Science.gov

Sample records for low-noise two-dimensional amplifier

  1. Low noise tuned amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1984-01-01

    A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.

  2. Cryogenic MMIC Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Gaier, T.; Fernandez, J.; Erickson, N.; Wielgus, J.

    2000-01-01

    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA's for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GZH range along with a very wideband LNA for the 1 to 60 GHz range.

  3. Low-Noise Band-Pass Amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  4. Cooled Low-Noise HEMT Microwave Amplifiers

    NASA Technical Reports Server (NTRS)

    Bautista, J. Javier; Ortiz, Gerardo G.; Duh, Kuanghann George

    1992-01-01

    Prototype cooled low-noise microwave amplifiers based on high-electron-mobility transistors (HEMT's) considered as replacements for cooled ruby masers used as low-noise receiver-front-end amplifiers in communications, radio science, radar systems, radio astronomy, and telemetry. HEMT amplifier operates at 12 K, requires less cooling power and operates at lower cost with simpler, more-reliable cooling system.

  5. Low-noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Whelehan, J.

    1984-02-01

    It is pointed out that over the past several years significant advances have been made in the overall capability of both microwave and mm-wave receivers. This is particularly apparent in the telecom market. Integral parts of advanced receiver technology are low-noise receivers. The advances currently being achieved in low-noise technology are partly based on developments in GaAs semiconductor technology. The development of high-cutoff-frequency beam lead mixer diodes has led to the development of mm-wave low-noise mixers with excellent low-noise capability. The advanced techniques are now being employed in field-deployable systems. Low noise is an important factor in satellite communications applications. Attention is given to C-band fixed satellite service, C-band parametric amplifiers, C-band FET, and X band, the Ku band, and the 30/20 GHz band.

  6. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  7. A Low-Noise Semiconductor Optical Amplifier

    SciTech Connect

    Ratowsky, R.P.; Dijaili, S.; Kallman, J.S.; Feit, M.D.; Walker, J.

    1999-03-23

    Optical amplifiers are essential devices for optical networks, optical systems, and computer communications. These amplifiers compensate for the inevitable optical loss in long-distance propagation (>50 km) or splitting (>10x). Fiber amplifiers such as the erbium-doped fiber amplifier have revolutionized the fiber-optics industry and are enjoying widespread use. Semiconductor optical amplifiers (SOAs) are an alternative technology that complements the fiber amplifiers in cost and performance. One obstacle to the widespread use of SOAs is the severity of the inevitable noise output resulting from amplified spontaneous emission (ASE). Spectral filtering is often used to reduce ASE noise, but this constrains the source spectrally, and improvement is typically limited to about 10 dB. The extra components also add cost and complexity to the final assembly. The goal of this project was to analyze, design, and take significant steps toward the realization of an innovative, low-noise SOA based on the concept of ''distributed spatial filtering'' (DSF). In DSF, we alternate active SOA segments with passive free-space diffraction regions. Since spontaneous emission radiates equally in all directions, the free-space region lengthens the amplifier for a given length of gain region, narrowing the solid angle into which the spontaneous emission is amplified [1,2]. Our innovation is to use spatial filtering in a differential manner across many segments, thereby enhancing the effect when wave-optical effects are included [3]. The structure quickly and effectively strips the ASE into the higher-order modes, quenching the ASE gain relative to the signal.

  8. Reflected-wave maser. [low noise amplifier

    NASA Technical Reports Server (NTRS)

    Clauss, R. C. (Inventor)

    1976-01-01

    A number of traveling-wave, slow-wave maser structures, containing active maser material but absent the typical ferrite isolators, are immersed in a nonuniform magnetic field. The microwave signal to be amplified is inserted at a circulator which directs the signal to a slow-wave structure. The signal travels through the slow-wave structure, being amplified according to the distance traveled. The end of the slow-wave structure farthest from the circulator is arranged to be a point of maximum reflection of the signal traveling through the slow-wave structure. As a consequence, the signal to be amplified traverses the slow-wave structure again, in the opposite direction (towards the circulator) experiencing amplification equivalent to that achieved by a conventional traveling-wave maser having twice the length. The circulator directs the amplified signal to following like stages of amplification. Isolators are used in between stages to prevent signals from traveling in the wrong direction, between the stages. Reduced signal loss is experienced at each stage. The high gain produced by each slow-wave structure is reduced to a moderate value by use of a nonuniform magnetic field which also broadens the line width of the maser material. The resulting bandwidth can be exceptionally wide. Cascaded stages provide high gain, exceptionally wide bandwith and very low noise temperature.

  9. 17 GHz low noise GaAs FET amplifier

    NASA Astrophysics Data System (ADS)

    Bharj, J. S.

    1984-10-01

    The considered amplifier is suitable for use as the first stage in a direct broadcast TV satellite receiver, and it was specifically designed for the Unisat spacecraft. Attention is given to RF device characterization, the design of the low-noise FET amplifier, the very significant dispersion effects at 17 GHz, the noise figure, and questions of DC bias. Balanced stages are used for low-noise and high-gain amplifiers to enhance the reliability. The noise figure of the amplifier is approximately 3.75 dB in the frequency band of interest. A low-noise microstrip GaAs FET amplifier circuit is shown.

  10. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range. PMID:19405681

  11. External Peltier Cooler For Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Soper, Terry A.

    1990-01-01

    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  12. Tailoring HEMTs for low-noise amplifier designs

    NASA Astrophysics Data System (ADS)

    Jabra, A. A.; Smith, P. M.; Chao, P. C.; Baccarini, M.

    1988-10-01

    A Ku-band low-noise amplifier (LNA) for use in a multiple-access communication network such as that required by the Space Station is described. The unit uses high-electron-mobility transistors (HEMTs) to achieve 1.5-dB noise figure and 30-dB gain over its 13.4-13.8 GHz design bandwidth. HEMT technology is discussed as well as Ku-band amplifier design and amplifier performance.

  13. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers. PMID:22047315

  14. A low-noise Peltier-cooled FET amplifier

    NASA Astrophysics Data System (ADS)

    Askew, R. E.; Wolkstein, H. J.

    1981-12-01

    A description is presented of a Peltier-cooled GaAs FET amplifier designed expressly to replace the complex and expensive parametric amplifier for satellite downlink receivers. The FET amplifier operates with an effective noise temperature (noise figure) at the terminal of less than 160 K (1.9 dB) and has an overall receiver gain of greater than 40 dB over the 7.25 to 7.75 GHz band. Attention is given to the developmental approach, aspects of electrical design, thermal considerations, packaging problems, the power supplies, and questions of cooler control. An investigation demonstrated the feasibility of replacing a parametric amplifier with a Peltier-cooled, low-noise FET amplifier for mast head operation in the 7.25-7.75 GHz band.

  15. X-Band Ultra-Low Noise Maser Amplifier Performance

    NASA Technical Reports Server (NTRS)

    Glass, G.; Johnson, D.; Ortiz, G.

    1993-01-01

    Noise temperature measurements of an 8440 MHz ultra-low noise maser amplifier (ULNA) have been performed at sub-atmospheric, liquid helium temperatures. The traveling wave maser operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.23 plus or minus 0.16 K at a physical temperature of 1.60 kelvin. At this physical temperature the observed gain per unit length of ruby was 4.6 dB/cm, and the amplifier had a 3 dB-bandwidth of 76 MHz.

  16. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, S.P.; Patterson, F.G.; Deri, R.J.

    1995-07-25

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier. 11 figs.

  17. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Deri, Robert J.

    1995-01-01

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier.

  18. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigtsen, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2011-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterised at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130 and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimetre wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  19. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterized at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130, and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimeter wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurements campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography alitmetery.

  20. Low Noise Amplifier Receivers from Millimeter Wave Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    We currently achieve 3.4 dB noise figure at 183GHz and 2.1 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  1. Thermal design of a thermoelectrically cooled low-noise amplifier

    NASA Astrophysics Data System (ADS)

    Hyman, N. L.; Hung, H.-L.

    1981-06-01

    The development of a thermoelectrically cooled low-noise amplifier is described in terms of thermal design concepts, optimization procedures, supporting analyses, and examples of measured performance. The design objectives achieved include a compact, low-cost small overall package size (19 x 19 x 28 cm) with a heat exchanger and fan capable of maintaining at room temperature ambient the preamplifier unit of an earth station low-noise amplifier at -90 C. The size of the unit measures 1.0 x 1.8 x 8.4 cm and has a heat dissipation of 150 mW. A low system component production cost was maintained, and a high reliability from a solid-state TEHP and a gas-filled hermetically sealed container guaranteed. An inexpensive and effective insulation system was developed, based on perlite powder-krypton gas and thermal shielding, and a flexible heat conductor for strain relief was built. It is concluded that the design principles are applicable to other electronic and optical components to maintain temperatures as low as -100 C.

  2. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  3. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  4. 160-190 GHz Monolithic Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Kok, Y. L.; Wang, H.; Huang, T. W.; Lai, R.; Chen, Y. C.; Sholley, M.; Block, T.; Streit, D. C.; Liu, P. H.; Allen, B. R.; Samoska, L.; Gaier, T.; Barsky, Mike

    1998-01-01

    This paper presents the results of two 160-190 GHz monolithic low noise amplifiers (LNAs) fabricated with 0.07-microns pseudomorphic (PM) InAlAs/InGaAs/InP HEMT technology using a reactive ion etch (RIE) via hole process. A peak small signal gain of 9 dB was measured at 188 GHz for the first LNA with a 3-dB bandwidth from 164 to 192 GHz while the second LNA has achieved over 6-dB gain from 142 to 180 GHz. The same design (second LNA) was also fabricated with 0.08-micron gate and a wet etch process, showing a small signal gain of 6 dB with noise figure 6 dB. All the measurement results were obtained via on-wafer probing. The LNA noise measurement at 170 GHz is also the first attempt at this frequency.

  5. Ultra-low noise miniaturized neural amplifier with hardware averaging

    NASA Astrophysics Data System (ADS)

    Dweiri, Yazan M.; Eggers, Thomas; McCallum, Grant; Durand, Dominique M.

    2015-08-01

    presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  6. A Low Noise Amplifier for Neural Spike Recording Interfaces.

    PubMed

    Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel

    2015-01-01

    This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz-7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411

  7. Cryogenic ultra-low noise HEMT amplifiers board

    NASA Astrophysics Data System (ADS)

    de la Broïse, Xavier; Bounab, Ayoub

    2015-07-01

    High Electron Mobility Transistors (HEMTs), optimized by CNRS/LPN laboratory for ultra-low noise at a very low temperature, have demonstrated their capacity to be used in place of Si JFETs, when very high input impedance and working temperatures below 100 K are required. We have developed and tested simple amplifiers based only on this transistor technology, in order to work at a temperature as low as 1 K or less. They demonstrate at 4.2 K a typical noise of 1.6 nV/√{ Hz } at 100 Hz, 0.42 nV/√{ Hz } at 1 kHz and 0.32 nV/√{ Hz } at 10 kHz, with a gain of 50 and a power consumption of 1.4 mW per channel. Two boards have been designed for two different research applications: one for the readout of GMR magnetometers for medical and space applications, the other for search of weakly interacting massive particles (WIMPs) in Edelweiss experiment (HARD project).

  8. A Low Noise Amplifier for Neural Spike Recording Interfaces

    PubMed Central

    Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel

    2015-01-01

    This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411

  9. A low-noise 4.8 GHz amplifier for the Russian Radioastron VLBI satellite

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Wongsowijoto, Sam

    A low-noise 4.8 GHz amplifier has been designed for the Russian Radioastron satellite. The design, realization, and spaceflight testing of the amplifier are briefly described. The most important parameters of the prototype are given.

  10. A 2385 MHz, 2-stage low noise amplifier design

    NASA Technical Reports Server (NTRS)

    Sifri, Jack D.

    1986-01-01

    This article shows the design aspects of a 2.385 GHz low noise preamplifier with a .7 dB noise figure and 16.5 dB gain using the NE 67383 FET. The design uses a unique method in matching the input which achieves optimum noise figure and unconditional stability.

  11. W-band InP based HEMT MMIC low noise amplifiers

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Tang, Y. L.; Wang, H.; Gaier, T.; Gough, R. G.; Sinclair, M.

    2002-01-01

    This paper presents the designs and measurement results of a three-stage and a four-stage W-band monolithic microwave integrated circuits (MMIC) including a three-stage and a four-stage low noise amplifiers.

  12. Matching technique yields optimum LNA performance. [Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Sifri, J. D.

    1986-01-01

    The present article is concerned with a case in which an optimum noise figure and unconditional stability have been designed into a 2.385-GHz low-noise preamplifier via an unusual method for matching the input with a suspended line. The results obtained with several conventional line-matching techniques were not satisfactory. Attention is given to the minimization of thermal noise, the design procedure, requirements for a high-impedance line, a sampling of four matching networks, the noise figure of the single-line matching network as a function of frequency, and the approaches used to achieve unconditional stability.

  13. Thirty GHz low noise GaAs FET amplifiers

    NASA Astrophysics Data System (ADS)

    Oxley, C. H.; Arnold, J.

    1984-09-01

    Selection and characterization of transmission media, and characterization of a 0.3 micron gate length gallium arsenide MESFET usable to 30 GHz, was undertaken to provide a data base for the design of an integrated amplifier for satellite communications. An amplifier configuration was chosen to achieve the ESA specification, and single stage amplifier modules were designed and tested. Integration of these modules into a complete high gain amplifier with temperature compensation and operating between WG22 interfaces is achieved. Tests against the full performance specification were conducted.

  14. 32-GHz cryogenically cooled HEMT low-noise amplifiers

    NASA Technical Reports Server (NTRS)

    Duh, K. H. George; Kopp, William F.; Ho, Pin; Chao, Pane-Chane; Ko, Ming-Yih; Smith, Phillip M.; Ballingall, James M.; Bautista, J. Javier; Ortiz, Gerardo G.

    1989-01-01

    The cryogenic noise temperature performance of a two-stage and a three-stage 32 GHz high electron mobility transistor (HEMT) amplifier was evaluated. The amplifiers employ 0.25 micrometer conventional AlGaAs/GaAs HEMT devices, hybrid matching input and output microstrip circuits, and a cryogenically stable dc biasing network. The noise temperature measurements were performed in the frequency range of 31 to 33 GHz over a physical temperature range of 300 K down to 12 K. Across the measurement band, the amplifiers displayed a broadband response, and the noise temperature was observed to decrease by a factor of 10 in cooling from 300 to 15 K. The lowest noise temperature measured for the two-stage amplifier at 32 GHz was 35 K with an associated gain of 16.5 dB, while the three-stage amplifier measured 39 K with an associated gain of 26 dB. It was further observed that both amplifiers were insensitive to light.

  15. On 32-GHz cryogenically cooled HEMT low-noise amplifiers

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Ortiz, G. G.; Duh, K. H. G.; Kopp, W. F.; Ho, P.; Chao, P. C.; Kao, M. Y.; Smith, P. M.; Ballingall, J. M.

    1988-01-01

    The cryogenic noise temperature performance of a two-stage and a three-stage 32 GHz High Electron Mobility Transistor (HEMT) amplifier was evaluated. The amplifiers employ 0.25 micrometer conventional AlGaAs/GaAs HEMT devices, hybrid matching input and output microstrip circuits, and a cryogenically stable dc biasing network. The noise temperature measurements were performed in the frequency range of 31 to 33 GHz over a physical temperature range of 300 K down to 12 K. Across the measurement band, the amplifiers displayed a broadband response, and the noise temperature was observed to decrease by a factor of 10 in cooling from 300 K to 15 K. The lowest noise temperature measured for the two-stage amplifier at 32 GHz was 35 K with an associated gain of 16.5 dB, while the three-stage amplifier measured 39 K with an associated gain of 26 dB. It was further observed that both amplifiers were insensitive to light.

  16. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  17. Burnout studies of X-band radar negative resistance transistor low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Paul, D. K.; Gardner, P.

    1992-03-01

    GaAs FETs and HEMTs can be configured to give low noise, negative resistance microwave amplification. Such low noise amplifiers have the advantage of an inherent bypass path after device burnout. This feature is potentially useful in radar receiver applications. Test results for prototype LNAs are described, showing burnout energies comparable to those of conventional transmission mode amplifiers using similar devices. Bypass path losses after burnout are around 4 dB, approximately 20 dB less than for a failed transmission mode amplifier.

  18. Problems of the design of low-noise input devices. [parametric amplifiers

    NASA Technical Reports Server (NTRS)

    Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.

    1974-01-01

    An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.

  19. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  20. Miniature Ku-band low-noise amplifier using batch-process technology

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Jozwiak, P.; Mykietyn, E.; Pendrick, V.; Brown, R.

    1986-12-01

    The steps in developing a low-noise three-stage miniature amplifier operating from 11.7 to 12.2 GHz are examined. The amplifier has an 18-dB gain over the band and a noise figure of 4 dB. An accurate network model, including a feedback loop, is presented for the design and optimization of the amplifier. The circuit realization and the measured performance in relation to VSWR, gain flatness, stability, and noise figure, are discussed.

  1. A 20-GHz low-noise HEMT amplifier for satellite communications

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Y.; Niori, M.; Saito, T.

    1984-03-01

    A description is given of a 20-Ghz low-noise amplifier that uses a new device, a low-noise high electron mobiity transistor (HEMT), developed for the receiver front-end in earth stations for 30/20-GHz satellite communications systems. The minimum noise figure of the HEMT is 3.1 dB, and the associated gain is 7.5 dB at 20 GHz. It is believed that before too long the HEMT will surpass the GaAs FET as a low-noise device. In the test amplifier at an operating frequency range from 17.6 GHz to 19.2 Ghz, the noise figure is 4.2 dB and the gain is 28.6 dB. The minimum noise figure is 3.9 dB. It is expected that cooling the amplifier will give a significant improvement in the noise figure.

  2. A Ka-band Four-stage Self-biased Monolithic Low Noise Amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Ziqiang; Yang, Tao; Liu, Yu

    2009-05-01

    A Ka-band four-stage self-biased monolithic low noise amplifier has been developed using a commercial 0.18-µm pseudomorphic high electron-mobility transistor (pHEMT) process. For the application of self-bias technique, the low noise amplifier (LNA) is biased from a single power supply rail. The LNA has achieved a broadband performance with a gain of more than 18 dB, a noise figure of less than 3.8 dB in the RF frequency of 26 to 40 GHz. The chip size is 3 × 1 mm2.

  3. Cryogenic Design of the Deep Space Network Large Array Low-Noise Amplifier System

    NASA Astrophysics Data System (ADS)

    Britcliffe, M. J.; Hanson, T. R.; Franco, M. M.

    2004-05-01

    This article describes the cryogenic design and performance of a prototype low-noise amplifier (LNA) system for the Deep Space Network (DSN) Large Array task. The system is used to cool a dual-frequency feed system equipped with high-electron mobility transistor (HEMT) low-noise amplifiers and the associated support electronics. The LNA/feed system operates at a temperature under 18 K. The system is designed to be manufactured at minimum cost. The design considerations, including the cryocooler to be used, vacuum system, microwave interconnects, mechanical components, and radiation shielding, are discussed.

  4. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Bautista, J. J.

    1993-11-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  5. GaAs FET MMIC low-noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Hung, H.-L.; Enobakhare, E.; Abita, J.; McNally, P.; Mahle, C.

    1985-12-01

    One- and two-stage, X-band, low-noise, GaAs FET monolithic amplifier modules have been developed. These amplifier chips include all dc-blocking capacitors and bias networks. A cascaded, two-chip, two-stage amplifier module provides a noise figure of 4 dB and an associated gain of 30 dB from 9.5 to 11.7 GHz. A two-stage 15-dB gain block has also been developed for 9 to 13 GHz, with a chip size of 1.7 x 1.2 mm.

  6. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  7. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  8. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  9. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  10. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  11. A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition

    PubMed Central

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low-power and low-noise dynamic instrumentation amplifier (IA) for biopotential acquisition is presented. A dynamic IA that can reduce power consumption with a timely piecewise power-gating method, and noise level with an alternating input and chopper stabilization technique is fabricated with a 0.13-μm CMOS. Using the reconfigurable architecture of the IA, various combinations of the low-noise schemes are investigated. The combination of power gating and chopper stabilization shows a lower noise performance than the combination of power gating and alternating input switching scheme. This dynamic IA achieved a power reduction level of 50% from 10 µA to 5 µA and a noise reduction of 90% from 9.1 µVrms to 0.92 µVrms with the combination of the power gating and chopper stabilization scheme.

  12. A microwave cryogenic low-noise amplifier based on sige heterostructures

    NASA Astrophysics Data System (ADS)

    Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.

    2016-04-01

    A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.

  13. Using the SLUG as a First Stage, Low Noise Microwave Amplifier for Superconducting Qubit Readout

    NASA Astrophysics Data System (ADS)

    Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; McDermott, Robert

    2015-03-01

    The SLUG (Superconducting Low-inductance Undulatory Galvonometer) microwave amplifier is a large bandwidth, high saturation power, high gain, and low noise microwave element designed as a first stage cryogenic amplifier for dispersive readout of superconducting qubits. High forward gain is paired with simultaneous high reverse isolation such that bulky, expensive cryogenic circulators and isolators might be eliminated from the microwave readout chain. Here we present recent experimental data on SLUG gain, noise, and reverse isolation. We achieve gain over 10 dB at 7 GHz across a band of several hundred MHz, with system added noise of order one photon. For appropriate flux bias of the device, reverse isolation is better than -20 dB. These qualities make the SLUG a very desirable first stage amplifier for a scalable superconducting qubit readout.

  14. High-performance Ka-band and V-band HEMT low-noise amplifiers

    NASA Technical Reports Server (NTRS)

    Duh, K. H. George; Chao, Pane-Chane; Smith, Phillip M.; Lester, Luke F.; Lee, Benjamin R.

    1988-01-01

    Quarter-micron-gate-length high-electron-mobility transistors (HEMTs) have exhibited state-of-the-art low-noise performance at millimeter-wave frequencies, with minimum noise figures of 1.2 dB at 32 GHz and 1.8 dB at 60 GHz. At Ka-band, two-stage and three-stage HEMT low noise amplifiers have demonstrated noise figures of 1.7 and 1.9 dB, respectively, with associated gains of 17.0 and 24.0 dB at 32 GHz. At V-band, two stage and three-stage HEMT amplifiers yielded noise figures of 3.2 and 3.6 dB, respectively, with associated gains of 12.7 and 20.0 dB at 60 GHz. The 1-dB-gain compression point of all the amplifiers is greater than +6 dBm. The results clearly show the potential of short-gate-length HEMTs for high-performance millimeter-wave receiver applications.

  15. A 2.3-GHz low-noise cryo-FET amplifier

    NASA Technical Reports Server (NTRS)

    Loreman, J.

    1988-01-01

    A cryogenic cooled, low-noise Field Effect Transistor (FET) amplifier assembly for use at 2.2 to 2.3 GHz was developed for the DSN to meet the requirements of a Very Long Baseline Interferometry (VLBI) upgrade. An amplifier assembly was developed at JPL that uses a commercial closed-cycle helium refrigerator (CCR) to cool a FET amplifier to an operating temperature of 15 K. A cooled probe waveguide-to-coaxial transition similar to that used in the research and development Ultra-Low-Noise S-band Traveling Wave Maser (TWM) is used to minimize input line losses. Typical performance includes an input flange equivalent noise contribution of 14.5 K, a gain slope of less than 0.05 dB/MHz across a bandwidth of 2.2 to 2.3 GHz, an input VSWR of 1.5:1 at 2.25 GHz, and an insertion gain of 45 + or - 1 dB across the bandwidth of 2.2 to 2.3 GHz. Three 2.3 GHz FET/CCR assemblies were delivered to the DSN in the spring of 1987.

  16. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  17. Development of a cryogenic DC-low noise amplifier for SQuID-based readout electronics

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Torrioli, G.; Di Giorgio, A.; Spinoglio, L.; Piro, Luigi

    2014-07-01

    We present the preliminary results of the design and test activities for a DC cryogenic low noise amplifier for the SAFARI imaging spectrometer, planned to be onboard the SPICA mission, necessary not only to drive, as usual, the voltage signal produced by the SQuID but also to boost such signals over about 7 meter of path towards the warm feedback electronics. This development has been done in the framework of the mission preparation studies, within the European Consortium for the development of the SAFARI instrument. The actual configuration of the SAFARI focal plane assembly (FPA), indeed, foresees a long distance to the warm back end electronics. It is therefore mandatory to boost the faint electric signal coming from the SQuID device by keeping under control both power dissipation and noise: this is the main role of the designed Cryogenic Low Noise Amplifier (LNA). Working at 136K, it has a differential input gain-stage, and a differential balanced voltage buffer output stage, running at few mW target overall power. At present the design is based on the use of Heterojunction Si:Ge transistors, the required bandwidth is DC-4MHz and the required noise lower than 1 nV/rtHz.

  18. 50 W low noise dual-frequency laser fiber power amplifier.

    PubMed

    Kang, Ying; Cheng, Lijun; Yang, Suhui; Zhao, Changming; Zhang, Haiyang; He, Tao

    2016-05-01

    A three-stage dual-frequency laser signal amplification system is presented. An output from a narrow-linewidth Nd:YAG nonplanar ring-oscillator (NPRO) is split into two parts, one of them is frequency shifted by an acoustooptic modulator (AOM) then coupled into a single mode optical fiber. The other part is coupled into another single mode fiber then combined with the frequency-shifted beam with a 2 to 1 single mode fiber coupler. The combined beam has a power of 20 mW containing two frequency components with frequency separation of 150 ± 25 MHz. The dual-frequency signal is amplified via a three-stage Yb3+-doped diode pumped fiber power amplifier. The maximum amplified power is 50.3 W corresponding to a slope efficiency of 73.72% of the last stage. The modulation depth and signal to noise ratio (SNR) of the beat signal are well maintained in the amplifying process. The dual-frequency laser fiber power amplifier provides robust optical carried RF signal with high power and low noise. PMID:27137536

  19. Updated design for a low-noise, wideband transimpedance photodiode amplifier

    SciTech Connect

    Paul, S. F.; Marsala, R.

    2006-10-15

    The high-speed rotation diagnostic developed for Columbia's HBT-EP tokamak requires a high quantum efficiency, very low drift detector/amplifier combination. An updated version of the circuit developed originally for the beam emission spectroscopy experiment on TFTR is being used. A low dark current (2 nA at 15 V bias), low input source capacitance (2 pF) FFD-040 N-type Si photodiode is operated in photoconductive mode. It has a quantum efficiency of 40% at the 468.6 nm (He II line that is being observed). A low-noise field-effect transistor (InterFET IFN152 with e{sub Na}=1.2 nV/{radical}Hz) is used to reduce the noise in the transimpedance preamplifier (A250 AMPTEK op-amp) and a very high speed (unity-gain bandwidth=200 MHz) voltage feedback amplifier (LM7171) is used to restore the frequency response up to 100 kHz. This type of detector/amplifier is photon-noise limited at this bandwidth for incident light with a power of >{approx}2 nW. The circuit has been optimized using SIMETRIX 4.0 SPICE software and a prototype circuit has been tested successfully. Though photomultipliers and avalanche photodiodes can detect much lower light levels, for light levels >2 nW and a 10 kHz bandwidth, this detector/amplifier combination is more sensitive because of the absence of excess (internally generated) noise.

  20. Validation of the ultrastable low-noise current amplifier as travelling standard for small direct currents

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Giblin, S. P.; Djordjevic, S.; Piquemal, F.; Séron, O.; Rengnez, F.; Götz, M.; Pesel, E.; Scherer, H.

    2015-12-01

    An interlaboratory comparison of small-current generation and measurement capability is presented with the ultrastable low-noise current amplifier (ULCA) acting as travelling standard. Various measurements at direct currents between 0.16 nA and 13 nA were performed to verify the degree of agreement between the three national metrology institutes involved in the study. Consistency well within one part per million (ppm) was found. Due to harsh environmental conditions during shipment, the ULCA’s transfer accuracy had been limited to about  ±0.4 ppm. Supplemental measurements performed at PTB indicate that further improvements in accuracy are possible. Relative uncertainties of 0.1 ppm are achieved by applying on-site calibration of the ULCA with a suitable cryogenic current comparator.

  1. Wideband ultra-low noise cryogenic InP IF amplifiers for the Herschel mission radiometers

    NASA Astrophysics Data System (ADS)

    Lopez-Fernandez, Isaac; Gallego-Puyol, Juan D.; Diez, Carmen; Barcia, Alberto; Martin-Pintado, Jesus

    2003-02-01

    The sub-millimeter radiometers of the Herschel mission have very stringent requirements. The scientific goals require an instantaneous bandwidth of four GHz with very low noise, flat gain and low power dissipation. Short-term gain stability of the amplifier is important, because gain fluctuations could limit the sensitivity of the instrument. Besides, a highly reliable, low weight unit is required to be compatible with the space instrumentation standards. The amplifiers will be used in conjunction with HEB and SIS mixers in all 7 channels of the instrument. This paper describes the design, the special construction techniques and the results of the amplifiers built by Centro Astronómico de Yebes for the development model of the Herschel Heterodyne Instrument. The average noise temperature obtained in the 4-8 GHz band is 3.5 K, with a gain of 27 +/-1.1 dB at an ambient temperature of 15 K and keeping the total power dissipation below the allowed 4 mW. Normalized gain fluctuations were carefully measured, being lower than 1.5·10-4 Hz-1/2 @ 1 Hz. Space qualification of the design is in progress.

  2. Instrumental and Observational Studies in Radio Astronomy, Low Noise Amplifier Design and Methanol Maser Research

    NASA Astrophysics Data System (ADS)

    Minier, V.

    1998-10-01

    ``Radio astronomy is the study of the universe by observing electromagnetic radiation after it has been amplified. The use of amplifiers that preserve the oscillatory character of radiation - the phase information - is the mark of Radio astronomy.'' Thus, the development of low noise amplifiers for microwave and millimeter wavelengths is a major part of Radio astronomy as important as the observations themselves. This technical report involves those two aspects of Radio astronomy, the observational and technical aspects. In the first part, observations of methanol masers in massive star forming regions using Very Long Baseline Interferometry (VLBI) are presented. The second part concerns the realization of low noise amplifiers using in a radio camera. Recent observations have confirmed that the methanol masers are powerful tools for probing the regions of massive star formation. The methanol masers fall in two distinct classes related to their location in the star forming regions. Class I methanol masers are observed offset far away from the UC HII region emission peak. They are certainly collisionally pumped and may occur in the interface between high velocity gas outflows and the ambient molecular material. Class II methanol masers coincide with the UC HII region emission. They may be radiatively pumped by FIR radiation from the dust grains and reside either in spherical layers surrounding the UC HII regions or in circumstellar discs. The maser spots are usually compact (~1-10 AU) and lie in region of physical conditions n(H)~104-108 cm-3 and T=100-1000 K. CH3OH may be produced by hydrogenation of CO on the surface of the icy mantles of the dust grains . The methanol is then injected in the molecular gas by evaporation of the ice (n(H)=106 cm-3, T=100-300 K). In this report we present VLBI observations of 6.7 and 12.2 GHz methanol masers in the star forming regions NGC7538, W75N and S252. Our results show the existence of two groups of masers in NGC7538. The

  3. Simple nonlinearity evaluation and modeling of low-noise amplifiers with application to radio astronomy receivers.

    PubMed

    Casas, F J; Pascual, J P; de la Fuente, M L; Artal, E; Portilla, J

    2010-07-01

    This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA's nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experiment. PMID:20687750

  4. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  5. Low noise and high CMRR front-end amplifier dedicated to portable EEG acquisition system.

    PubMed

    Chebli, Robert; Sawan, Mohamad

    2013-01-01

    This paper concerns the design and implementation of a fully integrated low noise and high CMRR rail-to-rail preamplifier dedicated to EEG acquisition channel. The preamplification technique is based on two complementary CMOS True Logarithmic Amplifier (TLA) stages connected in parallel. The TLA largely amplifies small amplitude of EEG signals, and moderately the large amplitude ones created during epileptic. A chopper stabilization technique is used to filter the 1/ƒ noise and the DC offset voltage of the input CMOS transistors and to increase the common-mode rejection ratio (CMRR). Due to the TLA structure, a high CMRR and high power supply rejection ratio are achieved and the signal-to-noise ratio (of the channel is better enhanced). To snugly fit the ADC input window to the EEG signal magnitude a new programming gain approach is implemented. Also, a chopper spike filter is used to cancel the spike voltages generated by the charge injections of modulator/demodulator switches. The proposed preamplifier is implemented in 0.18 µm CMOS technology. Post-layout simulation results exhibit 253 dB @50/60 Hz as CMRR, 500 nVrms @100 Hz as input-referred noise while consuming 55 µA from a 1.8 V supply. PMID:24110240

  6. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    NASA Astrophysics Data System (ADS)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  7. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  8. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  9. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into an active circuit and characterized at liquid nitrogen temperatures. This superconducting/semiconducting circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  10. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  11. Computer simulations of low noise states in a high-power crossed-field amplifier

    SciTech Connect

    Chernin, D.P.

    1996-11-01

    A large body of experimental data has been accumulated over the past 15 years or so on the remarkable ability of both magnetrons and CFA`s to operate under certain conditions at noise levels comparable to those achieved in linear beam tubes. The physical origins of these low noise states have been the subjects of considerable speculation, fueled at least in part by results from computer simulation. While computer models have long been able to predict basic operating parameters like gain, efficiency, and peak power dissipation on electrode surfaces with reasonable accuracy, it is only within the past few years that any success could be reported on the simulation of noise. SAIC`s MASK code, a 2{1/2}-D particle-in-cell code, has been able to compute total, integrated noise power to an accuracy of {+-} a few dB in a high-power CFA, operating with a typical intra-pulse spectral noise density of {approximately}47--50 dB/MHz. Under conditions that produced low noise ({approximately}60--100 dB/MHz) in laboratory experiments, the MASK code has been, until now, unable to reproduce similar results. The present paper reports the first successful production of a very low noise state in a CFA simulation using the MASK code. The onset of this low noise state is quite sudden, appearing abruptly as the current is raised to a point near which the cathode operates as nearly emission limited. This behavior is similar to that seen in an experimentally observed transition between low noise and high noise operation in the SFD-266, a Varian[CPI] low noise CFA. Some comments are made concerning the nature of the noise as observed in the simulation and in the laboratory.

  12. Recent Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For Astrophysical Observations

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Church, S.; Cleary, K.; Gaier, T.; Gawande, R.; Kangaslahti, P.; Lawrence, C.; Readhead, A.; Reeves, R.; Seiffert, M.; Sieth, M.; Varonen, M.; Voll, P.

    2012-05-01

    In this work, we discuss advances in high electron mobility transistor (HEMT) low noise amplifier (LNA) monolithic millimeter-wave integrated circuits (MMICs) for use as front end amplifiers in ultra-low noise receivers. Applications include focal plane arrays for studying the polarization of the cosmic microwave background radiation and foreground separation, receiver arrays for molecular spectroscopy, and high redshift CO surveys for probing the epoch of reionization. Recent results and a summary of best indium phosphide (InP) low noise amplifier data will be presented. Cryogenic MMIC LNAs using state-of-the-art InP technology have achieved record performance, and have advantages over other detectors in the 30-300 GHz range. InP MMIC LNAs operate at room temperature and may achieve near-optimum performance at 20K, a temperature readily achieved with modern cryo-coolers. In addition, wide-bandwidth LNAs are suitable for heterodyne applications as well as direct detector applications. Recent results include Ka-band MMICs with 15K noise temperature performance, and Q-Band MMICs with on-wafer measured cryogenic noise of 12K at 38 GHz. In addition, W-Band amplifiers with 25K noise temperature at 95 GHz will be presented, as well as wide-band LNAs with noise temperature below 45K up to 116 GHz. At higher frequencies, we will discuss progress on MMIC LNAs and receiver modules in G-Band (140-220 GHz), where our group has achieved less than 60K receiver noise temperature at 166 GHz. We will address extending the high performance of these MMIC LNAs to even higher frequencies for spectroscopic surveys, and make projections on future performance given current trends. These MMIC amplifiers can play a key role in future ground-based and space-based instruments for astrophysical observations.

  13. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  14. The present status and future development of low noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Akinaga, W.; Handa, K.; Fujiki, Y.; Fukuda, S.; Haga, I.

    The LNAs for use in satellite communications have made remarkable progress in recent years. This paper describes the present status and future prospects of the two principal LNA types, the parametric LNA and the GaAs FET LNA, operating in the 2 GHz band through millimetric wavelength range, as regards their noise temperature characteristics. In a few years to come, the parametric LNA and the GaAs FET LNA will be coexistent, but the former will be restricted to the cryogenically cooled and the super-low-noise thermoelectrically cooled type, while the latter will occupy the majority of the LNAs for satellite communications use.

  15. Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength

    NASA Technical Reports Server (NTRS)

    Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.

    1974-01-01

    The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.

  16. Performance of a wideband GaAs low-noise amplifier at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Toncich, S. S.; Bhasin, K. B.; Chen, T. K.; Claspy, P. C.

    1992-01-01

    The gain and noise figure performance of a GaAs amplifier at cryogenic temperatures has been studied. Results obtained indicate that a lower noise figure and a higher gain are induced by decreasing the temperature, while no significant change in the input 1-dB compression point is observed. Repeated temperature cycling had no adverse effect on the amplifier performance.

  17. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  18. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors. PMID:25725866

  19. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  20. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design. PMID:25554310

  1. Low-noise Raman fiber amplifier pumped by semiconductor disk laser.

    PubMed

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Okhotnikov, O G

    2011-03-28

    A 1.3 µm Raman fiber amplifier pumped by 1.22 µm semiconductor disk laser in co-propagation geometry is demonstrated. Measured relative intensity noise of -148 dB/Hz over frequency range up to 3.5 GHz was measured at 900 mW of pump power. 9 dB gain was achieved with co-propagating pumping geometry with less than 2 dB additional noise induced by amplifier to the signal. Nearly shot-noise-limited operation of semiconductor disk laser combined with the diffraction-limited beam allows for efficient core-pumping of the single-mode fiber Raman amplifiers and represents a highly practical approach which takes full advantage of co-propagating pumping. PMID:21451669

  2. Low-noise wide-band amplifiers for stochastic beam cooling experiments

    SciTech Connect

    Leskovar, B.; Lo, C.C.

    1982-09-05

    Noise characteristics of the continuous-wave wide-band amplifier systems for stochastic beam cooling experiments are presented. Also, the noise performance, bandwidth capability and gain stability of components used in these amplifiers are summarized and compared in the 100 MHz to 40 GHz frequency range. This includes bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser. Measurements of the noise characteristics and scattering parameters of variety GaAs FETs as a function of ambient temperature are also given. Performance data and design information are presented on a broadband 150-500 MHz preamplifier having noise temperature of approximately 35/sup 0/K at ambient temperature of 20/sup 0/K. An analysis of preamplifier stability based on scattering parameters concept is included.

  3. Low noise, tunable Ho:fiber soliton oscillator for Ho:YLF amplifier seeding

    NASA Astrophysics Data System (ADS)

    Li, Peng; Ruehl, Axel; Bransley, Colleen; Hartl, Ingmar

    2016-06-01

    We present a passively mode-locked, tunable soliton Ho:fiber ring oscillator, optimized for seeding of holmium-doped yttrium lithium flouride (Ho:YLF) amplifiers. The oscillator is independently tunable in central wavelength and spectral width from 2040 to 2070 nm and from 5 to 10 nm, respectively. At all settings the pulse energy within the soliton is around 800 pJ. The soliton oscillator was optimized to fully meet the spectral requirements for seeding Ho:YLF amplifiers. Its Kelly sidebands are located outside the amplifier gain spectrum, resulting in a train of about 1 ps long pedestal-free pulses with relative intensity noise of only 0.13% RMS when integrated from 1 Hz to Nyquist frequency.

  4. Design and measurement of an integrated wideband radio frequency low-noise amplifier for terrestrial digital television applications

    NASA Astrophysics Data System (ADS)

    Albasha, Lutfi

    2010-05-01

    In this article, the design and measurement details of a wideband low-noise amplifier (LNA) are presented. The LNA was successfully designed to operate over very high and ultra high frequency (VHF and UHF) ranges according to Digital TV (DVB-T) specifications. The novelty of the design lies in the achievement of low noise figure (NF) and high reverse isolation level across a wide bandwidth despite the resistive feedback topology. The latter was required in order to integrate the front-end block with a direct-conversion receiver. A measured large-signal compression point of P1dB = -10 dBm and a small-signal gain of 16 dB with gain flatness of <1 dB ripple, have all met commercial specifications tested over corners. The NF achieved was better than that specified and was less than 2 dB across the bandwidth. This front-end block was implemented in a commercial 0.25 μm Si BiCMOS process (f T = 20 GHz). The article discusses the measurement uncertainties imposed by the wide bandwidth, particularly in NF measurements, and the techniques adopted in this work to mitigate the errors imposed.

  5. A low-noise instrumentation amplifier with DC suppression for recording ENG signals.

    PubMed

    Paraskevopoulou, Sivylla E; Eftekhar, Amir; Kulasekeram, Nishanth; Toumazou, Christofer

    2015-08-01

    This paper presents an AC-coupled instrumentation amplifier for electroneurogram (ENG) activity recording. For this design, we evaluate gain and noise requirements based on interference sources (electrodes, power line, EMG). The circuit has been implemented in a commercially-available 0.35μm CMOS technology with total power consumption 460μW. The amplifier achieves CMRR 107 dB and integrated input referred noise 940 nV. The gain is 63 dB and the bandwidth is 0.5 Hz- 13 kHz. The chosen topology enables to minimise on-chip capacitance (only 27 pF), with a total chip area of 0.4mm2. PMID:26736847

  6. Comparison of cryogenic W band low noise amplifier based on different III-V HEMT foundry process and technologies

    NASA Astrophysics Data System (ADS)

    Valenziano, L.; Zannoni, M.; Mariotti, S.; Cremonini, A.; De Rosa, A.; Banfi, S.; Baó, A.; Gervasi, M.; Limiti, E.; Passerini, A.; Schiavone, F.

    2014-07-01

    We present the results of a development activity for cryogenic Low Noise Amplifiers based on HEMT technology for ground based and space-borne application. We have developed and realized two LNA design in W band, based on m-HEMT technology. MMIC chips have been manufactured by European laboratories and companies and assembled in test modules by our team. We compare performances with other technologies and manufacturers. LNA RF properties (noise figures, S-parameters) have been measured at room and cryogenic temperature and test results are reported in this paper. Performance are compared with those of state-of-the-art devices, as available in the literature. Strengths and improvements of this project are also discussed.

  7. FM notch filter in front - and - behind the low noise amplifier of a Callisto Radio Spectrometer in Gauribidanur, India

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    In the framework of IHY2007 a Callisto spectrometer [Benz(2004)] was installed and set into operation at the location of the solar heliograph in Gauribidanur, India. At that time the level of radio frequency interference (RFI) was amazingly low. In recent years more and more FM broadcast transmitters were installed with high power compared to the requirements of radio astronomical observations. So, the spectral observations with Callisto experienced more and more interference by these FM transmitters. Recently an FM-notch filter was installed between the low noise amplifier and Callisto, but it did not work out. The notch filter was then moved to the input of the LNA and the result was much better, as expected from theoretical concepts.

  8. Aspects of the design of low noise, negative resistance, reflection mode transistor amplifiers

    NASA Astrophysics Data System (ADS)

    Gardner, Peter; Paul, Dipak K.

    1991-11-01

    The authors consider the use of microwave transistors in negative resistance reflection mode and present the conditions for optimum noise performance. Possible advantages include the possibility of higher gain in the millimeter-wave region, which can be achieved by absorbing the parasitic common lead inductance into the feedback circuit designed to generate the negative resistance, and the existence of a failsafe mode of operation, in that the failure of the active device or its power supply is likely to lead a low return loss, resulting in a small insertion loss through the amplifiers, which may permit continued, although degraded, system operation. The latter potential advantage has proved to be of interest to radar system designers.

  9. Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Petty, S. M.; Trowbridge, D. L.

    1983-01-01

    One of the great technical challenges facing the Deep Space Network is receiving signals from a severely weight limited spacecraft hundreds of thousands to billions of kilometers from Earth. This weight limitation has always imposed strict limitations on the size of the spacecraft antenna and the amount of transmitter power radiated. The communication burden is placed upon the ground systems of the Deep Space Network which must recover an extremely weak signal in the presence of nearly overwhelming amounts of noise. Two key parameters that determine the signal to noise ratio of a received signal using a deep space station are the collecting area and efficiency of the antenna, and the amount of noise which is generated in, as well as allowed to enter in, the antenna-mounted receiver. These parameters are used to describe the relative ability of a deep space station to receive weak signals. As spacecraft to Earth communication distances have increased, the Deep Space Network engages in a relentless effort to increase the figure of merit through larger and more efficient antennas, higher frequencies, and lower system noise temperature.

  10. Low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Petty, S. M.; Trowbridge, D. L.

    1983-07-01

    One of the great technical challenges facing the Deep Space Network is receiving signals from a severely weight limited spacecraft hundreds of thousands to billions of kilometers from Earth. This weight limitation has always imposed strict limitations on the size of the spacecraft antenna and the amount of transmitter power radiated. The communication burden is placed upon the ground systems of the Deep Space Network which must recover an extremely weak signal in the presence of nearly overwhelming amounts of noise. Two key parameters that determine the signal to noise ratio of a received signal using a deep space station are the collecting area and efficiency of the antenna, and the amount of noise which is generated in, as well as allowed to enter in, the antenna-mounted receiver. These parameters are used to describe the relative ability of a deep space station to receive weak signals. As spacecraft to Earth communication distances have increased, the Deep Space Network engages in a relentless effort to increase the figure of merit through larger and more efficient antennas, higher frequencies, and lower system noise temperature.

  11. Characteristics of a dye laser amplifier transversely pumped by copper vapor lasers with a two-dimensional calculation model

    SciTech Connect

    Sugiyama, A.; Nakayama, T.; Kato, M.; Maruyama, Y.

    1997-08-01

    A two-dimensional rate equation model, taking into consideration the transverse absorption loss of pump laser power, is proposed to evaluate the characteristics of a dye laser amplifier with a large input laser beam diameter pumped by high average power copper vapor lasers. The calculations are in good agreement with the measurements taken with a Rhodamine 6G dye, and the model can be used for evaluation of the dye concentration at any wavelength. {copyright} 1997 Optical Society of America

  12. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.

    PubMed

    Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting

    2013-04-01

    In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats. PMID:23853293

  13. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect

    Haque, S; Frost, F Dion R.; Groulx, R; Holland, S E; Karcher, A; Kolbe, W F; Roe, N A; Wang, G; Yu, Y

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup -} rms at 70 kpixels/sec.

  14. A low-noise transimpedance amplifier for the detection of “Violin-Mode” resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    SciTech Connect

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-15

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level “Violin-Mode” (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent “noise-gain peaking” arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes’ two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m{sup −1}(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  15. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations-this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m(-1)(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm. PMID:25430131

  16. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m-1(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  17. Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rush, Kenneth; Blalock, T. V.; Kennedy, E. J.

    1975-01-01

    Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz.

  18. Cryogenic 36-45 GHz InP Low-Noise Amplifier MMIC's with Improved Noise Temperature by Eliminating Parasitic Parallel-Plate Modes

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroshi; Shimizu, Takashi; Ohno, Takeshi; Hirachi, Yasutake; Kawaguchi, Noriyuki

    2012-08-01

    This paper describes cryogenic 36-45 GHz InP low-noise amplifier monolithic microwave integrated circuits (MMIC's) with an improved noise temperature by eliminating parasitic parallel-plate resonance modes. These MMIC's are used for a Radio Astronomical receiver, which needs the ultimate super low-noise and wide-band frequency characteristics, such as those in ALMA Band 1. The MMIC chips were designed in the coplanar waveguide (CPW), and mounted to the AlN substrate with a flip-chip assembly, which was promising compared to wire bonding. The flip-chip assemblies, however, are prone to cause the parasitic parallel plate resonance mode (PPM). The relationship between the S-parameters and the PPM was investigated by using a 3D-electromagnetic simulation of the simple transmission-line test-chip with the same chip size as that of the actual MMIC. In order to eliminate the PPM, additional bumps were mounted on the simple transmission-line test-chip, and the effect of these bumps was confirmed by the simulation. These results obtained from the simple transmission-line test-chip were applied to an actual MMIC chip assembly. The MMIC assembled with the additional bumps had no abnormality in the measured S-parameters, and the PPM had been eliminated up to 65 GHz. Moreover, the stability factor, K, became more than 2.4 over 36-45 GHz. This InP low-noise amplifier MMIC exhibited a gain of 15 dB and a noise temperature of 180-240 K at room temperature in the frequency range of 36-45 GHz. When cooled to 28 K, a gain of 17 dB and a noise temperature of 22-35 K were obtained at a power consumption of 4.7 mW over 36-45 GHz. A high-gain amplifier module consisting of two cascaded chips, exhibited a gain of 27-30 dB and a noise temperature of 25-30 K at the ambient temperature of 22 K in the frequency range of 41-45 GHz.

  19. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  20. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.

    PubMed

    Loh, William; Yegnanarayanan, Siva; Plant, Jason J; O'Donnell, Frederick J; Grein, Matthew E; Klamkin, Jonathan; Duff, Shannon M; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (<-115 dBc/Hz at 1 kHz offset) and large sidemode suppression (>70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN). PMID:23038585

  1. Low noise gain-clamped L-band erbium-doped fiber amplifier by utilizing fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Guo, Yubin; Yan, Hongwei; Wang, Yuhang; Wang, Ke

    2006-11-01

    A novel gain-clamped long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is proposed and experimented by using a fiber Bragg grating (FBG) at the input end of the amplifier. This design provides a good gain clamping and decreases noise effectively. It uses two sections of erbium-doped fiber (EDF) pumped by a 1480-nm laser diode (LD) for higher efficiency and lower noise figure (NF). The gain is clamped at 23 dB with a variation of 0.5 dB from input signal power of -30 to -8 dBm for 1589 nm and NF below 5 dB is obtained. At the longer wavelength in L-band higher gain is also obtained and the gain is clamped at 16 dB for 1614 nm effectively. Because the FBG injects a portion of backward amplified spontaneous emission (ASE) back into the system, the gain enhances 5 dB with inputting small signal.

  2. Enhancing the noise performance of monolithic microwave integrated circuit-based low noise amplifiers through the use of a discrete preamplifying transistor

    NASA Astrophysics Data System (ADS)

    McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio

    2015-01-01

    An approach to enhancing the noise performance of an InP monolithic microwave integrated circuit (MMIC)-based low noise amplifiers (LNA) through the use of a discrete 100-nm gate length InP high electron mobility transistor is outlined. This LNA, known as a transistor in front of MMIC (T + MMIC) LNA, possesses a gain in excess of 40 dB and an average noise temperature of 9.4 K across the band 27 to 33 GHz at a physical temperature of 8 K. This compares favorably with 14.5 K for an LNA containing an equivalent MMIC. A simple advanced design system model offering further insights into the operation of the LNA is also presented and the LNA is compared with the current state-of-the-art Planck LFI LNAs.

  3. SEMICONDUCTOR INTEGRATED CIRCUITS A 0.18 μm CMOS dual-band low power low noise amplifier for a global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Bing, Li; Yiqi, Zhuang; Zhenrong, Li; Gang, Jin

    2010-12-01

    This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.

  4. A 3.5-4.5 GHz Complementary Metal-Oxide-Semiconductor Ultrawideband Receiver Frontend Low-Noise Amplifier with On-Chip Integrated Antenna for Interchip Communication

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kimoto, Kentaro; Sasaki, Nobuo; Kikkawa, Takamaro

    2010-04-01

    Chip-to-chip ultrawideband (UWB) wireless interconnections are essential for reducing resistance capacitance (RC) delay in wired interconnections and three-dimensional (3D) highly integrated packaging. In this study, we demonstrated a wireless interchip signal transmission between two on-chip meander antennas on printed circuit board (PCB) for 1 to 20 mm transmission distances where the low power gain of each antenna due to a lossy Si substrate has been amplified by a low-noise amplifier (LNA). The measured result shows that the LNA produces 26 dB of improvement in antenna power gain at 4.5 GHz on a lossy Si substrate. Moreover, a Gaussian monocycle pulse with a center frequency of 2.75 GHz was also received by an on-chip antenna and amplified by the LNA. The LNA was integrated with an on-chip antenna on a Si substrate with a resistivity of 10 Ω·cm using 180 nm complementary metal-oxide-semiconductor (CMOS) technology. The investigated system is required for future single chip transceiver front ends, integrated with an on-chip antenna for 3D mounting on a printed circuit (PC) board.

  5. Two-Dimensional Organic Single Crystals with Scale Regulated, Phase-Switchable, Polymorphism-Dependent, and Amplified Spontaneous Emission Properties.

    PubMed

    Zhang, Zhenyu; Song, Xiaoxian; Wang, Shipan; Li, Feng; Zhang, Hongyu; Ye, Kaiqi; Wang, Yue

    2016-05-01

    The successful preparation of two-dimensional (2D) single crystals can promote the development of organic optoelectronic devices with excellent performance. A Schiff base compound salicylidene(4-dimethylamino)aniline with aggregation induced emission (AIE) property was employed as the building block to fabricate 2D thin single crystal plates with scales from around 50 μm to 1.5 cm. Yellow and red emissive polymorphs were concomitantly obtained during crystallization. The single-crystal-to-single-crystal (SC-to-SC) transformation from yellow polymorph to red one was demonstrated. Furthermore, both polymorphs exhibited amplified spontaneous emission (ASE) properties. Interestingly, the red polymorph displayed size-dependent ASE characteristics. The larger red polymorph showed near-infrared ASE with maximum at 706 nm, whereas the smaller one presented red ASE with maximum at 610 nm. These results suggest that the different scale single crystalline thin films with perfect optoelectronic properties may be fabricated by using the organic molecules with 2D assembly feature. PMID:27096197

  6. Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For CO Intensity Mapping and ALMA Band 2

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Cleary, Kieran; Church, Sarah E.; Cuadrado-Calle, David; Fung, Andy; gaier, todd; gawande, rohit; Kangaslahti, Pekka; Lai, Richard; Lawrence, Charles R.; Readhead, Anthony C. S.; Sarkozy, Stephen; Seiffert, Michael D.; Sieth, Matthew

    2016-01-01

    We will present results of the latest InP HEMT MMIC low noise amplifiers in the 30-300 GHz range, with emphasis on LNAs and mixers developed for CO intensity mapping in the 40-80 GHz range, as well as MMIC LNAs suitable for ALMA Band 2 (67-90 GHz). The LNAs have been developed together with NGC in a 35 nm InP HEMT MMIC process. Recent results and a summary of best InP low noise amplifier data will be presented. This work describes technologies related to the detection and study of highly redshifted spectral lines from the CO molecule, a key tracer for molecular hydrogen. One of the most promising techniques for observing the Cosmic Dawn is intensity mapping of spectral-spatial fluctuations of line emission from neutral hydrogen (H I), CO, and [C II]. The essential idea is that instead of trying to detect line emission from individual galaxies, one measures the total line emission from a number of galaxies within the volume defined by a spectral-spatial pixel. Fluctuations from pixel to pixel trace large scale structure, and the evolution with redshift is revealed as a function of receiver frequency. A special feature of CO is the existence of multiple lines with a well-defined frequency relationship from the rotational ladder, which allows the possibility of cleanly separating the signal from other lines or foreground structure at other redshifts. Making use of this feature (not available to either HI or [C II] measurements) requires observing multiple frequencies, including the range 40-80 GHz, much of which is inaccessible from the ground or balloons.Specifically, the J=1->0 transition frequency is 115 GHz; J=2->1 is 230 GHz; J=3->2 is 345 GHz, etc. At redshift 7, these lines would appear at 14.4, 28.8, and 43.2 GHz, accessible from the ground. Over a wider range of redshifts, from 3 to 7, these lines would appear at frequencies from 14 to 86 GHz. A ground-based CO Intensity mapping experiment, COMAP, will utilize InP-based HEMT MMIC amplifier front ends in the

  7. Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Chaujar, Rishu

    2016-08-01

    In this paper, we have investigated the small-signal behaviour and RF noise performance of gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) MOSFET, and the results so obtained are simultaneously compared with SiNW and conventional MOSFET at THz frequency range. This work examines reflection and transmission coefficients, noise conductance, minimum noise figure and cross-correlation factor. Results reveal significant reduction in input/output reflection coefficient and an increase in forward/reverse transmission coefficient owing to improved transconductance in GEWE-SiNW in comparison with conventional counterparts. It is also observed that minimum noise figure and noise conductance of GEWE-SiNW is reduced by 17.4 and 31.2 %, respectively, in comparison with SiNW, thus fortifying its potential application for low-noise amplifiers (LNAs) at radio frequencies. Moreover, the efficacy of gate metal workfunction engineering is also studied and the results validate that tuning of workfunction difference results further improvement in device small-signal behaviour and noise performance.

  8. Low-noise cryogenic transmission line

    NASA Technical Reports Server (NTRS)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  9. Design and implementation of a 1-V transformer magnetic feedback low-noise amplifier (LNA) at 5-6 GHz, in a 90 nm complementary metal-oxide-semiconductor (CMOS) process

    NASA Astrophysics Data System (ADS)

    Kytonaki, Eleni-Sotiria; Simitsakis, Paschalis; Bazigos, Antonios; Papananos, Yannis

    2011-02-01

    In this study, a low-noise amplifier (LNA) suitable for low-voltage operation is presented. The LNA operates at a frequency range between 5 and 6 GHz. Its topology exploits magnetic feedback to achieve high reverse isolation and low noise performance without a significant degradation of the gain and linearity of the circuit. The design has been fabricated, considering full electrostatic discharge protection, in a modern 90 nm complementary metal-oxide-semiconductor process. The measured performance, at 5.4 GHz, shows a reverse isolation of -17.3 dB, a gain of 10.4 dB, a noise figure of 0.98 dB and an input intercept point of 1.4 dBm. The circuit dissipates 12.5 mW from a 1 V supply, while it occupies 0.162 mm2 of the die area.

  10. EHF low-noise FET receiver

    NASA Technical Reports Server (NTRS)

    Schellenberg, J. M.; Watkins, E. T.

    1983-01-01

    Extremely high frequency (EHF) receivers for military and NASA programs must be small, lightweight, and highly reliable. In connection with recent advances in the development of mm-wave FET devices and circuits, a basis has been obtained for the eventual replacement of diode mixer front-ends by FET preamplifiers in receivers up to 94 GHz. By placing a low noise amplifier in front of the mixer it is possible to achieve a lower system noise figure than that found in conventional mm-wave receivers. A broader bandwidth can also be provided. Attention is given to the receiver configuration, a low noise FET amplifier, an image rejection filter, a dual-gate FET mixer, a FET local oscillator, and a FET receiver.

  11. Ultra-low-noise microwave amplifiers

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Trowbridge, D.

    1980-01-01

    The highlights of 20 years of maser use and development are presented. Masers discussed include cavity, traveling wave, K band, and S band. Noise temperatures measured since 1960 are summarized. Use of masers in the Deep Space Network is presented. Costs associated with the construction of masers systems are given.

  12. A 5.4-9.2 GHz 19.5 dB Complementary Metal-Oxide-Semiconductor Ultrawide-Band Receiver Front-End Low-Noise Amplifier

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kubota, Shinichi; Toya, Akihiro; Sasaki, Nobuo; Kikkawa, Takamaro

    2011-04-01

    In this work, we present an ultrawide-band (UWB) complementary metal-oxide-semiconductor (CMOS) low-noise amplifier (LNA) for wireless communication in the upper UWB band, that is, from 5.4-9.2 GHz bandwidth with a wide-band 50 Ω input matching network in front of the LNA. A three-stage cascode-topology-based LNA with high-transconductance MOS transistors, was employed to improve the voltage gain up to 23 dB at 7.5 GHz, with 4.5-9.2 GHz 3 dB bandwidth. The maximum output power S21 was 19.5 dB at 7.3 GHz, with 5.4-9.2 GHz 3 dB bandwidth. The input matching circuit was designed with a reduced number of passive elements, resulting in an input reflection coefficient S11 of less than -10 dB from 4.5-9.2 GHz. The noise figure of the LNA was as low as 3.5 dB and the input-referred third-order intercept point (IIP3) was -8 dBm. The LNA has output reflection coefficient S22 of less than -10 dB from 5-7 GHz and a good reverse isolation, that is, S12 of < -45 dB in the entire UWB, due to a cascode topology. The LNA was fabricated using 180 nm CMOS technology, which consumes 56 mW power at 1.8 V power supply. In this paper, we also demonstrate a wireless communication of 7 GHz Gaussian monocycle pulse (GMP) by horn antennas and the LNA from 20 cm transmission distance.

  13. 60 GHz low noise wideband receiver

    NASA Technical Reports Server (NTRS)

    Knust-Graichen, R. A.; Bui, L.

    1985-01-01

    The printed circuit and GaAs beam lead technology-based, low noise integrated receiver presented was developed for low cost space communications and operates in the 59-64 GHz range, using a phase-locked Gunn oscillator at 51.5 GHz. An IF output of 7.5-12.5 GHz is obtained. With the exception of the IF amplifier, and of the E-plane technology-based RF preselect filter, all circuits of the device employ suspended stripline construction.

  14. A high-speed 12-layer two-dimensional bar code detection system with wideband photodetection amplifier and balanced raster scanner

    NASA Astrophysics Data System (ADS)

    Wakaumi, Hiroo; Ajiki, Hiroshi

    1998-12-01

    A high-speed 12-layer 2D bar-code detection system (BCDS) consisting of a photodetection amplifier with an amplification-type current-voltage converter and a balanced raster scanner combined with the complementary light emission drive method for laser diodes, has been developed in order to provide both a high effective scanning speed and multi-layer bar-code detection. This BCDS performs 1,250 scan/s, which is two and a half times the scanning speed of a conventional bar-code detection system. A new theoretical modulation model that gives an accurate model for laser scanning beam traces obtained by the balanced raster scanner is proposed. This model allows an optimum BCDS to be designed easily.

  15. Low-noise nozzle valve

    NASA Astrophysics Data System (ADS)

    Gwin, Hal S.; Aaron, James

    1990-09-01

    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.

  16. Low-noise nozzle valve

    NASA Technical Reports Server (NTRS)

    Gwin, Hal S. (Inventor); Aaron, James (Inventor)

    1990-01-01

    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.

  17. Ultra low-noise charge coupled device

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1993-01-01

    Special purpose CCD designed for ultra low-noise imaging and spectroscopy applications that require subelectron read noise floors, wherein a non-destructive output circuit operating near its 1/f noise regime is clocked in a special manner to read a single pixel multiple times. Off-chip electronics average the multiple values, reducing the random noise by the square-root of the number of samples taken. Noise floors below 0.5 electrons rms are possible in this manner. In a preferred embodiment of the invention, a three-phase CCD horizontal register is used to bring a pixel charge packet to an input gate adjacent a floating gate amplifier. The charge is then repeatedly clocked back and forth between the input gate and the floating gate. Each time the charge is injected into the potential well of the floating gate, it is sensed non-destructively. The floating gate amplifier is provided with a reference voltage of a fixed value and a pre-charge gate for resetting the amplifier between charge samples to a constant gain. After the charge is repeatedly sampled a selected number of times, it is transferred by means of output gates, back into the horizontal register, where it is clocked in a conventional manner to a diffusion MOSFET amplifier. It can then be either sampled (destructively) one more time or otherwise discarded.

  18. Support assembly for cryogenically coolable low-noise choke waveguide

    NASA Technical Reports Server (NTRS)

    Mccrea, F. E. (Inventor)

    1980-01-01

    A compact cryogenically coolable choked waveguide for low-noise input coupling into a cryogenically cooled device, such as a maser or parametric amplifier, utilizes coaxial stainless steel support tubes surrounding the waveguide and connected in cascade to provide a folded low thermal conduction path. The edges of the tubes connected are welded.

  19. Design of matching networks for low noise preamplifiers.

    PubMed

    Reykowski, A; Wright, S M; Porter, J R

    1995-06-01

    This paper discusses matching networks that minimize inductive coupling between the antennas within an array while simultaneously insuring minimum noise contributions from preamplifiers. Typical low noise preamplifier designs require a strong mismatch between the source impedance and the amplifier input impedance (reflection coefficient close to one) to achieve optimal noise performance. This is in contrast to the familiar impedance match known from communication theory where input and source impedances have complex conjugate values for maximizing the power transfer from source to amplifier. The high input reflection coefficient of low noise amplifiers can be exploited to reduce antenna currents by using lossless impedance transformations to create a high impedance at the coil terminals while simultaneously maintaining a low noise figure for the amplifier. The networks presented here constitute an improvement over previous work because they give additional freedoms regarding the values of the network components and the amplifier input impedance. The technique has been formalized and coded in MathCad, making the design of realizable networks a simple process. PMID:7651124

  20. The 30 GHz communications satellite low noise receiver

    NASA Astrophysics Data System (ADS)

    Steffek, L. J.; Smith, D. W.

    1983-10-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  1. The 30 GHz communications satellite low noise receiver

    NASA Technical Reports Server (NTRS)

    Steffek, L. J.; Smith, D. W.

    1983-01-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  2. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  3. Low noise lead screw positioner

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1986-01-01

    A very precise and low noise lead screw positioner, for positioning a retroreflector in an interferometer is described. A gas source supplies inert pressurized gas, that flows through narrow holes into the clearance space between a nut and the lead screw. The pressurized gas keeps the nut out of contact with the screw. The gas flows axially along the clearance space, into the environment. The small amount of inert gas flowing into the environment minimizes pollution. By allowing such flow into the environment, no seals are required between the end of the nut and the screw.

  4. Low noise charge ramp electrometer

    DOEpatents

    Morgan, J.P.; Piper, T.C.

    1992-10-06

    An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit. 2 figs.

  5. Low noise charge ramp electrometer

    DOEpatents

    Morgan, John P.; Piper, Thomas C.

    1992-01-01

    An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit.

  6. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  7. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  8. Two dimensional vernier

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  9. Low noise multiwasher superconducting interferometer

    SciTech Connect

    Carelli, P.; Castellano, M.G.; Torrioli, G.; Leoni, R.

    1998-01-01

    The dc-superconducting quantum interference device (SQUID) is a low-noise converter from magnetic flux to voltage which can have, in principle, an energy sensitivity near the quantum limit of {h_bar}/2. A critical parameter for the ideal performance is the device inductance, which must be kept as small as possible. Minimizing the SQUID inductance, however, is a major concern for a practical device; this requirement implies a small SQUID ring and hence magnetic coupling with an external signal is more difficult to achieve. Here we present an original scheme (called multiwasher) to circumvent this problem, and its implementation in an all-refractory thin-film device. Our scheme not only provides good magnetic coupling with a large input coil (0.5 {mu}H) and very low SQUID inductance, but also shielding from outside uniform fields, such as those generated by ambient disturbances. The measured coupled spectral energy sensitivity in the white region at about 1 kHz is 28{h_bar} at 4.2 K and 5.5{h_bar} in a pumped helium bath at 0.9 K. The flux noise spectral density at 0.1 Hz and 0.9 K is {Phi}{sub n}=1{times}10{sup {minus}6}{Phi}{sub 0}/{radical} (Hz) . {copyright} {ital 1998 American Institute of Physics.}

  10. Scalable, Low-Noise Architecture for Integrated Terahertz Imagers

    NASA Astrophysics Data System (ADS)

    Gergelyi, Domonkos; Földesy, Péter; Zarándy, Ákos

    2015-06-01

    We propose a scalable, low-noise imager architecture for terahertz recordings that helps to build large-scale integrated arrays from any field-effect transistor (FET)- or HEMT-based terahertz detector. It enhances the signal-to-noise ratio (SNR) by inherently enabling complex sampling schemes. The distinguishing feature of the architecture is the serially connected detectors with electronically controllable photoresponse. We show that this architecture facilitate room temperature imaging by decreasing the low-noise amplifier (LNA) noise to one-sixteenth of a non-serial sensor while also reducing the number of multiplexed signals in the same proportion. The serially coupled architecture can be combined with the existing read-out circuit organizations to create high-resolution, coarse-grain sensor arrays. Besides, it adds the capability to suppress overall noise with increasing array size. The theoretical considerations are proven on a 4 by 4 detector array manufactured on 180 nm feature sized standard CMOS technology. The detector array is integrated with a low-noise AC-coupled amplifier of 40 dB gain and has a resonant peak at 460 GHz with 200 kV/W overall sensitivity.

  11. The Alternative Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Jeracki, Robert J.; Moore, Royce D.; Parrott, Tony L.

    2000-01-01

    A 106 bladed fan with a design takeoff tip speed of 1100 ft/sec was hypothesized as reducing perceived noise because of the shift of the blade passing harmonics to frequencies beyond the perceived noise rating range. A 22 in. model of this Alternative Low Noise Fan, ALNF, was tested in the NASA Glenn 9x 15 Wind Tunnel. 'Me fan was tested with a 7 vane long chord stator assembly and a 70 vane conventional stator assembly in both hard and acoustically treated configurations. In addition a partially treated 7 vane configuration was tested wherein the acoustic material between the 7 long chord stators was made inactive. The noise data from the 106 bladed fan with 7 long chord stators in a hard configuration was shown to be around 4 EPNdB quieter than a low tip speed Allison fan at takeoff and around 5 EPNdB quieter at approach. Although the tone noise behaved as hypothesized, the majority of this noise reduction was from reduced broadband noise related to the large number of rotor blades. This 106 bladed ALNF is a research fan designed to push the technology limits and as such is probably not a practical device with present materials technology. However, a low tip speed fan with around 50 blades would be a practical device and calculations indicate that it could be 2 to 3 EPNdB quieter at takeoff and 3 to 4 EPNdB quieter at approach than the Allison fan. 7 vane data compared with 70 vane data indicated that the tone noise was controlled by rotor wake-stator interaction but that the broadband noise is probably controlled by the interaction of the rotor with incoming flows. A possible multiple pure tone noise reduction technique for a fan/acoustic treatment system was identified. The data from the fully treated configuration showed significant noise reductions over a large frequency range thereby providing a real tribute to this bulk absorber treatment design. The tone noise data with the partially treated 7 vane configuration indicated that acoustic material in the

  12. Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization

    NASA Astrophysics Data System (ADS)

    Potnis, Shreyas; Vutha, Amar C.

    2016-07-01

    The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >105 V/A, and input current noise <4 pA/ √{ Hz } , allowing us to obtain shot-noise-limited performance with low optical power.

  13. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  14. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  15. Development of components and subsystems for low noise receivers at micro- and millimeter waves

    NASA Astrophysics Data System (ADS)

    Peltonen, Juhani K.

    1990-09-01

    The development of low noise receivers at micro- and millimeter wave frequencies mainly intended for radio astronomical studies and remote sensing applications are discussed. The work is divided into three parts: design and construction of cryogenic, low noise MESFET (Metal Semiconductor Field Effect Transistor) and HEMT (High Electron Mobility Transistor) amplifiers, studies on semiconductor local oscillators and phase locking of mm wave Gunn oscillators. The basic theory of low noise transistor amplifiers employing scattering and noise parameters of an active device is reviewed. Stability problems of amplifiers and noise measurement techniques especially applicable to cryogenic systems are discussed. Several low noise amplifiers were constructed for the frequency range of 1 to 22 GHz. As an example, a 4 GHz cryogenic MESFET IF amplifier with 20 K noise temperature was developed. A two stage coaxial HEMT amplifier with T(sub A) = 300 K at room temperature was constructed. Various designs of semiconductor local oscillators needed for mm wave receivers are reviewed. Experimental verification of the theoretical model for the waveguide mounting structure of Gunn diodes is given at frequencies of 35 to 53 GHz. Fundamental frequency local oscillators with an output power of approximately 50 mW and mechanical tuning range of 5 to 10 GHz (center frequency of 45 GHz) were constructed. Description of the phase locking scheme (exploiting bias tuning of Gunn oscillators) of the 72 to 115 GHz receiver is given. The additional factors needed in application of the basic phaselock theory to mm wave oscillators are discussed.

  16. Low-noise video amplifiers for imaging CCD's

    NASA Technical Reports Server (NTRS)

    Scinicariello, F.

    1976-01-01

    Various techniques were developed which enable the CCD (charge coupled device) imaging array user to obtain optimum performance from the device. A CCD video channel was described, and detector-preamplifier interface requirements were examined. A noise model for the system was discussed at length and laboratory data presented and compared to predicted results.

  17. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  18. Two-Dimensional IHCP Code

    Energy Science and Technology Software Center (ESTSC)

    1997-11-18

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  19. Low-Noise Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Coy, John J.; Henry, Zachary; Thomas, John; Litvin, Faydor L.

    1994-01-01

    Modified spiral bevel gears that generate relatively little noise and vibration designed and fabricated for use in U.S. Army OH-58D helicopter. Noise reduced by 12 to 19 dB. Similar low-noise, low-vibration spiral bevel gears used in other helicopters, with consequent benefits in comfort and health of pilots and passengers, enhancement of pilots' performance and safety through reduction of audible distraction, and reduction in cost and weight of helicopters through reduction in amount of sound-proofing material. Low-noise, low-vibration spiral bevel gears also used in drive axles of cars and trucks for smoother, quieter rides.

  20. Nonlinearly stacked low noise turbofan stator

    NASA Technical Reports Server (NTRS)

    Schuster, William B. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  1. Two-dimensional resonators for local oscillators

    NASA Astrophysics Data System (ADS)

    Huang, K.-c.; Jenkins, A.; Edwards, D.; Dew-Hughes, D.

    1999-11-01

    The expedited globalization of satellite technology has brought about a rapid boost in satellite competition and increased utilization of wireless communications remote data devices. In space communications receivers, there is an expanding demand for higher performance from local oscillators. The determining conditions are high Q values, high circulating power and low amplifier noise figures. In spite of their low insertion loss, conventional one-dimensional high-temperature superconducting (HTS) resonator-feedback oscillators suffer from high peak current densities inside the resonator and thus have a limited power-handling characteristics. To achieve higher-power oscillators, it is possible to introduce a two-dimensional microstrip resonator to balance the internal current distribution. To this end, 3 GHz two-dimensional resonators have been fabricated from TBCCO 2212 thin films deposited by RF sputtering onto 2 cm square LaAlO3 substrates. This paper demonstrates the frequency stabilizer role and the frequency response of the two-dimensional resonator. The considerable improvement for the performance of resonator-feedback oscillators constructed using such HTS resonators will also be presented.

  2. Low-noise macroscopic twin beams

    NASA Astrophysics Data System (ADS)

    Iskhakov, Timur Sh.; Usenko, Vladyslav C.; Filip, Radim; Chekhova, Maria V.; Leuchs, Gerd

    2016-04-01

    Applying a multiphoton-subtraction technique to the two-color macroscopic squeezed vacuum state of light generated via high-gain parametric down-conversion we conditionally prepare a different state of light: bright multimode low-noise twin beams. A lower noise in the sum of the photon numbers opens a possibility to encode information into this variable while keeping the nonclassical character of the state. The obtained results demonstrate up to eightfold suppression of noise in each beam while preserving and even moderately improving the nonclassical photon-number correlations between the beams. The prepared low-noise macroscopic state, containing up to 2000 photons per mode, is not among the Gaussian states achievable through nonlinear optical processes. Apart from that, we suggest a method for measuring quantum efficiency, which is based on the Fano factor measurement. The proposed technique substantially improves the usefulness of twin beams for quantum communication and metrology.

  3. A low noise 500 MHz frequency source

    NASA Astrophysics Data System (ADS)

    Vulcan, A.; Bloch, M.; Tanski, W.

    A low-noise signal source providing multiple 500 MHz and 400 MHz outputs is presented whose noise characteristics approach the thermal limit at frequencies spaced greater than 1 MHz from the carrier. The unit uses bulk and surface acoustic wave resonators to insure low phase noise and spurious outputs and is totally redundant for failsafe operation. The packaging concept minimizes subassembly interconnections and provides both physical and electrical independence of two redundant generators; package shielding insures minimum conducted and radiated susceptibility.

  4. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  5. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  6. The low noise limit in gene expression

    DOE PAGESBeta

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  7. Ultra-low-noise preamplifier for condenser microphones

    NASA Astrophysics Data System (ADS)

    Starecki, Tomasz

    2010-12-01

    The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments.

  8. Ultra-low-noise preamplifier for condenser microphones.

    PubMed

    Starecki, Tomasz

    2010-12-01

    The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments. PMID:21198039

  9. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/√Hz is achieved.

  10. A battery-based, low-noise voltage source.

    PubMed

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7 x 10(-7) over 6.5 h and a noise level equal or smaller than 30 nV/square root(Hz) is achieved. PMID:20590260

  11. Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization.

    PubMed

    Potnis, Shreyas; Vutha, Amar C

    2016-07-01

    The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >10(5) V/A, and input current noise <4 pA/Hz, allowing us to obtain shot-noise-limited performance with low optical power. PMID:27475611

  12. Two-dimensional thermofield bosonization

    SciTech Connect

    Amaral, R.L.P.G.

    2005-12-15

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.

  13. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  14. Two dimensional unstable scar statistics.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  15. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  16. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  17. A LOW NOISE RF SOURCE FOR RHIC.

    SciTech Connect

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  18. Amplifier arrays for CMB polarization

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Lawrence, Charles R.; Seiffert, Michael D.; Wells, Mary M.; Kangaslahti, Pekka; Dawson, Douglas

    2003-01-01

    Cryogenic low noise amplifier technology has been successfully used in the study of the cosmic microwave background (CMB). MMIC (Monolithic Millimeter wave Integrated Circuit) technology makes the mass production of coherent detection receivers feasible.

  19. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357

  20. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  1. European low-noise MMIC technologies for cryogenic millimetre wave radio astronomical applications

    NASA Astrophysics Data System (ADS)

    Cremonini, Andrea; Mariotti, Sergio; Valenziano, Luca

    2012-09-01

    The Low Noise technology has a paramount relevance on radiotelescopes and radiometers performances. Its influence on sensitivity and temporal stability has a deep impact on obtainable scientific results. As well known, front end active part of scientific instruments are cryocooled in order to drastically reduce the intrinsic thermal noise generated by its electronic parts and consequently increase the sensitivity. In this paper we will describe the obtained results by an Italian Space Agency funded activity. The aim is to validate European MMIC Low Noise technologies and designs for cryogenic environments in the range of millimetre wave. As active device, HEMT (High Electron Mobility Transistor) are considered the best device for high frequency and low noise cryo applications. But not all the semiconductor foundry process are suitable for applications in such environment. Two European Foundries has been selected and two different HEMT based Low Noise Amplifiers have been designed and produced. The main goal of this activity is identify an European technology basement for space and ground based low noise cryogenic applications. Designs, layout, architectures, foundry processes and results will be compared.

  2. Two-dimensional separated flows

    NASA Astrophysics Data System (ADS)

    Gersten, K.

    The state of the art of asymptotic theory is discussed with respect to incompressible two-dimensional separated flows. As an example, the flow over an indented flat plate is considered for two cases: a small separation bubble within the lower part of the boundary layer, and the 'catastrophic' separation of the whole boundary layer with a large recirculating eddy. Separation means failure of Prandtl's boundary layer theory, and alternate theories are required. An example of this is shown in the calculation of circulation in the dent according to triple-deck theory. The free-streamline theory approach is used to examine the indented flat plate and the flow past a circular cylinder. Attention is also given to flow control by continuous injection, combined forced and free convection, unsteady laminar flows, and laminar flows.

  3. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  4. Low-noise fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Heidelberg, Laurence J. (Inventor); Envia, Edmane (Inventor)

    2008-01-01

    Low-noise fan exit guide vanes are disclosed. According to the present invention a fan exit guide vane has an outer shell substantially shaped as an airfoil and defining an interior cavity. A porous portion of the outer shell allows communication between the fluctuations in the air passing over the guide vane and the interior cavity. At least one acoustically resonant chamber is located within the interior cavity. The resonant chamber is in communication with the porous portion of the outer perimeter. The resonant chamber is configured to reduce the noise generated at a predetermined frequency. In various preferred embodiments, there is a plurality of acoustically resonant chambers located within the interior cavity. The resonant chambers can be separated by one or more partitions within the interior cavity. In these embodiments, the resonant chambers can be configured to reduce the noise generated over a range of predetermined frequencies.

  5. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  6. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  7. Developing Low-Noise GaAs JFETs For Cryogenic Operation

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.

    1995-01-01

    Report discusses aspects of effort to develop low-noise, low-gate-leakage gallium arsenide-based junction field-effect transistors (JFETs) for operation at temperature of about 4 K as readout amplifiers and multiplexing devices for infrared-imaging devices. Transistors needed to replace silicon transistors, relatively noisy at 4 K. Report briefly discusses basic physical principles of JFETs and describes continuing process of optimization of designs of GaAs JFETs for cryogenic operation.

  8. Digital Filters for Two-Dimensional Data

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1983-01-01

    Computational efficient filters speed processing of two-dimensional experimental data. Two-dimensional smoothing filter used to attenuate highfrequency noise in two-dimensional numerical data arrays. Filter provides smoothed data values equal to values obtained by fitting surface with secondand third-order terms to 5 by 5 subset of data points centered on points and replacing data at each point by value of surface fitted at point. Especially suited for efficient analysis of two-dimensional experimental data on images.

  9. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings

    PubMed Central

    2014-01-01

    Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio

  10. A gimbaled low noise momentum wheel

    NASA Technical Reports Server (NTRS)

    Bichler, U.; Eckardt, T.

    1993-01-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  11. A low-noise beta-radiometer

    SciTech Connect

    Antonenko, G.I.; Savina, V.I.

    1995-12-01

    The two-channel detector for a low-noise (down to 0.06 sec{sup -1}) beta-radiometer for measuring the mass concentration of {sup 90}Sr in the environment after the chemical extraction of strontium by the oxalate-nitrate method was certified at the D.I. Mendeleev Institute of Metrology (certificate No. 137/93). A detector unit using two end-window self-quenching counters with thin input windows (8 {mu}m thick and 60 mm in diameter) operating as a Geiger-Mueller counter and filled with a mixture of 90% helium (atomic gas) and 10% ethanol (organic molecules) can measure the beta-activity of two substrates concurrently. It is often used to detect the beta-radiation of {sup 90}Sr. This isotope produces particles with energies ranging from 180 to 1000 keV, and the detection efficiency is 50% at a level of 0.1 Bq after measuring for 20 min with an uncertainty of 25%.

  12. A gimbaled low noise momentum wheel

    NASA Astrophysics Data System (ADS)

    Bichler, U.; Eckardt, T.

    1993-05-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  13. Low Noise Exhaust Nozzle Technology Development

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Balan, C.; Mengle, V.; Brausch, J. F.; Shin, H.; Askew, J. W.

    2005-01-01

    NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Development of a propulsion system that satisfies strict airport noise regulations and provides high levels of cruise and transonic performance with adequate takeoff performance, at an acceptable weight, is critical to the success of any HSCT program. The principal objectives were to: 1. Develop a preliminary design of an innovative 2-D exhaust nozzle with the goal of meeting FAR36 Stage III noise levels and providing high levels of cruise performance with a high specific thrust for Mach 2.4 HSCT with a range of 5000 nmi and a payload of 51,900 lbm, 2. Employ advanced acoustic and aerodynamic codes during preliminary design, 3. Develop a comprehensive acoustic and aerodynamic database through scale-model testing of low-noise, high-performance, 2-D nozzle configurations, based on the preliminary design, and 4. Verify acoustic and aerodynamic predictions by means of scale-model testing. The results were: 1. The preliminary design of a 2-D, convergent/divergent suppressor ejector nozzle for a variable-cycle engine powered, Mach 2.4 HSCT was evolved, 2. Noise goals were predicted to be achievable for three takeoff scenarios, and 3. Impact of noise suppression, nozzle aerodynamic performance, and nozzle weight on HSCT takeoff gross weight were assessed.

  14. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  15. A Low-Noise, Wideband Preamplifier for a Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Mathur, Raman; Knepper, Ronald W.; O'Connor, Peter B.

    2009-01-01

    FTMS performance parameters such as limits of detection, dynamic range, sensitivity, and even mass accuracy and resolution can be greatly improved by enhancing its detection circuit. An extended investigation of significant design considerations for optimal signal-to-noise ratio in an FTMS detection circuit are presented. A low noise amplifier for an FTMS is developed based on the discussed design rules. The amplifier has a gain of ≈ 3500 and a bandwidth of 10 kHz - 1 MHz corresponding to m/z range of 100 Da to 10 kDa (at 7 Tesla). The performance of the amplifier was tested on a MALDI-FTMS, and has demonstrated a 25-fold reduction in noise in a mass spectrum of C60 compared to that of a commercial amplifier. PMID:18029195

  16. Ultra-Low Noise HEMT Device Models: Application of On-Wafer Cryogenic Noise Analysis and Improved Parameter Extraction Techniques

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Hamai, M.; Nishimoto, M.; Laskar, J.; Szydlik, P.; Lai, R.

    1995-01-01

    Significant advances in the development of HEMT technology have resulted in high performance cryogenic low noise amplifiers whose noise temperatures are within an order of magnitude of the quantum noise limit. Key to the identification of optimum HEMT structures at cryogenic temperatures is the development of on-wafer noise and device parameter extraction techniques. Techniques and results are described.

  17. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  18. A 65-nm low-noise low-cost ΣΔ modulator for audio applications

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Lu, Liao; Hao, Luo; Xiaopeng, Liu; Xiaoxia, Han; Yan, Han

    2012-02-01

    This paper introduces a low-noise low-cost ΣΔ modulator for digital audio analog-to-digital conversion. By adopting a low-noise large-output swing operation amplifier, not only is the flicker noise greatly inhibited, but also the power consumption is reduced. Also the area cost is relatively small. The modulator was implemented in a SMIC standard 65-nm CMOS process. Measurement results show it can achieve 96 dB peak signal-to-noise plus distortion ratio (SNDR) and 105 dB dynamic range (DR) over the 22.05-kHz audio band and occupies 0.16 mm2. The power consumption of the proposed modulator is 4.9 mW from a 2.5 V power supply, which is suitable for high-performance, low-cost audio codec applications.

  19. Low-noise hybrid superconductor/semiconductor 7.4 GHz receiver downconverter for NASA space applications

    SciTech Connect

    Javadi, H.H.S.; Barner, J.B.; Bautista, J.J.

    1994-12-31

    A low-noise microwave receiver downconverter utilizing thin-film high-critical-temperature superconducting (HTS) passive circuitry and semiconductor active devices has been developed for use in space. It consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. The downconverter converts a 200 MHz wide band centered around 7.35 GHz to a band centered around 1.0 GHz. When cooled to 77 K, the downconverter plus cables inside a cryogenic refrigerator produced a noise temperature measured at the refrigerator port of approximately 50 K with conversion gain of 18 dB.

  20. Measuring Monotony in Two-Dimensional Samples

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's correlation coefficient for…

  1. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  2. Compact low-noise preamplifier for noise spectroscopy with biased photodiodes in cargo inspection systems

    NASA Astrophysics Data System (ADS)

    Benetti, Bob; Langeveld, Willem G. J.

    2013-09-01

    Noise Spectroscopy, a.k.a. Z-determination by Statistical Count-rate ANalysis (Z-SCAN), is a statistical technique to determine a quantity called the "noise figure" from digitized waveforms of pulses of transmitted x-rays in cargo inspection systems. Depending only on quantities related to the x-ray energies, it measures a characteristic of the transmitted x-ray spectrum, which depends on the atomic number, Z, of the material penetrated. The noise figure can thus be used for material separation. In an 80-detector prototype, scintillators are used with large-area photodiodes biased at 80V and digitized using 50-MSPS 12-bit ADC boards. We present an ultra-compact low-noise preamplifier design, with one high-gain and one low-gain channel per detector for improved dynamic range. To achieve adequate detection sensitivity and spatial resolution each dual-gain preamplifier channel must fit within a 12.7 mm wide circuit board footprint and maintain adequate noise immunity to conducted and radiated interference from adjacent channels. The novel design included iterative SPICE analysis of transient response, dynamic range, frequency response, and noise analysis to optimize the selection and configuration of amplifiers and filter response. We discuss low-noise active and passive components and low-noise techniques for circuit board layout that are essential to achieving the design goals, and how the completed circuit board performed in comparison to the predicted responses.

  3. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  4. Efficient Two-Dimensional-FFT Program

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1992-01-01

    Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.

  5. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Sanvito, T.; Potenza, M. A.; Zocca, F.

    2012-10-01

    An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

  6. Very Low Noise Multiplexing with SQUIDs and SiGe Heterojunction Bipolar Transistors for Readout of Large Superconducting Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Voisin, F.; Bréelle, E.; Piat, M.; Prêle, D.; Klisnick, G.; Sou, G.; Redon, M.

    2008-05-01

    This paper presents an ultra low noise instrumentation based on a standard BiCMOS SiGe 0.35 μm ASIC operating at cryogenic temperatures. The main functions of the electronic circuit are the readout and the multiplexing of SQUIDs/TES. We report the cryogenic operation of the ASIC dedicated to the readout of a 2×4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low noise ( 0.2 nV/sqrt{Hz} ) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented.

  7. Very-low-noise multiplexing with SQUIDs and SiGe HBTs for readout of large superconducting bolometer arrays

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Klisnick, G.; Sou, G.; Redon, M.; Bréelle, E.; Voisin, F.; Piat, M.

    2007-08-01

    We present an ultra-low-noise instrumentation based on a standard BiCMOS SiGe 0.35 μm ASIC operating at cryogenic temperatures. The main functions of the electronic circuit are the readout and the multiplexing of SQUIDs/TES arrays. We report the cryogenic operation of the ASIC dedicated to the readout of a 2×4 pixel demonstrator array. We particularly emphasise on the development, and the test phases of an ultra-low-noise (0.2 nV/√Hz) cryogenic amplifier designed with two multiplexed input. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented.

  8. Low-noise preamplifier based on PMT and its signal processing

    NASA Astrophysics Data System (ADS)

    Ye, Li-hua; Wang, Hai-yang; Wang, Wen-xuan; Cui, Yi-ping; Hang, Jian-jun; Sha, Tao

    2013-09-01

    Through the establishment of the noise model for photomultiplier, estimate the signal-to-noise ratio of the photomultiplier tube, using the principle of photoelectric detection technology, combined with the needs of practical applications; select the appropriate photoelectric multiplier tube, from the two aspects of the dynamic design and static design to ensure the correct output signal of the photomultiplier tube. The low noise preamplifier will amplify the output signal of photomultiplier tube without noise as soon as possible. This article describes the design principles of the photomultiplier tube selection and application. From the op-amp selection, multistage amplifier circuit design, circuit noise estimation, PCB board layout line and shielding, proposed a practical circuit design of 10MHz band width; and matters needing attention and its signal processing method. The simulation results show that the signal amplifying circuit designed, this circuit design can be very well amplifying and processing the output signal of the photomultiplier tube. To verify the theory of articles derived from circuit simulation to the actual test. Simulation results show that the signal amplifying circuit design, this form of circuit design can be very good enlarged and processing the output signal of the photomultiplier tube. From the actual test, the test results show that the accuracy and practicality of the simulation results.

  9. Electrical contacts to two-dimensional semiconductors.

    PubMed

    Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras

    2015-12-01

    The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides. PMID:26585088

  10. Two-dimensional nanolithography using atom interferometry

    SciTech Connect

    Gangat, A.; Pradhan, P.; Pati, G.; Shahriar, M.S.

    2005-04-01

    We propose a scheme for the lithography of arbitrary, two-dimensional nanostructures via matter-wave interference. The required quantum control is provided by a {pi}/2-{pi}-{pi}/2 atom interferometer with an integrated atom lens system. The lens system is developed such that it allows simultaneous control over the atomic wave-packet spatial extent, trajectory, and phase signature. We demonstrate arbitrary pattern formations with two-dimensional {sup 87}Rb wave packets through numerical simulations of the scheme in a practical parameter space. Prospects for experimental realizations of the lithography scheme are also discussed.

  11. Crossflow in two-dimensional asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Lee, L. P.

    1975-01-01

    An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.

  12. A programmable ultra-low noise X-band exciter.

    PubMed

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry. PMID:11477765

  13. On the design and test of a low noise propeller

    NASA Technical Reports Server (NTRS)

    Succi, G. P.

    1981-01-01

    An extensive review of noise and performance of general aviation propellers was performed. Research was done in three areas: The acoustic and aerodynamic theory of general aviation propellers, wind tunnel tests of three one-quarter scale models of general aviation propellers, and flight test of two low noise propellers. The design and testing of the second propeller is reviewed. The general aerodynamic considerations needed to design a new propeller are described. The design point analysis of low noise propellers is reviewed. The predicted and measured noise levels are compared.

  14. Nitrogenated holey two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-03-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications.

  15. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  16. New two dimensional compounds: beyond graphene

    NASA Astrophysics Data System (ADS)

    Lebegue, Sebastien

    2015-03-01

    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  17. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  18. Nitrogenated holey two-dimensional structures

    PubMed Central

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-01-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications. PMID:25744355

  19. Valley excitons in two-dimensional semiconductors

    DOE PAGESBeta

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  20. Valley excitons in two-dimensional semiconductors

    SciTech Connect

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.

  1. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  2. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  3. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chant, M.; Leduc, H. G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    The design and performance are described of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz the receiver has a double-sideband noise temperature of about 172 K. By using embedded magnetic-field concentrators Josephson pair tunneling is effectively suppressed. Techniques for improving receiver performance are discussed.

  4. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chan, M.; Leduc, Henry G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    We discuss the design and performance of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz, the receiver has a double sideband noise temperature of approx. 172 K. By using embedded magnetic field concentrators, we are able to effectively suppress Josephson pair tunneling. Techniques for improving receiver performance are discussed.

  5. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  6. Electrometer Amplifier With Overload Protection

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Alexander, R.

    1986-01-01

    Circuit features low noise, input offset, and high linearity. Input preamplifier includes input-overload protection and nulling circuit to subtract dc offset from output. Prototype dc amplifier designed for use with ion detector has features desirable in general laboratory and field instrumentation.

  7. A 700mV low power low noise implantable neural recording system design.

    PubMed

    An, Guanglei; Hutchens, Chriswell; Rennaker, Robert L

    2014-01-01

    A low power, low noise implantable neural recording interface for use in a Radio-Frequency Identification (RFID) is presented in this paper. A two stage neural amplifier and 8 bit Pipelined Analog to Digital Converter (ADC) are integrated in this system. The optimized number of amplifier stages demonstrates the minimum power and area consumption; The ADC utilizes a novel offset cancellation technique robust to device leakage to reduce the input offset voltage. The neural amplifier and ADC both utilize 700mV power supply. The midband gain of neural amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7μVrms and 1.90 respectively. The ADC achieves 8 bit accuracy at 16Ksps with an input voltage of ±400mV. Combined simulation and measurement results demonstrate the neural recording interface's suitability for in situ neutral activity recording. PMID:25571498

  8. Magnetization study of two dimensional helium three

    NASA Astrophysics Data System (ADS)

    Guo, Lei

    This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the

  9. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  10. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  11. Kirigami for Two-Dimensional Electronic Membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold

    2015-03-01

    Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.

  12. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  13. Two-dimensional ranking of Wikipedia articles

    NASA Astrophysics Data System (ADS)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  14. Two-Dimensional NMR Lineshape Analysis.

    PubMed

    Waudby, Christopher A; Ramos, Andres; Cabrita, Lisa D; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  15. Deeply subrecoil two-dimensional Raman cooling

    SciTech Connect

    Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.

    2004-10-01

    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.

  16. Two-dimensional tungsten oxide nanowire networks

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Li, Y. H.; Ahmad, I.; McCartney, D. G.; Zhu, Y. Q.; Hu, W. B.

    2006-09-01

    The authors report the synthesis and characterization of two-dimensional (2D) single crystalline nanonetworks consisting of tungsten oxide nanowires with diameters of ca. 20nm. The 2D networks are believed to result from the nanowire growth along the four crystallographic equivalent directions of ⟨110⟩ in the tetragonal WO2.9 structure. These 2D tungsten oxide networks may be potential precursors for creating 2D networks comprising WS2 nanotubes.

  17. Fully localized two-dimensional embedded solitons

    SciTech Connect

    Yang Jianke

    2010-11-15

    We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.

  18. Two-dimensional structured illumination microscopy.

    PubMed

    Schropp, M; Uhl, R

    2014-10-01

    In widefield fluorescence microscopy, images from all but very flat samples suffer from fluorescence emission from layers above or below the focal plane of the objective lens. Structured illumination microscopy provides an elegant approach to eliminate this unwanted image contribution. To this end a line grid is projected onto the sample and phase images are taken at different positions of the line grid. Using suitable algorithms 'quasi-confocal images' can be derived from a given number of such phase-images. Here, we present an alternative structured illumination microscopy approach, which employs two-dimensional patterns instead of a one-dimensional one. While in one-dimensional structured illumination microscopy the patterns are shifted orthogonally to the pattern orientation, in our two-dimensional approach it is shifted at a single, pattern-dependent angle, yet it already achieves an isotropic power spectral density with this unidirectional shift, which otherwise would require a combination of pattern-shift and -rotation. Moreover, our two-dimensional approach also yields a better signal-to-noise ratio in the evaluated image. PMID:25113075

  19. Low Noise Performance Perspectives Of Wideband Aperture Phased Arrays

    NASA Astrophysics Data System (ADS)

    Woestenburg, E. E. M.; Kuenen, J. C.

    2004-06-01

    A general analysis of phased array noise properties and measurements, applied to one square meter tiles of the Thousand Element Array (THEA), has resulted in a procedure to define the noise budget for a THEA-tile (Woestenburg and Dijkstra, 2003). The THEA system temperature includes LNA and receiver noise, antenna connecting loss, noise coupling between antenna elements and other possible contributions. This paper discusses the various noise contributions to the THEA system temperature and identifies the areas where improvement can be realized. We will present better understanding of the individual noise contributions using measurements and analysis of single antenna/receiver elements. An improved design for a 1-m2 Low Noise Tile (LNT) will be discussed and optimized low noise performance for the LNT is presented. We will also give future perspectives of the noise performance for such tiles, in relation to the requirements for SKA in the 1 GHz frequency range.

  20. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser

    NASA Astrophysics Data System (ADS)

    Yang, Changsheng; Xu, Shanhui; Chen, Dan; Zhang, Yuanfei; Zhao, Qilai; Li, Can; Zhou, Kaijun; Feng, Zhouming; Gan, Jiulin; Yang, Zhongmin

    2016-05-01

    An all-fiber Yb-doped kHz-linewidth low-noise linearly polarized single-frequency master-oscillator power-amplifier (MOPA) laser with a stable CW output power of >52 W is demonstrated. By suppressing the intensity noise of the DBR phosphate fiber oscillator, the linewidth of MOPA laser is not noticeably broadened, and an ultra-narrow linewidth of <3 kHz is obtained. Furthermore, the low-noise behavior of MOPA lasers is investigated. A measured relative intensity noise of < -130 dB Hz-1 at frequencies of over 2 MHz, a phase noise above 1 kHz of <5 μrad/Hz1/2, and a signal-to-noise ratio of >63 dB are achieved.

  1. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  2. On-wafer, cryogenic characterization of ultra-low noise HEMT devices

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Laskar, J.; Szydlik, P.

    1995-01-01

    Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.

  3. A low noise CMOS RF front-end for UWB 6-9 GHz applications

    NASA Astrophysics Data System (ADS)

    Feng, Zhou; Ting, Gao; Fei, Lan; Wei, Li; Ning, Li; Junyan, Ren

    2010-11-01

    An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented. A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13 μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB, an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of -12.6 dBm while in the low gain mode. This RF front-end consumes 17 mA from a 1.2 V supply voltage.

  4. Low-noise analog readout channel for SDD in X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Gusev, A.; Krivchenko, A.; Levin, V.; Malankin, E.; Normanov, D.; Rotin, A.; Sagdiev, I.; Samsonov, V.

    2016-01-01

    A low-noise analog readout channel optimized for operation with the Silicon Drift Detectors (SDDs) with built-in JFET is presented. The Charge Sensitive Amplifier (CSA) operates in a pulse reset mode using the reset diode built-in the SDD detector. The shaper is a 6th order semi-Gaussian filter with switchable discrete shaping times. The readout channel provides the Equivalent Noise Charge (ENC) of 12e- (simulation) and input dynamic range of 30 keV . The measured energy resolution at the 5,89 keV line of a 55Fe X-ray source is 336 eV (FWHM). The channel was prototyped via Europractice in the AMS 350 nm process as miniASIC. The simulation and first measurement results are presented in the paper.

  5. Low-noise CMOS preamplifier operating at 4.2 K

    NASA Astrophysics Data System (ADS)

    Kleine, U.; Bieger, J.; Seifert, H.

    1994-08-01

    A low-noise CMOS readout preamplifier operating at liquid helium temperatures is described. In conjunction with magnetic field sensors applying SQUIDS (Superconducting QUantum Interference Device) the preamplifier can be used to measure biomagnetic fields of human brain and heart noninvasively. The input of the folded cascode amplifier can be attached directly to a low impedance SQUID output. This way the commonly used discrete LC tank resonator circuit for impedance matching can be omitted. An equivalent noise voltage density of 0.3 nV/square root of Hz at 500 kHz has been measured. Despite the occurrence of the kink effect and other abnormalities in MOS transistor characteristics at 4.2 K, during the tests no abnormal operation has been observed. Such a preamplifier circuit is essential in simplifying the expensive shielding currently used in biomagnetic diagnosis systems.

  6. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    PubMed

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented. PMID:25362437

  7. SCAPS, a two-dimensional ion detector for mass spectrometer

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40

  8. Two-Dimensional Synthetic-Aperture Radiometer

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    2010-01-01

    A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate

  9. Two dimensional thick center vortex model

    NASA Astrophysics Data System (ADS)

    Rafibakhsh, Shahnoosh; Ahmadi, Alireza

    2016-01-01

    The potential between static color source is calculated in the SU (3) gauge group by introducing a two dimensional vortex flux. To generalize the model, the length of the Wilson loop is equal to R oriented along the x axis, and the vortex flux is considered as a function of x and y. The comparison between the generalized model and the original one shows that the intermediate linear regime is increased significantly and better agreement with Casimir scaling is achieved. Furthermore, the model is applied to calculate the potential between baryons.

  10. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both σ and π electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  11. Can Two-Dimensional Boron Superconduct?

    PubMed

    Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I

    2016-04-13

    Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K. PMID:27003635

  12. Two-dimensional meniscus in a wedge

    SciTech Connect

    Kagan, M.; Pinczewski, W.V.; Oren, P.E.

    1995-03-15

    This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.

  13. Pressure of two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin; Wang, Lei; Tian, Wen-de

    2016-06-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas.

  14. Fractures in heterogeneous two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Zei, Maria

    2001-05-01

    A two-dimensional triangular lattice with bond disorder is used as a testing ground for fracture behavior in heterogeneous materials in strain-controlled conditions. Simulations are performed with two interaction potentials (harmonic and Lennard-Jones types) and different breaking thresholds. We study the strain range where the fracture progressively develops from the first to the last breakdown. Scaling properties with the lattice size are investigated: no qualitative difference is found between the two interaction potentials. Clustering properties of the broken bonds are also studied by grouping them into disjoint sets of connected bonds. Finally, the role of kinetic energy is analyzed by comparing overdamped with dissipationless dynamics.

  15. Couette flow of two-dimensional foams

    NASA Astrophysics Data System (ADS)

    Katgert, G.; Tighe, B. P.; Möbius, M. E.; van Hecke, M.

    2010-06-01

    We experimentally investigate flow of quasi-two-dimensional disordered foams in Couette geometries, both for foams squeezed below a top plate and for freely floating foams (bubble rafts). With the top plate, the flows are strongly localized and rate dependent. For the bubble rafts the flow profiles become essentially rate independent, the local and global rheology do not match, and in particular the foam flows in regions where the stress is below the global yield stress. We attribute this to nonlocal effects and show that the "fluidity" model recently introduced by Goyon et al. (Nature, 454 (2008) 84) captures the essential features of flow both with and without a top plate.

  16. Program For Two-Dimensional Thermoplastic Deformation

    NASA Technical Reports Server (NTRS)

    Orient, George E.

    1993-01-01

    SOLAS contains number of utility programs for use with finite-element simulations. Designed to handle two-dimensional problems of quasi-static thermoplastic deformation. Includes optional postprocessing software, independent of solution codes, generating unified element-by-element list of quantitative results of computation, plus file containing signed equivalent stresses, equivalent strains, and multiaxiality factor parameter. Signs of equivalent quantities expressed either with respect to maximum principal quantities or with respect to directions defined by user. Written in UNIX shell script and FORTRAN 77.

  17. Transport in two-dimensional paper networks

    PubMed Central

    Fu, Elain; Ramsey, Stephen A.; Kauffman, Peter; Lutz, Barry; Yager, Paul

    2011-01-01

    Two-dimensional paper networks (2DPNs) hold great potential for transcending the capabilities and performance of today's paper-based analytical devices. Specifically, 2DPNs enable sophisticated multi-step chemical processing sequences for sample pretreatment and analysis at a cost and ease-of-use that make them appropriate for use in settings with low resources. A quantitative understanding of flow in paper networks is essential to realizing the potential of these networks. In this report, we provide a framework for understanding flow in simple 2DPNs using experiments, analytical expressions, and computational simulations. PMID:22140373

  18. Numerical simulations of two-dimensional QED

    SciTech Connect

    Carson, S.R.; Kenway, R.D.

    1986-02-01

    We describe the computer simulation of two-dimensional QED on a 64 x 64 Euclidean space-time lattice using the Susskind lattice fermion action. Theorder parameter for chiral symmetry breaking and the low-lying meson masses are calculated for both the model with two continuum flavours, which arises naturally in this formulation, and the model with one continuum falvour obtained by including a nonsymmetric mass term and setting one fermion mass equal to the cut-off. Results are compared with those obtined using the quenched approximation, and with analytic predictions.

  19. Quasicondensation in Two-Dimensional Fermi Gases.

    PubMed

    Wu, Chien-Te; Anderson, Brandon M; Boyack, Rufus; Levin, K

    2015-12-11

    In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS. PMID:26705613

  20. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  1. Two-dimensional shape memory graphene oxide

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  2. Two-dimensional shape memory graphene oxide.

    PubMed

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  3. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Construction of the wood frame for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the

  4. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Construction of the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a

  5. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Manometer for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a space

  6. A 0.5-V multi-channel low-noise readout front-end for portable EEG acquisition.

    PubMed

    Wen-Yen Huang; Yu-Wei Cheng; Kea-Tiong Tang

    2015-08-01

    This article presents a low-noise readout front-end suitable for Electroencephalogram (EEG) acquisition. The chip includes 8-channel fully-differential instrumentation amplifiers, utilizing chopper stabilization technique for reducing the flicker noise, each amplifier with a small Gm-C low-pass filter, a programmable gain amplifier, and a 10-bit successive approximation register (SAR) ADC with a detect logic for DAC switching. The chip is fabricated with the TSMC 90nm CMOS process. The low-noise readout front-end has simulated frequency response from 0.57 Hz to 213 Hz, programmable gain from 54.4 dB to 87.6 dB, integrated input-referred noise of 0.358 μVrms within EEG bandwidth, a noise efficiency factor (NEF) of 2.43, and a power efficiency factor (PEF) of 2.95. The overall system consumes 32.08 μW under 0.5-V supply. PMID:26736392

  7. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (ESTSC)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  8. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  9. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  10. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  11. Two-dimensional dipolar nematic colloidal crystals.

    PubMed

    Skarabot, M; Ravnik, M; Zumer, S; Tkalec, U; Poberaj, I; Babic, D; Osterman, N; Musevic, I

    2007-11-01

    We study the interactions and directed assembly of dipolar nematic colloidal particles in planar nematic cells using laser tweezers. The binding energies for two stable configurations of a colloidal pair with homeotropic surface alignment are determined. It is shown that the orientation of the dipolar colloidal particle can efficiently be controlled and changed by locally quenching the nematic liquid crystal from the laser-induced isotropic phase. The interaction of a single colloidal particle with a single colloidal chain is determined and the interactions between pairs of colloidal chains are studied. We demonstrate that dipolar colloidal chains self-assemble into the two-dimensional (2D) dipolar nematic colloidal crystals. An odd-even effect is observed with increasing number of colloidal chains forming the 2D colloidal crystal. PMID:18233658

  12. Structural Modelling of Two Dimensional Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek

    The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied.

  13. Atomic Defects in Two Dimensional Materials.

    PubMed

    Rasool, Haider I; Ophus, Colin; Zettl, Alex

    2015-10-14

    Atomic defects in crystalline structures have pronounced affects on their bulk properties. Aberration-corrected transmission electron microscopy has proved to be a powerful characterization tool for understanding the bonding structure of defects in materials. In this article, recent results on the characterization of defect structures in two dimensional materials are discussed. The dynamic behavior of defects in graphene shows the stability of zigzag edges of the material and gives insights into the dislocation motion. Polycrystalline graphene is characterized using advanced electron microscopy techniques, revealing the global crystal structure of the material, as well as atomic-resolution observation of the carbon atom positions between neighboring crystal grains. Studies of hexagonal boron nitride (hBN) are also visited, highlighting the interlayer bonding, which occurs upon defect formation, and characterization of grain boundary structures. Lastly, defect structures in monolayer polycrystalline transition metal dichalcogenides grown by CVD are discussed. PMID:25946075

  14. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  15. Two-dimensional swimming behavior of bacteria

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin

    Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.

  16. Intrinsic two-dimensional features as textons.

    PubMed

    Barth, E; Zetzsche, C; Rentschler, I

    1998-07-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features. PMID:9656473

  17. Two-dimensional Inductive Position Sensing System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)

    2015-01-01

    A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.

  18. Rationally synthesized two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Colson, John W.; Dichtel, William R.

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  19. Development of low noise CCD readout front-end

    NASA Astrophysics Data System (ADS)

    JamroŻy, M.; Kasprowicz, G.; Romaniuk, R.; Poźniak, K.

    2015-09-01

    This paper describes development of low noise readout subsystem for digital camera dedicated for astronomical observations. Main aim of the study is noise reduction in regard of sensor's output signal and noise added by the analogue electronics. Basic concept and simulation results of analogue front-end are presented. Various Digital Signal Processing schemes are considered in order to increase Signal to Noise ratio. Another step of development are design of the prototype PCB board and implementation of selected processing techniques in to the structure of a FPGA device.

  20. Low Noise 1.2 THz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Karpov, A.; Miller, D.; Rice, F.; Zmuidzinas, J.; Stern, J. A.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    We present the development of a low noise superconductor insulator superconductor (SIS) mixer for the 1.1 - 1.25 THz heterodyne receiver of FIRST space radiotelescope. The quasi-optical SIS mixer has two NbTiN/AlN/Nb junctions with critical current density 30 kA/sq cm. The individual junction area is close to 0.65 square micrometers. The SIS junctions are coupled to the optical input beam through a planar double slot antenna and a Si hyperhemispherical lens. The minimum DSB receiver noise temperature is 650 K, about 12 hv/k.

  1. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  2. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  3. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  4. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  5. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  6. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  7. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  8. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  9. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a) The Administrator will, within ninety (90)...

  10. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a) Data relied upon by the Administrator...

  11. Design and Evaluation of a Low-Noise Helicopter Blade

    NASA Astrophysics Data System (ADS)

    Kondo, Natsuki; Tsujiuchi, Tomoka; Murashige, Atsushi; Nishimura, Hiroki; Aoki, Makoto; Tsuchihashi, Akihiko; Yamakawa, Eiichi; Aoyama, Takashi; Saito, Shigeru

    A low-noise helicopter blade, AT1, was designed with the concept of reducing noise without the drop of rotor performance. In the concept, High-Speed Impulsive (HSI) noise is reduced by applying a thin airfoil in the tip region and a dog-tooth like extension in the leading-edge of the tip region. Blade-Vortex Interaction (BVI) noise is reduced by applying the extension and a strong taper near the tip end. The stall angle of the blade is increased by the effect of the vortex generated from the leading-edge extension. As a result, the drop of rotor performance caused by the thin airfoil and the reduction of rotor rotational speed is recovered. The low-noise characteristics and the performance of AT1 were evaluated by a model rotor test conducted at Deutsch Niederländischer Windkanal (DNW). It is shown that AT1 reduces HSI noise and BVI noise and has good performance in forward flight conditions. However, the improvement of performance in high-lift conditions still remains as a future problem.

  12. Low-noise readout circuit for uncooled infrared FPA

    NASA Astrophysics Data System (ADS)

    Tanaka, Akio; Chiba, Kazuhiro; Endoh, Tsutomu; Okuyama, Kuniyuki; Kawahara, Akihiro; Iida, Kiyoshi; Tsukamoto, Nanao

    2000-12-01

    A low-noise architecture for uncooled microbolometer focal plane arrays is described. The on-chip readout circuit contains an integration circuit in which the bolometer current is directly injected into a capacitor, and exhibits extremely low noise with no decrease in signal. The simple configuration of the integration circuit makes it possible to operate more circuits in parallel, and increases the integration time and number of pixels. The bias circuit for the integration circuit is formed on the chip to reduce the effect of changes in the substrate temperature. The equivalent input noise, in which all readout noise is converted into that at the bolometer node, was 6.2(mu) V rms. A noise at this level is so low that can loosen the required TCR in the bolometer material. A 37-micrometers -pitch 320 x 240 ROIC was fabricated, and its expected NETD was 67-34 mK at a TCR of 1-2%/K. This architecture makes it possible to produce low-cost miniature cameras.

  13. Variable-gain, low-noise amplification for sampling front ends.

    PubMed

    Rieger, R

    2011-06-01

    This paper presents a low-noise front-end amplifier with configurable gain, targeting the recording of small signals, such as the electrocardiogram (ECG) or electroneurogram (ENG). The circuit consists of a continuous-time input stage using lateral bipolar transistors realized in complementary metal-oxide semiconductor (CMOS) technology followed by a switched-capacitor integrating stage. The voltage gain is adjustable by varying the phase delay between two system clocks. Simulated and measured results for a chip fabricated in 0.35-μm CMOS technology are reported. The amplifier occupies an active area of 0.064 mm(2), yields a nominal gain of 630 V/V with more than a 50-dB tuning range, less than 16 nVrms/√Hz input noise and a common-mode rejection of more than 97 dB. Its power consumption is 280 μW with a ±1.5-V supply. PMID:23851476

  14. Multiplet-separated heteronuclear two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.; Sørensen, O. W.; Ernst, R. R.

    1983-02-01

    Techniques are described for the identification and separation of peaks of different multiplicity in heteronuclear two-dimensional NMR spectroscopy. The methods are applied to the two-dimensional 13C- 1H shift correlation spectrum of menthol.

  15. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  16. Implementations of two-dimensional liquid chromatography

    SciTech Connect

    Guiochon, Georges A; Marchetti, Nicola; Mriziq, Khaled S; Shalliker, R. Andrew

    2008-01-01

    Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n{sub c} twice in a row than to generate a peak capacity n{sub c}{sup 2} once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (a) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC{sup x}) and the chromatographic separations in time (LC{sup t}), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC{sup t} x LC{sup t}, LC{sup x} x LC{sup t}, LC{sup t} x LC{sup x}, and LC{sup x} x LC{sup x}. We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC{sup t} x LC{sup t}) are the most actively pursued. We suggest that the combination LC{sup x} x LC{sup t} shows exceptional

  17. Implementations of two-dimensional liquid chromatography.

    PubMed

    Guiochon, Georges; Marchetti, Nicola; Mriziq, Khaled; Shalliker, R Andrew

    2008-05-01

    Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n(c) twice in a row than to generate a peak capacity n(c)(2) once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (alpha) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC(x)) and the chromatographic separations in time (LC(t)), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC(t)xLC(t), LC(x)xLC(t), LC(t)xLC(x), and LC(x)xLC(x). We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC(t)xLC(t)) are the most actively pursued. We suggest that the combination LC(x)xLC(t) shows exceptional promise because it permits the simultaneous second-dimension separations of

  18. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  19. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  20. Microbunching Instability in a Chicane: Two-Dimensional Mean Field Treatment

    SciTech Connect

    Bassi, G.; Ellison, James A.; Heinemann, Klaus; Warnock, Robert; /Liverpool U. /Cockroft Inst. /New Mexico U. /SLAC /LBL, Berkeley

    2009-01-27

    We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI{at}Elettra, with emphasis on the amplification of a perturbation at a particular wavelength. Gain curves agree with those of the linearized Vlasov model at long wavelengths, but show some deviation at the smallest wavelengths treated.

  1. An atlas of two-dimensional materials.

    PubMed

    Miró, Pere; Audiffred, Martha; Heine, Thomas

    2014-09-21

    The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls. PMID:24825454

  2. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  3. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  4. Two-dimensional magnetic colloids under shear.

    PubMed

    Mohorič, Tomaž; Dobnikar, Jure; Horbach, Jürgen

    2016-04-01

    Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear. PMID:26877059

  5. Epitaxial Growth of Two-Dimensional Stanene

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth. Ge-based germanene was realized by mechanical exfoliation. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations, or can support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall (QAH) effect. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene. In cooperation with Fengfeng Zhu, Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Canhua Liu, Dong Qian, Shou-Cheng Zhang.

  6. Two-dimensional cyanates: stabilization through hydrogenation.

    PubMed

    Tsetseris, Leonidas

    2016-06-01

    According to first-principles calculations, it should be possible to grow two-dimensional (2D) forms of copper thio-cyanate (CuSCN) and copper seleno-cyanate (CuSeCN) since their energies are only marginally higher than those of their most stable three-dimensional (3D) wurtzite structures. Here we show using the same theoretical approach that chemisorption reactions of hydrogen molecules with the above-mentioned 2D CuSCN and CuSeCN systems enhance their stability as they decrease the energy difference with respect to the corresponding hydrogenated forms of the wurtzite crystals. Hydrogenation causes a sizeable decrease in the energy band gap by 0.56 eV and 0.65 eV for hydrogenated 2D-CuSCN (CuSCNH2) and 2D-CuSeCN (CuSeCNH2), respectively. Finally, we describe the stability of hydrogen vacancies in CuSCNH2 and CuSeCNH2 and show that the presence of isolated single H vacancies or di-vacancies does not affect significantly the electronic properties of the host systems close to the valence and conduction band edges. PMID:27183226

  7. Two-dimensional Dirac signature of germanene

    SciTech Connect

    Zhang, L.; Bampoulis, P.; Houselt, A. van; Zandvliet, H. J. W.

    2015-09-14

    The structural and electronic properties of germanene coated Ge{sub 2}Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 Å and a buckling of 0.2 Å. The zigzag edges of germanene are reconstructed and display a 4× periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge{sub 2}Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.

  8. Redox options in two-dimensional electrophoresis.

    PubMed

    Wait, R; Begum, S; Brambilla, D; Carabelli, A M; Conserva, F; Rocco Guerini, A; Eberini, I; Ballerio, R; Gemeiner, M; Miller, I; Gianazza, E

    2005-05-01

    Two-dimensional electrophoresis is usually run on fully reduced samples. Under these conditions even covalently bound oligomers are dissociated and individual polypeptide chains may be fully unfolded by both, urea and SDS, which maximizes the number of resolved components and allows their pI and M(r) to be most accurately evaluated. However, various electrophoretic protocols for protein structure investigation require a combination of steps under varying redox conditions. We review here some of the applications of these procedures. We also present some original data about a few related samples -- serum from four species: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus -- which we run under fully unreduced and fully reduced conditions as well as with reduction between first and second dimension. We demonstrate that in many cases the unreduced proteins migrate with a better resolution than reduced proteins, mostly in the crowded 'alpha-globulin' area of pI 4.5-6 and M(r) 50-70 kDa. PMID:15744479

  9. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  10. Parallel Stitching of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Lin, Yuxuan; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing; Department of Electrical Engineering; Computer Science, Massachusetts Institute of Technology Team

    Large scale integration of atomically thin metals (e.g. graphene), semiconductors (e.g. transition metal dichalcogenides (TMDs)), and insulators (e.g. hexagonal boron nitride) is critical for constructing the building blocks for future nanoelectronics and nanophotonics. However, the construction of in-plane heterostructures, especially between two atomic layers with large lattice mismatch, could be extremely difficult due to the strict requirement of spatial precision and the lack of a selective etching method. Here, we developed a general synthesis methodology to achieve both vertical and in-plane ``parallel stitched'' heterostructures between a two-dimensional (2D) and TMD materials, which enables both multifunctional electronic/optoelectronic devices and their large scale integration. This is achieved via selective ``sowing'' of aromatic molecule seeds during the chemical vapor deposition growth. MoS2 is used as a model system to form heterostructures with diverse other 2D materials. Direct and controllable synthesis of large-scale parallel stitched graphene-MoS2 heterostructures was further investigated. Unique nanometer overlapped junctions were obtained at the parallel stitched interface, which are highly desirable both as metal-semiconductor contact and functional devices/systems, such as for use in logical integrated circuits (ICs) and broadband photodetectors.

  11. Dynamics of two-dimensional dipole systems

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan

    2010-09-15

    Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.

  12. Turbulent equipartitions in two dimensional drift convection

    SciTech Connect

    Isichenko, M.B.; Yankov, V.V.

    1995-07-25

    Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits.

  13. Seismic isolation of two dimensional periodic foundations

    SciTech Connect

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  14. Two-dimensional laser interferometry analysis

    NASA Astrophysics Data System (ADS)

    Mehr, Leo; Concepcion, Ricky; Duggan, Robert; Moore, Hannah; Novick, Asher; Ransohoff, Lauren; Gourdain, Pierre-Alexandre; Hammer, David; Kusse, Bruce

    2013-10-01

    The objective of our research was to create a two-dimensional interferometer which we will use to measure plasma densities at the Cornell Research Beam Accelerator (COBRA). We built two shearing interferometers and mounted them on an optics table. They intercept the probe laser beam which travels directly through the plasma and is captured by a 16-bit CCD camera. In comparing the interferometer images before the shot and during the plasma shot, we observed both lateral and vertical shifts in the interference pattern caused by the change of the refractive index due to the plasma electrons. We developed a computer program using Matlab to map a vector field depicting the shift between the two images. This shift is proportional to the line integral of electron density through the plasma chamber. We show this method provides a reliable way to determine the plasma electron density profile. Additionally, we hope this method can improve upon the diagnostic capabilities and efficiency of data collection used with standard one-dimensional interferometry. Undergraduate.

  15. Internal representation of two-dimensional shape.

    PubMed

    Makioka, S; Inui, T; Yamashita, H

    1996-01-01

    The psychological space of shapes has been studied in many experiments. However, how shapes are represented in the brain has not been a major issue in psychological literature. Here, the characteristics of internal representation and how it was formed have been considered and an attempt has been made to explain the results of experiments in a unified manner. First, the data of similarity of alphabetic characters and random-dot patterns were reexamined. Multivariate analysis suggested that those patterns were represented by the combination of global features. Second, three-layer neural networks were trained to perform categorization or identity transformation of the same sets of patterns as used in psychological experiments, and activation patterns of the hidden units were analyzed. When the network learned categorization of the patterns, its internal representation was not similar to the representation suggested by psychological experiments. But a network which learned identity transformation of the patterns could acquire such an internal representation. The transformation performed by this kind of network is similar to principal-component analysis in that it projects the input image onto a lower-dimensional space. From these results it is proposed that two-dimensional shapes are represented in human brain by a process like principal-component analysis. This idea is compatible with the findings in neurophysiological studies about higher visual areas. PMID:8938008

  16. Two-Dimensional Phononic Crystals: Disorder Matters.

    PubMed

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder. PMID:27580163

  17. Multidisciplinary design optimization of low-noise transport aircraft

    NASA Astrophysics Data System (ADS)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  18. A low noise front end electronics for micro-channel plate detector with wedge and strip anode

    NASA Astrophysics Data System (ADS)

    Hu, K.; Li, F.; Liang, F.; Chen, L.; Jin, G.

    2016-03-01

    A low noise Front End Electronics (FEE) for two-dimensional position sensitive Micro-Channel Plate (MCP) detector has been developed. The MCP detector is based on Wedge and Strip Anode (WSA) with induction readout mode. The WSA has three electrodes, the wedge electrode, the strip electrode, and the zigzag electrode. Then, three readout channels are designed in the Printed Circuit Board (PCB). The FEE is calibrated by a pulse generator from Agilent. We also give an analysis of the charge loss from the CSA. The noise levels of the three channels are less than 1 fC RMS at the shaping time of 200 ns. The experimental result shows that the position resolution of the MCP detector coupled with the designed PCB can reach up to 110 μm.

  19. Electrical Oscillations in Two-Dimensional Microtubular Structures

    PubMed Central

    Cantero, María del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.

    2016-01-01

    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton. PMID:27256791

  20. Electrical Oscillations in Two-Dimensional Microtubular Structures

    NASA Astrophysics Data System (ADS)

    Cantero, María Del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.

    2016-06-01

    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.

  1. Electrical Oscillations in Two-Dimensional Microtubular Structures.

    PubMed

    Cantero, María Del Rocío; Perez, Paula L; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F

    2016-01-01

    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K(+) (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton. PMID:27256791

  2. Ultra-Low-Noise W-Band MMIC Detector Modules

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Van Vinkle, Dan; Tantawi, Sami; Fox, John; Church, Sarah E.; Lau, Jusy M.; Sieth, Matthew M.; Voll, Patricia E.; Bryerton, Eric

    2010-01-01

    A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes.

  3. XV-15 Low-Noise Terminal Area Operations Testing

    NASA Technical Reports Server (NTRS)

    Edwards, B. D.

    1998-01-01

    Test procedures related to XV-15 noise tests conducted by NASA-Langley and Bell Helicopter Textron, Inc. are discussed. The tests. which took place during October and November 1995, near Waxahachie, Texas, documented the noise signature of the XV-15 tilt-rotor aircraft at a wide variety of flight conditions. The stated objectives were to: -provide a comprehensive acoustic database for NASA and U.S. Industry -validate noise prediction methodologies, and -develop and demonstrate low-noise flight profiles. The test consisted of two distinct phases. Phase 1 provided an acoustic database for validating analytical noise prediction techniques; Phase 2 directly measured noise contour information at a broad range of operating profiles, with emphasis on minimizing 'approach' noise. This report is limited to a documentation of the test procedures, flight conditions, microphone locations, meteorological conditions, and test personnel used in the test. The acoustic results are not included.

  4. A HIGH STABILITY, LOW NOISE RF DISTRIBUTION SYSTEM

    SciTech Connect

    Bernstein, Dorel

    2002-08-20

    Next generation linear colliders require high stability, low noise distribution of RF phase and timing signals. We describe a fiber-optics system that transmits phase at 357MHz, at a 1500nm wavelength, over a distance of 15 kilometers. Phase length errors in the transmission fiber are measured using the phase of the signal reflected from the fiber end. Corrections are performed by controlling the temperature of a 6-kilometer fiber spool placed in series with the main transmission fiber. This system has demonstrated a phase stability better than 10 femtoseconds per degree C, per kilometer, an improvement of a factor of >2000 relative to un-stabilized fiber. This system uses standard low cost telecom fiber and components.

  5. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  6. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  7. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  8. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798

  9. Two-dimensional materials and their prospects in transistor electronics.

    PubMed

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided. PMID:25898786

  10. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  11. Thermopower in Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Chickering, William Elbridge

    The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag. Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols. Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime. Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor nu = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at nu = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at

  12. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  13. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  14. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  15. Low noise omnidirectional optical receiver for the mobile FSO networks

    NASA Astrophysics Data System (ADS)

    Witas, Karel; Hejduk, Stanislav; Vasinek, Vladimir; Vitasek, Jan; Latal, Jan

    2013-05-01

    A high sensitive optical receiver design for the mobile free space optical (FSO) networks is presented. There is an array of photo-detectors and preamplifiers working into same load. It is the second stage sum amplifier getting all signals together. This topology creates a parallel amplifier with an excellent signal to noise ratio (SNR). An automatic gain control (AGC) feature is included also. As a result, the effective noise suppression at the receiver side increases optical signal coverage even with the transmitter power being constant. The design has been verified on the model car which was able to respond beyond the line of sight (LOS).

  16. Development of a low noise MREIT current source

    NASA Astrophysics Data System (ADS)

    Kim, Young Tae; Yoo, Pil Joong; In Oh, Tong; Woo, Eung Je

    2010-04-01

    In MREIT conductivity imaging experiments of animal and human subjects, we should minimize the noise level in measured magnetic flux density data induced by injection currents with low amplitude. Since noise and artifact from an MREIT current source directly affect the quality of the data, a low-noise current source is desirable. In order to be compatible with various MREIT pulse sequences, it should be also programmable. We have developed a new MREIT current source, which is controlled by a PC program for flexibility. We designed it in such a way that it is located inside the shield room of an MRI system. To minimize noise and artifact, we adopted an optical link for the connection to the PC outside the shield room. The enclosure of the new current source provides a magnetic as well as electric shielding to prevent high frequency switching noise of the current source from interfering with the scanner. It is powered by a rechargeable battery so that the entire current source is isolated from the ground. Equipped with automatic lead switching capability, it simplifies and automates MREIT imaging experiments. Our experimental results show that its performance is superior to the previous version, which is located outside the shield room.

  17. A compact, multichannel, and low noise arbitrary waveform generator.

    PubMed

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation. PMID:24880390

  18. A compact, multichannel, and low noise arbitrary waveform generator

    SciTech Connect

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  19. A low noise exchange gate in double quantum dots

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Carroll, Malcolm; Muller, Richard

    2010-03-01

    Minimizing the effects of noise is a central challenge to the creation of solid-state singlet-triplet double quantum dot (DQD) quantum bits (qubits). Charge noise, electronics error or inhomogeneous fields have all separately been addressed with different approaches. The demand for qubit operations robust to the combination of all noise sources places simultaneous requirements, however, that are not clearly compatible. We investigate the feasibility of achieving an exchange gate in a DQD system that is more robust to multiple sources of noise such as slight error around the applied bias point due to electronics or charge noise combined with external inhomogeneous B-field effects, addressed with dynamically coupled gates. A full configuration interaction (CI) method is used to compute the exchange energy as a function of dot shape and detuning voltage in order to identify the more robust operations. In particular the CI calculation provides significantly better accuracy for the (2,0) configuration of the DQD system, which is a potentially important low noise operating regime. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. A compact, multichannel, and low noise arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  1. Follow-on Low Noise Fan Aerodynamic Study

    NASA Technical Reports Server (NTRS)

    Heidegger, Nathan J.; Hall, Edward J.; Delaney, Robert A.

    1999-01-01

    The focus of the project was to investigate the effects of turbulence models on the prediction of rotor wake structures. The Advanced Ducted Propfan Analysis (ADPAC) code was modified through the incorporation of the Spalart-Allmaras one-equation turbulence model. Suitable test cases were solved numerically using ADPAC employing the Spalart-Allmaras turbulence model and another prediction code for comparison. A near-wall spacing study was also completed to determine the adequate spacing of the first computational cell off the wall. Solutions were also collected using two versions of the algebraic Baldwin-Lomax turbulence model in ADPAC. The effects of the turbulence model on the rotor wake definition was examined by obtaining ADPAC solutions for the Low Noise Fan rotor-only steady-flow case using the standard algebraic Baldwin-Lomax turbulence model, a modified version of the Baldwin-Lomax turbulence model and the one-equation Spalart-Allmaras turbulence model. The results from the three different turbulence modeling techniques were compared with each other and the available experimental data. These results include overall rotor performance, spanwise exit profiles, and contours of axial velocity taken along constant axial locations and along blade-to-blade surfaces. Wake characterizations were also performed on the experimental and ADPAC predicted results including the definition of a wake correlation function. Correlations were evaluated for wake width and wake depth. Similarity profiles of the wake shape were also compared between all numerical solutions and experimental data.

  2. An approximate HSPICE model for orbit low noise analog bipolar NPN transistors

    SciTech Connect

    Zimmerman, T.

    1991-07-01

    Vertical bipolar NPN transistors can be fabricated cheaply through MOSIS by using the Orbit 2 um Low Noise Analog CMOS process. The collector is formed from an N-well, the base from a p-base diffusion, and the emitter from an N-diffusion. However, since this is a CMOS process there is no buried layer in the collector. Therefore the collector resistance is quite large. Also, the minimum emitter size is 8 um {times} 8 um, which is substantially larger than many fast bipolar processes. For certain applications, though, such as common base or emitter follower amplifiers, the performance of this transistor may be quite acceptable. However, no AC SPICE model is published for this device. This paper describes a simple approximate measurement method that was used at Fermilab to formulate an HSPICE model for these transistor. This method requires only a fast pulse generator and a good digitizing oscilloscope with an active FET probe for the AC measurements. Model parameters for two transistors of different size are then given. 1 ref., 1 fig.

  3. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGESBeta

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  4. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of the 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.

  5. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10

  6. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds

  7. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2015-12-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} W/√{Hz}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu m) and narrower ({<}1 \\upmu m) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu m), narrow (0.5-0.7 \\upmu m), and long (340-460 \\upmu m) SiN legs and show Tc of {˜ }93 mK and Rn of ˜158 m Ω. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} W/√{Hz} with a reasonable response speed (<1 ms), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEP_{el} ({˜ }5 × 10^{-19} W/√{Hz} ) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  8. High grain, low noise organic and nanoelectronic photodetectors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    2015-08-01

    The dramatically reduction of cost of photodetectors without comprising their performance will enable new applications in many fields. In this talk, I will brief our progress in the development of sensitive photodetectors/photon counters using low-cost solution processable organic and nano-electronic materials. Four types of device structures will be compared in terms of device gain, noise, sensitivity, response speed and linear dynamic range: 1) traditional diode structure, 2) a structure combine the photodiode and photoconductor through the interface trap triggered secondary charge injection, 3) an organic phototransistor that has combined photoconductive gain and photovoltaic gain, and 4) quantum dots modulated transistor channel conductance. Broad response spectrum from UV to NIR will be demonstrated, and active material limited performance will be discussed. Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter Yongbo Yuan, Qingfeng Dong, Bin Yang, Fawen Guo, Qi Zhang, Ming Han, and Jinsong Huang*, Scientific Reports, 3, 2707 (2013) A nanocomposite ultraviolet photodetector enabled by interfacial trap-controlled charge injection Fawen Guo, Bin Yang, Yongbo Yuan, Zhengguo Xiao, Qingfeng Dong, Yu Bi, and Jinsong Huang*, Nature Nanotechnology, 7, 798-802, (2012) Large Gain, Low Noise Nanocomposite Ultraviolet Photodetectors with a Linear Dynamic Range of 120 dB Yanjun Fang, Fawen Guo,Zhengguo Xiao, Jinsong Huang*, Advanced Optical Materials, 348-353 (2014) High Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites Rui Dong, Yanjun Fang, Jungseok Chae, Jun Dai, Zhengguo Xiao, Qingfeng Dong,Yongbo Yuan, Andrea Centrone,Xiao Cheng Zeng , Jinsong Huang*. ,Advanced Materials, 2015

  9. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 μm) and narrower (<1 μm) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 μm), narrow (0.5-0.7 μm), and long (340-460 μm) SiN legs and show Tc of {˜ }93 {mK} and Rn of {˜ }158 {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher {NEP}_{el} ({˜ }5 × 10^{-19} {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  10. Low Noise, High Detectivity Photodetectors based on Organic Materials

    NASA Astrophysics Data System (ADS)

    Guo, Fawen

    Organic photodetectors (OPDs) are potentially useful in many applications because of their light weight, flexibility and good form factors. Despite the high detectivities that have been frequently reported for OPDs recently, the application of these OPDs for weak light detection has been rarely demonstrated. In this thesis, low noise, high gain photodetectors based on organic and ZnO nanoparticles were proposed and demonstrated for highly sensitive UV light detection. The nanocomposite photodetector works in a hybrid mode of photodiode and photoconductor with the transition controlled by the UV light illumination. The nanocomposite detector shows two orders of magnitude higher sensitivity than silicon detectors in the UV range, which is the first time an organic, solution-processed detector has been shown to significantly outperform the inorganic photonic devices. In the fullerene-based photodetector, the dark-current has been successfully reduced by a cross-linked TPD (C-TPD) buffer layer. The high detectivity of 3.6 x 1011 cm Hz½ W-1 (Jones) at 370 nm and the wide Linear dynamic range (LDR) of 90 dB, along with a response speed faster than 20 kHz, suggests that the fullerene-based organic photodetectors proposed here can open the way for many potential applications. The ZnO nanoparticles have been introduced into the C-TPD buffer layer of the fullerene-based photodetector to increase the photoconductive gain and reduce the noise current. The peak external quantum efficiency (EQE) value of approximately 400% and the peak specific detectivity of 6.5 x 10 12 Jones at the wavelength of 390 nm, along with the record high LDR of 120 dB, enable the photodetector to be used in wide range of applications such as imaging, communication, and defense. The extremely high sensitivity of the photodetector also makes it particularly attractive for very weak light detection.

  11. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu hbox {m}) and narrower ({<}1 \\upmu hbox {m}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 hbox {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  12. Beginning Introductory Physics with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  13. New two-dimensional quantum models with shape invariance

    SciTech Connect

    Cannata, F.; Ioffe, M. V.; Nishnianidze, D. N.

    2011-02-15

    Two-dimensional quantum models which obey the property of shape invariance are built in the framework of polynomial two-dimensional supersymmetric quantum mechanics. They are obtained using the expressions for known one-dimensional shape invariant potentials. The constructed Hamiltonians are integrable with symmetry operators of fourth order in momenta, and they are not amenable to the conventional separation of variables.

  14. Two-dimensional discrete Ginzburg-Landau solitons

    SciTech Connect

    Efremidis, Nikolaos K.; Christodoulides, Demetrios N.; Hizanidis, Kyriakos

    2007-10-15

    We study the two-dimensional discrete Ginzburg-Landau equation. In the linear limit, the dispersion and gain curves as well as the diffraction pattern are determined analytically. In the nonlinear case, families of two-dimensional discrete solitons are found numerically as well as approximately in the high-confinement limit. The instability dynamics are analyzed by direct simulations.

  15. Terahertz rectification by periodic two-dimensional electron plasma

    SciTech Connect

    Popov, V. V.

    2013-06-24

    The physics of terahertz rectification by periodic two-dimensional electron plasma is discussed. Two different effects yielding terahertz rectification are studied: the plasmonic drag and plasmonic ratchet. Ultrahigh responsivity of terahertz rectification by periodic two-dimensional electron plasma in semiconductor heterostructures and graphene is predicted.

  16. Evaluation of a Low-Noise Formate Spiral-Bevel Gear Set

    NASA Technical Reports Server (NTRS)

    Lewicki, David g.; Woods, Ron L.; Litvin, Faydor L.; Fuentes, Alfonso

    2007-01-01

    Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.

  17. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  18. Analysis and design of a low-noise ROIC for hybrid InGaAs infrared FPA

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Huang, SongLei; Huang, ZhangCheng; Fang, Jiaxiong

    2011-08-01

    The noises of CMOS readout integrated circuit (ROIC) for hybrid focal plane array (FPA) may occupy a great part of total noise in conditions that a low resistance or large capacitor detector interfacing with CTIA input stage. A novel low noise low power preamplifier with shared current-mirrors bias is designed. It has a gain of more than 90dB, which makes enough inject efficiency and low detector bias offset. Besides, it has strong detector bias control, because the shared current-mirror copies the DC current of the amplifier and generates the bias control voltage. A pixel level Correlated Double Sample circuits is designed in order to suppress the reset KTC noise and 1/f noise from preamplifier. An experimental chip of 30μm pitch 32×32 array was fabricated in standard 0.5μm CMOS mixed signal process. A few experimental structures are designed to study the allocating of layout area for low noise designing. The ROIC is bonded to an existing back-illuminated 30μm pitch InGaAs photodiode array with indium bump fabrication. The test of both the ROIC chips and InGaAs focal plane array is shown in this paper, and the contrast of different structure is shown and analyzed.

  19. Flutter Stability of the Efficient Low Noise Fan Calculated

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2004-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the Efficient Low Noise Fan (ELNF), which is also referred to as the trailing-edge blowing fan. The ELNF is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn's 9-by-15-Foot Low-Speed Wind Tunnel. In the ELNF, air can be blown out of slots near the trailing edges of the fan blades to fill in the wakes downstream of the rotating blades. This filling of the wakes leads to a reduction of the rotor-stator interaction (tone) noise that results from the interaction of wakes with the downstream stators. The ELNF will demonstrate a 1.6-EPNdB1 reduction in tone noise through wake filling, without increasing the broadband noise. Furthermore, the reduced blade row interaction will decrease the possibility of forced response and enable closer spacing of blade rows, thus reducing engine length and weight. During the design of the ELNF, the rotor blades were checked for flutter stability using the detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBOAE code. The aeroelastic calculations were preceded by steady calculations in which the blades were not allowed to vibrate. For each rotational speed, as the back-pressure was increased, the mass flow rate decreased, and the operating point moved along the constant speed characteristic (speed-line) from choke to stall as shown on the fan map. The TURBO-AE aeroelastic analyses were performed separately for the first two vibration modes (bending and torsion) and covered the complete range of interblade phase angles or nodal diameters at which flutter can occur. The results indicated that the ELNF blades would not encounter flutter at takeoff conditions. The calculations were then repeated for a part-speed condition (70-percent rotational speed), and the results again showed no flutter in the operating region. On the fan map (shown), the predicted flutter point

  20. The Development of Two-Dimensional Structure in Cavitons.

    NASA Astrophysics Data System (ADS)

    Eggleston, Dennis Lee

    Experimental observations of the space and time evolution of resonantly enhanced electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal localization with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical and analytical models for a driven, two-dimensional, inhomogeneous plasma are presented. It is shown that the experimental results can be explained in a semi-quanitative manner by a model which combines the results of one-dimensional caviton theory with those of two-dimensional Langmuir collapse.

  1. Detection of left ventricular aneurysm on two dimensional echocardiography.

    PubMed

    Baur, H R; Daniel, J A; Nelson, R R

    1982-07-01

    The differentiation of left ventricular aneurysm from diffuse left ventricular dilation and hypokinesia may have important therapeutic consequences. Thus the diagnostic accuracy of wide angle two dimensional echocardiography for the detection of left ventricular aneurysm was evaluated in a prospective study of 26 consecutive patients with the clinical suspicion of left ventricular aneurysm referred over a 10 month period. Every patients was examined with two dimensional echocardiography and left ventricular cineangiography, and findings were interpreted by two independent observers. A dilated hypokinetic left ventricle without aneurysm formation on cineangiography in nine patients was identified in all with two dimensional echocardiography. A left ventricular aneurysm on cineangiography in 17 patients was correctly identified in 14 with the two dimensional study, as were the site and extent of the lesion (apical in 12, anterior in 1 and inferior in 1). One apical aneurysm was interpreted on the two dimensional study as apical dyskinesia; one anterior and one posterobasal aneurysm were missed with this technique. Mural thrombi were correctly identified with two dimensional echocardiography in seven of seven patients. It is concluded that two dimensional echocardiography is an accurate noninvasive method that allows differentiation of left ventricular aneurysm from diffuse left ventricular dilation in the majority of patients. It provides information regarding the resectability of the aneurysm and may obviate cineangiography in many cases. PMID:7091001

  2. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  3. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Karaiskaj, D.; Tokumoto, T.; Hilton, D. J.; Reno, J. L.

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  4. Collimation of a thulium atomic beam by two-dimensional optical molasses

    SciTech Connect

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  5. Collimation of a thulium atomic beam by two-dimensional optical molasses

    NASA Astrophysics Data System (ADS)

    Sukachev, D. D.; Kalganova, E. S.; Sokolov, A. V.; Savchenkov, A. V.; Vishnyakova, G. A.; Golovizin, A. A.; Akimov, A. V.; Kolachevsky, Nikolai N.; Sorokin, Vadim N.

    2013-04-01

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz.

  6. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  7. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    SciTech Connect

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-05-15

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers.

  8. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature

  9. Model of a Negatively Curved Two-Dimensional Space.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1995-01-01

    Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)

  10. String & Sticky Tape Experiments: Two-Dimensional Collisions Using Pendulums.

    ERIC Educational Resources Information Center

    Edge, R. D.

    1989-01-01

    Introduces a method for two-dimensional kinematics measurements by hanging marbles with long strings. Describes experimental procedures for conservation of momentum and obtaining the coefficient of restitution. Provides diagrams and mathematical expressions for the activities. (YP)

  11. Difficulties that Students Face with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Mihas, P.; Gemousakakis, T.

    2007-01-01

    Some difficulties that students face with two-dimensional motion are addressed. The difficulties addressed are the vectorial representation of velocity, acceleration and force, the force-energy theorem and the understanding of the radius of curvature.

  12. CHARACTERISTICS OF TWO-DIMENSIONAL PARTICLE EDDY DIFFUSION INOFFICE SPACE

    EPA Science Inventory

    The paper discusses the development of a two-dimensional turbulentkinetic energy - dissipation rate (k-epsilon) turbulence model inthe form of vorticity and stream functions. his turbulence modelprovides the distribution of turbulent kinematic viscosity, used tocalculate the effe...

  13. Power distribution in two-dimensional optical network channels

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue; Karim, Mohammad A.

    1996-04-01

    The power distribution in two-dimensional optical network channels is analyzed. The maximum number of allowable channels as determined by the characteristics of optical detector is identified, in particular, for neural-network and wavelet-transform applications.

  14. Two-dimensional signal processing with application to image restoration

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1974-01-01

    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.

  15. Numerical modeling of two-dimensional confined flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1979-01-01

    A numerical model of two-dimensional confined flows is presented. The flow in the duct is partitioned into finite streams. The difference equations are then obtained by applying conservation principles directly to the individual streams. A listing of a computer code based on this approach in FORTRAN 4 language is presented. The code computes two dimensional compressible turbulent flows in ducts when the duct area along the flow is specified and the pressure gradient is unknown.

  16. Two-Dimensional Systolic Array For Kalman-Filter Computing

    NASA Technical Reports Server (NTRS)

    Chang, Jaw John; Yeh, Hen-Geul

    1988-01-01

    Two-dimensional, systolic-array, parallel data processor performs Kalman filtering in real time. Algorithm rearranged to be Faddeev algorithm for generalized signal processing. Algorithm mapped onto very-large-scale integrated-circuit (VLSI) chip in two-dimensional, regular, simple, expandable array of concurrent processing cells. Processor does matrix/vector-based algebraic computations. Applications include adaptive control of robots, remote manipulators and flexible structures and processing radar signals to track targets.

  17. Topological delocalization of two-dimensional massless Dirac fermions.

    PubMed

    Nomura, Kentaro; Koshino, Mikito; Ryu, Shinsei

    2007-10-01

    The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which, e.g., underlies theoretical descriptions of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function monotonically increases with decreasing conductance. We also provide an argument based on the spectral flows under twisting boundary conditions, which shows that none of the states of the massless Dirac Hamiltonian can be localized. PMID:17930701

  18. MEMS-based redundancy ring for low-noise millimeter-wave front-end

    NASA Astrophysics Data System (ADS)

    Pons, Patrick; Dubuc, David; Flourens, Federic; Saddaoui, Mohammad; Melle, Samuel; Tackacs, Alex; Tao, Junwu; Aubert, Herve; Boukabache, Ali; Paillot, T.; Blondy, Pierre; Vendier, Olivier; Grenier, Katia M.; Plana, Robert

    2004-08-01

    This paper reports on the investigation of the potentialities of the MEMS technologies to develop innovative microsystem for millimetre wave communication essentially for space applications. One main issue deals with the robustness and the reliability of the equipment as it may difficult to replace or to repair them when a satellite has been launched. One solution deals with the development of redundancy rings that are making the front end more robust. Usually, the architecture of such system involves waveguide or diode technologies, which present severe limitations in term of weight, volume and insertion loss. The concept considered in this paper is to replace some key elements of such system by MEMS based devices (Micromachined transmission lines, switches) in order to optimize both the weight and the microwave performance of the module. A specific technological process has been developed consisting in the fabrication of the devices on a dielectric membrane on air suspended in order to improve the insertion loss and the isolation. To prove the concept, building blocks have been already fabricated and measured (i.e micromachined transmission and filter featuring very low insertion loss, single pole double through circuits to address the appropriate path of the redundancy ring). We have to outline that MEMS technology have allowed a simplification of the architecture and a different system partitioning which gives more degree of freedom for the system designer. Furthermore, it has been conducted an exhaustive reliability study in order to identify the failure mechanisms. Again, from the results obtained, we have proposed an original topology for the SPDT circuit that takes into account the reliability behaviour of the MEMS devices and that allow to prevent most of the failure mechanisms reported so far (mainly related to the dielectric charging effect). Finally, the active device (millimetre wave low noise amplifier) will be reported on the MEMS based chip using

  19. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  20. High- Tc dc SQUID readout electronics with low noise and high bandwidth

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-10-01

    Using AD797 low noise op amps and 2SA1048 low noise transistors, we have developed a composite preamplifier for use in dc SQUID readout electronics. This preamplifier has a small dc drift and super low noise at high frequencies. The equivalent input voltage noise of the preamplifier is about 0.35 nV/√Hz from 100 kHz to 10 MHz. Using this preamplifier, we developed dc SQUID readout electronics having low noise and high bandwidth. Used with a 3 mm2 high-Tc dc SQUID, the white flux noise was about 18 μΦ0/√Hz above 100 kHz and the FLL bandwidth was about 2 MHz. This readout electronics can be used for the applications of SQUID-based NDE and SQUID-based NQR.

  1. NASA ultra low noise X-band microwave feeds for deep space communication

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    2004-01-01

    This paper describes the configuration, detail design, and final performance of a new ultra low noise diplexed X-band microwave feed system, called X/X diplexing feed, for the Deep Space Network (DSN) 70-m antennas.

  2. The 8.4-GHz low-noise maser pump source assembly

    NASA Technical Reports Server (NTRS)

    Cardenas, R.

    1987-01-01

    Improved pump source assemblies and new 8.4-GHz low noise traveling-wave masers (TWMs) were installed at the same time at Deep Space Stations 14 and 43 as part of the Mark IVA DSCC Antenna Microwave Subsystems upgrade. The pump source assemblies are part of the new 8.4-GHz TWMs, which are identified as Block IIA Low-Noise TWMs. Improved reliability of the pump source assemblies was required to meet stress analysis criteria.

  3. Development of a low-noise 10 K J-T refrigeration system. Technical progress report

    SciTech Connect

    Paugh, R.L.

    1989-09-15

    The purpose of this contract extension is the continuation of the development of a compact, microminiature, low-noise, closed-cycle, Joule-Thomson refrigeration system for 10K operation for use in infrared sensing, low noise microwave signal detection and high speed superconducting electronic data processing. Work is continuing in the following areas: (a) Ongoing refrigerator design and development; (b) Compressor assembly and test, (c) Implementation of gas cleansing techniques, and (d) System integration.

  4. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array.

    PubMed

    Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong

    2016-01-01

    Dynamic mapping of an object's local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969

  5. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array

    PubMed Central

    Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong

    2016-01-01

    Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969

  6. High rate, high resolution, two-dimensional gas proportional detectors for x-ray synchrotron radiation experiments

    SciTech Connect

    Smith, G.C.; Yu, B.; Fischer, J.; Radeka, V.; Harder, J.A.

    1992-02-01

    Two-dimensional, gas proportional detectors are being developed for use with X-ray synchrotron radiation. Two new types of interpolating cathode structures have been investigated, both of which can operate with a significantly smaller number of readout nodes along each sensing axis than previous cathodes. Lumped parameter delay lines are used as the position encoders. Timing signals from fast, low noise shaping electronics are fed to a new, dual TDC system developed for this purpose. Operating with a clock frequency of 500 MHz, the TDCs have an intrinsic differential non-linearity of 0.1%. The complete system can handle X-ray fluxes in excess of 10{sup 6} per sec without distortion of the position information. A resolution of approximately 100 {mu}m FWHM and differenfial non-linearity of {plus minus}4% have been achieved. Application of a detector with active area 10 cm {times} 10 cm using synchrotron radiation is described.

  7. mm-wave solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Wolfert, P. H.; Crowley, J. D.; Fank, F. B.

    The development of mm-wave amplifiers using InP Gunn diodes is reviewed including a low-noise eight-stage amplifier for replacement of a Ka-band TWTA and a three-stage amplifier for the 42.5 to 44.5 range with an output power of 100 mW and 20 dB associated gain. A detailed description of a three-stage amplifier for the 54 to 58 GHz range is given with 100 mW output power and 15 dB associated gain, a small signal gain of 30 dB and an N.F. of 15.5 to 16.5 dB. The design of a broad band, low-loss V-band circulator, which was used in the amplifier, is described.

  8. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  9. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities. PMID:23176195

  10. Two dimensional convolute integers for machine vision and image recognition

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  11. Complexity and efficient approximability of two dimensional periodically specified problems

    SciTech Connect

    Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.

    1996-09-01

    The authors consider the two dimensional periodic specifications: a method to specify succinctly objects with highly regular repetitive structure. These specifications arise naturally when processing engineering designs including VLSI designs. These specifications can specify objects whose sizes are exponentially larger than the sizes of the specification themselves. Consequently solving a periodically specified problem by explicitly expanding the instance is prohibitively expensive in terms of computational resources. This leads one to investigate the complexity and efficient approximability of solving graph theoretic and combinatorial problems when instances are specified using two dimensional periodic specifications. They prove the following results: (1) several classical NP-hard optimization problems become NEXPTIME-hard, when instances are specified using two dimensional periodic specifications; (2) in contrast, several of these NEXPTIME-hard problems have polynomial time approximation algorithms with guaranteed worst case performance.

  12. Two-dimensional charge-control model for MODFET's

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Roblin, Patrick

    1986-11-01

    A dc model for MODFET's accounting for two-dimensional effects is proposed. In this model, charge control is realized by solving the two-dimensional Poisson equation in the depleted AlGaAs region. The transport picture used for the two-dimensional electron gas (2-DEG) in the AlGaAs/GaAs heterojunction relies on the quasi-Fermi level together with a field-dependent mobility and therefore includes 2-DEG diffusion effects. The approach reduces the analysis to a single integral equation. I-V curves, which provide a good fitting to the reported experimental data, are obtained using a smooth velocity-field curve. The channel voltage, 2-DEG concentration, parallel electric-field, and drift velocity along the channel are given in this study and provide a clear picture of current saturation. The model is consistent with the approximate two-region saturation picture but provides a smoother transition.

  13. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N.; Strano, Michael S.

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  14. Young's modulus of a solid two-dimensional Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    Bercegol, H.; Meunier, J.

    1992-03-01

    LANGMUIR monolayers-films of amphiphilic molecules at the surface of water-exhibit many phases1,2. Some of these behave like two-dimensional solids on experimental timescales, but previous measurements of the shear modulus of these 'solid' monolayers3-5 have yielded a value too small to be compatible with a two-dimensional crystal. The interpretation of these is complicated, however, by the likelihood of inhomogeneities in the films, which are probably assemblies of microscopic crystalline domains. Here we describe measurements of the Young's modulus of an isolated "solid' domain of NBD-stearic acid monolayers. We obtain a value large enough to be compatible with the modulus of a two-dimensional crystal6-8. This suggests that Langmuir monolayers should provide model systems for studies of melting in two dimensions6-8.

  15. Two-dimensional convolute integers for analytical instrumentation

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1982-01-01

    As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.

  16. Dynamical class of a two-dimensional plasmonic Dirac system

    NASA Astrophysics Data System (ADS)

    Silva, Érica de Mello

    2015-10-01

    A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.

  17. Low Noise and Highly Linear Wideband CMOS RF Front-End for DVB-H Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Nam, Ilku; Moon, Hyunwon; Woo, Doo Hyung

    In this paper, a wideband CMOS radio frequency (RF) front-end for digital video broadcasting-handheld (DVB-H) receiver is proposed. The RF front-end circuit is composed of a single-ended resistive feedback low noise amplifier (LNA), a single-to-differential amplifier, an I/Q down-conversion mixer with linearized transconductors employing third order intermodulation distortion cancellation, and a divide-by-two circuit with LO buffers. By employing a third order intermodulation (IMD3) cancellation technique and vertical NPN bipolar junction transistor (BJT) switching pair for an I/Q down-conversion mixer, the proposed RF front-end circuit has high linearity and low low-frequency noise performance. It is fabricated in a 0.18µm deep n-well CMOS technology and draws 12mA from a 1.8V supply voltage. It shows a voltage gain of 31dB, a noise figure (NF) lower than 2.6dB, and an IIP3 of -8dBm from 470MHz to 862MHz.

  18. MEDUSA-32: A low noise, low power silicon strip detector front-end electronics, for space applications

    NASA Astrophysics Data System (ADS)

    Cicuttin, Andres; Colavita, Alberto; Cerdeira, Alberto; Fratnik, Fabio; Vacchi, Andrea

    1997-02-01

    In this report we describe a mixed analog-digital integrated circuit (IC) designed as the front-end electronics for silicon strip-detectors for space applications. In space power consumption, compactness and robustness become critical constraints for a pre-amplifier design. The IC is a prototype with 32 complete channels, and it is intended for a large area particle tracker of a new generation of gamma ray telescopes. Each channel contains a charge sensitive amplifier, a pulse shaper, a discriminator and two digital buffers. The reference trip point of the discriminator is adjustable. This chip also has a custom PMOSFET transistor per channel, included in order to provide the high dynamic resistance needed to reverse-bias the strip diode. The digital part of the chip is used to store and serially shift out the state of the channels. There is also a storage buffer that allows the disabling of non-functioning channels if it is required by the data acquisition system. An input capacitance of 30 pF introduced at the input of the front-end produces less than 1000 electrons of RMS equivalent noise charge (ENC), for a total power dissipation of only 60 μW per channel. The chip was made using Orbit's 1.2 μm double poly, double metal n-well low noise CMOS process. The dimensions of the IC are 2400 μm × 8840 μm.

  19. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.

    PubMed

    Fedele, T; Scheer, H J; Burghoff, M; Curio, G; Körber, R

    2015-02-01

    Non-invasive EEG detection of very high frequency somatosensory evoked potentials featuring frequencies up to and above 1 kHz has been recently reported. Here, we establish the detectability of such components by combined low-noise EEG/MEG. We recorded SEP/SEF simultaneously using median nerve stimulation in five healthy human subjects inside an electromagnetically shielded room, combining a low-noise EEG custom-made amplifier (4.7 nV/√Hz) and a custom-made single-channel low-noise MEG (0.5 fT/√Hz @ 1 kHz). Both, low-noise EEG and MEG revealed three spectrally distinct and temporally overlapping evoked components: N20 (<100 Hz), sigma-burst (450-750 Hz), and kappa-burst (850-1200 Hz). The two recording modalities showed similar relative scaling of signal amplitude in all three frequencies domains (EEG [10 nV] ≅ MEG [1 fT]). Pronounced waveform (peak-by-peak) overlap of EEG and MEG signals is observed in the sigma band, whereas in the kappa band overlap was only partial. A decreasing signal-to-noise ratio (SNR; calculated for n = 12.000 averages) from sigma to kappa components characterizes both, electric and magnetic field recordings: Sigma-band SNR was 12.9  ±  5.5/19.8  ±  12.6 for EEG/MEG, and kappa-band SNR at 3.77  ±  0.8/4.5  ±  2.9. High-frequency performance of a tailor-made MEG matches closely with simultaneously recorded low-noise EEG for the non-invasive detection of somatosensory evoked activity at and above 1 kHz. Thus, future multi-channel dual-mode low-noise technology could offer complementary views for source reconstruction of the neural generators underlying such high-frequency responses, and render neural high-frequency processes related to multi-unit spike discharges accessible in non-invasive recordings. PMID:25612926

  20. Two-dimensional photoelastic stress analysis of traumatized incisor.

    PubMed

    Topbasi, B; Gunday, M; Bas, M; Turkmen, C

    2001-01-01

    In this study, stress of traumatized incisor and the effect of stress on tooth and alveolar bone was studied with two-dimensional photoelasticity. Two homogeneous two-dimensional maxillary central incisor models were prepared. Loads were applied to the labial side of incisal edge and middle third of the crown at angles of 45 degrees and 90 degrees. It was observed that stress was increased on teeth and alveolar bone when load was applied 90 degrees on labial side of incisal edge. PMID:11445918

  1. Spectral analysis of two-dimensional Bose-Hubbard models

    NASA Astrophysics Data System (ADS)

    Fischer, David; Hoffmann, Darius; Wimberger, Sandro

    2016-04-01

    One-dimensional Bose-Hubbard models are well known to obey a transition from regular to quantum-chaotic spectral statistics. We are extending this concept to relatively simple two-dimensional many-body models. Also in two dimensions a transition from regular to chaotic spectral statistics is found and discussed. In particular, we analyze the dependence of the spectral properties on the bond number of the two-dimensional lattices and the applied boundary conditions. For maximal connectivity, the systems behave most regularly in agreement with the applicability of mean-field approaches in the limit of many nearest-neighbor couplings at each site.

  2. Conduction-electron spin resonance in two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Edelstein, Victor M.

    2016-09-01

    The influence of the conduction-electron spin magnetization density, induced in a two-dimensional electron layer by a microwave electromagnetic field, on the reflection and transmission of the field is considered. Because of the induced magnetization and electric current, both the electric and magnetic components of the field should have jumps on the layer. A way to match the waves on two sides of the layer, valid when the quasi-two-dimensional electron gas is in the one-mode state, is proposed. By following this way, the amplitudes of transmitted and reflected waves as well as the absorption coefficient are evaluated.

  3. Two-dimensional SCFTs from D3-branes

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Bobev, Nikolay; Crichigno, P. Marcos

    2016-07-01

    We find a large class of two-dimensional N = (0, 2) SCFTs obtained by compactifying four-dimensional N = 1 quiver gauge theories on a Riemann surface. We study these theories using anomalies and c-extremization. The gravitational duals to these fixed points are new AdS3 solutions of IIB supergravity which we exhibit explicitly. Along the way we uncover a universal relation between the conformal anomaly coefficients of fourdimensional and two-dimensional SCFTs connected by an RG flow across dimensions. We also observe an interesting novel phenomenon in which the superconformal R-symmetry mixes with baryonic symmetries along the RG flow.

  4. Equilibrium state of a trapped two-dimensional Bose gas

    SciTech Connect

    Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner

    2010-07-15

    We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.

  5. Two-Dimensional Spectroscopy at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Denker, Carsten; Deng, N.; Tritschler, A.

    2006-06-01

    Two-dimensional spectroscopy is an important tool to measure the physical parameters related to solar activity in both the photosphere and chromosphere. We present a description of the visible-light post-focus instrumentation at the Big Bear Solar Observatory (BBSO) including adaptive optics and image restoration. We report the first science observations obtained with two-dimensional spectroscopy during the 2005 observing season. In particular we discuss the properties of flows associated with a small delta-spot in solar active region NOAA 10756.

  6. Singularity confinement and chaos in two-dimensional discrete systems

    NASA Astrophysics Data System (ADS)

    Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2016-06-01

    We present a quasi-integrable two-dimensional lattice equation: i.e., a partial difference equation which satisfies a test for integrability, singularity confinement, although it has a chaotic aspect in the sense that the degrees of its iterates exhibit exponential growth. By systematic reduction to one-dimensional systems, it gives a hierarchy of ordinary difference equations with confined singularities, but with positive algebraic entropy including a generalized form of the Hietarinta–Viallet mapping. We believe that this is the first example of such quasi-integrable equations defined over a two-dimensional lattice.

  7. A high-speed, low-noise CMOS 16-channel charge-sensitivepreamplifier ASIC for APD-based PET detectors

    SciTech Connect

    Weng, M.; Mandelli, E.; Moses, W.W.; Derenzo, S.E.

    2002-12-02

    A high-speed, low-noise 16-channel amplifier IC has beenfabricated in the HP 0.5 mm CMOS process. It is a prototype for use witha PET detector which uses a 4x4 avalanche photodiode (APD) array having 3pF of capacitance and 75 nA of leakage current per pixel. Thepreamplifier must have a fast rise time (a few ns) in order to generatean accurate timing signal, low noise in order to accurately measure theenergy of the incident gamma radiation, and high density in order to readout 2-D arrays of small (2 mm) pixels. A single channel consists of acharge-sensitive preamplifier followed by a pad-driving buffer. Thepreamplifier is reset by an NMOS transistor in the triode region which iscontrolled by an externally supplied current. The IC has 16 differentgain settings which range from 2.085 mV/fC to 10.695 mV/fC. The gain isdetermined by four switched capacitors in the feedback loop. The switchstate is set by two digital input lines which control a 64-bit shiftregister on the IC. A preamplifier 10-90 percent rise time as low as 2.7ns with no external input load and 3.6 ns with a load of 5.8 pF wasachieved. For the maximum gain setting and 5.8 pF of input load, theamplifier had 400 electrons of RMS noise at a peaking time of 0.7 us. TheIC is powered by a +3.3 V supply drawing 60 mA.

  8. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    NASA Astrophysics Data System (ADS)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  9. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting.

    PubMed

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-01-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations. PMID:27452107

  10. A note on two-dimensional asymptotic magnetotail equilibria

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Moore, Brian D.

    1994-01-01

    In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.

  11. Two-Dimensional Grids About Airfoils and Other Shapes

    NASA Technical Reports Server (NTRS)

    Sorenson, R.

    1982-01-01

    GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.

  12. Dynamic two-dimensional beam-pattern steering technique

    NASA Technical Reports Server (NTRS)

    Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang

    1993-01-01

    A dynamic two-dimensional laser-beam-pattern steering technique using photorefractive holograms in conjunction with electrically addressed spatial light modulators is proposed and investigated. The experimental results demonstrate the dynamic steering of random combinations of basis beam patterns. The proposed method has the advantages of random beam-pattern combination, good beam intensity uniformity, and higher diffraction efficiency compared with conventional methods.

  13. Two-dimensional vortex motion and 'negative temperatures.'

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1972-01-01

    Explanation of the novel phenomenon, tentatively identified as the 'ergodic boundary' in a space of initial conditions for turbulent flow, suggested by the recent numerical integration of the two-dimensional Navier-Stokes equations at high Reynolds numbers reported by Deem and Zabusky (1971). The proposed explanation is presented in terms of negative temperatures for a point vortex model.

  14. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  15. New directions in science and technology: two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Castro Neto, A. H.; Novoselov, K.

    2011-08-01

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  16. Thickness identification of two-dimensional materials by optical imaging.

    PubMed

    Wang, Ying Ying; Gao, Ren Xi; Ni, Zhen Hua; He, Hui; Guo, Shu Peng; Yang, Huan Ping; Cong, Chun Xiao; Yu, Ting

    2012-12-14

    Two-dimensional materials, e.g. graphene and molybdenum disulfide (MoS(2)), have attracted great interest in recent years. Identification of the thickness of two-dimensional materials will improve our understanding of their thickness-dependent properties, and also help with scientific research and applications. In this paper, we propose to use optical imaging as a simple, quantitative and universal way to identify the thickness of two-dimensional materials, i.e. mechanically exfoliated graphene, nitrogen-doped chemical vapor deposition grown graphene, graphene oxide and mechanically exfoliated MoS(2). The contrast value can easily be obtained by reading the red (R), green (G) and blue (B) values at each pixel of the optical images of the sample and substrate, and this value increases linearly with sample thickness, in agreement with our calculation based on the Fresnel equation. This method is fast, easily performed and no expensive equipment is needed, which will be an important factor for large-scale sample production. The identification of the thickness of two-dimensional materials will greatly help in fundamental research and future applications. PMID:23154446

  17. Least squares approximation of two-dimensional FIR digital filters

    NASA Astrophysics Data System (ADS)

    Alliney, S.; Sgallari, F.

    1980-02-01

    In this paper, a new method for the synthesis of two-dimensional FIR digital filters is presented. The method is based on a least-squares approximation of the ideal frequency response; an orthogonality property of certain functions, related to the frequency sampling design, improves the computational efficiency.

  18. Sound waves in two-dimensional ducts with sinusoidal walls

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  19. Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    Santa Maria, Odilyn L.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  20. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  1. Two-dimensional Manifold with Point-like Defects

    NASA Astrophysics Data System (ADS)

    Gani, V. A.; Dmitriev, A. E.; Rubin, S. G.

    We study a class of two-dimensional compact extra spaces isomorphic to the sphere S 2 in the framework of multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  2. Adiabatic single scan two-dimensional NMR spectrocopy.

    PubMed

    Pelupessy, Philippe

    2003-10-01

    New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020

  3. Lattice Boltzmann simulation for forced two-dimensional turbulence.

    PubMed

    Xia, YuXian; Qian, YueHong

    2014-08-01

    The direct numerical simulations of forced two-dimensional turbulent flow are presented by using the lattice Boltzmann method. The development of an energy-enstrophy double cascade is investigated in the two cases of external force of two-dimensional turbulence, Gaussian force and Kolmogorov force. It is found that the friction force is a necessary condition of the occurrence of a double cascade. The energy spectrum k(-3) in the enstrophy inertial range is in accord with the classical Kraichnan theory for both external forces. The energy spectrum of the Gaussian force case in an inverse cascade is k(-2); however, the Kolmogorov force drives the k(-5/3) energy in a backscatter cascade. The result agrees with Scott's standpoint, which describes nonrobustness of the two-dimensional turbulent inverse cascade. Also, intermittency is found for the enstrophy cascade in two cases of the external force form. Intermittency refers to the nonuniform distribution of saddle points in the two-dimensional turbulent flow. PMID:25215817

  4. Lattice Boltzmann simulation for forced two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Xia, YuXian; Qian, YueHong

    2014-08-01

    The direct numerical simulations of forced two-dimensional turbulent flow are presented by using the lattice Boltzmann method. The development of an energy-enstrophy double cascade is investigated in the two cases of external force of two-dimensional turbulence, Gaussian force and Kolmogorov force. It is found that the friction force is a necessary condition of the occurrence of a double cascade. The energy spectrum k-3 in the enstrophy inertial range is in accord with the classical Kraichnan theory for both external forces. The energy spectrum of the Gaussian force case in an inverse cascade is k-2; however, the Kolmogorov force drives the k-5/3 energy in a backscatter cascade. The result agrees with Scott's standpoint, which describes nonrobustness of the two-dimensional turbulent inverse cascade. Also, intermittency is found for the enstrophy cascade in two cases of the external force form. Intermittency refers to the nonuniform distribution of saddle points in the two-dimensional turbulent flow.

  5. Two-dimensional optimization of free-electron-laser designs

    DOEpatents

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  6. Two-dimensional optimization of free electron laser designs

    DOEpatents

    Prosnitz, Donald; Haas, Roger A.

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  7. Smoothed Two-Dimensional Edges for Laminar Flow

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.

  8. Potential flow in two-dimensional deflected nozzles

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Stockman, N. O.

    1981-01-01

    Three programs analyze flow: SCIRCL, geometry definition program; 24Y, incompressible two-dimensional potential-flow program; and NOZZLEC, program combining incompressible potential-flow solutions into solutions of interest after compressibility correction. Program group is written in FORTRAN IV for implementation on UNIVAC 1100/42.

  9. Two-dimensional probe absorption in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Zhang, Yan; Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-07-01

    We investigate the two-dimensional (2D) probe absorption in coupled quantum dots. It is found that, due to the position-dependent quantum interference effect, the 2D optical absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state quantum communication.

  10. Inertia Wheel on Low-Noise Active Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  11. A 90 GHz Amplifier Assembled Using Flip-Chip Technology

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Pinsukanjana, P.; Gaier, T.; Smith, R.; Ksendzov, A.; Fitzsimmons, M.; Martin, S.; Lai, R.

    1999-01-01

    This letter reports the performance of a novel single-stage W-band amplifier fabricated utilizing flip-chip bump-bonding. We have bump-bonded a high-speed, low-noise InP high electron mobility transistor (HEMT) device onto a separately fabricated passive circuit having a GaAs substrate.

  12. Toward the Accurate Simulation of Two-Dimensional Electronic Spectra

    NASA Astrophysics Data System (ADS)

    Giussani, Angelo; Nenov, Artur; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Two-dimensional pump-probe electronic spectroscopy is a powerful technique able to provide both high spectral and temporal resolution, allowing the analysis of ultrafast complex reactions occurring via complementary pathways by the identification of decay-specific fingerprints. [1-2] The understanding of the origin of the experimentally recorded signals in a two-dimensional electronic spectrum requires the characterization of the electronic states involved in the electronic transitions photoinduced by the pump/probe pulses in the experiment. Such a goal constitutes a considerable computational challenge, since up to 100 states need to be described, for which state-of-the-art methods as RASSCF and RASPT2 have to be wisely employed. [3] With the present contribution, the main features and potentialities of two-dimensional electronic spectroscopy are presented, together with the machinery in continuous development in our groups in order to compute two-dimensional electronic spectra. The results obtained using different level of theory and simulations are shown, bringing as examples the computed two-dimensional electronic spectra for some specific cases studied. [2-4] [1] Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M, Int. J. Quantum Chem., 2014, 114, 85 [2] Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal V K, Altavilla S, Mukamel S, Garavelli M, Faraday Discuss. 2015, DOI: 10.1039/C4FD00175C [3] Nenov A, Giussani A, Segarra-Martí J, Jaiswal V K, Rivalta I, Cerullo G, Mukamel S, Garavelli M, J. Chem. Phys. submitted [4] Nenov A, Giussani A, Fingerhut B P, Rivalta I, Dumont E, Mukamel S, Garavelli M, Phys. Chem. Chem. Phys. Submitted [5] Krebs N, Pugliesi I, Hauer J, Riedle E, New J. Phys., 2013,15, 08501

  13. An amplifier for VUV photomultiplier operating in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Dahal, S.; Di Giovanni, A.; d`Inzeo, M.; Franchi, G.; Pazos Clemens, L.

    2016-07-01

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  14. A travelling-wave parametric amplifier utilizing Josephson junctions

    SciTech Connect

    Sweeny, M.; Mahler, R.

    1985-03-01

    Josephson junction parametric amplifiers of travelling-wave design have been designed for use as low-noise millimeter wave amplifiers. These devices have non-reciprocal gain, very wide bandwidths, power dissipations of a few tens of nanowatts, and an input impedance that can be as high as 50 ohms. The design is described and performance estimates, based on a small-signal model, are summarized.

  15. Yb:YAG single crystal fiber image amplifier

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian; Yang, Lih-Mei; Bai, Shuang

    2014-02-01

    In the paper, a Yb:YAG single crystal fiber is used for the first time to amplify week image signal. It was longitudinally pumped by a fiber-coupled laser diode with a maximum power of 150W at 940 nm. The image amplifier provided low noise and high gain amplification. A spatially uniform amplification gain of up to 10.2 dB at wavelength of 1030 nm was obtained.

  16. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  17. Design of low noise wind turbine blades using Betz and Joukowski concepts

    NASA Astrophysics Data System (ADS)

    Shen, W. Z.; Hrgovan, I.; Okulov, V.; Zhu, W. J.; Madsen, J.

    2014-06-01

    This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline/reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using the concepts of Betz and Joukowski, and the CQU-DTU-LN1 series of airfoils. Performance analysis shows that the newly designed turbine rotors can achieve an overall noise reduction of 6 dB and 1.5 dB(A) with a similar power output as compared to the reference rotor.

  18. Advanced Concepts in Josephson Junction Reflection Amplifiers

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti

    2014-06-01

    Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.

  19. Reducing Printed Circuit Board Emissions with Low-Noise Design Practices

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Fowler, Jennifer; Yavoich, Brian J.; Jennings, Stephen A.

    2012-01-01

    This paper presents the results of an experiment designed to determine the effectiveness of adopting several low-noise printed circuit board (PCB) design practices. Two boards were designed and fabricated, each consisting of identical mixed signal circuitry. Several important differences were introduced between the board layouts: one board was constructed using recommended low-noise practices and the other constructed without such attention. The emissions from the two boards were then measured and compared, demonstrating an improvement in radiated emissions of up to 22 dB.

  20. Unshielded fetal magnetocardiography system using two-dimensional gradiometers

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio

    2008-03-01

    We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.

  1. Dipolar Fermions in Quasi-Two-Dimensional Square Lattice

    NASA Astrophysics Data System (ADS)

    Lai, Chen-Yen; Tsai, Shan-Wen

    2013-03-01

    Motivated by recent experimental realization of quantum degenerate dipolar Fermi gas, we study a system of ultralcold single- and two-species polar fermions in a double layer two-dimensional square lattice. The long-range anisotropic nature of dipole-dipole interaction has shown a rich phase diagram on a two dimensional square lattice*. We investigate how the interlayer coupling affects the monolayer system. Our study focuses on the regime where the fermions are closed to half-filling, which is when lattice effects play an important role. We find several correlated phases by using a functional renormalization group technique, which also provides estimates for the critical temperature of each phase. [*] S. G. Bhongale et. al. arXiv:1209.2671 and Phys. Rev. Lett. 108 145301 (2012).

  2. Local properties of the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Drewes, Jan; Miller, Luke; Cocchi, Eugenio; Chan, Chun Fai; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael

    2016-05-01

    Quantum gases of interacting fermionic atoms in optical lattices promise to shed new light on the low-temperature phases of the Hubbard model such as spin-ordered phases, or in particular, on possible d-wave superconductivity. In this context it remains challenging to further reduce the temperature of the trapped gas. We experimentally realize the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40K atoms into a three-dimensional optical lattice geometry. By tuning the interaction between the two lowest hyperfine states to strong repulsion the two-dimensional Mott-insulator is created. High resolution absorption imaging in combination with radio-frequency spectroscopy is applied to spatially resolve the atomic distribution in a single layer in the vertical direction. This measurement scheme gives direct access to the local properties of the trapped gas and we present most recent data on the distribution of entropy and density-density fluctuations.

  3. The line tension of two-dimensional ionic fluids

    NASA Astrophysics Data System (ADS)

    Eustaquio-Armenta, María del Rosario; Méndez-Maldonado, Gloria Arlette; González-Melchor, Minerva

    2016-04-01

    Pressure tensor components are very useful in the calculation of the tension associated with a liquid-vapor interface. In this work, we present expressions for the pressure tensor components of two-dimensional ionic fluids, modeled at the level of the primitive model. As an application, we carried out molecular dynamics simulations of liquid-vapor interfaces to calculate the line tension of the 1:1 two-dimensional ionic fluid, whose liquid-vapor coexistence curve had already been obtained in a previous work. The pressure tensor components were validated by simulating states of one phase and reproducing the scalar pressure, previously obtained from bulk simulations and reported in the literature. The effects on the line tension and the coexisting densities, originated by the choice of the Ewald parameters, the cutoff radius, and the interfacial length were also evaluated.

  4. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  5. Object tracking based on two-dimensional PCA

    NASA Astrophysics Data System (ADS)

    Xu, Fuyuan; Gu, Guohua; Kong, Xiaofang; Wang, Pengcheng; Ren, Kan

    2016-04-01

    In this paper, we present a novel object tracking method based on two-dimensional PCA. The low quality of images and the changes of the object appearance are very challenging for the object tracking. The representation of the training features is usually used to solve these challenges. Two-dimensional PCA (2DPCA) based on the image covariance matrix is constructed directly using the original image matrices. An appearance model is presented and its likelihood estimation has been established based on 2DPCA representation in this paper. Compared with the state-of-the-art methods, our method has higher reliability and real-time property. The performances of the proposed tracking method are quantitatively and qualitatively shown in experiments.

  6. Adaptive rezoner in a two-dimensional Lagrangian hydrodynamic code

    SciTech Connect

    Pyun, J.J.; Saltzman, J.S.; Scannapieco, A.J.; Carroll, D.

    1985-01-01

    In an effort to increase spatial resolution without adding additional meshes, an adaptive mesh was incorporated into a two-dimensional Lagrangian hydrodynamics code along with two-dimensional flux corrected (FCT) remapper. The adaptive mesh automatically generates a mesh based on smoothness and orthogonality, and at the same time also tracks physical conditions of interest by focusing mesh points in regions that exhibit those conditions; this is done by defining a weighting function associated with the physical conditions to be tracked. The FCT remapper calculates the net transportive fluxes based on a weighted average of two fluxes computed by a low-order scheme and a high-order scheme. This averaging procedure produces solutions which are conservative and nondiffusive, and maintains positivity. 10 refs., 12 figs.

  7. Evaluation of non-separable two-dimensional

    NASA Astrophysics Data System (ADS)

    Lopez, Vicente; Uzer, T.

    In the treatment of reactive collisions by approximate methods such as the Distorted Wave Born Approximation, two-dimensional non-separable integrals are frequently encountered. In this article, we introduce the use of a two-dimensional canonical integral, the hyperbolic umbilic canonical diffraction function, on a model problem which leads to non-separable twodimensional Franck-Condon integrals. The identification of the parameters of the canonical function in terms of the physical parameters of the model is immediate in this case, and we find that the use of this function reproduces numerical quadrature results accurately with substantial savings in computing time. Extensions of the procedure to more general problems, anticipated by Child and Shapiro, are also discussed.

  8. Persistence problem in two-dimensional fluid turbulence.

    PubMed

    Perlekar, Prasad; Ray, Samriddhi Sankar; Mitra, Dhrubaditya; Pandit, Rahul

    2011-02-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Λ to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent θ=2.9±0.2. PMID:21405401

  9. On two-dimensional water waves in a canal

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Kuznetsov, Nikolay

    2003-07-01

    This Note deals with an eigenvalue problem that contains a spectral parameter in a boundary condition. The problem for the two-dimensional Laplace equation describes free, time-harmonic water waves in a canal having uniform cross-section and bounded from above by a horizontal free surface. It is shown that there exists a domain for which at least one of eigenfunctions has a nodal line with both ends on the free surface. Since Kuttler essentially used the non-existence of such nodal lines in his proof of simplicity of the fundamental sloshing eigenvalue in the two-dimensional case, we propose a new variational principle for demonstrating this latter fact. To cite this article: V. Kozlov, N. Kuznetsov, C. R. Mecanique 331 (2003).

  10. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space. PMID:26430982

  11. Molecular structure by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Freeman, R.

    Two examples are presented of the use of two-dimensional NMR spectroscopy to solve molecular structure problems. The first is called correlation spectroscopy (COSY) and it allows us to disentangle a complex network of spin-spin couplings. By dispersing the NMR information in two frequency dimensions, it facilitates the analysis of very complex spectra of organic and biochemical molecules, normally too crowded to be tractable. The second application exploits the special properties of multiple-quantum coherence to explore the molecular framework one CC linkage at a time. The natural product panamine is used as a test example; with some supplementary evidence, the structure of this six-ringed heterocyclic molecule is elucidated from the double-quantum filtered two-dimensional spectrum.

  12. Two dimensional disorder in black phosphorus and layered monochalcogenides

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.

    The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.

  13. Persistence Problem in Two-Dimensional Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Perlekar, Prasad; Ray, Samriddhi Sankar; Mitra, Dhrubaditya; Pandit, Rahul

    2011-02-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Λ to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent θ=2.9±0.2.

  14. Coordination Programming of Two-Dimensional Metal Complex Frameworks.

    PubMed

    Maeda, Hiroaki; Sakamoto, Ryota; Nishihara, Hiroshi

    2016-03-22

    Since the discovery of graphene, two-dimensional materials with atomic thickness have attracted much attention because of their characteristic physical and chemical properties. Recently, coordination nanosheets (CONASHs) came into the world as new series of two-dimensional frameworks, which can show various functions based on metal complexes formed by numerous combinations of metal ions and ligands. This Feature Article provides an overview of recent progress in synthesizing CONASHs and in elucidating their intriguing electrical, sensing, and catalytic properties. We also review recent theoretical studies on the prediction of the unique electronic structures, magnetism, and catalytic ability of materials based on CONASHs. Future prospects for applying CONASHs to novel applications are also discussed. PMID:26915925

  15. Modeling and Experimentation on a Two-dimensional Synthetic jet

    NASA Astrophysics Data System (ADS)

    Wang, Yunfei; Mohseni, Kamran

    2007-11-01

    Hotwire anemometry is employed in order to investigate the spatial development of a two-dimensional synthetic jet. Flow velocity at various locations downstream from a slit is measured. A self similar behavior in the measured velocity is observed. An analytical model for a steady synthetic jet is developed that accurately matches the experimental data. As observed by other groups, the two-dimensional synthetic jet spreads at a rate higher than a continuous jet. This rate is accurately predicted by our model. It is identified that the main difference between a continuous jet and a synthetic jet is the higher value of the virtual viscosity (eddy viscosity) in a synthetic jet. This is attributed to the pulsate nature of a synthetic jet that makes it more susceptible to turbulence.

  16. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  17. Electron fractionalization in two-dimensional graphenelike structures.

    PubMed

    Hou, Chang-Yu; Chamon, Claudio; Mudry, Christopher

    2007-05-01

    Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics. PMID:17501599

  18. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  19. On two-dimensional flows of compressible fluids

    NASA Technical Reports Server (NTRS)

    Bergman, Stefan

    1945-01-01

    This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.

  20. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  1. Extension of modified power method to two-dimensional problems

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  2. Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems

    NASA Astrophysics Data System (ADS)

    Harren, Rolf; van Stee, Rob

    We consider the two-dimensional bin packing and strip packing problem, where a list of rectangles has to be packed into a minimal number of rectangular bins or a strip of minimal height, respectively. All packings have to be non-overlapping and orthogonal, i.e., axis-parallel. Our algorithm for strip packing has an absolute approximation ratio of 1.9396 and is the first algorithm to break the approximation ratio of 2 which was established more than a decade ago. Moreover, we present a polynomial time approximation scheme (mathcal{PTAS}) for strip packing where rotations by 90 degrees are permitted and an algorithm for two-dimensional bin packing with an absolute worst-case ratio of 2, which is optimal provided mathcal{P} not= mathcal{NP}.

  3. A two-dimensional dam-break flood plain model

    USGS Publications Warehouse

    Hromadka, T.V., II; Berenbrock, C.E.; Freckleton, J.R.; Guymon, G.L.

    1985-01-01

    A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a finite difference grid and an irregular triangle element integrated finite difference formulation are presented. The governing flow equations are approximately solved as a diffusion model coupled to the equation of continuity. Application of the model to a hypothetical dam-break study indicates that the approach can be used to predict a two-dimensional dam-break flood plain over a broad, flat plain more accurately than a one-dimensional model, especially when the flow can break-out of the main channel and then return to the channel at other downstream reaches. ?? 1985.

  4. Note: Percolation in two-dimensional flexible chains systems

    NASA Astrophysics Data System (ADS)

    Pawłowska, Monika; Żerko, Szymon; Sikorski, Andrzej

    2012-01-01

    The structure of a two-dimensional film formed by adsorbed polymer chains was studied by means of Monte Carlo simulations. The polymer chains were represented by linear sequences of lattice beads and positions of these beads were restricted to vertices of a two-dimensional square lattice. Two different Monte Carlo methods were employed to determine the properties of the model system. The first was the random sequential adsorption (RSA) and the second one was based on Monte Carlo simulations with a Verdier-Stockmayer sampling algorithm. The methodology concerning the determination of the percolation thresholds for an infinite chain system was discussed. The influence of the chain length on both thresholds was presented and discussed. It was shown that the RSA method gave considerably lower thresholds for longer chains. This behavior can be explained by a different pool of chain conformations used in the calculations in both methods under consideration.

  5. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ji, Yanfeng; Pan, Chengbin; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Hui, Fei; Shi, Yuanyuan; Larcher, Luca; Wu, Ernest; Lanza, Mario

    2016-01-01

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO2, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  6. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    SciTech Connect

    Heisler, Ismael A. Moca, Roberta; Meech, Stephen R.; Camargo, Franco V. A.

    2014-06-15

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  7. Collective effects in the two-dimensional Josephson junction array

    NASA Astrophysics Data System (ADS)

    Vinokour, Valerii; Sadovskyy, Ivan; Galda, Alexey

    2013-03-01

    We study collective quantum effects in the two-dimensional Josephson junction arrays (JJA) in the vicinity of the superconductor-insulator transition (SIT). We find the contribution of the quantum coherent phase slips (QCPS) into the formation of thermodynamic properties of the JJA, including critical current, as a function of the magnetic field. We investigate the response of the 2D JJA to the external bias and the contribution from QCPS to this response.

  8. Two-dimensional correlation spectroscopy in polymer study

    PubMed Central

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  9. Equations for the design of two-dimensional supersonic nozzles

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving

    1948-01-01

    Equations are presented for obtaining the wall coordinates of two-dimensional supersonic nozzles. The equations are based on the application of the method of characteristics to irrotational flow of perfect gases in channels. Curves and tables are included for obtaining the parameters required by the equations for the wall coordinates. A brief discussion of characteristics as applied to nozzle design is given to assist in understanding and using the nozzle-design method of this report. A sample design is shown.

  10. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers. PMID:23842256

  11. In vivo two-dimensional NMR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraft, Robert A.

    1999-10-01

    The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and γ- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  12. Generating partitions for two-dimensional hyperbolic maps

    NASA Astrophysics Data System (ADS)

    Bäcker, A.; Chernov, N.

    1998-01-01

    For a class of two-dimensional hyperbolic maps (which includes certain billiard systems) we construct finite generating partitions. Thus, trajectories of the map can be labelled uniquely by doubly infinite symbol sequences, where the symbols correspond to the atoms of the partition. It is shown that the corresponding conditions are fulfilled in the case of the cardioid billiard, the stadium billiard (and other Bunimovich billiards), planar dispersing and semidispersing billiards.

  13. Suspended two-dimensional electron and hole gases

    SciTech Connect

    Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.

    2013-12-04

    We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.

  14. Dirac Points in Two-Dimensional Inverse Opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2013-10-01

    The electron energy states and energy bands are calculated for a two-dimensional inverse opal structure. Assume that the opal structure is closed-packed circles, the inverse opal has the honeycomb lattice. The honeycomb lattice in two dimensions has a Dirac point. Its properties can be manipulated by altering the structure of the inverse opal: the radius of the circle, and the small gap between circles.

  15. Two-dimensional hexagonal smectic structure formed by topological defects

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.; Shuravin, N. S.; Fukuda, Atsuo

    2016-03-01

    A two-dimensional hexagonal smectic structure formed by point topological defects and intersecting defect walls was discovered. This unique structure was predicted theoretically about 30 years ago but not observed. For a long time the hexagonal structure was a challenge for experimentalists. A different type of self-organization in smectic films was found and used to form the hexagonal structure. Methods applied for building the hexagonal phase can be used for the formation of complicated liquid-crystal structures.

  16. Temperature maxima in stable two-dimensional shock waves

    SciTech Connect

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-07-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}

  17. The scaling state in two-dimensional grain growth

    SciTech Connect

    Mulheran, P.A. . Dept. of Physics)

    1994-11-01

    A new model of normal grain growth in two-dimensional systems is derived from considerations of Potts model simulations. This Randomly Connected Bubble model is based on Hillert's theory and combines the essential topological features of the grain boundary network with the action of capillarity. It successfully predicts what the scaling state of the network should be and explains why the system evolves into this state. The implications for grain growth in real materials are also discussed.

  18. Two-Dimensional Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.; Lant, Christian

    1992-01-01

    Extension of Yamaguchi's laser-speckle surface-strain-gauge method yields data on two-dimensional surface strains in times as short as fractions of second. Laser beams probe rough spot on surface of specimen before and after processing. Changes in speckle pattern of laser light reflected from spot indicative of changes in surface strains during processing. Used to monitor strains and changes in strains induced by hot-forming and subsequent cooling of steel.

  19. Scaling relations in two-dimensional relativistic hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan; Lehner, Luis; Oz, Yaron

    2015-12-01

    We derive exact scaling relations for two-dimensional relativistic hydrodynamic turbulence in the inertial range of scales. We consider both the energy cascade towards large scales and the enstrophy cascade towards small scales. We illustrate these relations by numerical simulations of turbulent weakly compressible flows. Intriguingly, the fluid-gravity correspondence implies that the gravitational field in black hole/black brane spacetimes with anti-de Sitter asymptotics should exhibit similar scaling relations.

  20. Self-propelled two dimensional polymer multilayer plate micromotors.

    PubMed

    Gai, Meiyu; Frueh, Johannes; Hu, Narisu; Si, Tieyan; Sukhorukov, Gleb B; He, Qiang

    2016-02-01

    This communication sheds light on the production method and motion patterns of autonomous moving bubble propelled two dimensional micro-plate motors. The plate motors are produced by the well-known layer-by-layer self-assembly process in combination with micro-contact printing. The motion analysis covers instances of oscillating bubble development on one or more nucleation sites, which influence the motion speed and direction. PMID:26780851

  1. Glassy behavior of two-dimensional stripe-forming systems

    NASA Astrophysics Data System (ADS)

    Ribeiro Teixeira, Ana C.; Stariolo, Daniel A.; Barci, Daniel G.

    2013-06-01

    We study two-dimensional frustrated but nondisordered systems applying a replica approach to a stripe-forming model with competing interactions. The phenomenology of the model is representative of several well-known systems, like high-Tc superconductors and ultrathin ferromagnetic films, which have been the subject of intense research. We establish the existence of a glass transition to a nonergodic regime accompanied by an exponential number of long-lived metastable states, responsible for slow dynamics and nonequilibrium effects.

  2. Colloquium: Transport in strongly correlated two dimensional electron fluids

    NASA Astrophysics Data System (ADS)

    Spivak, B.; Kravchenko, S. V.; Kivelson, S. A.; Gao, X. P. A.

    2010-04-01

    An overview of the measured transport properties of the two dimensional electron fluids in high mobility semiconductor devices with low electron densities is presented as well as some of the theories that have been proposed to account for them. Many features of the observations are not easily reconciled with a description based on the well understood physics of weakly interacting quasiparticles in a disordered medium. Rather, they reflect new physics associated with strong correlation effects, which warrant further study.

  3. Itinerant ferromagnetism in a two-dimensional atomic gas

    SciTech Connect

    Conduit, G. J.

    2010-10-15

    Motivated by the first experimental evidence of ferromagnetic behavior in a three-dimensional ultracold atomic gas, we explore the possibility of itinerant ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we develop a formalism that demonstrates how quantum fluctuations drive the ferromagnetic reconstruction first order, and consider the consequences of an imposed population imbalance. Secondly, we adapt this formalism to elucidate the key experimental signatures of ferromagnetism in a realistic trapped geometry.

  4. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  5. Two-dimensional high temperature strain measurement system

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Barranger, John P.

    1989-01-01

    Two-dimensional optical strain measurements on high temperature test specimens are presented. This two-dimensional capability is implemented through a rotatable sensitive strain axis. Three components of surface strain can be measured automatically, from which the first and second principal strains are calculated. One- and two-dimensional strain measurements at temperatures beyond 750 C with a resolution of 15 microstrain are demonstrated. The system is based on a one-dimensional speckle shift technique. The speckle shift technique makes use of the linear relationship between surface strain and the differential shift of laser speckle patterns in the diffraction plane. Laser speckle is a phase effect that occurs when spatially coherent light interacts with an optically rough surface. Since speckle is generated by any diffusely reflecting surface, no specimen preparation is needed to obtain a good signal. Testing was done at room temperature on a flat specimen of Inconel 600 mounted in a fatigue testing machine. A load cell measured the stress on the specimen before and after acquiring the speckle data. Strain components were measured at 0 C (parallel to the load axis) and at plus or minus 45 C, and plots indicate the calculated values of the first and second principal strains. The measured values of Young's modulus and Poisson's ratio are in good agreement with handbook values. Good linearity of the principal strain moduli at high temperatures indicate precision and stability of the system. However, a systematic error in the high-temperature test setup introduced a scale factor in the slopes of the two-dimensional stress-strain curves. No high temperature effects, however, have been observed to degrade speckle correlation.

  6. Two dimensional thermal and charge mapping of power thyristors

    NASA Technical Reports Server (NTRS)

    Hu, S. P.; Rabinovici, B. M.

    1975-01-01

    The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.

  7. Statistical Properties of Decaying Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenshi; Takahashi, Takehiro; Nakano, Tohru

    1993-04-01

    We investigate the temporal development of the statistical properties of two-dimensional incompressible turbulence simulated for a long time. First, we obtain information on the evolving microscopic vortical structure by inspecting the time variation of qth order fractal dimensions of the enstrophy dissipation rate. The conclusion drawn from such an inspection is consistent with a picture given by Kida (J. Phys. Soc. Jpn. 54 (1985) 2840); in the first stage the \

  8. Two-dimensional flow through a turbine cascade

    NASA Astrophysics Data System (ADS)

    Sheng, J. F.

    1987-06-01

    The application of the general PHOENICS computer code to the prediction of the problem in the field of turbomachinery using body-fitted coordinates is demonstrated. The problem can be easily specified by PHOENICS-input-language settings made in a Q1 file, together with a grid generation program specially written for the problem of a two-dimensional blade-to-blade flow on a surface of revolution. The computer memory and time needed to give numerically accurate results are modest.

  9. Harmonic Lattice Behavior of Two-Dimensional Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Keim, P.; Maret, G.; Herz, U.; von Grünberg, H. H.

    2004-05-01

    Using positional data from videomicroscopy and applying the equipartition theorem for harmonic Hamiltonians, we determine the wave-vector-dependent normal mode spring constants of a two-dimensional colloidal model crystal and compare the measured band structure to predictions of the harmonic lattice theory. We find good agreement for both the transversal and the longitudinal modes. For q→0, the measured spring constants are consistent with the elastic moduli of the crystal.

  10. Electrophoresis of DNA on a disordered two-dimensional substrate

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2006-03-01

    We propose a new method for electrophoretic separation of DNA in which adsorbed polymers are driven over a disordreed two-dimensional substrate which contains attractive sites for the polymers. Using simulations of a model for long polymer chains, we show that the mobility increases with polymer length, in contrast to gel electrophoresis techniques, and that separation can be achieved for a range of length scales. We demonstrate that the separation mechanism relies on excluded volume interactions between polymer segments.

  11. Two dimensional thermo-optic beam steering using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.

    2016-03-01

    Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.

  12. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  13. Two-dimensional map for impact oscillator with drift.

    PubMed

    Pavlovskaia, Ekaterina; Wiercigroch, Marian; Grebogi, Celso

    2004-09-01

    An impact oscillator with drift is considered. The model accounts for viscoelastic impacts and is capable of mimicking the dynamics of progressive motion, which is important in many applications. To simplify the analysis of this system, a transformation decoupling the original coordinates is introduced. As a result, the bounded oscillations are separated from the drift motion. To study the bounded dynamics, a two-dimensional analytical map is developed and analyzed. In general, the dynamic state of the system is fully described by four variables: time tau , relative displacement p and velocity y of the mass, and relative displacement q of the slider top. However, this number can be reduced to two if the beginning of the progression phase is being monitored. The lower and upper bounds of the map domain are approximated. A graphical method of iteration of the two-dimensional map, similar to the cobweb method used in the one-dimensional case, is proposed. The results of numerical iterations of this two-dimensional map are presented, and a comparison is given between bifurcation diagrams calculated for this map and for the original system of differential equations. PMID:15524606

  14. Two-dimensional map for impact oscillator with drift

    NASA Astrophysics Data System (ADS)

    Pavlovskaia, Ekaterina; Wiercigroch, Marian; Grebogi, Celso

    2004-09-01

    An impact oscillator with drift is considered. The model accounts for viscoelastic impacts and is capable of mimicking the dynamics of progressive motion, which is important in many applications. To simplify the analysis of this system, a transformation decoupling the original coordinates is introduced. As a result, the bounded oscillations are separated from the drift motion. To study the bounded dynamics, a two-dimensional analytical map is developed and analyzed. In general, the dynamic state of the system is fully described by four variables: time τ , relative displacement p and velocity y of the mass, and relative displacement q of the slider top. However, this number can be reduced to two if the beginning of the progression phase is being monitored. The lower and upper bounds of the map domain are approximated. A graphical method of iteration of the two-dimensional map, similar to the cobweb method used in the one-dimensional case, is proposed. The results of numerical iterations of this two-dimensional map are presented, and a comparison is given between bifurcation diagrams calculated for this map and for the original system of differential equations.

  15. Two dimensional liquid crystal devices and their computer simulations

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    The main focus of the dissertation is design and optimization two dimensional liquid crystal devices, which means the liquid crystal director configurations vary in two dimensions. Several optimized and designed devices are discussed in the dissertation. They include long-term bistable twisted nematic liquid crystal display (BTN LCD), which is very low power consumption LCD and suitable for E-book application; wavelength tunable liquid crystal Fabry-Perot etalon filter, which is one of the key components in fiber optic telecommunications; high speed refractive index variable devices, which can be used in infrared beam steering and telecommunications; high density polymer wall diffractive liquid crystal on silicon (PWD-LCoS) light valve, which is a promising candidate for larger screen projection display and also can be used in other display applications. Two dimensional liquid crystal director simulation program (relaxation method) and two dimensional optical propagation simulation program (finite-difference time-domain, FDTD method) are developed. The algorithms of these programs are provided. It has been proved that they are the very efficient tools that used in design and optimization the devices described above.

  16. Analysis techniques for two-dimensional infrared data

    NASA Technical Reports Server (NTRS)

    Winter, E. M.; Smith, M. C.

    1978-01-01

    In order to evaluate infrared detection and remote sensing systems, it is necessary to know the characteristics of the observational environment. For both scanning and staring sensors, the spatial characteristics of the background may be more of a limitation to the performance of a remote sensor than system noise. This limitation is the so-called spatial clutter limit and may be important for systems design of many earth application and surveillance sensors. The data used in this study is two dimensional radiometric data obtained as part of the continuing NASA remote sensing programs. Typical data sources are the Landsat multi-spectral scanner (1.1 micrometers), the airborne heat capacity mapping radiometer (10.5 - 12.5 micrometers) and various infrared data sets acquired by low altitude aircraft. Techniques used for the statistical analysis of one dimensional infrared data, such as power spectral density (PSD), exceedance statistics, etc. are investigated for two dimensional applicability. Also treated are two dimensional extensions of these techniques (2D PSD, etc.), and special techniques developed for the analysis of 2D data.

  17. A two-dimensional analytical model of petroleum vapor intrusion

    NASA Astrophysics Data System (ADS)

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2016-02-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.

  18. Procedures for two-dimensional electrophoresis of proteins

    SciTech Connect

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  19. Two-dimensional DNA fingerprinting of human individuals

    SciTech Connect

    Uitterlinden, A.G.; Slagboom, P.E.; Knook, D.L.; Vijg, J. )

    1989-04-01

    The limiting factor in the presently available techniques for the detection of DNA sequence variation in the human genome is the low resolution of Southern blot analysis. To increase the analytical power of this technique, the authors applied size fractionation of genomic DNA restriction fragments in conjunction with their sequence-dependent separation in denaturing gradient gels; the two-dimensional separation patterns obtained were subsequently transferred to nylon membranes. Hybridization analysis using minisatellite core sequences as probes resulted in two-dimensional genomic DNA fingerprints with a resolution of up to 625 separated spots per probe per human individual; by conventional Southern blot analysis, only 20-30 bands can be resolved. Using the two-dimensional DNA fingerprinting technique, they demonstrate in a small human pedigree the simultaneous transmission of 37 polymorphic fragments (out of 365 spots) for probe 33.15 and 105 polymorphic fragments (out of 625 spots) for probe 33.6. In addition, a mutation was detected in this pedigree by probe 33.6. They anticipate that this method will be of great use in studies aimed at (i) measuring human mutation frequencies, (ii) associating genetic variation with disease, (iii) analyzing genomic instability in relation to cancer and aging, and (iv) linkage analysis and mapping of disease genes.

  20. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  1. Experimental realization of two-dimensional boron sheets.

    PubMed

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future. PMID:27219700

  2. Two-dimensional Magnetohydrodynamics and Interstellar Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    1999-09-01

    This paper is concerned with a physical understanding of the main features of interstellar plasma turbulence. Our observational knowledge of this turbulence is provided by radio-wave propagation observations, generically referred to as interstellar scintillations. Distinctive features of the observations are the nearly omnipresent anisotropy of scattering, revealed by elliptical rather than circular scattering disks, drastic differences in the magnitude of scattering between closely spaced lines of sight through the interstellar medium, evidence from Faraday rotation observations that the interstellar vector magnetic field changes markedly on small spatial scales, and the existence of a power-law spectrum of density irregularities over a wide range of spatial scales. This power-law density spectrum strongly suggests the existence of similar spatial power spectra for the other magnetohydrodynamic (MHD) variables such as flow velocity and magnetic field. In this paper, it is pointed out that the aforementioned features arise or may naturally be explained by an approximate theory of magnetohydrodynamic turbulence, two-dimensional magnetohydrodynamics. In this theory, the plasma turbulence is described by two scalar functions (a velocity stream function and one component of the magnetic vector potential) that are coupled by nonlinear partial differential equations. These equations are physically transparent, possess some relevant analytic results, and are easily solved numerically. Arguments for the relevance of this reduced plasma description are presented. Although obviously an incomplete description of the interstellar plasma, these equations provide plausible explanations for the observational features described above. Anisotropy of scattering arises as an obvious consequence of the conditions for validity of the two-dimensional MHD description, i.e., that spatial gradients along a large-scale magnetic field are much smaller than those perpendicular to the field

  3. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  4. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  5. The NASA Ames Research Center one- and two-dimensional stratospheric models. Part 2: The two-dimensional model

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Watson, V. R.; Shimazaki, T.; Woodward, H. T.; Riegel, C. A.; Capone, L. A.; Becker, T.

    1977-01-01

    The two-dimensional model of stratospheric constituents is presented in detail. The derivation of pertinent transport parameters and the numerical solution of the species continuity equations, including a technique for treating the stiff differential equations that represent the chemical kinetic terms, and appropriate methods for simulating the diurnal variations of the solar zenith angle and species concentrations are discussed. Predicted distributions of tracer constituents (ozone, carbon 14, nitric acid) are compared with observed distributions.

  6. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. PMID:27250444

  7. A low noise high readout speed 512×128 ROIC for shortwave InGaAs FPA

    NASA Astrophysics Data System (ADS)

    Huang, SongLei; Huang, Zhangcheng; Chen, Yu; Tang, Hengjing; Fang, Jiaxiong

    2015-03-01

    A low noise high readout speed 512×128 readout Integrated circuit (ROIC) based on capacitance trans-impedance amplifier (CTIA) is designed in this paper. The ROIC is flip-chip bonded with Indium bumps to InGaAs detectors which cutoff wavelength is 1.7μm, as a hybrid structure (InGaAs FPA). The ROIC with 30μm pixel pitch and 50fF integrated capacitance, is fabricated in 0.5μm DPTM CMOS process. The results show that output noise is about 3.0E-4V which equivalent readout noise is 95e-, output voltage swing is better than 2.5V; the dynamic range of InGaAs FPA reaches 69.7dB@2ms, and the power dissipation is about 175mw. The peak detectivity of InGaAs FPA reaches 2E12cmHz1/2w-1 at 300K without TEC cooling.

  8. A low noise low power 512×256 ROIC for extended wavelength InGaAs FPA

    NASA Astrophysics Data System (ADS)

    Huang, Songlei; Huang, Zhangcheng; Chen, Yu; Li, Tao; Fang, Jiaxiong

    2015-05-01

    A low noise low power 512×256 readout integrated circuit (ROIC) based on Capacitance Trans-impedance Amplifier (CTIA) was designed in this paper. The ROIC with 30μm pixel-pitch and 70 fF integrated capacitance as normal structure and test structure capacitance from 5 to 60 fF, was fabricated in 0.5μm DPTM CMOS process. The results showed that output voltage was larger than 2.0V and power consumption was about 150mW, output ROIC noise was about 3.6E-4V which equivalent noise was 160e-, and the test structure noise was from 20e- to 140 e-. Compared the readout noises in Integration Then Readout (ITR) mode and Integration While Readout (IWR) mode, it indicated that in IWR mode, readout noise comes mainly from both integration capacitance and sampling capacitance, while in ITR mode, readout noise comes mostly from sampling capacitance. Finally the ROIC was flip-chip bonded with Indium bumps to extended wavelength InGaAs detectors with cutoff wavelength 2.5μm at 200K. The peak detectivity exceeded 5E11cmHz1/2/w with 70nA/cm2 dark current density at 200K.

  9. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e‑ at zero farad plus 8.2 e‑ per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  10. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  11. Statistical mechanics of two-dimensional and geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Venaille, Antoine

    2012-06-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  12. Biological and environmental interactions of emerging two-dimensional nanomaterials.

    PubMed

    Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert

    2016-03-21

    Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057

  13. Two stage dual gate MESFET monolithic gain control amplifier for Ka-band

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Contolatis, A.

    1987-01-01

    A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.

  14. 4 GHz band FET amplifier with the noise temperature of 55K at -50 deg C

    NASA Astrophysics Data System (ADS)

    Nakazawa, T.; Ogiso, K.; Takeda, F.; Miyazaki, S.; Nara, A.

    A thermoelectrically cooled 4 GHz band FET amplifier with a noise temperature of 55K developed as a low noise amplifier for satellite communications earth stations is described. It is pointed out that the method of broadband noise matching is used in the design. The difference between the maximum and minimum noise temperature within the frequency band of the amplifier is 3 K, a value consistent with the theoretical value.

  15. Two-dimensional chiral topological superconductivity in Shiba lattices.

    PubMed

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A H; Yazdani, A; Bernevig, B Andrei

    2016-01-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal. PMID:27465127

  16. Highly directional thermal emission from two-dimensional silicon structures.

    PubMed

    Ribaudo, Troy; Peters, David W; Ellis, A Robert; Davids, Paul S; Shaner, Eric A

    2013-03-25

    We simulate, fabricate, and characterize near perfectly absorbing two-dimensional grating structures in the thermal infrared using heavily doped silicon (HdSi) that supports long wave infrared surface plasmon polaritons (LWIR SPP's). The devices were designed and optimized using both finite difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) simulation techniques to satisfy stringent requirements for thermal management applications requiring high thermal radiation absorption over a narrow angular range and low visible radiation absorption over a broad angular range. After optimization and fabrication, characterization was performed using reflection spectroscopy and normal incidence emissivity measurements. Excellent agreement between simulation and experiment was obtained. PMID:23546065

  17. Topological phases in two-dimensional materials: a review.

    PubMed

    Ren, Yafei; Qiao, Zhenhua; Niu, Qian

    2016-06-01

    Topological phases with insulating bulk and gapless surface or edge modes have attracted intensive attention because of their fundamental physics implications and potential applications in dissipationless electronics and spintronics. In this review, we mainly focus on recent progress in the engineering of topologically nontrivial phases (such as [Formula: see text] topological insulators, quantum anomalous Hall effects, quantum valley Hall effects etc) in two-dimensional systems, including quantum wells, atomic crystal layers of elements from group III to group VII, and the transition metal compounds. PMID:27176924

  18. Longitudinal viscosity of two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin

    2013-01-01

    The longitudinal viscosity ηl is obtained for a two-dimensional (2D) liquid using a Green-Kubo method with a molecular dynamics simulation. The interparticle potential used has the Debye-Hückel or Yukawa form, which models a 2D dusty plasma. The longitudinal ηl and shear ηs viscosities are found to have values that match very closely, with only negligible differences for the entire range of temperatures that is considered. For a 2D Yukawa liquid, the bulk viscosity ηb is determined to be either negligibly small or not a meaningful transport coefficient.

  19. Symmetry and topology of two-dimensional noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Samokhin, K. V.

    2015-11-01

    We present a detailed study of the gap symmetry and the quasiparticle wave function topology in two-dimensional superconductors without inversion center. The strong spin-orbit coupling of electrons with the crystal lattice makes it necessary to describe superconductivity in terms of one or more nondegenerate bands characterized by helicity. We develop a topological classification of the superconducting states using the integer-valued Maurer-Cartan invariants and the Bogoliubov Wilson loops, and also calculate the spectrum of fermionic boundary modes.

  20. Condensate fraction of a two-dimensional attractive Fermi gas

    SciTech Connect

    Salasnich, Luca

    2007-07-15

    We investigate the Bose-Einstein condensation of fermionic pairs in a two-dimensional uniform two-component Fermi superfluid obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. By using the mean-field extended Bardeen-Cooper-Schrieffer theory, we analyze, as a function of the bound-state energy, the off-diagonal long-range order in the crossover from the Bardeen-Cooper-Schrieffer state of weakly bound Cooper pairs to the Bose-Einstein condensate of strongly-bound molecular dimers.