orbit) are caused by planets, the corresponding limits on planetary mass (M sin i) and semi-major axis are (0.090-0.14+0.15 MJ, 0.253-0.009+0.009 au), (0.21-0.02+0.05 MJ, 1.13-0.04+0.04 au), (0.77-0.08+0.08 MJ, 3.46-0.13+0.13 au), respectively. The small difference (1.3 sigma) between the 360 day period and one year suggests that it might be worth investigating the barycentric correction for the HD 11964 data. This research was supported in part by a grant from the Canadian Natural Sciences and Engineering Research Council of Canada at the University of British Columbia.

  19. Systems level feasibility study for the detection of extra-solar planets. Volume 1: Infrared interferometer (IRIS) known as the Stanford Concept

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A sensor system for the direct detection of extrasolar planets from an Earth orbit is evaluated: a spinning, infrared interferometer (IRIS). It is shuttle deployed, free flying, requires no on-orbit assembly and no reservicing over a design life of five years. The sensor concept and the mission objectives are reviewed, and the performance characteristics of a baseline sensor for standard observation conditions are derived. A baseline sensor design is given and the enabling technology discussed. Cost and weight estimates are performed; and a schedule for an IRIS program including technology development and assessment of risk are given. Finally, the sensor is compared with the apodized visual telescope sensor (APOTS) proposed for the same mission. The major conclusions are: that with moderate to strong technology advances, particularly in the fields of long life cryogenics, dynamical control, mirror manufacturing, and optical alignment, the detection of a Jupiter like planet around a Sunlike star at a distance of 30 light years is feasible, with a 3 meter aperture and an observation time of 1 hour. By contrast, major and possibly unlikely breakthroughs in mirror technology are required for APOTS to match this performance.

  20. MINERVA-Red: A Census of Planets Orbiting the Nearest Low-mass Stars to the Sun

    NASA Astrophysics Data System (ADS)

    Blake, Cullen; Johnson, John; Plavchan, Peter; Sliski, David; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart

    2015-01-01

    Recent results from Kepler and ground-based exoplanet surveys suggest that low-mass stars host numerous small planets. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining the Doppler precision necessary to detect these companions remains a challenge for existing instruments. We describe MINERVA-Red, a project to use a dedicated, robotic, near-infrared optimized 0.7 meter telescope and a specialized Doppler spectrometer to carry out an intensive, multi-year campaign designed to reveal the planetary systems orbiting some of the closest stars to the Sun. The MINERVA-Red cross-dispersed echelle spectrograph is optimized for the 'deep red', between 800 nm and 900 nm, where these stars are relatively bright. The instrument is very compact and designed for the ultimate in Doppler precision by using single-mode fiber input. We describe the spectrometer and the status of the MINERVA-Red project, which is expected to begin routine operations at Whipple Observatory on Mt Hopkins, Arizona, in 2015.

  1. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szulágyi, J.; Morbidelli, A.; Crida, A.

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate.more » Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.« less

  2. A SEARCH FOR MULTI-PLANET SYSTEMS USING THE HOBBY-EBERLY TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Endl, Michael; Cochran, William D.

    Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: (1) are there additional planets? (2) where could additional planets reside in stable orbits? and (3) what limits can these observations place on such objects? We find no evidence for additional bodies in any of thesemore » systems; indeed, these new data do not support three previously announced planets (HD 20367 b: Udry et al.; HD 74156 d: Bean et al.; and 47 UMa c: Fischer et al.). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these nondetections.« less

  3. Evaporation and accretion of extrasolar comets following white dwarf kicks

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham

    2015-03-01

    Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.

  4. The SOPHIE search for northern extrasolar planets. VII. A warm Neptune orbiting HD 164595

    NASA Astrophysics Data System (ADS)

    Courcol, B.; Bouchy, F.; Pepe, F.; Santerne, A.; Delfosse, X.; Arnold, L.; Astudillo-Defru, N.; Boisse, I.; Bonfils, X.; Borgniet, S.; Bourrier, V.; Cabrera, N.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A. M.; Montagnier, G.; Moutou, C.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2015-09-01

    High-precision radial velocity surveys explore the population of low-mass exoplanets orbiting bright stars. This allows accurately deriving their orbital parameters such as their occurrence rate and the statistical distribution of their properties. Based on this, models of planetary formation and evolution can be constrained. The SOPHIE spectrograph has been continuously improved in past years, and thanks to an appropriate correction of systematic instrumental drift, it is now reaching 2 m s-1precision in radial velocity measurements on all timescales. As part of a dedicated radial velocity survey devoted to search for low-mass planets around a sample of 190 bright solar-type stars in the northern hemisphere, we report the detection of a warm Neptune with a minimum mass of 16.1 ± 2.7M⊕ orbiting the solar analog HD 164595 in 40 ± 0.24 days. We also revised the parameters of the multiplanetary system around HD 190360. We discuss this new detection in the context of the upcoming space mission CHEOPS, which is devoted to a transit search of bright stars harboring known exoplanets. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OSU Pythéas), France (program 07A.PNP.CONS).Appendix A is available in electronic form at http://www.aanda.org

  5. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  6. Stochasticity and predictability in terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim

    2017-02-01

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.

  7. The Frequency of Snowline-Region Planets from Four Years of OGLE-MOA-Wise Second-Generation Microlensing

    NASA Technical Reports Server (NTRS)

    Shvartzvald, Y.; Maoz, D.; Udalski, A.; Sumi, T.; Friedmann, M.; Kaspi, S.; Poleski, R.; Szymanski, M. K.; Skowron, J.; Kozlowski, S.; hide

    2016-01-01

    We present a statistical analysis of the first four seasons from a second-generation microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg to the 2nd power of the Galactic bulge by the Optical Gravitational Lens Experiment (OGLE), Microlensing Observations in Astrophysics (MOA), and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for approx. 1/3 of those the anomaly is likely caused by a planetary companion. For each of the 224 events, we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that 55 +34 -22%of microlensed stars host a snowline planet. Moreover, we find that Neptune-mass planets are approx.10 times more common than Jupiter-mass planets. The companion-to-host mass-ratio distribution shows a deficit at q approx. 10 (exp -2), separating the distribution into two companion populations, analogous to the stellar-companion and planet populations, seen in radial-velocity surveys around solar-like stars. Our survey, however, which probes mainly lower mass stars, suggests a minimum in the distribution in the super-Jupiter mass range, and a relatively high occurrence of brown-dwarf companions.

  8. EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lithwick, Yoram; Xie Jiwei; Wu Yanqin

    2012-12-20

    Most planet pairs in the Kepler data that have measured transit time variations (TTVs) are near first-order mean-motion resonances. We derive analytical formulae for their TTV signals. We separate planet eccentricity into free and forced parts, where the forced part is purely due to the planets' proximity to resonance. This separation yields simple analytical formulae. The phase of the TTV depends sensitively on the presence of free eccentricity: if the free eccentricity vanishes, the TTV will be in phase with the longitude of conjunctions. This effect is easily detectable in current TTV data. The amplitude of the TTV depends onmore » planet mass and free eccentricity, and it determines planet mass uniquely only when the free eccentricity is sufficiently small. We analyze the TTV signals of six short-period Kepler pairs. We find that three of these pairs (Kepler 18, 24, 25) have a TTV phase consistent with zero. The other three (Kepler 23, 28, 32) have small TTV phases, but ones that are distinctly non-zero. We deduce that the free eccentricities of the planets are small, {approx}< 0.01, but not always vanishing. Furthermore, as a consequence of this, we deduce that the true masses of the planets are fairly accurately determined by the TTV amplitudes, within a factor of {approx}< 2. The smallness of the free eccentricities suggests that the planets have experienced substantial dissipation. This is consistent with the hypothesis that the observed pile-up of Kepler pairs near mean-motion resonances is caused by resonant repulsion. But the fact that some of the planets have non-vanishing free eccentricity suggests that after resonant repulsion occurred there was a subsequent phase in the planets' evolution when their eccentricities were modestly excited, perhaps by interplanetary interactions.« less

  9. Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guangwei; Deming, Drake; Knutson, Heather

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude ofmore » the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.« less

  10. Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan

    2018-01-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 micron water vapor absorption, and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-Transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.

  11. Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 μm water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.

  12. Searching for co-orbital planets by combining transit and radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Robutel, p.; Leleu, A.; Correia, A.; Lillo-Box, J.

    2017-09-01

    Co-orbital planetary systems consist of two planets orbiting with the same period a central star. If co-orbital bodies are common in the solar system and are also a natural output of planetary formation models, so far none have been found in extrasolar systems. This lack may be due to observational biases, since the main detection methods are unable to spot co-orbital companions when they are small or near the Lagrangian equilibrium points. We propose a simple method, based on an idea from Ford & Gaudi (2006), that allows the detection of co-orbital companions, and relies on a single parameter proportional to the mass ratio of the two planets. This method is applied to archival radial velocity data of 46 close-in transiting planets among which a few are strong candidates to harbor a co-orbital companion.

  13. KEPLER PLANETS: A TALE OF EVAPORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. Wemore » construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  14. Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. Key Words: Astrobiology—Biosignatures—Extrasolar terrestrial planets—Habitability—Planetary atmospheres. Astrobiology 15, 119–143. PMID:25629240

  15. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin J.; Lissauer, Jack J.; Howard, Andrew W.; Fabrycky, Daniel

    2016-03-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b ({R}{{p}}=1.47 {R}\\oplus ) has mass 3.72\\quad +/- \\quad 0.42\\quad {M}\\oplus and density 6.46\\quad +/- \\quad 0.73\\quad {{g}} {{cm}}-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c ({R}{{p}}=2.35 {R}\\oplus ) we measure mass 13.98\\quad +/- \\quad 1.79\\quad {M}\\oplus and density 5.94\\quad +/- \\quad 0.76\\quad {{g}} {{cm}}-3, significantly lower than the mass computed in Dumusque et al. (17.2+/- 1.9 {M}\\oplus ). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3σ level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely

  16. First light of the Gemini Planet imager.

    PubMed

    Macintosh, Bruce; Graham, James R; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-09-02

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

  17. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  18. Two Small Transiting Planets and a Possible Third Body Orbiting HD 106315

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian J. M.; Ciardi, David R.; Isaacson, Howard; Howard, Andrew W.; Petigura, Erik A.; Weiss, Lauren M.; Fulton, Benjamin J.; Sinukoff, Evan; Schlieder, Joshua E.; Mawet, Dimitri; Ruane, Garreth; de Pater, Imke; de Kleer, Katherine; Davies, Ashley G.; Christiansen, Jessie L.; Dressing, Courtney D.; Hirsch, Lea; Benneke, Björn; Crepp, Justin R.; Kosiarek, Molly; Livingston, John; Gonzales, Erica; Beichman, Charles A.; Knutson, Heather A.

    2017-06-01

    The masses, atmospheric makeups, spin-orbit alignments, and system architectures of extrasolar planets can be best studied when the planets orbit bright stars. We report the discovery of three bodies orbiting HD 106315, a bright (V = 8.97 mag) F5 dwarf targeted by our K2 survey for transiting exoplanets. Two small transiting planets are found to have radii {2.23}-0.25+0.30 {R}\\oplus and {3.95}-0.39+0.42 {R}\\oplus and orbital periods 9.55 days and 21.06 days, respectively. A radial velocity (RV) trend of 0.3 ± 0.1 m s-1 day-1 indicates the likely presence of a third body orbiting HD 106315 with period ≳160 days and mass ≳45 M ⊕. Transits of this object would have depths ≳0.1% and are definitively ruled out. Although the star has v sin I = 13.2 km s-1, it exhibits a short-timescale RV variability of just 6.4 m s-1. Thus, it is a good target for RV measurements of the mass and density of the inner two planets and the outer object’s orbit and mass. Furthermore, the combination of RV noise and moderate v sin I makes HD 106315 a valuable laboratory for studying the spin-orbit alignment of small planets through the Rossiter-McLaughlin effect. Space-based atmospheric characterization of the two transiting planets via transit and eclipse spectroscopy should also be feasible. This discovery demonstrates again the power of K2 to find compelling exoplanets worthy of future study.

  19. An Explanation of the Very Low Radio Flux of Young Planet-mass Companions

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.

    2017-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.

  20. Planet Traps and Planetary Cores: Origins of the Planet-Metallicity Correlation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Pudritz, Ralph E.

    2014-10-01

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ~= 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = -0.2 to -0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M c, crit) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > -0.6, our models predict that the most likely value of the "mean" critical core mass of Jovian planets is langM c, critrang ~= 5 M ⊕ rather than 10 M ⊕. This implies that grain opacities in accreting envelopes should be reduced in order to lower M c, crit.

  1. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the

  2. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  3. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy.

  4. What is the Mass of a Gap-opening Planet?

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Fung, Jeffrey

    2017-02-01

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.

  5. What is the Mass of a Gap-opening Planet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Fung, Jeffrey, E-mail: rdong@email.arizona.edu

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, wemore » obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h , and to constrain the quantity M {sub p}{sup 2}/ α , where M {sub p} is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10{sup −3}, the derived planet masses in all cases are roughly between 0.1 and 1 M {sub J}.« less

  6. HAT-P-34b-HAT-P-37b: FOUR TRANSITING PLANETS MORE MASSIVE THAN JUPITER ORBITING MODERATELY BRIGHT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakos, G. A.; Hartman, J. D.; Csubry, Z.

    2012-07-15

    We report the discovery of four transiting extrasolar planets (HAT-P-34b-HAT-P-37b) with masses ranging from 1.05 to 3.33 M{sub J} and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 M{sub J}), has a high eccentricity of e = 0.441 {+-} 0.032 at a period of P = 5.452654 {+-} 0.000016 days, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters.

  7. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  8. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  9. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  10. Planetary populations in the mass-period diagram: A statistical treatment of exoplanet formation and the role of planet traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca

    2013-11-20

    The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass-period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for themore » positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as 'failed' cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M {sub *} ≤ 0.7 M {sub ☉}).« less

  11. Planet traps and planetary cores: origins of the planet-metallicity correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca

    2014-10-10

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ≅ 1 AU, and the low-mass planets. We show using a statisticalmore » approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = –0.2 to –0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M {sub c,} {sub crit}) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > –0.6, our models predict that the most likely value of the 'mean' critical core mass of Jovian planets is (M {sub c,} {sub crit}) ≅ 5 M {sub ⊕} rather than 10 M {sub ⊕}. This implies that grain opacities in accreting envelopes should be reduced in order to lower M {sub c,} {sub crit}.« less

  12. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    NASA Technical Reports Server (NTRS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  13. Model Atmospheres and Spectra for Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Freedman, Richard S.; Beebe, Reta (Technical Monitor)

    2000-01-01

    In the past few years much new observational data has become available for brown dwarfs and extra solar planets. Not only are new objects being discovered but the availability of higher resolution spectra is improving. This allows a better comparison between the models and the available data, and places new constraints on the models which now have to be made more physically realistic in order to better interpret the observations. Under this grant, an array of new opacities were calculated and successfully applied to a variety of physical situations that were used as input to model available observations of brown dwarfs and extra solar giant planets.

  14. No large population of unbound or wide-orbit Jupiter-mass planets.

    PubMed

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-10

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)-more than known stellar populations would suggest-indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  15. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, B.; Musielak, Z. E.; Cuntz, M., E-mail: billyq@uta.edu, E-mail: zmusielak@uta.edu, E-mail: cuntz@uta.edu

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming inmore » the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.« less

  16. Ground-based Search of Earth-mass Exoplanets using Transit-Timing Variations

    NASA Astrophysics Data System (ADS)

    Fernandez, J. M.

    2010-10-01

    This work presents recent results from a ground-based transit follow-up program of the extrasolar planet XO-2b in order to find Earth-mass companions. It also introduces the future use of the MONET 1m-class robotic telescopes as part of the effort to overcome the difficulties of this kind of project.

  17. Unstable low-mass planetary systems as drivers of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Villaver, Eva; Veras, Dimitri; Gänsicke, Boris T.; Bonsor, Amy

    2018-05-01

    At least 25 {per cent} of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet-planet scattering triggered by the star's post-main-sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet-planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.

  18. PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Man Hoi; Thommes, Edward W.

    2009-09-10

    The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e {sub 2}more » {approx}> 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m {sub 1}/m {sub 2} {approx}> 0.2, it is possible to evolve into this family by fast migration only for m {sub 1}/m {sub 2} {approx}> 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m {sub 1}/m {sub 2} {approx}< 2. We show that this capture is also possible for m {sub 1}/m {sub 2} {approx}> 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e {sub 2} may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself.« less

  19. Flare Activity and UV Habitability in Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena; Cortón, E.; Mauas, P. J. D.

    2012-05-01

    Usually, dwarf M stars are targets in the search for extraterrestrial life outside of our solar system. They are choose among other stars because they are the most abundant in the galaxy, the liquid- water habitable zone (LW-HZ) is closer to these colder stars and it would be therefore easier to detect a terrestrial planet inside it. However, it is believed that planets in the LW-HZ should be tidally locked, which implies that this planetary body would have a hot face and a cold one, but recent atmospheric modeling provided evidences that the heat in the hot face could be transferred to the cold face. Furthermore there is another factor to analyze if planets around these stars in the LW-HZ could be suitable for life due flare activity in many of these stars (dMe stars), could have a strong impact over potential life beings. In particular in this work we analyze the capability of UV-resistant microorganisms such as halophilic archaea, to survive the strong UV radiation characteristic of flare activity in dMe stars. Our results showed that the microorganisms can survive at the tested doses, showing that this kind of life could thrive in these extreme environments from the UV point of view.

  20. Light-curve analysis of KOI 2700b: the second extrasolar planet with a comet-like tail

    NASA Astrophysics Data System (ADS)

    Garai, Z.

    2018-03-01

    Context. The Kepler object KOI 2700b (KIC 8639908b) was discovered recently as the second exoplanet with a comet-like tail. It exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents and reminiscent of KIC 12557548b, the first exoplanet with a comet-like tail. Aim. The scientific goal of this work is to verify the disintegrating-planet scenario of KOI 2700b by modeling its light curve and to put constraints on various tail and planet properties, as was done in the case of KIC 12557548b. Methods: We obtained the phase-folded and binned transit light curve of KOI 2700b, which we subsequently iteratively modeled using the radiative-transfer code SHELLSPEC. We modeled the comet-like tail as part of a ring around the parent star and we also included the solid body of the planet in the model. During the modeling we applied selected species and dust particle sizes. Results: We confirmed the disintegrating-planet scenario of KOI 2700b. Furthermore, via modeling, we derived some interesting features of KOI 2700b and its comet-like tail. It turns out that the orbital plane of the planet and its tail are not edge-on, but the orbital inclination angle is from the interval [85.1, 88.6] deg. In comparison with KIC 12557548b, KOI 2700b exhibits a relatively low dust density decreasing in its tail. We also derived the dust density at the beginning of the ring and the highest optical depth through the tail in front of the star, based on a tail-model with a cross-section of 0.05 × 0.05 R⊙ at the beginning and 0.09 × 0.09 R⊙ at its end. Our results show that the dimension of the planet is Rp/Rs ≤ 0.014 (Rp ≤ 0.871 R⊕, or ≤5551 km). We also estimated the mass-loss rate from KOI 2700b, and we obtained Ṁ values from the interval [5.05 × 107, 4.41 × 1015] g s-1. On the other hand, we could not draw any satisfactory conclusions about the typical grain size in the dust tail.

  1. First light of the Gemini Planet Imager

    PubMed Central

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-01-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792

  2. First light of the Gemini Planet Imager

    DOE PAGES

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; ...

    2014-05-12

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10 6 at 0.75 arcseconds and 10 5 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, inmore » a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0 +0.8 –0.4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. In conclusion, the observations give a 4% probability of a transit of the planet in late 2017.« less

  3. An Earth-mass planet orbiting α Centauri B.

    PubMed

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  4. Kepler Planets Tend to Have Siblings of the Same Size

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    After 8.5 years of observations with the Kepler space observatory, weve discovered a large number of close-in, tightly-spaced, multiple-planet systems orbiting distant stars. In the process, weve learned a lot about the properties about these systems and discovered some unexpected behavior. A new study explores one of the properties that has surprised us: planets of the same size tend to live together.Orbital architectures for 25 of the authors multiplanet systems. The dots are sized according to the planets relative radii and colored according to mass. Planets of similar sizes and masses tend to live together in the same system. [Millholland et al. 2017]Ordering of SystemsFrom Keplers observations of extrasolar multiplanet systems, we have seen that the sizes of planets in a given system arent completely random. Systems that contain a large planet, for example, are more likely to contain additional large planets rather than additional planets of random size. So though there is a large spread in the radii weve observed for transiting exoplanets, the spread within any given multiplanet system tends to be much smaller.This odd behavior has led us to ask whether this clustering occurs not just for radius, but also for mass. Since the multiplanet systems discovered by Kepler most often contain super-Earths and mini-Neptunes, which have an extremely large spread in densities, the fact that two such planets have similar radii does not guarantee that they have similar masses.If planets dont cluster in mass within a system, this would raise the question of why planets coordinate only their radii within a given system. If they do cluster in mass, it implies that planets within the same system tend to have similar densities, potentially allowing us to predict the sizes and masses of planets we might find in a given system.Insight into MassesLed by NSF graduate research fellow Sarah Millholland, a team of scientists at Yale University used recently determined masses for

  5. On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Brandner, W.; Eckart, A.; Guenther, E.; Alves, J.; Ott, T.; Huélamo, N.; Fernández, M.

    2000-02-01

    We show that ground-based direct imaging detection of extra-solar planets is possible with current technology. As an example, we present evidence for a possible planetary companion to the young T Tauri star 1RXSJ104230.3-334014 (=TWA-7), discovered by ROSAT as a member of the nearby TW Hya association. In an HST NICMOS F160W image, an object is detected that is more than 9 mag fainter than TWA-7, located 2.445 +/- 0.035'' south-east at a position angle of 142.24 +/- 1.34deg. One year later using the ESO-NTT with the SHARP speckle camera, we obtained H- and K-band detections of this faint object at a separation of 2.536 +/- 0.077'' and a position angle of 139.3 +/- 2.1deg. Given the known proper motion of TWA-7, the pair may form a proper motion pair. If the faint object orbits TWA-7, then its apparent magnitudes of H=16.42 +/- 0.11 and K=16.34 +/- 0.15 mag yield absolute magnitudes consistent with a ~ 106.5 yr old ~ 3 M_jup mass object according to the non-gray theory by Burrows et al. (1997). At ~ 55 pc, the angular separation of ~ 2.5'' corresponds to ~ 138 AU, clearly within typical disk sizes. However, position angles and separations are slightly more consistent with a background object than with a companion. Based on observations obtained at the European Southern Observatory, La Silla (ESO Proposals 62.I-0418 and 63.N-0178), and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  6. Probing Cloud-Driven Variability on Two of the Youngest, Lowest-Mass Brown Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Cushing, Michael; Kirkpatrick, J. Davy

    2016-08-01

    Young, late-type brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique testbeds for investigating the physical conditions present in this critical temperature and mass regime. WISEA 1147-2040 and 2MASS 1119-1137, two recently discovered late-type (~L7) brown dwarfs, have both been determined to be members of the ~10 Myr old TW Hya Association (Kellogg et al. 2016, Schneider et al. 2016). Each has an estimated mass of 5-6 MJup, making them two of the youngest and lowest-mass free floating objects yet found in the solar neighborhood. As such, these two planetary mass objects provide unparalleled laboratories for investigating giant planet-like atmospheres far from the contaminating starlight of a host sun. Condensate clouds play a critical role in shaping the emergent spectra of both brown dwarfs and gas giant planets, and can cause photometric variability via their non-uniform spatial distribution. We propose to photometrically monitor WISEA 1147-2040 and 2MASS 1119-1137 in order to search for the presence of cloud-driven variability to 1) investigate the potential trend of low surface gravity with high-amplitude variability in a previously unexplored mass regime and 2) explore the angular momentum evolution of isolated planetary mass objects.

  7. The NASA-UC-UH Eta-Earth program. IV. A low-mass planet orbiting an M dwarf 3.6 PC from Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M {sub ⊕}, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ∼0.1 mmag, thus supporting the existence of the planet. Wemore » detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H and K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = –0.22, [Fe/H] = –0.32). We measure a stellar radius of 0.3863 ± 0.0021 R {sub ☉} based on interferometry from CHARA.« less

  8. SPOTS: Search for Planets Orbiting Two Stars A Direct Imaging Survey for Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Thalmann, C.; Desidera, S.; Bergfors, C.; Boccaletti, A.; Bonavita, M.; Carson, J. C.; Feldt, M.; Goto, M.; Henning, T.; Janson, M.; Mordasini, C.

    2013-09-01

    Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the fre- quency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.

  9. A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.

    2012-12-01

    Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are

  10. OGLE-2017-BLG-0173Lb: Low-mass-ratio Planet in a “Hollywood” Microlensing Event

    NASA Astrophysics Data System (ADS)

    Hwang, K.-H.; Udalski, A.; Shvartzvald, Y.; Ryu, Y.-H.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Skowron, J.; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Bryden, G.; Beichman, C.; Calchi Novati, S.; Gaudi, B. S.; Henderson, C. B.; Jacklin, S.; Penny, M. T.; UKIRT Microlensing Team

    2018-01-01

    We present microlensing planet OGLE-2017-BLG-0173Lb, with planet–host mass ratio of either q≃ 2.5× {10}-5 or q≃ 6.5× {10}-5, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, Δχ 2 ∼ 10000, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called “Hollywood” event. The factor ∼2.5 offset in q arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub “Cannae” and “von Schlieffen,” respectively. This degeneracy is “accidental” in that it arises from gaps in the data. Nevertheless, the fact that it appears in a Δχ 2 = 10000 planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of 3× {10}-6. This formalism also enables an analytic understanding of the factor ∼2.5 offset in q between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host mass, system distance, and planet–host projected separation are M={0.39}-0.24+0.40 {M}ȯ , {D}L={4.8}-1.8+1.5 {kpc}, and {a}\\perp =3.8+/- 1.6 {au}, respectively. The two estimates of the planet mass are {m}p={3.3}-2.1+3.8 {M}\\oplus and {m}p={8}-6+11 {M}\\oplus . The measured lens-source relative proper motion μ =6 {mas} {{yr}}-1 will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow one to measure the host mass but probably will not be able to resolve the planet–host mass-ratio degeneracy.

  11. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planetmore » system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.« less

  12. Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Ksanfomaliti, L. V.

    2000-11-01

    The discovery of planetary systems around alien stars is an outstanding achievement of recent years. The idea that the Solar System may be representative of planetary systems in the Galaxy in general develops upon the knowledge, current until the last decade of the 20th century, that it is the only object of its kind. Studies of the known planets gave rise to a certain stereotype in theoretical research. Therefore, the discovery of exoplanets, which are so different from objects of the Solar System, alters our basic notions concerning the physics and very criteria of normal planets. A substantial factor in the history of the Solar System was the formation of Jupiter. Two waves of meteorite bombardment played an important role in that history. Ultimately there arose a stable low-entropy state of the Solar System, in which Jupiter and the other giants in stable orbits protect the inner planets from impacts by dangerous celestial objects, reducing this danger by many orders of magnitude. There are even variants of the anthropic principle maintaining that life on Earth owes its genesis and development to Jupiter. Some 20 companions more or less similar to Jupiter in mass and a few ``infrared dwarfs,'' have been found among the 500 solar-type stars belonging to the main sequence. Approximately half of the exoplanets discovered are of the ``hot-Jupiter'' type. These are giants, sometimes of a mass several times that of Jupiter, in very low orbits and with periods of 3-14 days. All of their parent stars are enriched with heavy elements, [Fe/H] = 0.1-0.2. This may indicate that the process of exoplanet formation depends on the chemical composition of the protoplanetary disk. The very existence of exoplanets of the hot-Jupiter type considered in the context of new theoretical work comes up against the problem of the formation of Jupiter in its real orbit. All the exoplanets in orbits with a semimajor axis of more than 0.15-0.20 astronomical units (AU) have orbital

  13. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  14. Low-mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-07-01

    We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  15. The hottest planet.

    PubMed

    Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy

    2007-06-07

    Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

  16. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com

    2012-08-20

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less

  17. MOA-2012-BLG-505Lb: A Super-Earth-mass Planet That Probably Resides in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Nagakane, M.; Sumi, T.; Koshimoto, N.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-07-01

    We report the discovery of a super-Earth-mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of t E = 10 ± 1 days where the observed data show evidence of a planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is q = 2.1 × 10-4 and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of {6.7}-3.6+10.7 {M}\\oplus orbiting around a brown dwarf or late-M-dwarf host with a mass of {0.10}-0.05+0.16 {M}⊙ with a projected star-planet separation of {0.9}-0.2+0.3 {au}. The system is at a distance of 7.2 ± 1.1 kpc, I.e., it is likely to be in the Galactic bulge. The small angular Einstein radius (θ E = 0.12 ± 0.02 mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low-mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.

  18. ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. I. MIGRATION IN ISOTHERMAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, J.; Masset, F. S., E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f

    2009-09-20

    We investigate the unsaturated horseshoe drag exerted on a low-mass planet by an isothermal gaseous disk. In the globally isothermal case, we use a formalism, based on the use of a Bernoulli invariant, that takes into account pressure effects, and that extends the torque estimate to a region wider than the horseshoe region. We find a result that is strictly identical to the standard horseshoe drag. This shows that the horseshoe drag accounts for the torque of the whole corotation region, and not only of the horseshoe region, thereby deserving to be called corotation torque. We find that evanescent wavesmore » launched downstream of the horseshoe U-turns by the perturbations of vortensity exert a feedback on the upstream region, that render the horseshoe region asymmetric. This asymmetry scales with the vortensity gradient and with the disk's aspect ratio. It does not depend on the planetary mass, and it does not have any impact on the horseshoe drag. Since the horseshoe drag has a steep dependence on the width of the horseshoe region, we provide an adequate definition of the width that needs to be used in horseshoe drag estimates. We then consider the case of locally isothermal disks, in which the temperature is constant in time but depends on the distance to the star. The horseshoe drag appears to be different from the case of a globally isothermal disk. The difference, which is due to the driving of vortensity in the vicinity of the planet, is intimately linked to the topology of the flow. We provide a descriptive interpretation of these effects, as well as a crude estimate of the dependency of the excess on the temperature gradient.« less

  19. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will havemore » less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.« less

  20. A Venus-mass Planet Orbiting a Brown Dwarf: A Missing Link between Planets and Moons

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Jung, Y. K.; Han, C.; Gould, A.; Kozłowski, S.; Skowron, J.; Poleski, R.; Soszyński, I.; Pietrukowicz, P.; Mróz, P.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrzyński, G.; Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Gaudi, B. S.; Hwang, K.-H.; Choi, J.-Y.; Shin, I.-G.; Park, H.; Bozza, V.

    2015-10-01

    The co-planarity of solar system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the Kepler satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. Here we report the discovery of an intermediate system, OGLE-2013-BLG-0723LB/Bb, composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled-down version of a planet plus a star or as a scaled-up version of a moon plus a planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us to suggest that the formation processes of companions within accretion disks around stars, brown dwarfs, and planets are similar.

  1. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less

  2. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  4. Elemental compositions of two extrasolar rocky planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Klein, B.

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted ontomore » G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.« less

  5. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  6. Planet traps and first planets: The critical metallicity for gas giant formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a functionmore » of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.« less

  7. Kepler-539: A young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Lillo-Box, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, Th.

    2016-05-01

    We confirm the planetary nature of Kepler-539 b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539 b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539 b is a dense Jupiter-like planet with a mass of Mp = 0.97 ± 0.29 MJup and a radius of Rp = 0.747 ± 0.018 RJup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at ≈0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539 c and our analysis suggests that it has a mass between 1.2 and 3.6 MJup, revolving on a very eccentric orbit (0.4 planet c is the probable cause of the TTV modulation of planet b. The analysis of the CAFE spectra revealed a relatively high photospheric lithium content, A(Li) = 2.48 ± 0.12 dex, which, together with both a gyrochronological and isochronal analysis, suggests that the parent star is relatively young. RV/BVS measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A112

  8. Precursor Science for the Terrestrial Planet Finder

    NASA Technical Reports Server (NTRS)

    Lawson, P. R. (Editor); Unwin, S. C. (Editor); Beichman, C. A. (Editor)

    2004-01-01

    This document outlines a path for the development of the field of extrasolar planet research, with a particular emphasis on the goals of the Terrestrial Planet Finder (TPF). Over the past decade, a new field of research has developed, the study of extrasolar planetary systems, driven by the discovery of massive planets around nearby stars. The planet count now stands at over 130. Are there Earth-like planets around nearby stars? Might any of those planets be conducive to the formation and maintenance of life? These arc the questions that TPF seeks to answer. TPF will be implemented as a suite of two space observatories, a 6-m class optical coronagraph, to be launched around 20 14, and a formation flying mid-infrared interferometer, to be launched sometime prior to 2020. These facilities will survey up to 165 or more nearby stars and detect planets like Earth should they be present in the 'habitable zone' around each star. With observations over a broad wavelength range, TPF will provide a robust determination of the atmospheric composition of planets to assess habitability and the presence of life. At this early stage of TPF's development, precursor observational and theoretical programs are essential to help define the mission, to aid our understanding of the planets that TPF could discover, and to characterize the stars that TPF will eventually study. This document is necessarily broad in scope because the significance of individual discoveries is greatly enhanced when viewed in thc context of the field as a whole. This document has the ambitious goal of taking us from our limited knowledge today, in 2004, to the era of TPF observations in the middle of the next decade. We must use the intervening years wisely. This document will be reviewed annually and updated as needed. The most recent edition is available online at http://tpf.jpl.nasa.gov/ or by email request to lawson@hucy.jpl.nasa.gov

  9. Homogeneous studies of transiting extrasolar planets - IV. Thirty systems with space-based light curves

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2011-11-01

    I calculate the physical properties of 32 transiting extrasolar planet and brown-dwarf systems from existing photometric observations and measured spectroscopic parameters. The systems studied include 15 observed by the CoRoT satellite, 10 by Kepler and five by the Deep Impact spacecraft. Inclusion of the objects studied in previous papers leads to a sample of 58 transiting systems with homogeneously measured properties. The Kepler data include observations from Quarter 2, and my analyses of several of the systems are the first to be based on short-cadence data from this satellite. The light curves are modelled using the JKTEBOP code, with attention paid to the treatment of limb darkening, contaminating light, orbital eccentricity, correlated noise and numerical integration over long exposure times. The physical properties are derived from the light-curve parameters, spectroscopic characteristics of the host star and constraints from five sets of theoretical stellar model predictions. An alternative approach using a calibration from eclipsing binary star systems is explored and found to give comparable results whilst imposing a much smaller computational burden. My results are in good agreement with published properties for most of the transiting systems, but discrepancies are identified for CoRoT-5, CoRoT-8, CoRoT-13, Kepler-5 and Kepler-7. Many of the error bars quoted in the literature are underestimated. Refined orbital ephemerides are given for CoRoT-8 and for the Kepler planets. Asteroseismic constraints on the density of the host stars are in good agreement with the photometric equivalents for HD 17156 and TrES-2, but not for HAT-P-7 and HAT-P-11. Complete error budgets are generated for each transiting system, allowing identification of the observations best-suited to improve measurements of their physical properties. Whilst most systems would benefit from further photometry and spectroscopy, HD 17156, HD 80606, HAT-P-7 and TrES-2 are now extremely well

  10. Exoplanets: the quest for Earth twins.

    PubMed

    Mayor, Michel; Udry, Stephane; Pepe, Francesco; Lovis, Christophe

    2011-02-13

    Today, more than 400 extra-solar planets have been discovered. They provide strong constraints on the structure and formation mechanisms of planetary systems. Despite this huge amount of data, we still have little information concerning the constraints for extra-terrestrial life, i.e. the frequency of Earth twins in the habitable zone and the distribution of their orbital eccentricities. On the other hand, these latter questions strongly excite general interest and trigger future searches for life in the Universe. The status of the extra-solar planets field--in particular with respect to very-low-mass planets--will be discussed and an outlook on the search for Earth twins will be given in this paper.

  11. Parent stars of extrasolar planets - XIV. Strong evidence of Li abundance deficit

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.

    2015-01-01

    We report the results of our analysis of new high-resolution spectra of 30 late-F to early-G dwarf field stars for the purpose of deriving their Li abundances. They were selected from the subsample of stars in the Valenti and Fischer compilation that are lacking detected planets. These new data serve to expand our comparison sample used to test whether stars with Doppler-detected giant planets display Li abundance anomalies. Our results continue to show that Li is deficient among stars with planets when compared to very similar stars that lack such planets. This conclusion is strengthened when we add literature data to ours in a consistent way. We present a table of stars with planets paired with very similar stars lacking planets, extending the recent similar results of Delgado Mena et al.

  12. Integral field spectroscopy of the low-mass companion HD 984 B with the Gemini Planet Imager

    DOE PAGES

    Johnson-Groh, Mara; Marois, Christian; De Rosa, Robert J.; ...

    2017-03-31

    We present new observations of the low-mass companion to HD 984 taken with the Gemini Planet Imager (GPI) as a part of the GPI Exoplanet Survey campaign. Images of HD 984 B were obtained in the J (1.12–1.3 μm) and H (1.50–1.80 μm) bands. Combined with archival epochs from 2012 and 2014, we fit the first orbit to the companion to find an 18 au (70-year) orbit with a 68% confidence interval between 14 and 28 au, an eccentricity of 0.18 with a 68% confidence interval between 0.05 and 0.47, and an inclination of 119° with a 68% confidence interval between 114° and 125°. To address the considerable spectral covariance in both spectra, we present a method of splitting the spectra into low and high frequencies to analyze the spectral structure at different spatial frequencies with the proper spectral noise correlation. Using the split spectra, we compare them to known spectral types using field brown dwarf and low-mass star spectra and find a best-fit match of a field gravity M6.5 ± 1.5 spectral type with a corresponding temperature ofmore » $${2730}_{-180}^{+120}$$ K. Photometry of the companion yields a luminosity of $$\\mathrm{log}({L}_{\\mathrm{bol}}$$/$${L}_{\\odot })=-2.88\\pm 0.07$$ dex with DUSTY models. Mass estimates, again from DUSTY models, find an age-dependent mass of 34 ± 1 to 95 ± 4 M Jup. Lastly, these results are consistent with previous measurements of the object.« less

  13. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  14. A Planet Detection Tutorial and Simulator

    NASA Technical Reports Server (NTRS)

    Knoch, David; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  15. Search for Low-mass Objects in the Globular Cluster M4. I. Detection of Variable Stars

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Mkrtichian, D.; Hasan, P.; Sutaria, F.; Brosch, N.; Gorbikov, E.; Joseph, P.

    2016-02-01

    With every new discovery of an extrasolar planet, the absence of planets in globular clusters (GCs) becomes more and more conspicuous. Null detection of transiting hot Jupiters in GCs 47 Tuc, ω Cen, and NGC 6397 presents an important puzzle, raising questions about the role played by cluster metallicity and environment on formation and survival of planetary systems in densely populated stellar clusters. GCs were postulated to have many free-floating planets, for which microlensing (ML) is an established tool for detection. Dense environments, well-constrained distances and kinematics of lenses and sources, and photometry of thousands of stars simultaneously make GCs the ideal targets to search for ML. We present first results of a multisite, 69-night-long campaign to search for ML signatures of low-mass objects in the GC M4, which was chosen because of its proximity, location, and the actual existence of a planet. M4 was observed in R and I bands by two telescopes, 1 m T40 and 18-inch C18, of the Wise Observatory, Tel Aviv, Israel, from 2011 April to July. Observations on the 1 m telescope were carried out in service mode, gathering 12 to 48 20 s exposures per night for a total of 69 nights. C18 observations were done for about 4 hr a night for six nights in 2011 May. We employ a semiautomated pipeline to calibrate and reduce the images to the light curves that our group is developing for this purpose, which includes the differential photometry package DIAPL, written by Wozniak and modified by W. Pych. Several different diagnostics are employed for search of variability/transients. While no high-significance ML event was found in this observational run, we have detected more than 20 new variables and variable candidates in the M4 field, which we present here.

  16. Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, René, E-mail: rheller@physics.mcmaster.ca

    2014-05-20

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in themore » phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.« less

  17. Terrestrial Planet Finder Coronagraph Observatory summary

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Levine-Westa, Marie; Kissila, Andy; Kwacka, Eug; Hoa, Tim; Dumonta, Phil; Lismana, Doug; Fehera, Peter; Cafferty, Terry

    2005-01-01

    Creating an optical space telescope observatory capable of detecting and characterizing light from extra-solar terrestrial planets poses technical challenges related to extreme wavefront stability. The Terrestrial Planet Finder Coronagraph design team has been developing an observatory based on trade studies, modeling and analysis that has guided us towards design choices to enable this challenging mission. This paper will describe the current flight baseline design of the observatory and the trade studies that have been performed. The modeling and analysis of this design will be described including predicted performance and the tasks yet to be done.

  18. THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier

    Kepler-93b is a 1.478 ± 0.019 R {sub ⊕} planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M {sub ☉} and a radius of 0.919 ± 0.011 R {sub ☉}. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M {sub ⊕}. The corresponding high density of 6.88 ± 1.18 g cm{sup –3} is consistent with a rocky composition of primarily iron andmore » magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M {sub ⊕}, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M {sub ⊕}. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M {sub ⊕} planets.« less

  19. Disk-integrated reflection light curves of planets

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, A.

    2014-03-01

    The light scattered by a planet atmosphere contains valuable information on the planet's composition and aerosol content. Typically, the interpretation of that information requires elaborate radiative transport models accounting for the absorption and scattering processes undergone by the star photons on their passage through the atmosphere. I have been working on a particular family of algorithms based on Backward Monte Carlo (BMC) integration for solving the multiple-scattering problem in atmospheric media. BMC algorithms simulate statistically the photon trajectories in the reverse order that they actually occur, i.e. they trace the photons from the detector through the atmospheric medium and onwards to the illumination source following probability laws dictated by the medium's optical properties. BMC algorithms are versatile, as they can handle diverse viewing and illumination geometries, and can readily accommodate various physical phenomena. As will be shown, BMC algorithms are very well suited for the prediction of magnitudes integrated over a planet's disk (whether uniform or not). Disk-integrated magnitudes are relevant in the current context of exploration of extrasolar planets because spatial resolution of these objects will not be technologically feasible in the near future. I have been working on various predictions for the disk-integrated properties of planets that demonstrate the capacities of the BMC algorithm. These cases include the variability of the Earth's integrated signal caused by diurnal and seasonal changes in the surface reflectance and cloudiness, or by sporadic injection of large amounts of volcanic particles into the atmosphere. Since the implemented BMC algorithm includes a polarization mode, these examples also serve to illustrate the potential of polarimetry in the characterization of both Solar System and extrasolar planets. The work is complemented with the analysis of disk-integrated photometric observations of Earth and Venus

  20. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  1. Coupled Evolution with Tides of the Radius and Orbit of Transiting Giant Planets

    NASA Astrophysics Data System (ADS)

    Ibgui, Laurent; Burrows, A.

    2009-12-01

    Some transiting extrasolar giant planets have measured radii larger than predicted by the standard theory. We explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3 to 10 solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolution in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting extrasolar giant planets.

  2. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin; Lissauer, Jack; Howard, Andrew; Clark Fabrycky, Daniel

    2015-12-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 new precise RVs from Keck-HIRES, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (Rp = 1.47 R⊕) has mass 3.70 ± 0.43 M⊕ and density 6.44 ± 0.73 g cm-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c (Rp = 2.35 R⊕) we measure mass 13.32 ± 1.65 M⊕and density 5.67 ± 0.70 g cm-3, significantly lower than the mass in Dumusque et al. (2014, 17.2±1.9 M⊕). Kepler-10c is not sufficiently dense to have a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of either hydrogen-helium (0.0027 ± 0.0015 of the mass, 0.172±0.037 of the radius) or super-ionic water (0.309±0.11 of the mass, 0.305±0.075 of the radius). Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, 82, or 101 days, and a mass from 1-7 M⊕.

  3. The New Worlds Observer: A New Approach to Observing Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Cash, W.; Wilkinson, E.; Green, J.; Kasdin, J.; Spergel, D.; Turner, E.; Vanderbei, R.; Seager, S.; Stern, A.; Kilston, S.; Leiber, J.

    2003-12-01

    Direct observation of planets around other stars has been hindered primarily by the spatial proximity of their parent stars. Diffraction and scattering swamp the signal from the planet, which is typically billions of times fainter. We present an approach which has the potential to sidestep these problems. The New Worlds Observer was proposed to NASA last summer for a concept study as a Life Finder Mission to perform spectroscopy of terrestrial planets at 10pc. It consists of two spacecraft separated by 180,00km. The first craft, the starshade, features a deployable dark sheet hundreds of meters across and an aperture approximately 10m in diameter, specially shaped to suppress diffraction. At the focal plane of this pinhole camera flies a 10m diameter, one arcsecond quality Cassegrain telescope. If the telescope is placed where the pinhole image of a planet falls, the diffracted light from the star is suppressed, so only planet light enters the telescope. This system will allow sensitive observations anywhere from the far ultraviolet to the near infrared. Accompanying posters at this meeting will present science simulations and more details on the starshade design.

  4. Thoughts on the Theory of Irradiated Giant Planets

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Sudarsky, David; Hubeny, Ivan

    2004-06-01

    We have derived physical diagnostics that can inform the direct detection and remote sensing programs of extrasolar giant planets (EGPs) now being planned or proposed. Stellar irradiation of the planet's atmosphere and the effects of water and ammonia clouds are incorporated in a consistent fashion. Whether an EGP is at wide or close-in separations from its parent star, direct detection will soon be possible and will yield centrally important physical and chemical constraints. Our theory of irradiated EGPs is being developed to meet this challenge.

  5. Masses of Kepler-46b, c from Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Saad-Olivera, Ximena; Nesvorný, David; Kipping, David M.; Roig, Fernando

    2017-04-01

    We use 16 quarters of the Kepler mission data to analyze the transit timing variations (TTVs) of the extrasolar planet Kepler-46b (KOI-872). Our dynamical fits confirm that the TTVs of this planet (period P={33.648}-0.005+0.004 days) are produced by a non-transiting planet Kepler-46c (P={57.325}-0.098+0.116 days). The Bayesian inference tool MultiNest is used to infer the dynamical parameters of Kepler-46b and Kepler-46c. We find that the two planets have nearly coplanar and circular orbits, with eccentricities ≃ 0.03 somewhat higher than previously estimated. The masses of the two planets are found to be {M}b={0.885}-0.343+0.374 and {M}c={0.362}-0.016+0.016 Jupiter masses, with M b being determined here from TTVs for the first time. Due to the precession of its orbital plane, Kepler-46c should start transiting its host star a few decades from now.

  6. On the Minimum Core Mass for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Piso, Ana-Maria; Youdin, Andrew; Murray-Clay, Ruth

    2013-07-01

    The core accretion model proposes that giant planets form by the accretion of gas onto a solid protoplanetary core. Previous studies have found that there exists a "critical core mass" past which hydrostatic solutions can no longer be found and unstable atmosphere collapse occurs. This core mass is typically quoted to be around 10Me. In standard calculations of the critical core mass, planetesimal accretion deposits enough heat to alter the luminosity of the atmosphere, increasing the core mass required for the atmosphere to collapse. In this study we consider the limiting case in which planetesimal accretion is negligible and Kelvin-Helmholtz contraction dominates the luminosity evolution of the planet. We develop a two-layer atmosphere model with an inner convective region and an outer radiative zone that matches onto the protoplanetary disk, and we determine the minimum core mass for a giant planet to form within the typical disk lifetime for a variety of disk conditions. We denote this mass as critical core mass. The absolute minimum core mass required to nucleate atmosphere collapse is ˜ 8Me at 5 AU and steadily decreases to ˜ 3.5Me at 100 AU, for an ideal diatomic gas with a solar composition and a standard ISM opacity law. Lower opacity and disk temperature significantly reduce the critical core mass, while a decrease in the mean molecular weight of the nebular gas results in a larger critical core mass. Our results yield lower mass cores than corresponding studies for large planetesimal accretion rates.

  7. Measurements of Kepler Planet Masses and Eccentricities from Transit Timing Variations: Analytic and N-body Results

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Lithwick, Yoram

    2015-12-01

    Several Kepler planets reside in multi-planet systems where gravitational interactions result in transit timing variations (TTVs) that provide exquisitely sensitive probes of their masses of and orbits. Measuring these planets' masses and orbits constrains their bulk compositions and can provide clues about their formation. However, inverting TTV measurements in order to infer planet properties can be challenging: it involves fitting a nonlinear model with a large number of parameters to noisy data, often with significant degeneracies between parameters. I present results from two complementary approaches to TTV inversion: Markov chain Monte Carlo simulations that use N-body integrations to compute transit times and a simplified analytic model for computing the TTVs of planets near mean motion resonances. The analytic model allows for straightforward interpretations of N-body results and provides an independent estimate of parameter uncertainties that can be compared to MCMC results which may be sensitive to factors such as priors. We have conducted extensive MCMC simulations along with analytic fits to model the TTVs of dozens of Kepler multi-planet systems. We find that the bulk of these sub-Jovian planets have low densities that necessitate significant gaseous envelopes. We also find that the planets' eccentricities are generally small but often definitively non-zero.

  8. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  9. A Jupiter-mass planet around the K0 giant HD 208897

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Sato, B.; Bikmaev, I.; Selam, S. O.; Izumiura, H.; Keskin, V.; Kambe, E.; Melnikov, S. S.; Galeev, A.; Özavcı, İ.; Irtuganov, E. N.; Zhuchkov, R. Ya.

    2017-11-01

    For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G, K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the giant star HD 208897 using an iodine (I2) absorption cell. The measurements were made at TÜBİTAK National Observatory (TUG; RTT150) and Okayama Astrophysical Observatory (OAO). For the origin of the periodic variation seen in the RV data of the star, we adopted a Keplerian motion caused by an unseen companion. We found that the star hosts a planet with a minimum mass of m2sini = 1.40 MJ, which is relatively low compared to those of known planets orbiting evolved intermediate-mass stars. The planet is in a nearly circular orbit with a period of P = 353 days at about 1 AU distance from the host star. The star is metal rich and located at the early phase of ascent along the red giant branch. The photometric observations of the star at Ankara University Kreiken Observatory (AUKR) and the Hipparcos photometry show no sign of variation with periods associated with the RV variation. Neither bisector velocity analysis nor analysis of the Ca II and Hα lines shows any correlation with the RV measurements. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK), the project number of 114F099.

  10. Are beryllium abundances anomalous in stars with giant planets?

    NASA Astrophysics Data System (ADS)

    Santos, N. C.; Israelian, G.; García López, R. J.; Mayor, M.; Rebolo, R.; Randich, S.; Ecuvillon, A.; Domínguez Cerdeña, C.

    2004-12-01

    In this paper we present beryllium (Be) abundances in a large sample of 41 extra-solar planet host stars, and for 29 stars without any known planetary-mass companion, spanning a large range of effective temperatures. The Be abundances were derived through spectral synthesis done in standard Local Thermodynamic Equilibrium, using spectra obtained with various instruments. The results seem to confirm that overall, planet-host stars have ``normal'' Be abundances, although a small, but not significant, difference might be present. This result is discussed, and we show that this difference is probably not due to any stellar ``pollution'' events. In other words, our results support the idea that the high-metal content of planet-host stars has, overall, a ``primordial'' origin. However, we also find a small subset of planet-host late-F and early-G dwarfs that might have higher than average Be abundances. The reason for the offset is not clear, and might be related either to the engulfment of planetary material, to galactic chemical evolution effects, or to stellar-mass differences for stars of similar temperature. Based on observations collected with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observing runs 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the William Herschel and Nordic Optical Telescopes, operated on the island of La Palma by the Isaac Newton Group and jointly by Denmark, Finland, Iceland, and Norway, respectively, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  11. A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria; Mulders, Gijs D.; Gould, Andrew; Fernandes, Rachel

    2018-04-01

    We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1–6 R ⊕ and periods <100 days, we find that, except for a normalization factor, the occurrence rate versus q can be described by the same broken power law with a break at ∼3 × 10‑5 independent of host type for hosts below 1 M ⊙. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host < 1 M ⊙ criterion. The break in q for the microlensing planet population, which mostly probes the region outside the snowline, is ∼3–10 times higher than that inferred from Kepler. Thus, the most common planet inside the snowline is ∼3–10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.

  12. Giant Planets in Reflected Light: What Science Can We Expect?

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  13. THREE PLANETS ORBITING WOLF 1061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planetmore » falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.« less

  14. A search for extra-solar planetary transits in the field of open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Street, Rachel Amanda

    The technique of searching for extra-solar planetary transits is investigated. This technique, which relies on detecting the brief, shallow eclipses caused by planets passing across the line of sight to the primary star, requires high-precision time-series photometry of large numbers of stars in order to detect these statistically rare events. Observations of 18000 stars in the field including the intermediate-age open cluster NGC 6819 are presented. This target field constrasts with the stellar environment surveyed by the radial velocity technique, which concentrates on the Solar neighbourhood. I present the data-reduction techniques used to obtain high-precision photometry in a semi-automated fashion for tens of thousands of stars at a time, together with an algorithm designed to search the resulting lightcurves for the transit signatures of hot Jupiter type planets. I describe simulations designed to test the detection efficiency of this algorithm and, for comparison, predict the number of transits expected from this data, assuming that hot Jupiter planets similar to HD 209458 are as common in the field of NGC 6819 as they are in the Solar neighbourhood. While no planetary transits have yet been identified, the detection of several very low amplitude eclipses by stellar companions demonstrates the effectiveness of the method. This study also indicates that stellar activity and particularly blending are significant causes of false detections. A useful additional consequence of studying this time-series photometry is the census it provides of some of the variable stars in the field. I report on the discovery of a variety of newly-discovered variables, including Algol-type detached eclipsing binaries which are likely to consist of M-dwarf stars. Further study of these stars is strongly recommended in order to help constrain models of stellar structure at the very low mass end. I conclude with a summary of this work in the context of other efforts being made in this

  15. EFFECTS OF TURBULENCE, ECCENTRICITY DAMPING, AND MIGRATION RATE ON THE CAPTURE OF PLANETS INTO MEAN MOTION RESONANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-01-01

    Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full three-body problem and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasingmore » levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into-and maintenance of-mean motion resonance depends sensitively on the migration rate, eccentricity damping, and turbulence.« less

  16. ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masset, F. S.; Casoli, J., E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f

    2009-09-20

    We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient,more » and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.« less

  17. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Ryu, Y.-H.; Skowron, J.; Udalski, A.; Gould, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Pawlak, M.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-03-01

    Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2 ± 0.5 μas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼15 au.

  18. Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities

    NASA Astrophysics Data System (ADS)

    Ida, Shigeru; Lin, D. N. C.

    2004-11-01

    The apparent dependence of detection frequency of extrasolar planets on the metallicity of their host stars is investigated with Monte Carlo simulations using a deterministic core-accretion planet formation model. According to this model, gas giants formed and acquired their mass Mp through planetesimal coagulation followed by the emergence of cores onto which gas is accreted. These protoplanets migrate and attain their asymptotic semimajor axis a through tidal interaction with their nascent disk. Based on the observed properties of protostellar disks, we generate an Mp-a distribution. Our results reproduce the observed lack of planets with intermediate mass Mp=10-100 M⊕ and a<~3 AU and with large mass Mp>~103 M⊕ and a<~0.2 AU. Based on the simulated Mp-a distributions, we also evaluate the metallicity dependence of the fraction of stars harboring planets that are detectable with current radial velocity surveys. If protostellar disks attain the same fraction of heavy elements as contained in their host stars, the detection probability around metal-rich stars would be greatly enhanced because protoplanetary cores formed in them can grow to several Earth masses prior to their depletion. These large masses are required for the cores to initiate rapid gas accretion and to transform into giant planets. The theoretically extrapolated metallicity dependence is consistent with the observations. This correlation does not arise naturally in the gravitational-instability scenario. We also suggest other metallicity dependences of the planet distributions that can be tested by ongoing observations.

  19. WHY ARE PULSAR PLANETS RARE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats themore » inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.« less

  20. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  1. A DEFINITION FOR GIANT PLANETS BASED ON THE MASS–DENSITY RELATIONSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzes, Artie P.; Rauer, Heike, E-mail: artie@tls-tautenburg.de, E-mail: Heike.Rauer@dlr.de

    We present the mass–density relationship (log M − log ρ) for objects with masses ranging from planets (M ≈ 0.01 M{sub Jup}) to stars (M > 0.08 M{sub ⊙}). This relationship shows three distinct regions separated by a change in slope in the log M − log ρ plane. In particular, objects with masses in the range 0.3 M{sub Jup}–60 M{sub Jup} follow a tight linear relationship with no distinguishing feature to separate the low-mass end (giant planets) from the high-mass end (brown dwarfs). We propose a new definition of giant planets simply based on changes in the slope ofmore » the log M versus log ρ relationship. By this criterion, objects with masses less than ≈0.3 M{sub Jup} are low-mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M{sub Jup}–60 M{sub Jup}. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as “high-mass giant planets,” while planets with masses near that of Jupiter can be called “low-mass giant planets.”.« less

  2. A Likely Detection of a Two-planet System in a Low-magnification Microlensing Event

    NASA Astrophysics Data System (ADS)

    Suzuki, D.; Bennett, D. P.; Udalski, A.; Bond, I. A.; Sumi, T.; Han, C.; Kim, Ho-il.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Onishi, K.; Oyokawa, H.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yonehara, A.; MOA Collaboration; Poleski, R.; Mróz, P.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Wyrzykowski, Ł.; Ulaczyk, K.; OGLE Collaboration

    2018-06-01

    We report on the analysis of a microlensing event, OGLE-2014-BLG-1722, that showed two distinct short-term anomalies. The best-fit model to the observed light curves shows that the two anomalies are explained with two planetary mass ratio companions to the primary lens. Although a binary-source model is also able to explain the second anomaly, it is marginally ruled out by 3.1σ. The two-planet model indicates that the first anomaly was caused by planet “b” with a mass ratio of q=({4.5}-0.6+0.7)× {10}-4 and projected separation in units of the Einstein radius, s = 0.753 ± 0.004. The second anomaly reveals planet “c” with a mass ratio of {q}2=({7.0}-1.7+2.3)× {10}-4 with Δχ 2 ∼ 170 compared to the single-planet model. Its separation has two degenerated solutions: the separation of planet c is s 2 = 0.84 ± 0.03 and 1.37 ± 0.04 for the close and wide models, respectively. Unfortunately, this event does not show clear finite-source and microlensing parallax effects; thus, we estimated the physical parameters of the lens system from Bayesian analysis. This gives the masses of planets b and c as {m}{{b}}={56}-33+51 and {m}{{c}}={85}-51+86 {M}\\oplus , respectively, and they orbit a late-type star with a mass of {M}host} ={0.40}-0.24+0.36 {M}ȯ located at {D}{{L}}={6.4}-1.8+1.3 {kpc} from us. The projected distances between the host and planets are {r}\\perp ,{{b}}=1.5+/- 0.6 {au} for planet b and {r}\\perp ,{{c}}={1.7}-0.6+0.7 {au} and {r}\\perp ,{{c}}={2.7}-1.0+1.1 {au} for the close and wide models of planet c. If the two-planet model is true, then this is the third multiple-planet system detected using the microlensing method and the first multiple-planet system detected in low-magnification events, which are dominant in the microlensing survey data. The occurrence rate of multiple cold gas giant systems is estimated using the two such detections and a simple extrapolation of the survey sensitivity of the 6 yr MOA microlensing survey combined with the

  3. Using NIRISS to study the formation and evolution of stars, disks, and planets

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug I.; JWST NIRISS GTO Team

    2017-06-01

    NIRISS on JWST is a powerful instrument for the study of star, disk, and planet formation and evolution. In this talk I will highlight the Wide Field Slitless Spectroscopy (WFSS) and Aperture Masking Interferometry (AMI) modes of NIRISS, along with lessons learned determining optimal observing strategies and project implementation in APT. The NIRISS WFSS mode uses a grism to provide modest resolution (R ~ 150) spectra of all sources within the observed field of view. Cold low-mass objects are distinct at NIRISS wavelengths (1.5 and 2.0 microns, in this case), and can be characterized through their speactra by their temperature and surface gravity sensitive molecular absorption features. Thus, WFSS observations will be an efficient way to locate and enumerate the young brown dwarfs and rogue planets in nearby star-forming regions. Alternatively, the NIRISS AMI mode offers the highest spatial resolution available on JWST at wavelengths greater than 2.5 micron, 70 - 400 mas, and modest inner working angle contrast, dm ~ 10, for individual bright sources. A significant advantage of observing from space is that, along with the phase closure, the interferometric phase amplitudes can also be recovered allowing some reconstruction of extended emission. Observations with AMI will be made of candidate and postulated planets forming within transition disks around young stars and for somewhat older planets in known extra-solar planetary systems. The AMI mode will also be used to study the zodiacal light in a bright debris disk system and to search for binary companions of Y dwarfs.

  4. The Mass of Kepler-93b and The Composition of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris

    2015-02-01

    Kepler-93b is a 1.478 ± 0.019 R ⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M ⊙ and a radius of 0.919 ± 0.011 R ⊙. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M ⊕. The corresponding high density of 6.88 ± 1.18 g cm-3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M ⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M ⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M ⊕ planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  5. Ionization in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, R. L.; Helling, Ch.; Hodosán, G.

    2014-03-20

    Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g., by lightning), which significantly influences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionization state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to DRIFT-PHOENIX model atmosphere results to model the discharge's propagation downward (as lightning)more » and upward (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g., by increase of temperature or electron number) is larger in a brown dwarf atmosphere (10{sup 8}-10{sup 10} m{sup 3}) than in a giant gas planet (10{sup 4}-10{sup 6} m{sup 3}). Our results suggest that the total dissipated energy in one event is <10{sup 12} J for all models of initial solar metallicity. First attempts to show the influence of lightning on the local gas phase indicate an increase of small carbohydrate molecules like CH and CH{sub 2} at the expense of CO and CH{sub 4}. Dust-forming molecules are destroyed and the cloud particle properties are frozen in unless enough time is available for complete evaporation. We summarize instruments potentially suitable to observe lightning on extrasolar objects.« less

  6. RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I.; Fabrycky, Daniel C., E-mail: rdawson@cfa.harvard.ed, E-mail: daniel.fabrycky@gmail.co

    2010-10-10

    Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life. To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude andmore » phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and the minimum mass is (3.1 {+-} 0.4) M{sub +}. For 55 Cnc e, the correct period is 0.7365 days-the shortest of any known planet-and the minimum mass is (8.3 {+-} 0.3) M{sub +}. This revision produces a significantly improved five-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.« less

  7. Towards a Comprehensive Understanding of Planet Occurrence Rates: Extending the Kepler Legacy Across a Wide Stellar Parameter Space with K2

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel

    Measuring the occurrence rate of extrasolar planets is one of the most fundamental constraints on our understanding of planets throughout the Galaxy. By studying planet populations across a wide parameter space in stellar age, type, metallicity, and multiplicity, we can inform planet formation, migration and evolution theories. The ground-based ELTs and the flagship space missions that NASA is planning in the next decades and beyond will be designed to make the first observations of potential biomarkers in the atmospheres of extrasolar planets understanding how common these planets and how they are distributed will be crucial for this effort. One of the most important results of the main Kepler mission was a measurement of the frequency of planets orbiting FGK dwarfs. Although that result is crucial for estimating the frequency of planetary systems orbiting middle-aged Sun-like stars, the majority of stars in the galaxy have lower masses. We propose to extend the Kepler occurrence rates to lower stellar masses by using publicly available data from the second-generation K2 mission to estimate the frequency of planets orbiting low-mass stars. The confluence of the lower temperature, smaller size, and relative abundance of M dwarfs makes them attractive and efficient targets for habitable planet detection and characterization. The archived K2 data contain nearly an order of magnitude more M dwarfs than the original Kepler data set ( 30,000 compared to 3700), allowing us to constrain occurrence rates both more precisely and with more granularity across the M dwarf parameter range. We will also take advantage of the wide variety of stellar environments sampled by the community-driven K2 mission to estimate the frequency of planets orbiting stars with a range of metallicities and ages. The K2 mission has observed several clusters across a wide range of ages, including the Upper Scorpius OB association (10My old), the Pleiades cluster (115My old), and the Hyades and

  8. Adaptive Annealed Importance Sampling for Multimodal Posterior Exploration and Model Selection with Application to Extrasolar Planet Detection

    NASA Astrophysics Data System (ADS)

    Liu, Bin

    2014-07-01

    We describe an algorithm that can adaptively provide mixture summaries of multimodal posterior distributions. The parameter space of the involved posteriors ranges in size from a few dimensions to dozens of dimensions. This work was motivated by an astrophysical problem called extrasolar planet (exoplanet) detection, wherein the computation of stochastic integrals that are required for Bayesian model comparison is challenging. The difficulty comes from the highly nonlinear models that lead to multimodal posterior distributions. We resort to importance sampling (IS) to estimate the integrals, and thus translate the problem to be how to find a parametric approximation of the posterior. To capture the multimodal structure in the posterior, we initialize a mixture proposal distribution and then tailor its parameters elaborately to make it resemble the posterior to the greatest extent possible. We use the effective sample size (ESS) calculated based on the IS draws to measure the degree of approximation. The bigger the ESS is, the better the proposal resembles the posterior. A difficulty within this tailoring operation lies in the adjustment of the number of mixing components in the mixture proposal. Brute force methods just preset it as a large constant, which leads to an increase in the required computational resources. We provide an iterative delete/merge/add process, which works in tandem with an expectation-maximization step to tailor such a number online. The efficiency of our proposed method is tested via both simulation studies and real exoplanet data analysis.

  9. The Terrestrial Planet Finder and Darwin Missions

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2004-01-01

    Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.

  10. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  11. Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470

    NASA Astrophysics Data System (ADS)

    Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney

    2018-01-01

    We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all < 4.2 g/cm3) and bright host stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.

  12. Anthropic selection for the Moon's mass.

    PubMed

    Waltham, Dave

    2004-01-01

    This paper investigates whether anthropic selection explains the unusually large size of our Moon. It is shown that obliquity stability of the Earth is possible across a wide range of different starting conditions for the Earth-Moon system. However, the lunar mass and angular momentum from the actual Earth-Moon system are remarkable in that they very nearly produce an unstable obliquity. This may be because the particular properties of our Earth-Moon system simultaneously allow a stable obliquity and a slow rotation rate. A slow rotation rate may have been anthropically selected because it minimizes the equator-pole temperature difference, thus minimizing climatic fluctuations. The great merit of this idea is that it can be tested using extrasolar planet search programs planned for the near future. If correct, such anthropic selection predicts that most extrasolar planetary systems will have significantly larger perturbation frequencies than our own Solar System.

  13. The Mass of KOI-94d and a Relation for Planet Radius, Mass, and Incident Flux

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Marcy, Geoffrey W.; Rowe, Jason F.; Howard, Andrew W.; Isaacson, Howard; Fortney, Jonathan J.; Miller, Neil; Demory, Brice-Olivier; Fischer, Debra A.; Adams, Elisabeth R.; Dupree, Andrea K.; Howell, Steve B.; Kolbl, Rea; Johnson, John Asher; Horch, Elliott P.; Everett, Mark E.; Fabrycky, Daniel C.; Seager, Sara

    2013-05-01

    We measure the mass of a modestly irradiated giant planet, KOI-94d. We wish to determine whether this planet, which is in a 22 day orbit and receives 2700 times as much incident flux as Jupiter, is as dense as Jupiter or rarefied like inflated hot Jupiters. KOI-94 also hosts at least three smaller transiting planets, all of which were detected by the Kepler mission. With 26 radial velocities of KOI-94 from the W. M. Keck Observatory and a simultaneous fit to the Kepler light curve, we measure the mass of the giant planet and determine that it is not inflated. Support for the planetary interpretation of the other three candidates comes from gravitational interactions through transit timing variations, the statistical robustness of multi-planet systems against false positives, and several lines of evidence that no other star resides within the photometric aperture. We report the properties of KOI-94b (M P = 10.5 ± 4.6 M ⊕, R P = 1.71 ± 0.16 R ⊕, P = 3.74 days), KOI-94c (M P = 15.6^{+5.7}_{-15.6} M ⊕, R P = 4.32 ± 0.41 R ⊕, P = 10.4 days), KOI-94d (M P = 106 ± 11 M ⊕, R P = 11.27 ± 1.06 R ⊕, P = 22.3 days), and KOI-94e (M P = 35^{+18}_{-28} M ⊕, R P = 6.56 ± 0.62 R ⊕, P = 54.3 days). The radial velocity analyses of KOI-94b and KOI-94e offer marginal (>2σ) mass detections, whereas the observations of KOI-94c offer only an upper limit to its mass. Using the KOI-94 system and other planets with published values for both mass and radius (138 exoplanets total, including 35 with M P < 150 M ⊕), we establish two fundamental planes for exoplanets that relate their mass, incident flux, and radius from a few Earth masses up to 13 Jupiter masses: (R P/R ⊕) = 1.78(M P/M ⊕)0.53(F/erg s-1 cm-2)-0.03 for M P < 150 M ⊕, and R P/R ⊕ = 2.45(M P/M ⊕)-0.039(F/erg s-1 cm-2)0.094 for M P > 150 M ⊕. These equations can be used to predict the radius or mass of a planet. Based in part on observations obtained at the W. M. Keck Observatory, which is

  14. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  15. Dynamics of a Probable Earth-mass Planet in the GJ 832 System

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Griffith, J.; Musielak, Z. E.

    2017-08-01

    The stability of planetary orbits around the GJ 832 star system, which contains inner (GJ 832c) and outer (GJ 832b) planets, is investigated numerically and a detailed phase-space analysis is performed. Special attention is given to the existence of stable orbits for a planet less than 15 M ⊕ that is injected between the inner and outer planets. Thus, numerical simulations are performed for three and four bodies in elliptical orbits (or circular for special cases) by using a large number of initial conditions that cover the selected phase-spaces of the planet’s orbital parameters. The results presented in the phase-space maps for GJ 832c indicate the least deviation of eccentricity from its nominal value, which is then used to determine its inclination regime relative to the star-outer planet plane. Also, the injected planet is found to display stable orbital configurations for at least one billion years. Then, the radial velocity curves based on the signature from the Keplerian motion are generated for the injected planets with masses 1 M ⊕ to 15 M ⊕ in order to estimate their semimajor axes and mass limits. The synthetic RV signal suggests that an additional planet of mass ≤15 M ⊕ with a dynamically stable configuration may be residing between 0.25 and 2.0 au from the star. We have provided an estimated number of RV observations for the additional planet that is required for further observational verification.

  16. Full exploration of the giant planet population around β Pictoris

    NASA Astrophysics Data System (ADS)

    Lagrange, A.-M.; Keppler, M.; Meunier, N.; Lannier, J.; Beust, H.; Milli, J.; Bonnavita, M.; Bonnefoy, M.; Borgniet, S.; Chauvin, G.; Delorme, P.; Galland, F.; Iglesias, D.; Kiefer, F.; Messina, S.; Vidal-Madjar, A.; Wilson, P. A.

    2018-05-01

    Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims: This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet-disk interactions. Methods: We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results: We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %. Based on data obtained with the ESO3.6 m/HARPS spectrograph at La Silla, and with NaCO on the VLT.The RV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A108

  17. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    NASA Astrophysics Data System (ADS)

    Chambers, John

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  18. The Effect of the Transit of Venus on ACRIM's Total Solar Irradiance Measurements: Implications for Transit Studies of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Pasachoff, J. M.; Willson, Richard C.

    2006-04-01

    We have used the 2004 June 8 transit of Venus (ToV) as a surrogate to test observing methods, strategies, and techniques that are being contemplated for future space missions to detect and characterize extrasolar terrestrial planets (ETPs) as they transit their host stars, notably NASA's Kepler mission, planned for 2008. As an analog to ``Kepler-like'' photometric transit observations, we obtained (spatially unresolved) radiometric observations with the ACRIM 3 instrument on ACRIMSAT at a sampling cadence of 131 s to follow the effect of the ToV on the total solar irradiance (TSI). Contemporaneous high-resolution broadband imagery with NASA's TRACE spacecraft provided, directly, measures of the stellar (solar) astrophysical noise that can intrinsically limit such transit observations. During the Venus transit, which lasted ~5.5 hr, the planet's angular diameter was approximately 1/32 the solar diameter, thus covering ~0.1% of the stellar surface. With our ACRIM 3 data, we measure temporal changes in TSI with a 1 σ per sample (unbinned) uncertainty of approximately 100 mW m-2 (0.007%). A diminution in TSI of ~1.4 W m-2 (~0.1%, closely corresponding to the geometrically occulted area of the photosphere) was measured at mid-transit compared with a mean pre-/post-transit TSI of ~1365.9 W m-2. The radiometric light curve is complex because of the parallactic motion of Venus induced by ACRIMSAT's near-polar orbit, but exhibits the characteristic signature of photospheric limb darkening. These observations serve as a surrogate for future photometric observations of ETPs, such as Kepler will deliver. Detailed analysis of the ToV, a rare event within our own solar system, with time-resolved radiometry augmented with high-resolution imagery, provides a useful analog for investigating the detectability and characterization of ETPs from observations that are anticipated in the near future.

  19. THE EVIL-MC MODEL FOR ELLIPSOIDAL VARIATIONS OF PLANET-HOSTING STARS AND APPLICATIONS TO THE HAT-P-7 SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Brian K.; Lewis, Nikole K.; Showman, Adam P.

    2012-06-01

    We present a new model for Ellipsoidal Variations Induced by a Low-Mass Companion, the EVIL-MC model. We employ several approximations appropriate for planetary systems to substantially increase the computational efficiency of our model relative to more general ellipsoidal variation models and improve upon the accuracy of simpler models. This new approach gives us a unique ability to rapidly and accurately determine planetary system parameters. We use the EVIL-MC model to analyze Kepler Quarter 0-2 (Q0-2) observations of the HAT-P-7 system, an F-type star orbited by a {approx} Jupiter-mass companion. Our analysis corroborates previous estimates of the planet-star mass ratio qmore » = (1.10 {+-} 0.06) Multiplication-Sign 10{sup -3}, and we have revised the planet's dayside brightness temperature to 2680{sup +10}{sub -20} K. We also find a large difference between the day- and nightside planetary flux, with little nightside emission. Preliminary dynamical+radiative modeling of the atmosphere indicates that this result is qualitatively consistent with high altitude absorption of stellar heating. Similar analyses of Kepler and CoRoT photometry of other planets using EVIL-MC will play a key role in providing constraints on the properties of many extrasolar systems, especially given the limited resources for follow-up and characterization of these systems. However, as we highlight, there are important degeneracies between the contributions from ellipsoidal variations and planetary emission and reflection. Consequently, for many of the hottest and brightest Kepler and CoRoT planets, accurate estimates of the planetary emission and reflection, diagnostic of atmospheric heat budgets, will require accurate modeling of the photometric contribution from the stellar ellipsoidal variation.« less

  20. Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Santerne, A.; Montagnier, G.; Bruno, G.; Deleuil, M.; Havel, M.; Almenara, J.-M.; Damiani, C.; Barros, S. C. C.; Bonomo, A. S.; Bouchy, F.; Díaz, R. F.; Moutou, C.

    2014-12-01

    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 MJup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 MJup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 MJup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 RJup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive. Table 6 is available in electronic form at http://www.aanda.orgRadial velocities given in Tables 2 and 3 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A93

  1. SPOTS: The Search for Planets Orbiting Two Stars

    NASA Astrophysics Data System (ADS)

    Thalmann, Christian; Desidera, Silvano; Bergfors, Carolina; Boccaletti, Anthony; Bonavita, Mariangela; Carson, Joseph; Feldt, Markus; Goto, Miwa; Henning, Thomas; Janson, Markus; Klahr, Hubert; Marzari, Francesco; Mordasini, Christoph

    2013-07-01

    Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the frequency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.

  2. Modal Decomposition of TTV: Inferring Planet Masses and Eccentricities

    NASA Astrophysics Data System (ADS)

    Linial, Itai; Gilbaum, Shmuel; Sari, Re’em

    2018-06-01

    Transit timing variations (TTVs) are a powerful tool for characterizing the properties of transiting exoplanets. However, inferring planet properties from the observed timing variations is a challenging task, which is usually addressed by extensive numerical searches. We propose a new, computationally inexpensive method for inverting TTV signals in a planetary system of two transiting planets. To the lowest order in planetary masses and eccentricities, TTVs can be expressed as a linear combination of three functions, which we call the TTV modes. These functions depend only on the planets’ linear ephemerides, and can be either constructed analytically, or by performing three orbital integrations of the three-body system. Given a TTV signal, the underlying physical parameters are found by decomposing the data as a sum of the TTV modes. We demonstrate the use of this method by inferring the mass and eccentricity of six Kepler planets that were previously characterized in other studies. Finally we discuss the implications and future prospects of our new method.

  3. An estimate of the prevalence of biocompatible and habitable planets.

    PubMed

    Fogg, M J

    1992-01-01

    A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet.

  4. Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets

    NASA Astrophysics Data System (ADS)

    Marino, Sebastian; Bonsor, Amy; Wyatt, Mark C.; Kral, Quentin

    2018-06-01

    Exocomets scattered by planets have been invoked to explain observations in multiple contexts, including the frequently found near- and mid-infrared excess around nearby stars arising from exozodiacal dust. Here we investigate how the process of inward scattering of comets originating in an outer belt, is affected by the architecture of a planetary system, to determine whether this could lead to observable exozodi levels or deliver volatiles to inner planets. Using N-body simulations, we model systems with different planet mass and orbital spacing distributions in the 1-50 AU region. We find that tightly packed (Δap < 20RH, m) low mass planets are the most efficient at delivering material to exozodi regions (5-7% of scattered exocomets end up within 0.5 AU at some point), although the exozodi levels do not vary by more than a factor of ˜7 for the architectures studied here. We suggest that emission from scattered dusty material in between the planets could provide a potential test for this delivery mechanism. We show that the surface density of scattered material can vary by two orders of magnitude (being highest for systems of low mass planets with medium spacing), whilst the exozodi delivery rate stays roughly constant, and that future instruments such as JWST could detect it. In fact for η Corvi, the current Herschel upper limit rules our the scattering scenario by a chain of ≲30 M⊕ planets. Finally, we show that exocomets could be efficient at delivering cometary material to inner planets (0.1-1% of scattered comets are accreted per inner planet). Overall, the best systems at delivering comets to inner planets are the ones that have low mass outer planets and medium spacing (˜20RH, m).

  5. The Anglo-Australian Planet Search. XXII. Two New Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Horner, J.; Tuomi, Mikko; Salter, G. S.; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Jenkins, J. S.; Zhang, Z.; Vogt, S. S.; Rivera, Eugenio J.

    2012-07-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 ± 427 days, and a minimum mass of 5.3 M Jup. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 ± 0.07). The second planet in the HD 159868 system has a period of 352.3 ± 1.3 days and m sin i = 0.73 ± 0.05 M Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  6. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    PubMed

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  7. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new

  8. ADAPTIVE ANNEALED IMPORTANCE SAMPLING FOR MULTIMODAL POSTERIOR EXPLORATION AND MODEL SELECTION WITH APPLICATION TO EXTRASOLAR PLANET DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: bins@ieee.org

    2014-07-01

    We describe an algorithm that can adaptively provide mixture summaries of multimodal posterior distributions. The parameter space of the involved posteriors ranges in size from a few dimensions to dozens of dimensions. This work was motivated by an astrophysical problem called extrasolar planet (exoplanet) detection, wherein the computation of stochastic integrals that are required for Bayesian model comparison is challenging. The difficulty comes from the highly nonlinear models that lead to multimodal posterior distributions. We resort to importance sampling (IS) to estimate the integrals, and thus translate the problem to be how to find a parametric approximation of the posterior.more » To capture the multimodal structure in the posterior, we initialize a mixture proposal distribution and then tailor its parameters elaborately to make it resemble the posterior to the greatest extent possible. We use the effective sample size (ESS) calculated based on the IS draws to measure the degree of approximation. The bigger the ESS is, the better the proposal resembles the posterior. A difficulty within this tailoring operation lies in the adjustment of the number of mixing components in the mixture proposal. Brute force methods just preset it as a large constant, which leads to an increase in the required computational resources. We provide an iterative delete/merge/add process, which works in tandem with an expectation-maximization step to tailor such a number online. The efficiency of our proposed method is tested via both simulation studies and real exoplanet data analysis.« less

  9. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  10. The Maximum Mass Solar Nebula and the early formation of planets

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-03-01

    Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula (MMSN), as opposed to the oft-used Minimum Mass Solar Nebula (here mmsn). It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short timescales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.

  11. The Maximum Mass Solar Nebula and the early formation of planets

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-07-01

    Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet-forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet-forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula, as opposed to the oft-used minimum mass solar nebula. It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short time-scales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.

  12. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of thesemore » systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.« less

  13. On the Terminal Rotation Rates of Giant Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  14. Little Stars Don't Like Big Planets: An Astrometric Search for Super-Jupiters Around Red Dwarfs

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Henry, T. J.; Jao, W.; Koerner, D. W.; Riedel, A. R.; Subasavage, J.; RECONS

    2013-01-01

    The astrometric detection and characterization of extrasolar planets presents considerable technical challenges, but also promises to greatly enhance our understanding of these systems. Nearly all currently confirmed exoplanets have been discovered using transit or radial velocity techniques. The former is geometrically biased towards planets with small orbits, while the latter is biased towards massive planets with short periods that exert large gravitational accelerations on their host stars. Astrometric techniques are limited by the minimum detectable perturbation of a star's position due to a planet, but allow for the determination of orbit inclination and an accurate planetary mass. Here we present astrometric solutions for five nearby stars with known planets: four M dwarfs (GJ 317, GJ 581, GJ 849, and GJ 1214) and one K dwarf (BD -10 3166). Observations have baselines of three to thirteen years, and were made using the 0.9 m telescope at CTIO as part of the RECONS long-term astrometry program. We provide improved parallaxes for the stars and find that there are no planets of several Jupiter masses or brown dwarfs orbiting these stars with periods up to twice the length of the astrometric coverage. In the broader context, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the roughly 200 red dwarfs searched in our astrometric program. This effort has been supported by the National Science Foundation via grant AST 09-08402 and the long-term cooperative efforts of the National Optical Astronomy Observatories and the members of the SMARTS Consortium.

  15. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, B.; Jura, M.; Zuckerman, B.

    2010-02-01

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at leastmore » the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 +- 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.« less

  16. Third Workshop on Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William J. (Editor); Lasher, Lawrence E. (Editor)

    2001-01-01

    The discoveries of extrasolar planets by Wolszczan, Mayor and Queloz, Butler et al., and others have stimulated a widespread effort to obtain a body of data sufficient to understand their occurrence and characteristics. Doppler velocity techniques have found dozens of extrasolar planets with masses similar to that of Jupiter. Approximately ten percent of the stars that show planets with orbital periods of a few days to a week are expected to show transits. With the mass obtained from Doppler velocity measurements and the size from transit photometry, the densities of the planets can be determined. Theoretical models of the structure of "hot Jupiters" (i.e., those planets within a tenth of an astronomical unit (AU) of the parent star) indicate that these planets should be substantially larger in size and lower in density than Jupiter. Thus the combination of transit and Doppler velocity measurements provide a critical test of the theories of planetary structure. Furthermore, because photometry can be done with small-aperture telescopes rather than requiring the use of much larger telescopes, transit photometry should also reduce the cost of discovering extrasolar planets.

  17. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  18. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color

  19. Impact processes and the atmospheric composition of giant planets: lessons learned from the Solar System

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Grassi, Davide; Adriani, Alberto; Piccioni, Giuseppe; Altieri, Francesca; Barbieri, Mauro

    Over the last twenty years, the search for extrasolar planets revealed us the rich diversity of the outcomes of the processes shaping the formation and evolution of planetary systems. More recently, ground-based and space-based observations started to complement this information with the first data on the atmospheric composition of extrasolar planets. The full exploitation of the data that space-based and ground-based facilities will provide in growing number in the near future, however, requires that we improve our understanding of what are the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications on the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. Here we will discuss what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.

  20. General Astrophysics and Comparative Planetology with the Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J. (Editor)

    2005-01-01

    This document discusses the potential of the Terrestrial Planet Finder (TPF) for general astrophysics beyond its base mission, focusing on science obtainable with no or minimal modifications to the mission design, but also exploring possible modifications of TPF with high scientific merit and no impact on the basic search for extrasolar Earth analogs.

  1. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  2. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  3. Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.

    2017-02-01

    Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS

  4. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Hugh F.; Militzer, Burkhard, E-mail: hughfw@gmail.com

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure,more » and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.« less

  5. Design and Verification of External Occulters for Direct Imaging of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Cady, Eric

    2011-01-01

    An occulter is an optical element which is placed in front of the telescope to block most of the light from a star before it reaches the optics inside, without blocking the planet.In our case, we use two spacecraft ying in formation: First has its edge shaped to cancel the starlight Second is the telescope which images the star and planet

  6. Efficient Geometric Probabilities of Multi-transiting Systems, Circumbinary Planets, and Exoplanet Mutual Events

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, D.

    2012-10-01

    The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.

  7. DENSITY AND ECCENTRICITY OF KEPLER PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yanqin; Lithwick, Yoram

    2013-07-20

    We analyze the transit timing variations (TTV) obtained by the Kepler mission for 22 sub-Jovian planet pairs (19 published, 3 new) that lie close to mean motion resonances. We find that the TTV phases for most of these pairs lie close to zero, consistent with an eccentricity distribution that has a very low root-mean-squared value of e {approx} 0.01; but about a quarter of the pairs possess much higher eccentricities, up to e {approx} 0.1-0.4. For the low-eccentricity pairs, we are able to statistically remove the effect of eccentricity to obtain planet masses from TTV data. These masses, together withmore » those measured by radial velocity, yield a best-fit mass-radius relation M {approx} 3 M{sub Circled-Plus }(R/R{sub Circled-Plus }). This corresponds to a constant surface escape velocity of {approx}20 km s{sup -1}. We separate the planets into two distinct groups: ''mid-sized'' (those greater than 3 R{sub Circled-Plus }) and 'compact' (those smaller). All mid-sized planets are found to be less dense than water and therefore must contain extensive H/He envelopes that are comparable in mass to that of their cores. We argue that these planets have been significantly sculpted by photoevaporation. Surprisingly, mid-sized planets, a minority among Kepler candidates, are discovered exclusively around stars more massive than 0.8 M{sub Sun }. The compact planets, on the other hand, are often denser than water. Combining our density measurements with those from radial velocity studies, we find that hotter compact planets tend to be denser, with the hottest ones reaching rock density. Moreover, hotter planets tend to be smaller in size. These results can be explained if the compact planets are made of rocky cores overlaid with a small amount of hydrogen, {<=}1% in mass, with water contributing little to their masses or sizes. Photoevaporation has exposed bare rocky cores in cases of the hottest planets. Our conclusion that these planets are likely not water worlds

  8. HAT-P-44b, HAT-P-45b, AND HAT-P-46b: Three transiting hot Jupiters in possible multi-planet systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.

    2014-06-01

    We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M {sub J}, and radii of 1.24, 1.43, and 1.28 R {sub J}. The stellar hosts have masses of 0.94, 1.26, and 1.28 M {sub ☉}. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, includingmore » the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 ± 0.081, and a minimum mass of 4.0 M {sub J}. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 ± 6.3 m s{sup –1} is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M {sub J}, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.« less

  9. Periodic mass extinctions and the Planet X model reconsidered

    NASA Astrophysics Data System (ADS)

    Whitmire, Daniel P.

    2016-01-01

    The 27 Myr period in the fossil extinction record has been confirmed in modern data bases dating back 500 Myr, which is twice the time interval of the original analysis from 30 years ago. The surprising regularity of this period has been used to reject the Nemesis model. A second model based on the Sun's vertical Galactic oscillations has been challenged on the basis of an inconsistency in period and phasing. The third astronomical model originally proposed to explain the periodicity is the Planet X model in which the period is associated with the perihelion precession of the inclined orbit of a trans-Neptunian planet. Recently, and unrelated to mass extinctions, a trans-Neptunian super-Earth planet has been proposed to explain the observation that the inner Oort cloud objects Sedna and 2012VP113 have perihelia that lie near the ecliptic plane. In this Letter, we reconsider the Planet X model in light of the confluence of the modern palaeontological and outer Solar system dynamical evidence.

  10. DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W., E-mail: Augusto_Carballido@baylor.edu

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking andmore » compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.« less

  11. Investigating Extra-solar Planetary System Qatar-1 through Transit Observations

    NASA Astrophysics Data System (ADS)

    Thakur, Parijat; Mannaday, Vineet Kumar; Jiang, Ing-Guey; Sahu, Devendra Kumar; Chand, Swadesh

    2018-04-01

    We report the results of the transit timing variation (TTV) analysis of the extra-solar planet Qatar-1b using thirty eight light curves. Our analysis combines thirty five previously available transit light curves with three new transits observed by us between June 2016 and September 2016 using the 2-m Himalayan Chandra Telescope (HCT) at the Indian Astronomical Observatory (Hanle, India). From these transit data, the physical and orbital parameters of the Qatar-1 system are determined. In addition to this, the ephemeris for the orbital period and mid-transit time are refined to investigate the possible TTV. We find that the null-TTV model provides the better fit to the (O-C) data. This indicates that there is no evidence for TTVs to confirm the presence of additional planets in the Qatar-1 system. The use of the 3.6-m Devasthal Optical Telescope (DOT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainital, India) could improve the photometric precision to examine the signature of TTVs in this system with a greater accuracy than in the present work.

  12. Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?

    PubMed

    von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim

    2003-04-01

    New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.

  13. Optimization of Planet Finder Observing Strategy

    NASA Astrophysics Data System (ADS)

    Sinukoff, E.

    2014-03-01

    We evaluate radial velocity observing strategies to be considered for future planethunting surveys with the Automated Planet Finder, a new 2.4-m telescope at Lick Observatory. Observing strategies can be optimized to mitigate stellar noise, which can mask and imitate the weak Doppler signals of low-mass planets. We estimate and compare sensitivities of 5 different observing strategies to planets around G2-M2 dwarfs, constructing RV noise models for each stellar spectral type, accounting for acoustic, granulation, and magnetic activity modes. The strategies differ in exposure time, nightly and monthly cadence, and number of years. Synthetic RV time-series are produced by injecting a planet signal onto the stellar noise, sampled according to each observing strategy. For each star and each observing strategy, thousands of planet injection recovery trials are conducted to determine the detection efficiency as a function of orbital period, minimum mass, and eccentricity. We find that 4-year observing strategies of 10 nights per month are sensitive to planets ~25-40% lower in mass than the corresponding 1 year strategies of 30 nights per month. Three 5-minute exposures spaced evenly throughout each night provide a 10% gain in sensitivity over the corresponding single 15-minute exposure strategies. All strategies are sensitive to planets of lowest mass around the modeled K7 dwarf. This study indicates that APF surveys adopting the 4-year strategies should detect Earth-mass planets on < 10-day orbits around quiet late-K dwarfs as well as > 1.6 Earth-mass planets in their habitable zones.

  14. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    NASA Astrophysics Data System (ADS)

    Mandell, Avram M.

    Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming. One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems. I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of

  15. An analysis of the massless planet approximation in transit light curve models

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Ruch, Gerry

    2015-08-01

    Many extrasolar planet transit light curve models use the approximation of a massless planet. They approximate the planet as orbiting elliptically with the host star at the orbit’s focus instead of depicting the planet and star as both orbiting around a common center of mass. This approximation should generally be very good because the transit is a small fraction of the full-phase curve and the planet to stellar mass ratio is typically very small. However, to fully examine the legitimacy of this approximation, it is useful to perform a robust, all-parameter space-encompassing statistical comparison between the massless planet model and the more accurate model.Towards this goal, we establish two questions: (1) In what parameter domain is the approximation invalid? (2) If characterizing an exoplanetary system in this domain, what is the error of the parameter estimates when using the simplified model? We first address question (1). Given each parameter vector in a finite space, we can generate the simplified and more complete model curves. Associated with these model curves is a measure of the deviation between them, such as the root mean square (RMS). We use Gibbs sampling to generate a sample that is distributed according to the RMS surface. The high-density regions in the sample correspond to a large deviation between the models. To determine the domains of these high-density areas, we first employ the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm. We then characterize the subclusters by performing the Patient Rule Induction Method (PRIM) on the transformed Principal Component spaces of each cluster. This process yields descriptors of the parameter domains with large discrepancies between the models.To consider question (2), we start by generating synthetic transit curve observations in the domains specified by the above analysis. We then derive the best-fit parameters of these synthetic light curves according to each model and examine

  16. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Origin of Planetary Systems" included the following reports: (12753) Povenmire - Standard Comparison Small Main Belt Asteroid?; Gravitational Frequencies of Extra-Solar Planets; 'Jumping Jupiters' in Binary Star Systems; Hermes, Asteroid 2002 SY50 and the Northern Cetids - No Link Found!; What Kind of Accretion Model is Required for the Solar System; and Use of an Orbital Phase Curve of Extrasolar Planet for Specification of its Mass.

  17. The SEEDs of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Currie, T.

    2012-01-01

    We live in a planetary system with 2 gas giant planets, and as a resu lt of RV, transit, microlensing, and transit timing studies have ide ntified hundreds of giant planet candidates in the past 15 years. Su ch studies have preferentially concentrated on older, low activity So lar analogs, and thus tell us little about .when, where, and how gian t planets form in their disks, or how frequently they form in disks associated with intermediate-mass stars.

  18. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    PubMed

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  19. ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)

    2002-01-01

    ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.

  20. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  1. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  2. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  3. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistentmore » with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10{sup -4} M {sub sun}, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.« less

  4. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  5. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah R.; Sing, David K.; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric; Tremblin, Pascal; Skalid Amundsen, David; Lewis, Nikole K.; Mandell, Avi; Fortney, Jonathan J.; Knutson, Heather; Benneke, Björn; Evans, Tom M.

    2017-01-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b’s atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  6. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah; Sing, David; Deming, Drake; Kataria, Tiffany; Lopez, Eric

    2016-10-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b's atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  7. The role of disc self-gravity in circumbinary planet systems - II. Planet evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-08-01

    We present the results of hydrodynamic simulations examining migration and growth of planets embedded in self-gravitating circumbinary discs. The binary star parameters are chosen to mimic those of the Kepler-16, -34 and -35 systems; the aim of this study is to examine the role of disc mass in determining the stopping locations of migrating planets at the edge of the cavity created by the central binary. Disc self-gravity can cause significant shrinkage of the cavity for disc masses in excess of 5-10 × the minimum mass solar nebula model. Planets forming early in the disc lifetime can migrate through the disc and stall at locations closer to the central star than is normally the case for lower mass discs, resulting in closer agreement between simulated and observed orbital architecture. The presence of a planet orbiting in the cavity of a massive disc can prevent the cavity size from expanding to the size of a lower mass disc. As the disc mass reduces over long time-scales, this indicates that circumbinary planet systems retain memory of their initial conditions. Our simulations produce planetary orbits in good agreement with Keper-16b without the need for self-gravity; Kepler-34 analogue systems produce wide and highly eccentric cavities, and self-gravity improves the agreement between simulations and data. Kepler-35b is more difficult to explain in detail due to its relatively low mass, which results in the simulated stopping location being at a larger radius than that observed.

  8. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems

  9. 'Signs of disequilibrium chemistry in extrasolar hot-Jupiter type planets?'

    NASA Astrophysics Data System (ADS)

    Rocha, Graca; Swain, Mark; Line, Michael; West, Robert

    2018-01-01

    In the recent years Infrared spectroscopy of hot exoplanets has been revealing their atmospheric composition. For example the spectra of the planet HD189733b exhibits signatures of CH4, CO2, CO and H2O molecules (Swain et al 2008, 2009, etc.). The original 2008 detection of CH4 was a surprise because it is not thermochemically favored at the relatively high temperature (~1300 K) of the atmosphere of HD 189733b. More recent analysis of HD 189733b measurements (Swain, Line, Deroo 2014) implied a CH4 enhancement of ~1000x greater than has been assumed. Significantly more data has recently become available from WFC3 observations (Mccullah et al. 2014, Crozet at al. 2015) of this planet. In the meantime theoretical models by Moses et al. 2011 showed that large enhancement of quenched methane is possible due to transport if vertical eddy diffusion is significant.In this talk we will present results from a new study of CH4 enhancement in the atmosphere of HD189733b. We analysise the transit spectra of this planet obtained with the Hubble Space Telescope, combining the shorter wavelength 1.1-1.6 μm data from WFC3 measurements with the 1.5-2.4 μm data from NICMOS measurements. We also introduce a new methodology, implemented within a Bayesian framework, where hypothesis testing is conducted via evidence based model selection. Our analysis indicates, for the first time, that the observed excess of Methane in HD189733b’s atmosphere requires disequilibrium chemistry. However the Evidence has a modest discriminatory power amongst a subset of models. Furthermore our constraints confirm Swain et al. 2014 results with an excess of Methane with a mixing ratio of 10 2.26 ppm with EvidencelogZ=-58.602 +/- 0.109.

  10. SETI Observations of Low Mass Stars at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Harp, Gerald R.

    2017-05-01

    Are planets orbiting low-mass stars suitable for the development of life? Observations in the near future, including radio, will help to assess whether atmospheres do persist over long timescales for planets orbiting nearby M dwarfs, and clarify the nature of the radiation that penetrates to the surface of these planets. These are important ingredients for assessing planetary habitability, yet the question of habitability can be answered only with the positive measurement of an unambiguous biosignature. Radio and optical SETI observations capable of detecting technological activities of intelligent inhabitants could provide the most compelling evidence for the habitability of exoplanets orbiting M dwarfs. In this presentation we shall consider what information can be gleaned from our observations so far. The SETI Institute is currently undertaking a large survey of 20,000 low mass stars that is now about 30% complete. The frequency coverage on each star is about 450 MHz bandwidth (per star) over a range of selected frequencies from 1-10 GHz. From these observations we derive quantitative results relating to the probability that M dwarfs are actually inhabited.

  11. Book Review: Distant wanderers / Copernicus Books/Springer , 2001/2002

    NASA Astrophysics Data System (ADS)

    Bhatt, H. C.

    2002-06-01

    are, however, very rare and only one other planet around a pulsar has so far been found. The first extra-solar planet around a sun-like star was discovered in 1995 by M. Mayor and D. Queloz circling the star 51 Pegasi by the method of Doppler spectroscopy. Since then about 70 extra-solar planets have been discovered. Most of these have been detected by Doppler spectroscopy, but now newer methods like occultation and gravitational lensing have also begun to reveal extra-solar planets and candidate extra-solar planets. Distant Wanderers gives a brief description of current theories of planet formation in dusty disks around stars as they form by gravitational collapse of rotating interstellar clouds. Various techniques used by astronomers for the detection of extra-solar planets are discussed. Important astrophysical concepts relevant to planet formation and their detection are also explained. The reader is taken to observatories on mountain tops, laboratories where instruments are built and conferences where astronomers announce their discoveries, debate the results and discuss future strategies for the search for distant wanderers. The extra-solar planets discovered so far, around sun-like stars, are similar in mass to Jupiter or more massive. Their orbits show a great variety. Some are in very close orbits (orbital periods of a few days) about the parent star, and are therefore very hot (hot Jupiters), while others are in wider orbits and cold. Some have nearly circular orbits, while many of them have highly eccentric orbits. There are extra-solar planets with masses as large as about 10 times the mass of Jupiter, close to being brown dwarfs. The existence of such planetary systems was never predicted by the standard theories of planet and star formation. As the hunt for extra-solar planets continues with more sophisticated instruments using innovative ideas, astronomers can be sure to be rewarded with more surprises. In Distant Wanderers, these discoveries and

  12. Ground-based Spectroscopy Of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2011-09-01

    In recent years, spectroscopy of exoplanetary atmospheres has proven to be very successful. When in the past discoveries were made using space-born observatories such as Hubble and Spitzer, the observational focus continues to shift to ground-based facilities. This is especially true since the end of the Spitzer cold-phase, depleting us of a space-borne eye in the infrared. With projects like E-ELT and TMT on the horizon, this trend will only intensify. So far several observational strategies have been employed for ground-based spectroscopy. All of which are trying to solve the problems incurred by high systematic and telluric noise and are distinct in their advantages and dis-advantages. Using time-resolved spectroscopy, we obtain an individual lightcurve per spectral channel of the instrument. The benefits of such an approach are multifold since it allows us to utilize a broad spectrum of statistical methods. Using new IRTF data, in the K and L-bands, we will illustrate the intricacies of two spectral retrieval approaches: 1) the self-filtering and signal amplification achieved by consecutive convolutions in the frequency domain, 2) the blind de-convolution of signal from noise using non-parametric machine learning algorithms. These novel techniques allow us to present new results on the hot-Jupiter HD189733b, showing strong methane emissions in both, K and L-bands at spectral resolutions of R 170. Using data from the IRTF/SpeX instrument, we will discuss the implications and possible theoretical models of strong methane emissions on this planet.

  13. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.

  14. Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Fridlund, M.; Hatzes, A. P.; Deeg, H. J.; Frasca, A.; Lanza, A. F.; Prada Moroni, P. G.; Tognelli, E.; McQuillan, A.; Aigrain, S.; Alonso, R.; Antoci, V.; Cabrera, J.; Carone, L.; Csizmadia, Sz.; Djupvik, A. A.; Guenther, E. W.; Jessen-Hansen, J.; Ofir, A.; Telting, J.

    2013-09-01

    We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford at McDonald and FIES at NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp = 0.430 ± 0.032 MJup, a radius of Rp = 0.960 ± 0.016 RJup, and a bulk density of ρp = 0.603 ± 0.055 g cm-3. It orbits a slowly rotating (Prot = 36 ± 6 days) G5 V star with M⋆ = 0.95 ± 0.04 M⊙, R⋆ = 0.99 ± 0.02 R⊙, Teff = 5520 ± 60 K, [M/H] = 0.20 ± 0.05 dex, that has an age of 7.5 ± 2.0 Gyr. The lack of detectable planetary occultation with a depth higher than ~10 ppm implies a planet geometric and Bond albedo of Ag ≤ 0.087 ± 0.008 and AB ≤ 0.058 ± 0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of ~0.5 min, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transitsobserved in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planet's passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions. Based on observations obtained with the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA.Based on observations obtained with the Nordic Optical Telescope, operated on the

  15. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  16. The Stellar Obliquity, Planet Mass, and Very Low Albedo of Qatar-2 from K2 Photometry

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Yu, Liang; Albrecht, Simon

    2017-01-01

    The Qatar-2 transiting exoplanet system was recently observed in short-cadence mode by Kepler as part of K2 Campaign 6. We identify dozens of starspot-crossing events, when the planet eclipses a relatively dark region of the stellar photosphere. The observed patterns of these events demonstrate that the planet always transits over the same range of stellar latitudes and, therefore, that the stellar obliquity is less than about 10°. We support this conclusion with two different modeling approaches: one based on explicit identification and timing of the events and the other based on fitting the light curves with a spotted-star model. We refine the transit parameters and measure the stellar rotation period (18.5 ± 1.9 days), which corresponds to a “gyrochronological” age of 1.4 ± 0.3 Gyr. Coherent flux variations with the same period as the transits are well modeled as the combined effects of ellipsoidal light variations (15.4 ± 4.8 ppm) and Doppler boosting (14.6 ± 5.1 ppm). The magnitudes of these effects correspond to a planetary mass of 2.6+/- 0.9 {M}{Jup} and 3.9+/- 1.5 {M}{Jup}, respectively. Both of these independent mass estimates agree with the mass determined by the spectroscopic Doppler technique (2.487+/- 0.086 {M}{Jup}). No occultations are detected, giving a 2σ upper limit of 0.06 on the planet’s visual geometric albedo. We find no evidence for orbital decay, although we are only able to place a weak lower bound on the relevant tidal quality factor: {Q}\\star \\prime > 1.5× {10}4 (95% confidence).

  17. Dust in brown dwarfs and extra-solar planets. I. Chemical composition and spectral appearance of quasi-static cloud layers

    NASA Astrophysics Data System (ADS)

    Helling, Ch.; Woitke, P.; Thi, W.-F.

    2008-07-01

    Aims: Brown dwarfs are covered by dust cloud layers which cause inhomogeneous surface features and move below the observable τ = 1 level during the object's evolution. The cloud layers have a strong influence on the structure and spectral appearance of brown dwarfs and extra-solar planets, e.g. by providing high local opacities and by removing condensable elements from the atmosphere causing a sub-solar metalicity in the atmosphere. We aim at understanding the formation of cloud layers in quasi-static substellar atmospheres that consist of dirty grains composed of numerous small islands of different solid condensates. Methods: The time-dependent description is a kinetic model describing nucleation, growth and evaporation. It is extended to treat gravitational settling and is applied to the static-stationary case of substellar model atmospheres. From the solution of the dust moments, we determine the grain size distribution function approximately which, together with the calculated material volume fractions, provides the basis for applying effective medium theory and Mie theory to calculate the opacities of the composite dust grains. Results: The cloud particles in brown dwarfs and hot giant-gas planets are found to be small in the high atmospheric layers (a ≈ 0.01 μm), and are composed of a rich mixture of all considered condensates, in particular MgSiO3[s], Mg2SiO4[s] and SiO2[s]. As the particles settle downward, they increase in size and reach several 100 μm in the deepest layers. The more volatile parts of the grains evaporate and the particles stepwise purify to form composite particles of high-temperature condensates in the deeper layers, mainly made of Fe[s] and Al2O3[s]. The gas phase abundances of the elements involved in the dust formation process vary by orders of magnitudes throughout the atmosphere. The grain size distribution is found to be relatively broad in the upper atmospheric layers but strongly peaked in the deeper layers. This reflects

  18. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  19. K2-106, a system containing a metal-rich planet and a planet of lower density

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Barragán, O.; Dai, F.; Gandolfi, D.; Hirano, T.; Fridlund, M.; Fossati, L.; Chau, A.; Helled, R.; Korth, J.; Prieto-Arranz, J.; Nespral, D.; Antoniciello, G.; Deeg, H.; Hjorth, M.; Grziwa, S.; Albrecht, S.; Hatzes, A. P.; Rauer, H.; Csizmadia, Sz.; Smith, A. M. S.; Cabrera, J.; Narita, N.; Arriagada, P.; Burt, J.; Butler, R. P.; Cochran, W. D.; Crane, J. D.; Eigmüller, Ph.; Erikson, A.; Johnson, J. A.; Kiilerich, A.; Kubyshkina, D.; Palle, E.; Persson, C. M.; Pätzold, M.; Sabotta, S.; Sato, B.; Shectman, St. A.; Teske, J. K.; Thompson, I. B.; Van Eylen, V.; Nowak, G.; Vanderburg, A.; Winn, J. N.; Wittenmyer, R. A.

    2017-12-01

    Aims: Planets in the mass range from 2 to 15 M⊕ are very diverse. Some of them have low densities, while others are very dense. By measuring the masses and radii, the mean densities, structure, and composition of the planets are constrained. These parameters also give us important information about their formation and evolution, and about possible processes for atmospheric loss. Methods: We determined the masses, radii, and mean densities for the two transiting planets orbiting K2-106. The inner planet has an ultra-short period of 0.57 days. The period of the outer planet is 13.3 days. Results: Although the two planets have similar masses, their densities are very different. For K2-106b we derive Mb=8.36-0.94+0.96 M⊕, Rb = 1.52 ± 0.16 R⊕, and a high density of 13.1-3.6+5.4 g cm-3. For K2-106c, we find Mc=5.8-3.0+3.3 M⊕, Rc=2.50-0.26+0.27 R⊕ and a relatively low density of 2.0-1.1+1.6 g cm-3. Conclusions: Since the system contains two planets of almost the same mass, but different distances from the host star, it is an excellent laboratory to study atmospheric escape. In agreement with the theory of atmospheric-loss processes, it is likely that the outer planet has a hydrogen-dominated atmosphere. The mass and radius of the inner planet is in agreement with theoretical models predicting an iron core containing 80-30+20% of its mass. Such a high metal content is surprising, particularly given that the star has an ordinary (solar) metal abundance. We discuss various possible formation scenarios for this unusual planet. The results are partly based on observations obtained at the European Southern Observatory at Paranal, Chile in program 098.C-0860(A). This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. The article is also partly based on observations with the TNG, NOT. This work has also made use of data from the European Space Agency (ESA) mission Gaia (http

  20. Blue Marble: Remote Characterization of Habitable Planets

    NASA Technical Reports Server (NTRS)

    Woolf, Neville; Lewis, Brian; Chartres, James; Genova, Anthony

    2009-01-01

    The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.

  1. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  2. Theoretical Implications of the PSR B1620-26 Triple System and Its Planet

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Joshi, Kriten J.; Rasio, Frederic A.; Zbarsky, Boris

    2000-01-01

    We present a new theoretical analysis of the PSR B1620-26 triple system in the globular cluster M4, based on the latest radio pulsar timing data, which now include measurements of five time derivatives of the pulse frequency. These data allow us to determine the mass and orbital parameters of the second companion completely (up to the usual unknown orbital inclination angle i2). The current best-fit parameters correspond to a second companion of planetary mass, m2sini2~=7×10-3 Msolar , in an orbit of eccentricity e2~=0.45 and semimajor axis a2~=60 AU. Using numerical scattering experiments, we study a possible formation scenario for the triple system, which involves a dynamical exchange interaction between the binary pulsar and a primordial star-planet system. The current orbital parameters of the triple are consistent with such a dynamical origin and suggest that the separation of the parent star-planet system was very large, >~50 AU. We also examine the possible origin of the anomalously high eccentricity of the inner binary pulsar. While this eccentricity could have been induced during the same dynamical interaction that created the triple, we find that it could equally well arise from long-term secular perturbation effects in the triple, combining the general relativistic precession of the inner orbit with the Newtonian gravitational perturbation of the planet. The detection of a planet in this system may be taken as evidence that large numbers of extrasolar planetary systems, not unlike those discovered recently in the solar neighborhood, also exist in old star clusters.

  3. Jupiter's decisive role in the inner Solar System's early evolution.

    PubMed

    Batygin, Konstantin; Laughlin, Greg

    2015-04-07

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter's inward migration entrained s ≳ 10-100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  4. Jupiter’s decisive role in the inner Solar System’s early evolution

    PubMed Central

    Batygin, Konstantin; Laughlin, Greg

    2015-01-01

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution. PMID:25831540

  5. Shock Temperatures of Major Silicates in Rocky Planets

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Spaulding, D.; Kraus, R. G.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2016-12-01

    Rocky extra-solar planets have been discovered with very high masses that challenge our theoretical understanding of planetary structures and notions of planet formation. In order to constrain models and understand mechanisms of both the formation and subsequent evolution of these planets, it is imperative to determine the properties of materials within the interiors of large Earth-like planets. The major minerals olivine [(Mg,Fe)2SiO4] and enstatite [(Mg,Fe)SiO3], along with Fe-rich metal (with 5% Ni), are the most abundant solids from which Earth-like planets accrete. These materials are subject to ultra-high pressures and temperatures (approaching 10TPa and 10,000 K) during planetary formation and in the present day interiors of large rocky planets. Here, we present results of shock compression experiments on the Sandia Z machine. Shock compression experiments with the Sandia Z machine use large current and field densities that generate magnetic pressures up to 650 GPa that can accelerate flyer plates up to 40 km/s. We report shock temperatures for pressures greater than 270 GPa for forsterite (Mg2SiO4) and enstatite. Our results, together with prior data, demonstrate discrepancies in shock temperatures on forsterite in the region of possible incongruent melting on the Hugoniot. Key gaps in the Hugoniot contribute to this uncertainty. EOS formalisms such as M-ANEOS, which are commonly used in planetary impact simulations, over predict temperatures above 200 GPa with significant disagreement above 500 GPa. As a result, the amount of material subject to shock-induced vaporization during giant impacts is larger than currently estimated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under the auspices of the U

  6. Physical Conditions and Exobiology Potential of Icy Satellites of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.

    2017-05-01

    All giant planets of the Solar system have a big number of satellites. A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter's four large moons, Europa, Ganymede and Callisto have internal oceans. Formation of such satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. The most recent models of the icy satellites interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside. The putative internal water ocean provide some exobiological niches on these bodies. We can see all conditions needed for origin and evolution of biosphere - liquid water, complex organic chemistry and energy sources for support of biological processes - are on the moons. The existing of liquid water ocean within icy world can be consequences of the physical properties of water ice, and they neither require the addition of antifreeze substances nor any other special conditions. On Earth life exists in all niches where water exists in liquid form for at least a portion of the year. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for internal oceans of Titan and Jovanian satellites. Excreted products of the primary chemoautotrophic organisms could serve as a source for other types of microorganisms (heterotrophes). Subglacial life may be widespread among such planetary bodies as satellites of extrasolar giant planets, detected in our Galaxy.

  7. Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.

    2012-05-01

    Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that

  8. Photon-Weighted Midpoint Exposure Meter for Keck/HIRES Extrasolar Planet Research

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Grant was received for research involving the construction of a photon-weighting midpoint exposure meter for the Keck HIRES spectrometer, and for support of our NASA/Keck-based planet research with this instrumentation. The research funds were also to be used to make our iodine cell calibration system and exposure meter available to the NASA Keck observing community. Progress this past year, the second of the 3-year granting period, involved work in 4 areas: 1) Further construction of the midpoint exposure meter. 2) Assisting observers with use of the Iodine system. 3) Acquisition of precision radial velocity data on our program star sample with continued monitoring to proceed in subsequent years as available telescope time permits. 4) Reduction and analysis of incoming precision radial velocity data to reject problematic and uninteresting program stars, and to identify promising planet candidates.

  9. Toward the 4-Micron Infrared Spectrum of the Transiting Extrasolar Planet HD 209458 b

    NASA Astrophysics Data System (ADS)

    Richardson, L. J.; Deming, D.

    2003-12-01

    We have continued our analysis of infrared spectra of the "transiting planet" system, HD 209458, recorded at the NASA IRTF in September 2001. The spectra cover two predicted secondary eclipse events, wherein the planet passed behind the star and re-emerged. We are attempting to detect the planet's infrared continuum peaks, by exploiting the spectral modulation which accompanies the secondary eclipse. Our initial analysis placed the strongest limits to date on the spectrum of the planet near 2.2 microns (Richardson, Deming & Seager 2003, recently appeared in ApJ). Further analysis of our long wavelength data (3.0--4.2 microns) decorrelates and removes most of the systematic errors due to seeing and guiding fluctuations. This decorrelation has improved the precision of our analysis to the level where a predicted 4-micron planetary flux peak may now be detectable.

  10. Exceptional Stars Origins, Companions, Masses and Planets

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Hansen, Bradley M. S.; Phinney, Sterl; vanKerkwijk, Martin H.; Vasisht, Gautam

    2004-01-01

    As SIM Interdisciplinary Scientist, we will study the formation, nature and planetary companions of the exotic endpoints of stellar evolution. Our science begins with stars evolving from asymptotic branch giants into white dwarfs. We will determine the parallax and orbital inclination of several iron-deficient post-AGB stars, who peculiar abundances and infrared excesses are evidence that they are accreting gas depleted of dust from a circumbinary disk. Measurement of the orbital inclination, companion mass arid parallax will provide critical constraints. One of these stars is a prime candidate for trying nulling observations, which should reveal light reflected from both the circumbinary and Roche disks. The circumbinary disks seem favorable sites for planet formation. Next, we will search for planets around white dwarfs, both survivors froni the main-sequence stage, and ones newly formed from the circumbinary disks of post-AGB binaries or in white dwarf mergers. Moving up in mass, we will measure the orbital reflex of OB/Be companions to pulsars, determine natal kicks and presupernova orbits, and expand the sample of well-determined neutron star masses. We will obtain the parallax of a transient X-ray binary, whose quiescent emission may be thermal emission from the neutron star, aiming for precise measurement of the neutron star radius. Finally, black holes. We will measure the reflex motions of the companion of what appear to be the most massive stellar black holes. The visual orbits will determine natal kicks, and test the assumptions underlying mass estimates made from the radial velocity curves, projected rotation, and ellipsoidal variations. In addition, we will attempt to observe the visual orbit of SS 433, as well as the proper motion of the emission line clumps in its relativistic jets. Additional information is included in the original document.

  11. Cryptic photosynthesis--extrasolar planetary oxygen without a surface biological signature.

    PubMed

    Cockell, Charles S; Kaltenegger, Lisa; Raven, John A

    2009-09-01

    On Earth, photosynthetic organisms are responsible for the production of virtually all the oxygen in the atmosphere. On land, vegetation reflects in the visible and leads to a "red edge," which developed about 450 million years ago on Earth and has been proposed as a biosignature for life on extrasolar planets. However, in many regions on Earth, particularly where surface conditions are extreme--in hot and cold deserts, for example--photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few meters' depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We have linked geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth analogues that show detectable atmospheric biosignatures like our own planet but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.

  12. Identification of Absorption Features in an Extrasolar Planet Atmosphere

    NASA Astrophysics Data System (ADS)

    Barman, T.

    2007-06-01

    Water absorption is identified in the atmosphere of HD 209458b by comparing models for the planet's transmitted spectrum to recent, multiwavelength, eclipse-depth measurements (from 0.3 to 1 μm) published by Knutson et al. A cloud-free model that includes solar abundances, rainout of condensates, and photoionization of sodium and potassium is in good agreement with the entire set of eclipse-depth measurements from the ultraviolet to near-infrared. Constraints are placed on condensate removal by gravitational settling, the bulk metallicity, and the redistribution of absorbed stellar flux. Comparisons are also made to the Charbonneau et al. sodium measurements.

  13. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    good reasons to believe that two other planets are present," says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth-Sun distance. One "year" on this planet would last only 1.18 Earth-days. "This object causes a wobble of its star of only about 3 km/hour - slower than walking speed - and this motion is very hard to measure," says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b (eso0933). The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there [3]. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits. So far, astronomers know of fifteen systems with at least three planets. The last record-holder was 55 Cancri, which contains five planets, two of them being giant planets. "Systems of low-mass planets like the one around HD 10180 appear to be quite common, but their formation history remains a puzzle," says Lovis. Using the new discovery as well as data for other planetary systems, the astronomers found an equivalent of the Titius-Bode law that exists in our Solar System: the distances of the planets from their star seem to follow a regular pattern [4]. "This could be a signature of the formation process of these planetary systems," says team member Michel Mayor. Another important result found by the astronomers while studying these systems is that there is a relationship between the mass of a planetary system and the mass and chemical

  14. Transit Spectroscopy of Extrasolar Planet HD209458b: The Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Rojo, P.; Harrington, J.; Dermody, J.; Zeehandelaar, D.; Deming, D.; Wiedemann, G.; Seager, S.; Iro, N.; Fortney, J. J.; Burrows, A.

    2004-11-01

    We have developed a new code that calculates the modulation of a star's spectrum as a planet transits. We are applying this model to data from the VLT, Palomar, Keck, and IRTF to search for water on HD209458b, the transiting planet with the brightest primary. Observations of HD209458b's stellar spectrum modulation have yielded the first detections of exoplanetary sodium (Charbonneau et al. 2001), hydrogen, oxygen and carbon (Vidal-Madjar et al. 2003, 2004). Molecules, however, have still avoided detection. Water is predicted to be abundant at all plausible temperatures, but the modulation for most of the observable features is <0.04%. By simultaneously fitting for many excited water features while avoiding telluric water lines, we can significantly increase our signal. Our model predicts the modulation given line data, system geometry, and thermal and abundance profiles for any transiting planet. We will use this code to compare the observed modulation for HD209458b with that predicted by different planetary theories, do calculations for specific instruments with different resolutions and wavelength ranges, and constrain the abundances of detected species. We find that integrating the extinction over altitude produces significantly better results than assuming that the planet is an opaque disk whose radius is the altitude of optical depth unity. The latter is a widely used simplification. Our work will allow us to establish or place strong limits on the water abundance in HD209458b's atmosphere. Even a non-detection will be important, as it will require significant modifications to existing theory and/or will justify the need for better space-based instruments. This work was supported by NASA grant NAG5-13154.

  15. Satellites of giant planets — possible sites for origin and existence of biospheres

    NASA Astrophysics Data System (ADS)

    Simakov, Michael B.

    All giant planets of the Solar system have a big number of satellites (61 of Jupiter, 52 of Saturn, known in 2003). A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Some from them have an atmosphere. E.g., the mass of a column of the Titan’s atmosphere exceeds 15 times the mass of the Earth atmosphere column. Formation (or capture) of satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. As an example, we can see on Titan, the largest satellite of Saturn, which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance. The most recent models of the Titan’s interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside Titan. The putative internal water ocean along with complex atmospheric photochemistry provide some exobiological niches on this body: (1) an upper layer of the internal water ocean; (2) pores, veins, channels and pockets filled with brines inside of the lowest part of the icy layer; (3) the places of cryogenic volcanism; (4) set of caves in icy layer connecting with cryovolcanic processes; (5) the brine-filled cracks in icy crust caused by tidal forces; (6) liquid water pools on the surface originated from meteoritic strikes; (7) the sites of hydrothermal activity on the bottom of the ocean. We can see all conditions needed for origin and evolution of biosphere — liquid water, complex organic chemistry and energy sources for support of biological processes — are on the Saturnian moon. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter’s four large moons, Europa, Ganymede and Callisto have such oceans also. The existing of liquid water ocean within icy world can be consequences of the physical

  16. OGLE-2017-BLG-0482Lb: A Microlensing Super-Earth Orbiting a Low-mass Host Star

    NASA Astrophysics Data System (ADS)

    Han, C.; Hirao, Y.; Udalski, A.; Lee, C.-U.; Bozza, V.; Gould, A.; and; Abe, F.; Barry, R.; Bond, I. A.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Matsubara, Y.; Miyazaki, S.; Munakata, H.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N.; Saito, T.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yonehara, A.; The MOA Collaboration; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; The OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Kim, D.; Kim, W.-T.; Kim, H.-W.; Ryu, Y.-H.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; The KMTNet Collaboration

    2018-05-01

    We report the discovery of a planetary system in which a super-Earth orbits a late M-dwarf host. The planetary system was found from the analysis of the microlensing event OGLE-2017-BLG-0482, wherein the planet signal appears as a short-term anomaly to the smooth lensing light curve produced by the host. Despite its weak signal and short duration, the planetary signal was firmly detected from the dense and continuous coverage by three microlensing surveys. We find a planet/host mass ratio of q ∼ 1.4 × 10‑4. We measure the microlens parallax {π }{{E}} from the long-term deviation in the observed lensing light curve, but the angular Einstein radius {θ }{{E}} cannot be measured because the source trajectory did not cross the planet-induced caustic. Using the measured event timescale and the microlens parallax, we find that the masses of the planet and the host are {M}{{p}}={9.0}-4.5+9.0 {M}\\oplus and {M}host}={0.20}-0.10+0.20 {M}ȯ , respectively, and the projected separation between them is {a}\\perp ={1.8}-0.7+0.6 au. The estimated distance to the lens is {D}{{L}}={5.8}-2.1+1.8 kpc. The discovery of the planetary system demonstrates that microlensing provides an important method to detect low-mass planets orbiting low-mass stars.

  17. A PILOT SEARCH FOR EVIDENCE OF EXTRASOLAR EARTH-ANALOG PLATE TECTONICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jura, M.; Klein, B.; Xu, S.

    Relative to calcium, both strontium and barium are markedly enriched in Earth's continental crust compared to the basaltic crusts of other differentiated rocky bodies within the solar system. Here, we both re-examine available archived Keck spectra to place upper bounds on n(Ba)/n(Ca) and revisit published results for n(Sr)/n(Ca) in two white dwarfs that have accreted rocky planetesimals. We find that at most only a small fraction of the pollution is from crustal material that has experienced the distinctive elemental enhancements induced by Earth-analog plate tectonics. In view of the intense theoretical interest in the physical structure of extrasolar rocky planets,more » this search should be extended to additional targets.« less

  18. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Maindl, T. I.; Varvoglis, H.; Dvorak, R.

    2017-03-01

    Along the subject line of this workshop, the common topic of the submissions is the field of extrasolar planetary systems with its multitude of facets ? from orbital dynamics to mutually destructive collisions, from binary star systems to Trojan planets to exocomets, from captured free-floating objects to artificial satellites. Despite the comparatively small number of participants ? ranging from graduate student to senior professor level ? we are proud of the submitted papers covering this wide range of aspects. In order to work towards a consistent quality-level, each of the manuscripts went through an independent review process before being accepted as a paper contribution to this volume. We would like to cordially thank the referees for their timely response-cycles, which helped tremendously in keeping our ambitious schedule.

  19. Extrasolar Planets Observed with JWST and the ELTs

    NASA Technical Reports Server (NTRS)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  20. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.