Science.gov

Sample records for low-resistive precision fabric

  1. Micro Machining Enhances Precision Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.

  2. Optical Fabrication By Precision Electroform

    NASA Astrophysics Data System (ADS)

    George, Ronald W.; Michaud, Lawrence L.

    1987-01-01

    The basic electroforming process exactly reproduces finely finished surface details from a master mold or mandrel. The process promises high potential for fabricating imaging quality optical components. This requires, however, the electrodeposition to be nearly stress free to attain accuracy within fractions of a wavelength (1.06 um) of light. Prior to this work, this level of accuracy had never been accomplished. This paper presents the advances made to the method and the process of electroforming in creating the routine production of imaging quality nickel metal mirrors. Work to date includes the electroforming of self-aligning two mirrored telescopes; the development of a large electroforming workstation to produce several mirrors simultaneously, and the development of a process for electroforming secondary mandrels. A generic process overview is presented along with opto-mechanical testing and results. Also included is a description of the general computer controlled closed loop process (Martin Marietta U.S. Patent #4,647,365 & #4,648,944). The work described was performed at Martin Marietta Corporation (Orlando) with the majority conducted under contract DAAHO1-85-C-1072 for the U.S. Army Missile Command, Redstone Arsenal, August 1985 through August 1987

  3. Precision Metal Fabrication. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This guide identifies considerations in the organization, operation, and evaluation of secondary and postsecondary vocational education programs. It contains both a vocational program guide and Career Merit Achievement Plan (Career MAP) for precision metal fabrication. The guide contains the following sections: occupational description; program…

  4. Precise Fabrication of Electromagnetic-Levitation Coils

    NASA Technical Reports Server (NTRS)

    Ethridge, E.; Curreri, P.; Theiss, J.; Abbaschian, G.

    1985-01-01

    Winding copper tubing on jig ensures reproducible performance. Sequence of steps insures consistent fabrication of levitation-and-melting coils. New method enables technician to produce eight coils per day, 95 percent of them acceptable. Method employs precise step-by-step procedure on specially designed wrapping and winding jig.

  5. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  6. High precision fabrication of antennas and sensors

    NASA Astrophysics Data System (ADS)

    Balčytis, A.; Seniutinas, G.; Urbonas, D.; Gabalis, M.; Vaškevičius, K.; Petruškevičius, R.; Molis, G.; Valušis, G. `.; Juodkazis, S.

    2015-02-01

    Electron and ion beam lithographies were used to fabricate and/or functionalize large scale - millimetre footprint - micro-optical elements: coupled waveguide-resonator structures on silicon-on-insulator (SOI) and THz antennas on low temperature grown LT-GaAs. Waveguide elements on SOI were made without stitching errors using a fixed beam moving stage approach. THz antennas were created using a three-step litography process. First, gold THz antennas defined by standard mask projection lithography were annealed to make an ohmic contact on LT-GaAs and post-processing with Ga-ion beam was used to define nano-gaps and inter digitised contacts for better charge collection. These approaches show the possibility to fabricate large footprint patterns with nanoscale precision features and overlay accuracy. Emerging 3D nanofabrication trends are discussed.

  7. Batch fabrication of precision miniature permanent magnets

    DOEpatents

    Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  8. Fabrication for precision mechanisms. Final report

    SciTech Connect

    Gillespie, L.K.

    1980-03-01

    The fabrication of components and assemblies for miniature precision mechanisms provides a variety of exacting manufacturing challenges. Size alone makes many parts hard to pick up, handle, measure, and install. This same small size causes more distortion or bending during machining, assembly, and welding. Some parts even float on the cleaning and deburring solutions. Tools break easily in very small holes, and surface finishes play an important role in part operation. Twenty-five manufacturing operations were studied to improve the precision of existing machining and assembly techniques. The study included the machining of metals and plastics using techniques new to the manufacture of miniature switches, timers, and actuators. Drilling, tapping, and press-fitting miniature features were evaluated. Fixturing and handling techniques, friction reduction, and the forming of ceramic parts were also studied. Many of the new approaches from this study have been incorporated into existing processes and further refined. Detailed observations have been reported in 33 other Bendix reports and the highlights of those observations are summarized in this study.

  9. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  10. Fabrication of a microtoroidal resonator with picometer precise resonant wavelength.

    PubMed

    Liu, Xiao-Fei; Lei, Fuchuan; Gao, Ming; Yang, Xu; Qin, Guo-Qing; Long, Gui-Lu

    2016-08-01

    Fabricating an optical microresonator with precise resonant wavelength is of significant importance for fundamental research and practical applications. Here, we develop an effective method to fabricate ultra-high Q microtoroid with picometer-precise resonant wavelength. Our method adds a tuning reflow process, using low-power CO2 laser pulses, to the traditional fabrication process. It can tailor resonant wavelength to a red or blue direction by choosing a proper laser power. Also, this shift can be controlled by the exposure time. Meanwhile, quality factor remains nearly unchanged during this tailoring process. Our method can greatly reduce the difficulties of experiments where precise resonances are required. PMID:27472629

  11. A unique approach to fabricating precision space structures elements

    NASA Technical Reports Server (NTRS)

    Cohan, H.; Johnson, R. R.

    1981-01-01

    A procedure of fabricating graphite epoxy columns used in the assembly of large space platforms is described. The requirement for precise dimensional control led to a unique hot resin injection process. Dry, high modulus fiber is wound over a vertically mounted steam-heated mandrel. A steam-heated sleeve or caul is slipped over the wound mandrel and resin is injected and cured in place. Approximately 200 column elements have been fabricated using this efficient process.

  12. Precision technique for side-polished fiber fabrication

    NASA Astrophysics Data System (ADS)

    Mishakov, Gennadi V.; Sokolov, Victor I.

    2002-04-01

    The precision technique for side polishing of single-mode quartz fibers is developed. The technique comprises cutting curved groove in silica block, gluing a section of bare fiber into the groove, and subsequent grinding and polishing of the silica block/fiber assembly. We succeeded in fabricating up to six side-polished fibers in one block with effective interaction length 2-4 mm. The accuracy of polishing depth was achieved at 1 micrometers using in-situ monitoring of transmission of 1.3 micrometers laser light through the fiber. The developed technique combines high accuracy, reproducibility and low cost in commercial production. Side- polished single-mode fibers fabricated with this technique can find application as elements of Bragg grating transmission filters, narrowband reflectors, optical add/drop multiplexers, couplers, polarizers, sensors, etc.

  13. High precision fabrication of polarization insensitive resonant grating filters

    NASA Astrophysics Data System (ADS)

    Boye, R. R.; Peters, D. W.; Wendt, J. R.; Samora, S.; Stevens, J.; Shul, R. J.; Hunker, J.; Kellogg, R. A.; Kemme, S. A.

    2012-03-01

    Resonant subwavelength gratings have been designed and fabricated as wavelength-specific reflectors for application as a rotary position encoder utilizing ebeam based photolithography. The first grating design used a two-dimensional layout to provide polarization insensitivity with separate layers for the grating and waveguide. The resulting devices had excellent pattern fidelity and the resonance peaks and widths closely matched the expected results. Unfortunately, the gratings were particularly angle sensitive and etch depth errors led to shifts in the center wavelength of the resonances. A second design iteration resulted in a double grating period to reduce the angle sensitivity as well as different materials and geometry; the grating and waveguide being the same layer. The inclusion of etch stop layers provided more accurate etch depths; however, the tolerance to changes in the grating duty cycle was much tighter. Results from these devices show the effects of small errors in the pattern fidelity. The fabrication process flows for both iterations of devices will be reviewed as well as the performance of the fabricated devices. A discussion of the relative merits of the various design choices provides insight into the importance of fabrication considerations during the design stage.

  14. Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts

    NASA Astrophysics Data System (ADS)

    Sasaki, Kohei; Higashiwaki, Masataka; Kuramata, Akito; Masui, Takekazu; Yamakoshi, Shigenobu

    2013-08-01

    We developed a donor doping technique for β-Ga2O3 by using Si-ion (Si+) implantation. For the implanted Ga2O3 substrates with Si+=1×1019-5×1019 cm-3, a high activation efficiency of above 60% was obtained after annealing in a nitrogen gas atmosphere at a relatively low temperature of 900-1000 °C. Annealed Ti/Au electrodes fabricated on the implanted Ga2O3 layers showed ohmic behavior. The Ga2O3 with Si+=5×1019 cm-3 showed the lowest specific contact resistance and resistivity obtained in this work of 4.6×10-6 Ω·cm2 and 1.4 mΩ·cm, respectively.

  15. Fabrication of precision optics using an imbedded reference surface

    DOEpatents

    Folta, James A.; Spiller, Eberhard

    2005-02-01

    The figure of a substrate is very precisely measured and a figured-correcting layer is provided on the substrate. The thickness of the figure-correcting layer is locally measured and compared to the first measurement. The local measurement of the figure-correcting layer is accomplished through a variety of methods, including interferometry and fluorescence or ultrasound measurements. Adjustments in the thickness of the figure-correcting layer are made until the top of the figure-correcting layer matches a desired figure specification.

  16. Mechanical fabrication of precision microlenses on optical fiber endfaces

    NASA Astrophysics Data System (ADS)

    Milton, Gareth; Gharbia, Yousef A.; Katupitiya, Jayantha

    2005-12-01

    We present a purely mechanical means of producing highly concentric spherical lenses at the endfaces of optical fibers. The production process has two stages. First, conical lenses are produced in a grinding process that ensures excellent concentricity. Then, the conical lenses are transformed to spherical lenses using a novel process called loose abrasive blasting. The cone grinding is carried out on a microgrinding machine, which has a sophisticated control system that enables the production of precision conical lenses. The blasting is carried out on a diamond blasting machine. Plots showing automatic centering performance of the microgrinding machine and scanning electron microscopy images of the conical and spherical lenses are presented.

  17. Mechanical fabrication of precision microlenses on optical fiber endfaces

    NASA Astrophysics Data System (ADS)

    Milton, Gareth; Gharbia, Yousef; Katupitiya, Jayantha

    2004-10-01

    This paper presents a purely mechanical means of producing highly concentric spherical lenses at the endfaces of optical fibers. The production process has two stages. First conical lenses are produced in a grinding process that ensures excellent concentricity. Then the conical lenses are transformed to spherical lenses using a novel process called loose abrasive blasting. The cone grinding is carried out on a micro-grinding machine that has a sophisticated control system that enables the production of precision conical lenses. The blasting is carried out on a diamond blasting machine. Plots showing automatic centering performance of the micro-grinding machine and scanning electron microscopy photographs of the conical and spherical lenses are presented.

  18. Atomically precise, coupled quantum dots fabricated by cleaved edge overgrowth

    NASA Astrophysics Data System (ADS)

    Wegscheider, W.; Schedelbeck, G.; Bichler, M.; Abstreiter, G.

    Recent progress in the fabrication of quantum dots by molecular beam epitaxy along three directions in space is reviewed. The optical properties of different sample structures consisting of individual quantum dots, pairs of coupled dots as well as of linear arrays of dots are studied by microscopic photoluminescence spectroscopy. The high degree of control over shape, composition and position of the 7×7×7 nm3 size GaAs quantum dots, which form at the intesection of three orthogonal quantum wells, allows a detailed investigation of the influence of coupling between almost identical zero-dimensional objects. In contrast to the inhomogeneously broadened quantum well and quantum wire signals originating from the complex twofold cleaved edge overgrowth structure, the photoluminescence spetrum of an individual quantum dot exhibits a single sharp line (full width at half maximum <70μeV) almost free of background signal. Microscopic photoluminescence excitation spectroscopy directly reveals the discreteness of the energy levels of the zero-dimensional structures and justifies the denomination "artificial atoms" for the quantum dots. It is further demonstrated that an "artifical molecule", characterized by the existence of bonding and antibonding states can be assembled from two of such "artificial atoms". The coupling strength between the "artificial atoms" is adjusted by the "interatomic" distance and is reflected in the energetic separation of the bonding and antibonding levels and the linewidths of the corresponding interband transitions.

  19. A new fabrication method for precision antenna reflectors for space flight and ground test

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1990-01-01

    The use of higher frequencies on communications satellites has led to the requirement for increasingly precise antenna reflectors for use in space. Typical industry fabrication methods for space antenna reflectors employ successive molding techniques for reflector face sheets and a final fit-up to a master mold in order to achieve the required accuracies. However, new missions at much higher frequencies will require greater accuracies than may be achievable using these present methods. A new approach for the fabrication of ground-test antenna reflectors is to machine the reflective surface into a stainless steel and fiberglass composite structure. A 2.7-m diameter ground-test antenna reflector fabricated using this method has an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar design concept for a solid surface reflector for use on spacecraft would involve fabrication in a similar manner but using space-qualified materials. This report describes the design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground test and the extension of this technology to precision space antenna reflectors.

  20. Fabrication of the Advanced X-ray Astrophysics Facility (AXAF) Optics: A Deterministic, Precision Engineering Approach to Optical Fabrication

    NASA Technical Reports Server (NTRS)

    Gordon, T. E.

    1995-01-01

    The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.

  1. A new fabrication method for precision antenna reflectors for space flight and ground test

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1991-01-01

    Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.

  2. First-principles study on bottom-up fabrication process of atomically precise graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa

    2016-06-01

    We investigate the energetics of a polyanthracene formation in the bottom-up fabrication of atomically precise graphene nanoribbons on Au(111) using first-principles calculations based on the density functional theory. We show that the structure of precursor molecules plays a decisive role in the C–C coupling reaction. The reaction energy of the dimerization of anthracene dimers is a larger negative value than that of the dimerization of anthracene monomers, suggesting that the precursor molecule used in experiments has a favorable structure for graphene nanoribbon fabrication.

  3. Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments

    NASA Technical Reports Server (NTRS)

    Phelps, James E.

    1999-01-01

    Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.

  4. Measurement system and precision analysis for bending and twisting properties evaluation of textile fabrics

    NASA Astrophysics Data System (ADS)

    Yao, Bao-guo; Zhang, Shan; Yang, Yun-juan; Zhang, De-pin

    2016-01-01

    A new test method and a measurement system was proposed and developed to evaluate the bending and twisting properties of textile fabrics. The measurement system and the test method is based on the mechanical device, sensors and microelectronics and simulates the dynamic process during the fabric is bent and twisted. The virtual instrument based system can measure the dynamic changes of the signals due to the bending and twisting loads. Derived from the test data, a series of indices are defined to characterize the bending and twisting properties. The test and evaluation method, the experiments and the test results are reported. The analysis of the variance for intra-laboratory test was performed to determine the precisions of the test method and the measurement system. The measurement system provides a method for objective measurement and evaluation of bending and twisting properties of textile fabrics.

  5. Fabrication and Metrology of High-Precision Foil Mirror Mounting Elements

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2002-01-01

    During the period of this Cooperative Agreement, MIT (Massachusetts Institute of Technology) developed advanced methods for applying silicon microstructures for the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team. A bibliography of papers and presentations is offered.

  6. Fabrication of micro-optical components by high-precision embossing

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Schubert, Andreas; Boehm, Juliana; Gessner, Thomas

    2000-08-01

    Optical components, such as miniature spectrometer gratings working in the infrared range for environmental monitoring or physical analytics, contribute appeciably to the price of Micro Electro Opto Mechanical Systems (MOEMS). These optical components could be a part of a miniature functional package produced with an alternative fabrication technology based on cold forming metals. The cost-efficient fabrication of these components, for example by implementation of forming technology, appears promising. With this technology, high quality embossing of optical structures for high precision requirements in a batch process is possible. In this way the system costs can be reduced. In this paper aluminum forming by cold embossed grating for the fabrication of gratings was investigated. Experiments with different geometries of the embossed grating were carried out. The quality of the embossed structures is primarily determined by the precision and surface quality of the die. Therefore we used a single crystalline silicon tool made by etching as a die. Quality criteria for the review of the formed optical grating were the geometry of surfaces and the surface roughness as well as optical properties of the total structure.

  7. Simple and Reliable Fabrication of Bioinspired Mushroom-Shaped Micropillars with Precisely Controlled Tip Geometries.

    PubMed

    Yi, Hoon; Kang, Minsu; Kwak, Moon Kyu; Jeong, Hoon Eui

    2016-08-31

    We present a simple yet scalable method with detailed process protocols for fabricating dry adhesives with mushroom-shaped micropillars of controlled tip geometries. The method involves using photo-lithography with a bilayer stack combining SU-8 and lift-off resist, and subsequent replica molding process. This approach utilizes widely used and commercially available materials and can thus be used to generate mushroom-shaped micropillars with precisely controlled tip diameters and thicknesses in a simple, reproducible, and cost-effective manner. The fabricated mushroom-shaped micropillar arrays exhibited highly different tendencies in adhesion strength and repeatability depending on tip geometries, such as tip diameter and thickness, thereby demonstrating the importance of precise tunability of tip geometry of micropillars. The fabricated dry adhesives with optimized tip geometries not only exhibited strong pull-off strength of up to ∼34.8 N cm(-2) on the Si surface but also showed high durability. By contrast, dry adhesives with nonoptimized tips displayed low pull-off strength of ∼3.6 N cm(-2) and poor durability. PMID:27548917

  8. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kim, Jong Young; Park, Eui Kyun; Kim, Shin-Yoon; Shin, Jung-Woog; Cho, Dong-Woo

    2008-05-01

    Recent developments in tissue-engineering techniques allow physicians to treat a range of previously untreatable conditions. In the development of such techniques, scaffolds with a controllable pore size and porosity have been manufactured using solid free-form fabrication methods to investigate cell interaction effects such as cell proliferation and differentiation. In this study, we describe the fabrication of scaffolds from two types of biodegradable materials using a precision deposition system that we developed. The precision deposition system uses technology that enables the manufacture of three-dimensional (3D) microstructures. The fabrication of 3D tissue-engineering scaffolds using the precision deposition system required the combination of several technologies, including motion control, thermal control, pneumatic control and CAD/CAM software. Through the fabrication and cell interaction analysis of two kinds of scaffolds using polycaprolactone and poly-lactic-co-glycolic acid, feasibility of application to the tissue engineering of the developed SFF-based precision deposition system is demonstrated.

  9. Analysis of the Murine Immune Response to Pulmonary Delivery of Precisely Fabricated Nano- and Microscale Particles

    PubMed Central

    Roberts, Reid A.; Shen, Tammy; Allen, Irving C.; Hasan, Warefta; DeSimone, Joseph M.; Ting, Jenny P. Y.

    2013-01-01

    Nanomedicine has the potential to transform clinical care in the 21st century. However, a precise understanding of how nanomaterial design parameters such as size, shape and composition affect the mammalian immune system is a prerequisite for the realization of nanomedicine's translational promise. Herein, we make use of the recently developed Particle Replication in Non-wetting Template (PRINT) fabrication process to precisely fabricate particles across and the nano- and micro-scale with defined shapes and compositions to address the role of particle design parameters on the murine innate immune response in both in vitro and in vivo settings. We find that particles composed of either the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) or the biocompatible polymer polyethylene glycol (PEG) do not cause release of pro-inflammatory cytokines nor inflammasome activation in bone marrow-derived macrophages. When instilled into the lungs of mice, particle composition and size can augment the number and type of innate immune cells recruited to the lungs without triggering inflammatory responses as assayed by cytokine release and histopathology. Smaller particles (80×320 nm) are more readily taken up in vivo by monocytes and macrophages than larger particles (6 µm diameter), yet particles of all tested sizes remained in the lungs for up to 7 days without clearance or triggering of host immunity. These results suggest rational design of nanoparticle physical parameters can be used for sustained and localized delivery of therapeutics to the lungs. PMID:23593509

  10. Ring beam shaping optics fabricated with ultra-precision cutting for YAG laser processing

    NASA Astrophysics Data System (ADS)

    Kuwano, Ryoichi; Koga, Toshihiko; Tokunaga, Tsuyoshi; Wakayama, Toshitaka; Otani, Yukitoshi; Fujii, Nobuyuki

    2012-03-01

    In this study, a method for generating ring intensity distribution at a refraction-type lens with an aspheric element was proposed, and the beam shaping optical element was finished using only ultra-precision cutting. The shape of the optical element and its irradiance pattern were determined from numerical calculation based on its geometrical and physical optics. An ultra-precision lathe was employed to fabricate beam shaping optical elements, and acrylic resin was used as the material. The transmittance of an optical element (a rotationally symmetrical body) with an aspheric surface fabricated using a single-crystal diamond tool was over 98%, and its surface roughness was 9.6 nm Ra. The method enabled the formation of a circular melting zone on a piece of stainless steel with a thickness of 300 μm through pulse YAG laser ( λ 1:06 μm) processing such that the average radius was 610 μm and the width was 100-200 μm. Circular processing using a ring beam shaping optical element can be realized by single-pulse beam irradiation without beam scanning.

  11. Sub-nanometer interferometry and precision turning for large optical fabrication

    SciTech Connect

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  12. Low resistivity, low contrast pays

    SciTech Connect

    Sneider, R.M.; Kulha, J.T. |

    1996-08-01

    Major hydrocarbon accumulations have been produced over the past 40 years in low resistivity, low contrast (LRLC) sands in the Gulf of Mexico Basin (GOM). LRLC reservoirs were commonly considered wet, tight, misidentified as a shale or overlooked, but are being re-evaluated now in other world basins, including Latin America. Seismic response, drill cuttings, cores, log response, petrophysical models, and production testing provide an integrated LRLC evaluation. Causes of LRLC pay in the GOM include: laminated clean sands with shales; silts or shaly sands; clay-coated sands; glauconitic sands; sands with interstitial dispersed clay; sands with disseminated pyrite or other conductive minerals; clay-lined burrows; clay clasts; altered volcanic/feldspathic framework grains; and very fine-grained sand with very saline water. LRLC depositional systems include: deepwater fans, with levee-channel complexes; delta front and toe deposits; shingle turbidites; and alluvial and deltaic channel fills. Geological and petrophysical models developed in the GOM for evaluation of LRLC pay are applicable in Latin America. An Archie clean sand or Waxman-Smits shaly sand model are commonly used to evaluate LRLC anomalies. Often, shaly sand models are not necessarily suited for LRLC evaluation. The Archie lithology exponent (m) and saturation exponent (n) for many LRLC reservoirs range from 1.4 to 1.85, and 1.2 to 1.8, respectively. In thinly laminated LRLC reservoirs, net sand distribution is identified with high resolution logging tools, rock examination and interval testing.

  13. Tribological behavior of HM1 steel fabricated by precision spray forming under high temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Q.; Zhang, P.; Zhu, M. D.; Sun, Y. S.

    2015-12-01

    In this study, we investigated the tribological behavior of HM1 steel fabricated by precision spay forming (PSF). WE used block ring friction test for our investigation, at various temperature, which was compared with that of the as-cast specimen. The results indicate that the wear rate and the friction coefficient of the PSFed specimen are reduced compared to that of the as-cast specimen. Attribution to these results is the fine grain, the eliminated segregation of elements, and the uniformly distributed matrix material elements for the PSFed specimen. SEM morphology of wear scar shows that the mainly wear mechanism of the as-cast specimen is adhesive wear, while the wear mechanism of the PSFed specimen is mainly abrasive wear.

  14. Precision tuning of silicon nanophotonic devices through post-fabrication processes

    NASA Astrophysics Data System (ADS)

    Chen, Charlton J.

    In recent years, silicon photonics has begun to transition from research to commercialization. Decades of relentless advances in the field of computing have led to fundamental bottlenecks in the design of computers, especially in interconnect bandwidth density. For IBM, silicon photonics has become a potential technological solution for enabling the future of server systems and cutting-edge supercomputers. For Intel, silicon photonics has become a cost-effective solution for supplying the necessary bandwidth needed by future generations of consumer computing products. While the field of silicon photonics is now advancing at a rapid pace there is still a great deal of research to be done. This thesis investigates ways of improving the performance of fundamental silicon nanophotonic devices through post-fabrication processes. These devices include numerous optical resonator designs as well as slow-light waveguides. Optical resonators are used to confine photons both spatially and temporally. In recent years, there has been much research, both theoretical and experimental, into improving the design of optical resonators. Improving these devices through fabrication processes has generally been less studied. Optical waveguides are used to guide the flow of photons over chip-level distances. Slow-light waveguides have also been studied by many research groups in recent years and can be applied to an increasingly wide-range of applications. The work can be divided into several parts: Chapter 1 is an introduction to the field of silicon photonics as well as an overview of the fabrication, experimental and computational techniques used throughout this work. Chapters 2, 3 and 4 describe our investigations into the precision tuning of nanophotonic devices using laser-assisted thermal oxidation and atomic layer deposition. Chapters 5 and 6 describe our investigations into improving the sidewall roughness of silicon photonic devices using hydrogen annealing and excimer laser

  15. Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds

    NASA Astrophysics Data System (ADS)

    Shor, L.; Yildirim, E. D.; Güçeri, S.; Sun, W.

    Computer-aided tissue engineering approach was used to develop a novel Precision Extrusion Deposition (PED) process to directly fabricate Polycaprolactone (PCL) and composite PCL/Hydroxyapatite (PCL-HA) tissue scaffolds. The process optimization was carried out to fabricate both PCL and PCL-HA (25% concentration by weight of HA) with a controlled pore size and internal pore structure of the 0°/90° pattern. Two groups of scaffolds having 60 and 70% porosity and with pore sizes of 450 and 750 microns, respectively, were evaluated for their morphology and compressive properties using Scanning Electron Microscopy (SEM) and mechanical testing. The surface modification with plasma was conducted on PCL scaffold to increase the cellular attachment and proliferation. Our results suggested that inclusion of HA significantly increased the compressive modulus from 59 to 84 MPa for 60% porous scaffolds and from 30 to 76 MPa for 70% porous scaffolds. In vitro cell-scaffolds interaction study was carried out using primary fetal bovine osteoblasts to assess the feasibility of scaffolds for bone tissue engineering application. In addition, the results in surface hydrophilicity and roughness show that plasma surface modification can increase the hydrophilicity while introducing the nano-scale surface roughness on PCL surface. The cell proliferation and differentiation were calculated by Alamar Blue assay and by determining alkaline phosphatase activity. The osteoblasts were able to migrate and proliferate over the cultured time for both PCL as well as PCL-HA scaffolds. Our study demonstrated the viability of the PED process to the fabricate PCL and PCL-HA composite scaffolds having necessary mechanical property, structural integrity, controlled pore size and pore interconnectivity desired for bone tissue engineering.

  16. Emerging trends in precision fabrication of microapertures to support suspended lipid membranes for sensors, sequencing, and beyond

    PubMed Central

    Baker, Christopher A.; Aspinwall, Craig A.

    2014-01-01

    Suspended lipid membranes, also called black lipid membranes (BLMs), are an important model system that approximates the lipid bilayer environment of cell membranes. Increasingly, BLMs are utilized in sensing strategies that harness high sensitivity measurements of ion flux across the membrane, typically facilitated by ion channel proteins. BLMs are suspended across microapertures that connect two otherwise isolated fluidic compartments, and the precision fabrication of such microapertures can contribute to the stability and performance of the resulting BLM. Here, we highlight two emerging trends in the precision fabrication of microapertures for BLM formation: microfabrication in silicon-based thin film substrates, and microfabrication in the negative photoresist material SU-8. Four unique fabrication strategies are outlined, and we project the impact that these microfabrication strategies will have for BLM-integrated bioanalytical technologies. PMID:25120184

  17. High-precision micromilling for low-cost fabrication of metal mold masters

    NASA Astrophysics Data System (ADS)

    Hupert, Mateusz L.; Guy, W. J.; Llopis, Shawn D.; Situma, Catherine; Rani, Sudheer; Nikitopoulos, Dimitris E.; Soper, Steven A.

    2006-01-01

    High-precision micromilling was employed as a cost-efficient method preparation of metal masters useful in fabrication of polymer microfluidic devices through replication techniques. In first application, a brass mold master was used for hot embossing of microchip electrophoresis devices in poly(methyl methacrylate) (PMMA). The sidewalls of the milled microstructures were characterized by a maximum average roughness (R a) of 110 nm and mean peak height (R pm) of 320 nm. SEM imaging showed a transfer of the sidewall roughness from the molding tool to the polymer microdevice. The electroosmotic flow (EOF) values for micromilled-based microchannels were comparable to ones in the LiGA-prepared devices (sidewall R a = 20 nm) with values of ca. 3.7 x 10 -4 cm2V -1s -1 (20 mM TBE buffer, pH 8.2), indicating insignificant effects of wall roughness on the bulk EOF. Numerical simulations showed that the additional volumes present in an injection cross due to curvature of the corners produced by micromilling lead to elongated sample plugs. PMMA microchip electrophoresis devices were used for a separation of pUC19 Sau3AI double-stranded DNA. The plate numbers achieved exceeded 1 million m -1 and were comparable to the plate numbers for the LiGA-based devices of similar geometry. In second application brass master was used as tool for preparation of poly(dimethylsiloxane) PDMS stencils for patterning of DNA microarrays onto a PMMA substrate. Four zip code probes immobilized onto the PMMA surface directed allele-specic ligation products containing mutations in the KRAS2 gene (12.2D, 12.2A, 12.2V, and 13.4D) to the appropriate address of a universal array with minimal amounts of crosshybridization or misligation.

  18. Damage coefficients in low resistivity silicon. [solar cells

    NASA Technical Reports Server (NTRS)

    Srour, J. R.; Othmer, S.; Chiu, K. Y.; Curtis, O. L., Jr.

    1975-01-01

    Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed.

  19. Precise Fabrication of Nanopores with Diameters of Sub-1 nm to 3 nm Using Multilevel Pulse-voltage Injection

    NASA Astrophysics Data System (ADS)

    Yanagi, Itaru; Akahori, Rena; Yokoi, Takahide; Takeda, Ken-Ichi

    2015-03-01

    To date, solid-state nanopores have been fabricated primarily through a focused-electronic beam via TEM. For mass production, however, a TEM beam is not suitable and an alternative fabrication method is required. Recently, a simple nanopore-fabrication method has been reported that is based on a dielectric breakdown phenomenon of a thin membrane. In this study, to stably fabricate nanopores with diameters of 1 to 2 nm (which is an essential size for distinguishing each nucleotide) via dielectric breakdown, a technique called multilevel pulse-voltage injection (MPVI) is proposed and demonstrated. MPVI uses pulse voltages for generating the nanopores, and the generation of the nanopores is verified by measuring the current through a membrane at low voltage. This method can generate nanopores with diameters of less than 1 nm in a 10-nm-thick Si3N4 membrane with a probability of 90%. The diameter of the generated nanopores can be widened to the desired diameters (up to 3 nm) with sub-nanometre precision. The mean effective thickness of the fabricated nanopores was 3.7 nm. These findings are derived from TEM images of the fabricated nanopores and analyses of ionic-current blockades during single-stranded DNA translocation.

  20. Improvements in ICF target fabrication through high precision assembly and nondestructive characterization

    SciTech Connect

    Obrey, Kimberly Ann Defriend; Schmidt, Derek W; Patterson, Brian M; Day, Robert D; Valdez, Adelaida C; Capelli, Deanna; Perea, Ron; Randolph, Blaine; Hatch, Doug; Garcia, Felix; Honnell, Diana

    2009-01-01

    Current ICF and HED targets are fielded on Omega, Z, and Trident, and future campaigns will be fielded on NIF. NIF will only field less than 2 shots per day. With such few experiments, target fabrication and target alignment accuracy, enhanced metrology and advanced component machining will be even more important. Future target designs are also becoming more complex and more stringent in terms of accuracy. Several steps have been taken to improve the fabrication and characterization of targets, such as instituting an automated assembly station with 3 mm tolerances, utilizing nondestructive characterization tools for rapid component metrology and target assembly, and advancing machining capabilities. Recapitalization of target fabrication infrastructure is continuous.

  1. Atomic Precision Donor Devices Fabricated on Strained Silicon on Insulator (sSOI) with SiGe

    NASA Astrophysics Data System (ADS)

    Yitamben, E.; Bussmann, E.; Scrymgeour, D. A.; Rudolph, M.; Carr, S. M.; Ward, D. R.; Carroll, M. S.

    Recently, Si:P donor spin qubits have achieved coherence times (nuclear & e-) that underscore their quantum computing potential. One next major challenge is to integrate donors into a gated structure where electrons can be moved between P, or drawn off of the P to interact, e.g. to an interface as in Kane's proposal. A key constraint is limited thermal budget, to limit P thermal segregation, which precludes typical gate oxidation of Si. We are developing an alternative materials stack utilizing an interfacial barrier layer of relaxed epitaxial SiGe, with donors placed in a strained Si-on-insulator (sSOI) substrate. We fabricate atomic precision donor structures in sSOI via STM hydrogen lithography. Utilizing Si microfabrication and STM in tandem with our Si and Ge molecular beam epitaxy (MBE), we fabricated devices to test our SiGe/sSOI stack concept and atomic-precision fab techniques. To establish our donor-doping capability, we made Hall and Van der Pauw devices in P:sSOI delta-doped layers exhibiting ne >1014/cm2 and mobilities of ~100 cm2/Vs (T =4K) similar to results reported relaxed Si reported elsewhere. Second, we have grown our concept epitaxial SiGe/sSOI stack, evaluated the morphology using STM, and fabricated Hall devices to evaluate low-T transport in our first SiGe/sSOI. Here, we report on these advances in atomic precision donor fab, along with STM analysis our MBE SiGe/sSOI. This work extends STM-based atom precision fab on strained Si toward a vertically gated architecture.

  2. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    SciTech Connect

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-01-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly({var_epsilon}-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  3. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers.

    PubMed

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-05-25

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(ε-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications. PMID:22635324

  4. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing

    NASA Astrophysics Data System (ADS)

    Ayub, Mariam; Ivanov, Aleksandar; Hong, Jongin; Kuhn, Phillip; Instuli, Emanuele; Edel, Joshua B.; Albrecht, Tim

    2010-11-01

    It has recently been shown that solid-state nanometer-scale pores ('nanopores') can be used as highly sensitive single-molecule sensors. For example, electrophoretic translocation of DNA, RNA and proteins through such nanopores has enabled both detection and structural analysis of these complex biomolecules. Control over the nanopore size is critical as the pore must be comparable in size to the analyte molecule in question. The most widely used fabrication methods are based on focused electron or ion beams and thus require (scanning) transmission electron microscopy and focused ion beam (FIB) instrumentation. Even though very small pores have been made using these approaches, several issues remain. These include the requirement of being restricted to rather thin, mechanically less stable membranes, particularly for pore diameters in the single-digit nanometer range, lack of control of the surface properties at and inside the nanopore, and finally, the fabrication cost. In the proof-of-concept study, we report on a novel and simple route for fabricating metal nanopores with apparent diameters below 20 nm using electrodeposition and real-time ionic current feedback in solution. This fabrication approach inserts considerable flexibility into the kinds of platforms that can be used and the nanopore membrane material. Starting from much larger pores, which are straightforward to make using FIB or other semiconductor fabrication methods, we electrodeposit Pt at the nanopore interface while monitoring its ionic conductance at the same time in a bi-potentiostatic setup. Due to the deposition of Pt, the nanopore decreases in size, resulting in a decrease of the pore conductance. Once a desired pore conductance has been reached, the electrodeposition process is stopped by switching the potential of the membrane electrode and the fabrication process is complete. Furthermore, we demonstrate that these pores can be used for single-biomolecule analysis, such as that of

  5. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  6. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  7. Design and fabrication of a high precision x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Brooks, Audrey; Wirth, Allan; Lintz, Eric; Cavaco, Jeffrey

    2014-09-01

    AOA-Xinetics has been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss the design and fabrication of a 45cm grazing incidence mirror fitted with 45 PMN actuators and integral strain gauges and temperature sensors that allow sub-nanometer control of the surface figure.

  8. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    NASA Astrophysics Data System (ADS)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  9. High-precision robotic equatorial C-ring telescope mounts: design, fabrication, and performance

    NASA Astrophysics Data System (ADS)

    Dubberley, Matthew A.

    2010-07-01

    The performance of the C-ring telescope mount rivals other designs in stiffness, tracking, simplicity, lack of field rotation, mechanical size and operating envelope. Issues relating to cost, fabrication, and complexity have suppressed the prevalence of the C-ring mount. The Las Cumbres Observatory Global Telescope (LCOGT) robotic C-ring telescope mounts, built for its network of 1.0m and 0.4m telescopes, solve many of these issues. The design yields a scalable mount with performance capabilities well suited for telescopes located at the best astronomical sites in the world at a low cost. Pointing has been demonstrated to be under 7 arc-sec RMS. Unguided tracking performance is 0.6 arc-sec for 1 minute and 2 arc-sec for 15 minutes. Slew speeds of 10deg/sec are reliably used with sub-second settling times. The mount coupled with the 1.0m telescope yields a well damped 16 Hz system. Axes are driven with zero backlash direct drive motors with a 0.01 arc-sec resolution. High system bandwidth yields superb disturbance rejection making it ideal for open air operation. Drive and bearings are maintenance free and feature a novel "bug cover" to seal them from wear and damage. Low costs are achieved with the drive/feedback configuration, structure design, and fabrication techniques, as well minimizing operating and maintenance.

  10. Improvement of distortion error for fabricating precision microparts using two-photon photopolymerization

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Dae; Lee, Yong-Gu

    2016-07-01

    The manufacturing accuracy of microparts produced using two-photon polymerization depends on the accuracy of control of the positions of the focal spot. The accuracy becomes more important when these microparts need to be assembled into a whole with parts that are free to move in relation to each other. Ideally, the exact location of the movement of the focal spots in an optical system, no matter how complex it may be, can be solved using geometric optics. However, in reality, this is not so easy because of the complexity of optical systems and also due to the imperfections that lie between the design and the physical layout. We thus take a black-box approach such that the optical system is not examined but only the output result, and the command from the system is compared, interpreted and finally calibrated. The result is an extremely simple, yet very effective adaptation of the commanding of the focal spot that only requires the focal spot at the manufacturing plane to be monitored through a digital camera. We have also shown the effectiveness of the proposed method by fabricating a microstructure and measuring the fabrication error, which was found to be less than 3%.

  11. Electrodeposition of Low Stress Nickel Phosphorous Alloys for Precision Component Fabrication

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Speegle, Chet; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Nickel alloys are favored for electroforming precision components. Nickel phosphorous and nickel cobalt phosphorous are studied in this work. A completely new and innovative electrolytic process eliminates the fumes present in electroless processes and is suitable for electroforming nickel phosphorous and nickel cobalt phosphorous alloys to any desirable thickness, using soluble anodes, without stripping of tanks. Solutions show excellent performance for extended throughput. Properties include, cleaner low temperature operation (40 - 45 C), high Faradaic efficiency, low stress, Rockwell C 52 - 54 hardness and as much as 2000 N per square millimeter tensile strength. Performance is compared to nickel and nickel cobalt electroforming.

  12. Low resistance contacts for shallow junction semiconductors

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S. (Inventor); Weizer, Victor G. (Inventor)

    1994-01-01

    A method of enhancing the specific contact resistivity in InP semiconductor devices and improved devices produced thereby are disclosed. Low resistivity values are obtained by using gold ohmic contacts that contain small amounts of gallium or indium and by depositing a thin gold phosphide interlayer between the surface of the InP device and the ohmic contact. When both the thin interlayer and the gold-gallium or gold-indium contact metallizations are used, ultra low specific contact resistivities are achieved. Thermal stability with good contact resistivity is achieved by depositing a layer of refractory metal over the gold phosphide interlayer.

  13. Performance of low resistance microchannel plate stacks

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Stock, J.

    1991-01-01

    Results are presented from an evaluation of three sets of low resistance microchannel plate (MCP) stacks; the tests encompassed gain, pulse-height distribution, background rate, event rate capacity as a function of illuminated area, and performance changes due to high temperature bakeout and high flux UV scrub. The MCPs are found to heat up, requiring from minutes to hours to reach stabilization. The event rate is strongly dependent on the size of the area being illuminated, with larger areas experiencing a gain drop onset at lower rates than smaller areas.

  14. Fabrication and testing of a high-precision concave spherical mirror

    NASA Astrophysics Data System (ADS)

    Burke, Jan; Green, Katie; Stuart, Wayne; Puhanic, Edita; Leistner, Achim; Oreb, Bob

    2008-08-01

    CSIRO's Australian Centre for Precision Optics has recently finished the production of a high-precision concave spherical mirror. The specifications were very ambitious: numerical aperture 0.75; asphericity below 5.5 nm rms and 27.3 nm P-V. The available reference transmission sphere had to be calibrated to enable adequate accuracy. Due to the high numerical aperture of the mirror, sub-aperture measurements had to be stitched together to form a complete surface map of the mirror. Phase-shifting interferometry at high numerical aperture suffers from phase-step non-uniformity because of the large off-axis angles. We present what we believe to be a new interpretation of this phenomenon as a focus error, which clarifies where in the interferometer the phase-shift error occurs. We discuss the ball-averaging method for calibrating the reference transmission sphere and present results from the averaging process to ensure an uncertainty commensurate with the certification requirement. For carrying out the sub-aperture measurements, we constructed a two-axis gimbal mount to swivel the mirror around the focus of the test wavefront. If the centers of curvature of the transmission sphere and the mirror coincide, the mirror can be tilted without losing the interferogram. We present a simple and effective alignment method, which can be generally applied to optical tests where the wavefront comes to a focus. The mirror was coated with protected aluminum and tested in its mount. No effect on the sphericity error from the coating was found, and the specifications were exceeded by approximately 30%. We discuss subtleties of the stitching process on curved surfaces and report final results.

  15. A precision hot embossing mold fabricated by high-resolution powder blasting with polydimethylsiloxane and SU-8 masking technology

    NASA Astrophysics Data System (ADS)

    Lomas, T.; Wisitsoraat, A.; Chevasuvit, F.; Tuantranont, A.

    2009-03-01

    In this paper, we applied a three-dimensional micromold by using micropowder and micropattern masking technology. High-resolution powder blasting with polydimethylsiloxane (PDMS) and SU-8 masking is developed for the fabrication of a precision microfluidic mold for hot embossing fabrication. The PDMS is a suitable masking material for powder blasting due to its high erosion resistance. First, a 100 µm SU-8 negative pattern was developed on a stainless steel substrate by standard photolithography. A PDMS solution was then applied to the substrate, mainly filling recessed regions. Excess of PDMS was then physically removed by a blade. The PDMS/SU-8 structure was then cured. Next, silicon carbine (SiC) powder with an average diameter of 50 µm was blasted on a PDMS/SU-8 coated stainless sheet at a constant pressure between 4 and 6 bar and a PDMS mask was removed by ultrasonic cleaning in isopropanol. The three-dimensional structure was examined by an optical microscope, optical white light interferometer and scanning electron microscope. The PDMS pattern is found to be 50 µm wide, and the maximum etched depth at this thickness is around 150 µm at a blasting pressure of 6.2 bar; thus, an aspect ratio of 3 is easily obtained. In principle, the low-cost micromachining hot embossing mold developed can be improved to yield submicrometer- and nanometer-scale resolution.

  16. A novel patterning method of low-resistivity metals

    NASA Astrophysics Data System (ADS)

    Noh, Chang-Ho; Kim, Jin-Young; Lee, Ho-Chul; Hwang, Ok-Chae; Cho, Sung-Heon; Song, Ki-Yong; Kim, Jong-Min

    2005-05-01

    A new metal patterning process using photocatalyst was developed to reduce the number of chemical processing steps and to obtain high resolution. Films of amorphous TiO2 and water-soluble polyvinyl alcohol were used as photocatalytic layers. UV light was illuminated through a photomask onto the photocatalytic layers. Pd(II) in an aqueous solution was reduced to Pd(0) by the exposed TiO2 and deposited on the exposed regions. Selective electroless Ni/Cu plating on the Pd patterns showed high resolution metal patterns. Process parameters such as exposure dose and postexposure time delay were optimized to confirm the feasibility of this method. It was established that high resolution metal patterns of low resistivity with good adhesion were formed only at a small process steps without using high cost materials and equipments. Selective growth of carbon nanotubes on the Ni patterns was carried out by plasma-enhanced chemical vapor deposition. It"s expected that this methods will have several benefits for fabricating the microelectronic devices, especially in the large size flat panel display.

  17. Precision Fabrication of a Large-Area Sinusoidal Surface Using a Fast-Tool-Servo Technique ─Improvement of Local Fabrication Accuracy─

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Tano, Makoto; Araki, Takeshi; Kiyono, Satoshi

    This paper describes a diamond turning fabrication system for a sinusoidal grid surface. The wavelength and amplitude of the sinusoidal wave in each direction are 100µm and 100nm, respectively. The fabrication system, which is based on a fast-tool-servo (FTS), has the ability to generate the angle grid surface over an area of φ 150mm. This paper focuses on the improvement of the local fabrication accuracy. The areas considered are each approximately 1 × 1mm, and can be imaged by an interference microscope. Specific fabrication errors of the manufacturing process, caused by the round nose geometry of the diamond cutting tool and the data digitization, are successfully identified by Discrete Fourier Transform of the microscope images. Compensation processes are carried out to reduce the errors. As a result, the fabrication errors in local areas of the angle grid surface are reduced by 1/10.

  18. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  19. Injection photodiodes based on low-resistivity ZnS single crystals

    SciTech Connect

    Losev, V. V.

    2009-12-15

    Results of an experimental study of Ni-n-n{sup +}-In photodiode structures fabricated from a low-resistivity ZnS:Al crystal (n{sup +}-region) are reported. The high-resistivity compensated n-type layer is produced by thermal diffusion of silver. The photodiodes exhibit an injection amplification of the photocurrent under a forward bias of 1-10 V. The dependence of the currents through the diodes on the thickness of the n-type layer in the dark and under UV irradiation is determined. The photosensitivity is at a maximum in the fundamental absorption range in a narrow spectral band.

  20. Overlay of semi-dried functional layers in offset printing for rapid and high-precision fabrication of flexible TFTs

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Sugihara, Kazuyoshi; Koutake, Masayoshi; Ushijima, Hirobumi

    2014-03-01

    We achieved a reduction in the misregistration of overlying patterns printed on a flexible plastic film and a drastically shorter processing time with fully printed thin-film transistor (TFT) fabrication. This was achieved using a newly developed wet-on-wet (WoW) printing process wherein a subsequent layer can be printed on a previous semi-dried (not-sintered) layer. In the WoW process, as examined by rheological measurements, a semi-dried (highly solidified) state of ink was attained before transferring by utilizing the solvent uptake of a PDMS blanket in offset printing to ensure the structural integrity of the ink layer, and to reduce the inter-contamination of adjoining layers. Loss-on-drying tests and resistivity measurements indicated that molecular penetration at the boundary of adjoining layers with a length of c.a. 70 nm occurred in the WoW process; however, with thicker electrodes, we successfully fabricated a WoW-processed TFT whose performance was comparable with a TFT formed by a conventional printing process.

  1. Fabrication process for CMUT arrays with polysilicon electrodes, nanometre precision cavity gaps and through-silicon vias

    NASA Astrophysics Data System (ADS)

    Due-Hansen, J.; Midtbø, K.; Poppe, E.; Summanwar, A.; Jensen, G. U.; Breivik, L.; Wang, D. T.; Schjølberg-Henriksen, K.

    2012-07-01

    Capacitive micromachined ultrasound transducers (CMUTs) can be used to realize miniature ultrasound probes. Through-silicon vias (TSVs) allow for close integration of the CMUT and read-out electronics. A fabrication process enabling the realization of a CMUT array with TSVs is being developed. The integrated process requires the formation of highly doped polysilicon electrodes with low surface roughness. A process for polysilicon film deposition, doping, CMP, RIE and thermal annealing that resulted in a film with sheet resistance of 4.0 Ω/□ and a surface roughness of 1 nm rms has been developed. The surface roughness of the polysilicon film was found to increase with higher phosphorus concentrations. The surface roughness also increased when oxygen was present in the thermal annealing ambient. The RIE process for etching CMUT cavities in the doped polysilicon gave a mean etch depth of 59.2 ± 3.9 nm and a uniformity across the wafer ranging from 1.0 to 4.7%. The two presented processes are key processes that enable the fabrication of CMUT arrays suitable for applications in for instance intravascular cardiology and gastrointestinal imaging.

  2. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes.

    PubMed

    Leong, Wei Sun; Luo, Xin; Li, Yida; Khoo, Khoong Hong; Quek, Su Ying; Thong, John T L

    2015-01-27

    We report an approach to achieve low-resistance contacts to MoS2 transistors with the intrinsic performance of the MoS2 channel preserved. Through a dry transfer technique and a metal-catalyzed graphene treatment process, nickel-etched-graphene electrodes were fabricated on MoS2 that yield contact resistance as low as 200 Ω · μm. The substantial contact enhancement (∼ 2 orders of magnitude), as compared to pure nickel electrodes, is attributed to the much smaller work function of nickel-graphene electrodes, together with the fact that presence of zigzag edges in the treated graphene surface enhances tunneling between nickel and graphene. To this end, the successful fabrication of a clean graphene-MoS2 interface and a low resistance nickel-graphene interface is critical for the experimentally measured low contact resistance. The potential of using graphene as an electrode interlayer demonstrated in this work paves the way toward achieving high performance next-generation transistors. PMID:25517793

  3. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  4. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five

  5. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  6. Low resistivity contact to iron-pnictide superconductors

    SciTech Connect

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud'ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  7. Asymmetric spin absorption across a low-resistance oxide barrier

    SciTech Connect

    Chen, Shuhan; Qin, Chuan; Ji, Yi

    2015-07-21

    An unconventional method of nonlocal spin detection is demonstrated in mesoscopic lateral spin valves at room temperature. Clear nonlocal spin signals are detected between the two ends of an extended ferromagnetic spin detector. This is different from the conventional method in which the nonlocal voltage is measured between the spin detector and the nonmagnetic channel. The results can be understood as spatially non-uniform absorption of a pure spin current into the spin detector across a low-resistance oxide interface.

  8. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoliang; Liu, Shengjie; Zang, Jun; Xu, Chaofa; Zheng, Ming-Sen; Dong, Quan-Feng; Sun, Daohua; Zheng, Nanfeng

    2013-07-01

    This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic spheres are promising catalyst supports for oxygen reduction reaction. And yolk-shell structured Au@HCS nanoreactors with ultrathin shells exhibit high catalytic activity and recyclability in confined catalysis.This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic

  9. Theoretical and experimental research on error analysis and optimization of tool path in fabricating aspheric compound eyes by precision micro milling

    NASA Astrophysics Data System (ADS)

    Chen, Mingjun; Xiao, Yong; Tian, Wenlan; Wu, Chunya; Chu, Xin

    2014-05-01

    Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness ( R a) below 0.12 μm is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.

  10. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  11. Successful fabrication of a convex platform PMMA cell-counting slide using a high-precision perpendicular dual-spindle CNC machine tool

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong; Chang, Chih-Hsien

    2013-12-01

    This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.

  12. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  13. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOEpatents

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  14. Voltage controlling mechanisms in low resistivity silicon solar cells - A unified approach

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.

    1984-01-01

    An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices.

  15. Voltage controlling mechanisms in low resistivity silicon solar cells: A unified approach

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.

    1984-01-01

    An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices.

  16. Radiation characteristics of low resistivity float zone silicon solar cells

    NASA Technical Reports Server (NTRS)

    Crotty, G. T.; Kachare, R.; Anspaugh, B. E.

    1987-01-01

    The effects of 1-MeV electron irradiation on silicon solar cells with AM0 efficiencies ranging from 17 to 17.7 percent are described. These cells were processed on low-resistivity FZ substrates using techniques recently developed for high-efficiency terrestrial silicon solar cells. Results indicate that these cells are more susceptible to radiation damage. However, they do maintain a greater overall power output than conventional cells to which they were compared. These cells do not demonstrate post-electron-irradiation photon decay as has been described for cells processed on 1-10 ohm-cm FZ silicon.

  17. Effective nonlocal spin injection through low-resistance oxide junctions

    NASA Astrophysics Data System (ADS)

    Cai, Yunjiao; Luo, Yongming; Qin, Chuan; Chen, Shuhan; Wu, Yizheng; Ji, Yi

    2016-05-01

    Many (>40) nonlocal spin valves on the same substrate have been characterized at 6 K and 295 K by using a probe station. Low-resistance oxide junctions (0.2-0.8 Ω) are used to inject spin current into mesoscopic Cu channels. Spin signals exceeding 10 mΩ at 6 K have been consistently observed, indicating efficient spin injection and detection. However, complex switching behavior and possible variations between devices pose a challenge to using a standard fitting method to quantify the spin signals. Two methods are used for quantitative analysis. The range of the effective spin polarizations can be estimated by assuming a reasonable range for the Cu spin diffusion lengths. A nonlocal spin polarization is introduced to evaluate the spin current in the Cu channels.

  18. Thermally stable, low resistance contact systems for use with shallow junction p(+) nn(+) and n(+)pp(+) InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Hoffman, R. W.

    1995-01-01

    Two contact systems for use on shallow junction InP solar cells are described. The feature shared by these two contact systems is the absence of the metallurgical intermixing that normally takes place between the semiconductor and the contact metallization during the sintering process. The n(+)pp(+) cell contact system, consisting of a combination of Au and Ge, not only exhibits very low resistance in the as-fabricated state, but also yields post-sinter resistivity values of 1(exp -7) ohms-sq cm, with effectively no metal-InP interdiffusion. The n(+)pp(+)cell contact system, consisting of a combination of Ag and Zn, permits low resistance ohmic contact to be made directly to a shallow junction p/n InP device without harming the device itself during the contacting process.

  19. Frustrated incomplete donor ionization in ultra-low resistivity germanium films

    SciTech Connect

    Xu, Chi; Menéndez, J.; Senaratne, C. L.; Kouvetakis, J.

    2014-12-08

    The relationship between carrier concentration and donor atomic concentration has been determined in n-type Ge films doped with P. The samples were carefully engineered to minimize non-active dopant incorporation by using specially designed P(SiH{sub 3}){sub 3} and P(GeH{sub 3}){sub 3} hydride precursors. The in situ nature of the doping and the growth at low temperatures, facilitated by the Ge{sub 3}H{sub 8} and Ge{sub 4}H{sub 10} Ge sources, promote the creation of ultra-low resistivity films with flat doping profiles that help reduce the errors in the concentration measurements. The results show that Ge deviates strongly from the incomplete ionization expected when the donor atomic concentration exceeds N{sub d} = 10{sup 17} cm{sup −3}, at which the energy separation between the donor and Fermi levels ceases to be much larger than the thermal energy. Instead, essentially full ionization is seen even at the highest doping levels beyond the solubility limit of P in Ge. The results can be explained using a model developed for silicon by Altermatt and coworkers, provided the relevant model parameter is properly scaled. The findings confirm that donor solubility and/or defect formation, not incomplete ionization, are the major factors limiting the achievement of very high carrier concentrations in n-type Ge. The commercially viable chemistry approach applied here enables fabrication of supersaturated and fully ionized prototypes with potential for broad applications in group-IV semiconductor technologies.

  20. Integration of microfabricated low resistance and thousand-turn coils for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Yufeng; Zhao, Lurui; Sok Kim, Eun

    2016-02-01

    This paper presents two microfabrication approaches for multi-layer coils for vibration-energy harvesters. A magnet array is arranged with alternating north- and south-orientation to provide a rapidly changing magnetic field for high electromagnetic energy conversion. Multi-turn spiral coils on silicon wafer are aligned to the magnet array for maximum magnetic flux change. One type of coil is made out of 300 μm-thick copper that is electroplated with silicon mold, and the other is built on 25 μm-thick copper electroplated with photoresist mold. The low resistive coils fabricated by the first approach are integrated in a microfabricated energy harvester of 17  ×  7  ×  1.7 mm3 (=0.2 cm3) weighing 0.8 g, which generates 14.3 μW power output (into 0.7 Ω load) from vibration amplitude of 6 μm at 250 Hz. The latter approach is used to make a 1080-turn coil for a microfabricated electromagnetic energy harvester with magnet array and plastic spring. Though the size and weight of the harvester are only 44  ×  20  ×  6 mm3 (=5.3 cm3) and 12 g, respectively, it generates 1.04 mW power output (into 190 Ω load) when it is vibrated at 75 Hz with vibration amplitude of 220 μm.

  1. Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources.

    PubMed

    Störmer, M; Gabrisch, H; Horstmann, C; Heidorn, U; Hertlein, F; Wiesmann, J; Siewert, F; Rack, A

    2016-05-01

    X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range. PMID:27250371

  2. Making Precise Antenna Reflectors For Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1994-01-01

    In improved method of fabrication of precise, lightweight antenna reflectors for millimeter wavelengths, required precise contours of reflecting surfaces obtained by computer numberically controlled machining of surface layers bonded to lightweight, rigid structures. Achievable precision greater than that of older, more-expensive fabrication method involving multiple steps of low- and high-temperature molding, in which some accuracy lost at each step.

  3. A very low resistance, non-sintered contact system for use on indium phosphide concentrator/shallow junction solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1991-01-01

    An investigation is made into the possibility of providing low resistance contacts to shallow junction InP solar cells which do not require sintering and which do not cause device degradation even when subjected to extended annealing at elevated temperatures. We show that the addition of In to Au contacts in amounts that exceed the solid solubility limit lowers the as-fabricated (unsintered) contact resistivity (R sub c) to the 10(exp -5) ohm cm(exp 2) range. We next consider the contact system Au/Au2P3, which has been shown to exhibit as-fabricated R sub c values in the 10(exp -6) ohm cm(exp 2) range, but which fails quickly when heated. We show that the substitution of a refractory metal (W, Ta) for Au preserves the low R sub c values while preventing the destructive reactions that would normally take place in this system at high temperatures. We show, finally, that R sub c values in the 10(exp -7) ohm cm(exp 2) range can be achieved without sintering by combining the effects of In or Ga additions to Au contacts with the effects of introducing a thin Au2P3 layer at the metal-InP interface.

  4. A very low resistance, non-sintered contact system for use on indium phosphide concentrator/shallow junction solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1991-01-01

    An investigation is made into the possibility of providing low resistance contacts to shallow junction InP solar cells which do not require sintering and which do not cause device degradation even when subjected to extended annealing at elevated temperatures. We show that the addition of In to Au contacts in amounts that exceed the solid solubility limit lowers the as-fabricated (unsintered) contact resistivity (R sub c) to the 10(exp -5) ohm cm(exp 2) range. We next consider the contact system Au/Au2P3 which has been shown to exhibit as-fabricated R sub c values in the 10(exp -6) ohm cm(exp 2) range, but which fails quickly when heated. We show that the substitution of a refractory metal (W, Ta) for Au preserves the low R sub c values while preventing the destructive reactions that would normally take place in this system at high temperatures. We show, finally, that R sub c values in the 10(exp -7) ohm cm(exp 2) range can be achieved without sintering by combining the effects of In or Ga additions to Au contacts with the effects of introducing a thin Au2P3 layer at the metal-InP interface.

  5. Laser Doppler imaging of cutaneous blood flow through transparent face masks: a necessary preamble to computer-controlled rapid prototyping fabrication with submillimeter precision.

    PubMed

    Allely, Rebekah R; Van-Buendia, Lan B; Jeng, James C; White, Patricia; Wu, Jingshu; Niszczak, Jonathan; Jordan, Marion H

    2008-01-01

    A paradigm shift in management of postburn facial scarring is lurking "just beneath the waves" with the widespread availability of two recent technologies: precise three-dimensional scanning/digitizing of complex surfaces and computer-controlled rapid prototyping three-dimensional "printers". Laser Doppler imaging may be the sensible method to track the scar hyperemia that should form the basis of assessing progress and directing incremental changes in the digitized topographical face mask "prescription". The purpose of this study was to establish feasibility of detecting perfusion through transparent face masks using the Laser Doppler Imaging scanner. Laser Doppler images of perfusion were obtained at multiple facial regions on five uninjured staff members. Images were obtained without a mask, followed by images with a loose fitting mask with and without a silicone liner, and then with a tight fitting mask with and without a silicone liner. Right and left oblique images, in addition to the frontal images, were used to overcome unobtainable measurements at the extremes of face mask curvature. General linear model, mixed model, and t tests were used for data analysis. Three hundred seventy-five measurements were used for analysis, with a mean perfusion unit of 299 and pixel validity of 97%. The effect of face mask pressure with and without the silicone liner was readily quantified with significant changes in mean cutaneous blood flow (P < .5). High valid pixel rate laser Doppler imager flow data can be obtained through transparent face masks. Perfusion decreases with the application of pressure and with silicone. Every participant measured differently in perfusion units; however, consistent perfusion patterns in the face were observed. PMID:18182896

  6. Time-frequency Analysis on low-resistivity Shielding Layer in TEM Soundings

    NASA Astrophysics Data System (ADS)

    Shi, Xianxin; Wu, Kai

    The transient electromagnetic (TEM) method will be influenced by shielding effect of the low-resistivity overburden layer. By adopting the smooth pseudo Wigner-Ville distribution (SPWD), the responses simulated with a finite-difference time-domain method (FDTD) of D- and G-type models by a 2D line source and H-, A-, K- and Q-type models by a loop source are transformed to the time-frequency (T-F) plane. It is indicated that in low-resistivity, the TEM wave aggregates and will consume more energy, it transmits faster in high-resistivity layers but slower in low-resistivity ones. For A-type models widely in distribution of the North China type coalfield of our country, energy of the TEM field has been almost depleted when arriving at the bottom interface (interfaces of Ordovician limestone and coal series) during the TEM exploration in this area, influence of the low resistive shielding layer shall be taken into full consideration, and relatively longer observing time window shall be selected to ensure the detection depth and high-power instruments shall be adopted to increase the signal-noise ratio during construction design.

  7. Voltage-controlling mechanisms in low-resistivity silicon solar cells - A unified approach

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Swartz, C. K.; Hart, R. E.; Godlewski, M. P.

    1986-01-01

    An experimental technique is used to determine the relative values of the base and emitter components of the dark saturation current of six types of high-voltage low-resistivity silicon solar cells. One of the surprising findings is the suggestion that the magnitude of the minority-carrier mobility may be process-dependent.

  8. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  9. Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Muhammad Imran; Hussain, Zakir; Mujahid, Mohammad; Khan, Ahmed Nawaz; Javaid, Syed Saad; Habib, Amir

    2016-06-01

    Perovskite based solar cells have demonstrated impressive performances. Controlled environment synthesis and expensive hole transport material impede their potential commercialization. We report ambient air synthesis of hole transport layer free devices using ZnO-GO as electron selective contacts. Solar cells fabricated with hole transport layer free architecture under ambient air conditions with ZnO as electron selective contact achieved an efficiency of 3.02%. We have demonstrated that by incorporating GO in ZnO matrix, low resistivity electron selective contacts, critical to improve the performance, can be achieved. We could achieve max efficiency of 4.52% with our completed devices for ZnO: GO composite. Impedance spectroscopy confirmed the decrease in series resistance and an increase in recombination resistance with inclusion of GO in ZnO matrix. Effect of temperature on completed devices was investigated by recording impedance spectra at 40 and 60 oC, providing indirect evidence of the performance of solar cells at elevated temperatures.

  10. Formation of low resistivity titanium silicide gates in semiconductor integrated circuits

    DOEpatents

    Ishida, Emi

    1999-08-10

    A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.

  11. Low resistivity Al-doped ZnS grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Yasuda, T.; Hara, K.; Kukimoto, H.

    1986-09-01

    Low resistivity Al-doped ZnS layers have been grown by low pressure MOVPE using an adduct of diethylzinc-diethylsulfide (DEZn-DES) and H 2S as source materials and triethylaluminum (TEAl) as a dopant. The lowest resistivity achieved in this study is 3 × 10 -2 Ω cm for layers grown at a temperature of 350°C and at a TEAl transport rate ratio of {[TEAl]}/{[DEZn-DES]} = 4 × 10 -3.

  12. Fabricating superhydrophilic wool fabrics.

    PubMed

    Chen, Dong; Tan, Longfei; Liu, Huiyu; Hu, Junyan; Li, Yi; Tang, Fangqiong

    2010-04-01

    A simple method for fabricating environmentally stable superhydrophilic wool fabrics is reported here. An ultrathin silica layer coated on the wool altered both the surface roughness and the surface energy of the fiber and endowed the wool fabrics with excellent water absorption. The process of coating silica sols was dependent on an acid solution of low pH, which influenced the electrostatic interactions between nanoparticles and wool fibers. The morphology and composition of silica-sol-coated wool fabrics were characterized by a combination of SEM, TEM, EDX, FTIR, and XPS measurements. The possible mechanism and size effect of silica nanoparticles on the hydrophilic property of wool fabric were discussed. The washing fastness of the superhydrophilic wool fabrics in perchlorethylene and water was also evaluated. This study shows that wool fabrics modified by optical transparence, chemical stability, and nontoxic silica sols are promising in constructing smart textiles. PMID:19908843

  13. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2Transistors

    NASA Astrophysics Data System (ADS)

    Chuang, Hsun-Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian

    2016-03-01

    We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~ 0.3 k ohm.um, high on/off ratios up to > 109, and high drive currents exceeding 320 uA um-1. These favorable characteristics are combined with a two-terminal field-effect hole mobility ~ 2x102 cm2 V-1 s-1 at room temperature, which increases to >2x103 cm2 V-1 s-1 at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in post-silicon electronics.

  14. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors.

    PubMed

    Chuang, Hsun-Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian

    2016-03-01

    We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ μm, high on/off ratios up to >10(9), and high drive currents exceeding 320 μA μm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics. PMID:26844954

  15. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  16. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  17. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    NASA Astrophysics Data System (ADS)

    Morrow, C.; Lockner, D. A.; Hickman, S.

    2015-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drill hole near Parkfield, California, crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m wide fault damage zone of sandstones, siltstones, and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 Ω-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were 1 to 2 orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  18. Origins of low resistivity in Al ion-implanted ZnO bulk single crystals

    SciTech Connect

    Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2011-06-15

    The origins of low resistivity in Al ion-implanted ZnO bulk single crystals are studied by combining Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), photoluminescence (PL), and Van der Pauw methods. The Al-ion implantation (peak concentration: 2.6 x 10{sup 20}cm{sup -3}) into ZnO is performed using a multiple-step energy. The resistivity decreases from {approx}10{sup 4{Omega}} cm for un-implanted ZnO to 1.4 x 10{sup -1{Omega}} cm for as-implanted, and reaches 6.0 x 10{sup -4{Omega}} cm for samples annealed at 1000 deg. C. RBS and NRA measurements for as-implanted ZnO suggest the existence of the lattice displacement of Zn (Zn{sub i}) and O (O{sub i}), respectively. After annealing at 1000 deg. C, the Zn{sub i} related defects remain and the O{sub i} related defects disappear. The origin of the low resistivity in the as-implanted sample is attributed to the Zn{sub i} ({approx}30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]). In contrast, the origin of the low resistivity in the sample annealed at 1000 deg. C is assigned to both of the Zn{sub i} related defects and the electrically activated Al donor. A new PL emission appears at around 3.32 eV after annealing at 1000 deg. C, suggesting electrically activated Al donors.

  19. Preparation of low-resistivity n-type ZnSe by organometallic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Stutius, W.

    1981-03-01

    Low-resistivity n-type ZnSe with p<0.05 W cm and n≳1017 cm-3 has been grown epitaxially on (100) GaAs substrates by a low-pressure low-temperature organometallic chemical vapor deposition process. Triethylaluminum is used as a dopant. The as-grown layers show a strong near-band-gap photoluminescence peak. The much weaker photoluminescence intensity at longer wavelength indicates that the concentration of deep centers is lower than in doped ZnSe prepared by other methods.

  20. Low-resistance a-SiGe-based microbolometer pixel for future smart IR FPA

    NASA Astrophysics Data System (ADS)

    Yon, J. J.; Nieto, J. P.; Vandroux, L.; Imperinetti, P.; Rolland, E.; Goudon, V.; Vialle, C.; Arnaud, A.

    2010-04-01

    In the outlook of the next 12μm pixel node uncooled IR FPA, the Laboratoire InfraRouge (LIR) of the Electronics and Information Technology Laboratory (LETI) is still pushing forward the amorphous silicon (a-Si) based microbolometer technology. A promising approach is the development of a lower resistance a-Si pixel, giving such a microbolometer IR sensor an edge for enhanced bias current capability, resulting in higher sensitivity. With this goal in sight, the paper reports on a preliminary study that aims at incorporating a germanium ratio in the standard amorphous silicon film. This approach successfully resulted in a significantly reduced thin film resistance. Both physical and electrical characteristics of these low resistance a-SiGe thin films are presented. From these basic parameter measurements, the paper further elaborates on the expected IR performance when such an a-SiGe film is applied to an uncooled FPA. Finally, we describe how this new generation of low resistance pixel fits perfectly with the maximum voltage requirement of advanced CMOS processes, which are needed for future smart ROIC and intelligent IR pixel.

  1. Precision Engineering within the National Ignition Campaign

    SciTech Connect

    Taylor, J S; Carlisle, K; Klingmann, J L; Geraghty, P; Saito, T T; Montesanti, R C

    2010-02-17

    In this very brief talk, we'll discuss how precision engineering impacts 4 key areas of NIF: (1) Diamond turning of KDP crystals; (2) Mitigation of laser damage on optics; (3) Alignment of lasers, targets, diagnostics; (4) Target fabrication.

  2. Low resistance as-deposited Cr /Au contacts on p-type GaN

    NASA Astrophysics Data System (ADS)

    Kalaitzakis, F. G.; Pelekanos, N. T.; Prystawko, P.; Leszczynski, M.; Konstantinidis, G.

    2007-12-01

    The influence of several predeposition surface treatments and different contact metals to the electrical properties of metal/p-GaN contacts was studied. A low resistance as-deposited Cr /Au Ohmic contact was achieved, using boiling aqua regia as surface treatment. The Ohmic resistance of Cr /Au contacts with 50μm interspacing was found to be 50Ω, while the specific contact resistivity value was measured 2.6×10-3Ωcm2. Direct comparison with the standard oxidized Ni /Au contacts confirmed the superior characteristics of the Cr /Au contact scheme. Violet emission was readily obtained when the as-deposited Cr /Au contacts were used as the p electrode of a light emitting diode emitting at 385nm.

  3. Analysis of the Superconducting Cable Transposition in Low Resistance CICC Joint

    NASA Astrophysics Data System (ADS)

    Zhu, You-hua

    2000-08-01

    In an integrated structure low resistance CICC joint, current is conducted by outer cable strands coming into touch with the conductive Cu sole. So it is an important condition for satisfying joint performance that each strand of the cable inside the joint is able to come to the outermost by transposition. This paper presents analysis, calculation and figures for the strand transposition. According to the twist procedures of the superconducting cable, the author computed the actual pitch of each stage cable, consecutively computed the projection of each stage cable on the axis of the cable (z axis) and the corresponding twist angle as the z coordinate changes, which is then drawn by AutoCAD. From the results shown in the figures, the minimal cable length, which enables each strand to transpose almost equally to the outermost of the cable in such a length, can be determined as the optimal joint length.

  4. Low-resistance noble metal contacts to high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Selim, R.; Caton, R.; Buoncristiani, A. M.; Byvik, C. E.; Edahl, R. A., Jr.

    1990-01-01

    Low-resistance contacts were made to both YBa2Cu3O(7-x) and Bi2BaSr2Cu2O8, and to related superconducting compounds by melting gold or silver pads onto the samples before the final oxygen treatment. Scanning electron microscope studies show that both gold and silver do not diffuse far from the contact area. The surface contact resistivity of the best contacts made by the melting technique has an upper limit value in the 10 to the -8th ohm sq cm range at 77 K. This contact resistivity shows no significant change in its value over a period of 17 months. Furthermore, an electron radiation dose of 5.7 x 10 to the 17th electron/sq cm only doubled the contact resistivity.

  5. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  6. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  7. Low resistivity WxV1-xO2-based multilayer structure with high temperature coefficient of resistance for microbolometer applications

    NASA Astrophysics Data System (ADS)

    Émond, Nicolas; Hendaoui, Ali; Chaker, Mohamed

    2015-10-01

    Materials that exhibit semiconductor-to-metal phase transition (SMT) are commonly used as sensing layers for the fabrication of uncooled microbolometers. The development of highly responsive microbolometers would benefit from using a sensing material that possesses a large thermal coefficient of resistance (TCR) close to room temperature and a resistivity low enough to compromise between noise reduction and high TCR, while it should also satisfies the requirements of current CMOS technology. Moreover, a TCR that remains constant when the IR camera surrounding temperature varies would contribute to achieve reliable temperature measurements without additional corrections steps for TCR temperature dependence. In this paper, the characteristics of the SMT occurring in undoped and tungsten-doped vanadium dioxide thin films deposited on LaAlO3 (100) substrates are investigated. They are further exploited to fabricate a WxV1-xO2 (0 ≤ x ≤ 2.5) multilayer structure exhibiting a bottom-up gradient of tungsten content. This MLS displays a combination of properties that is promising for application to uncooled microbolometer, such as a large TCR of -10.4%/ °C and low resistivity values ranging from 0.012 to 0.10 Ω-cm over the temperature range 22 °C-42 °C.

  8. Low resistivity W{sub x}V{sub 1−x}O{sub 2}-based multilayer structure with high temperature coefficient of resistance for microbolometer applications

    SciTech Connect

    Émond, Nicolas; Hendaoui, Ali; Chaker, Mohamed

    2015-10-05

    Materials that exhibit semiconductor-to-metal phase transition (SMT) are commonly used as sensing layers for the fabrication of uncooled microbolometers. The development of highly responsive microbolometers would benefit from using a sensing material that possesses a large thermal coefficient of resistance (TCR) close to room temperature and a resistivity low enough to compromise between noise reduction and high TCR, while it should also satisfies the requirements of current CMOS technology. Moreover, a TCR that remains constant when the IR camera surrounding temperature varies would contribute to achieve reliable temperature measurements without additional corrections steps for TCR temperature dependence. In this paper, the characteristics of the SMT occurring in undoped and tungsten-doped vanadium dioxide thin films deposited on LaAlO{sub 3} (100) substrates are investigated. They are further exploited to fabricate a W{sub x}V{sub 1−x}O{sub 2} (0 ≤ x ≤ 2.5) multilayer structure exhibiting a bottom-up gradient of tungsten content. This MLS displays a combination of properties that is promising for application to uncooled microbolometer, such as a large TCR of −10.4%/ °C and low resistivity values ranging from 0.012 to 0.10 Ω-cm over the temperature range 22 °C–42 °C.

  9. Microbiopsy/precision cutting devices

    DOEpatents

    Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.

    1999-07-27

    Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.

  10. Microbiopsy/precision cutting devices

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    1999-01-01

    Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.

  11. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  12. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    SciTech Connect

    Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-11-15

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  13. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOEpatents

    Kopp, Manfred K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  14. Tungsten Contact and Line Resistance Reduction with Advanced Pulsed Nucleation Layer and Low Resistivity Tungsten Treatment

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi

    2010-09-01

    This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.

  15. Low resistivity, low contrast pays: Part I - concepts and methodology for identification and evaluation

    SciTech Connect

    Sneider, R.M. ); Kulha, J.T. )

    1994-07-01

    Major hydrocarbon accumulations have been found and produced in low resistivity, low contrast (LRLC) sands in the Gulf of Mexico Basin (GOM). In the past in the GOM, LRLC reservoirs were commonly considered wet, tight, misidentified as a shale, or overlooked. Examples of many offshore GOM producing wells are documented now in a joint publication of the Houston and New Orleans geological societies. These examples provide models for identification and evaluation of wells with similar geologic-petrophysical occurrence in the world, including southeast Asia. LRLC pays in the GOM are caused by one or more of the following: (1) thin beds or laminae of clean sands alternating with shales, silts, or shaly sands, (2) clay-coated sands, (3) glauconite-rich sands, (4) sands with interstitial dispersed clay, (5) sands with disseminated pyrite or other conductive minerals, (6) clay-lined burrows, (7) clay clasts in clean sand, (8) altered volcanic/feldspathic framework grains, and (9) very fine-grained sand with very saline water. Similar types of LRLC pay and potential pay sands are being recognized in Indonesia, Malaysia, Australia, Philippines, and Korea. Common depositional systems containing LRLC production in the GOM are (1) deep-water fans, including levee-channel complexes, (2) delta front and toe deposits, (3) shingle turbidites, and (4) alluvial and deltaic channel fills. Similar depositional systems are found in southeast Asia.

  16. Research on Magnetic Model of Low Resistance Permanent Magnet Pipe Belt Conveyor

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Li, De-yong; Guo, Yong-cun

    2016-09-01

    In view of the feasibility of a new type of low resistance permanent magnet pipe belt conveyor, the magnetic properties of the permanent magnet magnetic pipe conveyor belt system are studied. Based on the molecular current hypothesis, the mathematical model of the three dimensional radial magnetic force of permanent magnet pipe conveyor belt was established. The mathematical model of the radial magnetic force was derived, and the influence factors of the radial magnetic force were derived. The finite element simulation of permanent magnet-magnetic pipe conveyor belt magnetic model was carried out, then the magnetic flux density distribution chart under the conditions of different remanence intensity of different permanent magnet and different lengths of the permanent magnets (along the transport direction) were obtained. The simulation results are consistent with the calculation results, which shows that the permanent magnet pipe belt conveyor is feasible. Under certain conditions, the radial magnetic force has nonlinear increase relations with residual magnetism of permanent magnet and the length of the permanent magnet (along the transport direction).

  17. Low-resistance spin injection into silicon using graphene tunnel barriers

    NASA Astrophysics Data System (ADS)

    van't Erve, O. M. J.; Friedman, A. L.; Cobas, E.; Li, C. H.; Robinson, J. T.; Jonker, B. T.

    2012-12-01

    Spin manipulation in a semiconductor offers a new paradigm for device operation beyond Moore's law. Ferromagnetic metals are ideal contacts for spin injection and detection, but the intervening tunnel barrier required to accommodate the large difference in conductivity introduces defects, trapped charge and material interdiffusion, which severely compromise performance. Here, we show that single-layer graphene successfully circumvents the classic issue of conductivity mismatch between a metal and a semiconductor for electrical spin injection and detection, providing a highly uniform, chemically inert and thermally robust tunnel barrier. We demonstrate electrical generation and detection of spin accumulation in silicon above room temperature, and show that the contact resistance-area products are two to three orders of magnitude lower than those achieved with oxide tunnel barriers on silicon substrates with identical doping levels. Our results identify a new route to low resistance-area product spin-polarized contacts, a key requirement for semiconductor spintronic devices that rely on two-terminal magnetoresistance, including spin-based transistors, logic and memory.

  18. Uncovering secrets behind low-resistance planing craft hull forms through optimization

    NASA Astrophysics Data System (ADS)

    Mohamad Ayob, Ahmad F.; Ray, Tapabrata; Smith, Warren F.

    2011-11-01

    There has always been significant interest within the naval architectural research community to identify ship hull forms with low resistance. While numerous design optimization frameworks have been proposed over the years to support the activity, very little attention has been paid towards the process of gaining an understanding of 'what makes a good ship design superior?'. Furthermore, there have been limited attempts to identify computationally cheap indicators that can be used to distinguish between good and poor designs. A recent technique named discovery of innovative design principles, which is aimed at understanding the relationship between the design variables, is incorporated in this work. In this article, optimal high-speed planing craft hull forms with minimum calm-water resistance are identified through the use of three state-of-the-art optimization algorithms. Collections of such designs are then used to uncover insights into the underlying relationships between the variables. The importance of such relationships is further analysed to identify computationally cheap performance indicators that can be used in lieu of detailed calm-water resistance calculations. Such indicators are useful at the concept and preliminary design stages, where one needs to sieve efficiently through a number of candidate designs to identify the better ones for further analysis.

  19. Sacrificial bridges for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Min; Chen, Yang-Che; Fong, Chien-Fu; Guu, Yunn-Horng; Chen, Rongshun; Yeh, J. Andrew; Hou, Max T.

    2011-09-01

    This study discusses sacrificial bridges that are used to release MEMS devices. Before being released, sacrificial bridges connect all the component structures into an integral structure. Solder bump bonding is used to mount the MEMS chip on another chip or a printed circuit board (PCB) and to maintain the alignment among all component structures after removal of the sacrificial bridges. Two types of sacrificial bridges were designed, analyzed and fabricated. The fabrication process—which used low resistivity single crystal silicon (SCS) wafers as the device material—was developed to implement the sacrificial bridges. Novel SCS through silicon vias (TSVs), which interconnect stacked chips, was made using the same process. An electrostatic comb drive actuator was fabricated and mounted onto a PCB. The fabricated actuator was tested to demonstrate the feasibility of the fabrication process, sacrificial bridges and SCS TSVs. The results show that the actuator worked well. Its maximum displacement and resonant frequency were 69.9 µm and 406 Hz, respectively. This method is promising for the delivery of a novel 3D system in package for MEMS devices.

  20. Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance.

    PubMed

    Olivas, Yolanda; Faulkner, Barton R

    2008-04-01

    The ongoing development of microbial source tracking has made it possible to identify contamination sources with varying accuracy, depending on the method used. The purpose of this study was to test the efficiency of the antibiotic resistance analysis (ARA) method under low resistance by tracking the fecal sources at Turkey Creek, Oklahoma exhibiting this condition. The resistance patterns of 772 water-isolates, tested with nine antibiotics, were analyzed by discriminant analysis (DA) utilizing a five-source library containing 2250 isolates. The library passed various representativeness tests; however, two of the pulled-sample tests suggested insufficient sampling. The resubstitution test of the library individual sources showed significant isolate misclassification with an average rate of correct classification (ARCC) of 58%. These misclassifications were explained by low antibiotic resistance (Wilcoxon test P < 0.0001). Seasonal DA of stream E. coli isolates for the pooled sources human/livestock/deer indicated that in fall, the human source dominated (P < 0.0001) at a rate of 56%, and that human and livestock respective contributions in winter (35 and 39%), spring (43 and 40%), and summer (37 and 35%) were similar. Deer scored lower (17-28%) than human and livestock at every season. The DA was revised using results from a misclassification analysis to provide a perspective of the effect caused by low antibiotic resistance and a more realistic determination of the fecal source rates at Turkey Creek. The revision increased livestock rates by 13-14% (0.04

  1. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts.

    PubMed

    Chuang, Hsun-Jen; Tan, Xuebin; Ghimire, Nirmal Jeevi; Perera, Meeghage Madusanka; Chamlagain, Bhim; Cheng, Mark Ming-Cheng; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian

    2014-06-11

    We report the fabrication of both n-type and p-type WSe2 field-effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e(2)/h, a high ON/OFF ratio of >10(7) at 170 K, and large electron and hole mobility of μ ≈ 200 cm(2) V(-1 )s(-1) at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ∼330 cm(2) V(-1) s(-1) and that of holes to ∼270 cm(2) V(-1) s(-1). We attribute our ability to observe the intrinsic, phonon-limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible, and transparent low-resistance ohmic contacts to a wide range of quasi-2D semiconductors. PMID:24844426

  2. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  3. Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Caton, R.; Selim, R.; Lee, B. I.; Modi, V.; Sherrill, M.; Leigh, H. D.; Fain, C. C.; Lewis, G.

    1993-01-01

    Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented.

  4. Method for making high resistance chromium-free semiconductor substrate body with low resistance active semiconductor layer by surface irradiation

    SciTech Connect

    Kniepkamp, H.

    1984-10-30

    A high resistance semiconductor substrate body with a thin low resistance active semiconductor layer thereon is generated by a method including the steps of subjecting the semiconductor substrate body to neutron bombardment to a degree which produces high resistance in the semiconductor body and whereby doping substances are generated in the substrate body by the thermal neutron bombardment. A thin low resistant active semiconductor layer is then generated on the substrate body by annealing, a surface of the semiconductor substrate body up to a selected depth by laser radiation or electron radiation such that the lattice deterioration which was caused by the neutron bombardment is eliminated but the doping which was generated by the transmutation of elements during neutron bombardment remains. The annealing can be undertaken only in selected regions on the surface of the semiconductor substrate body, thereby facilitating the construction of integrated circuit components thereon.

  5. New synthesis and physical property of low resistivity boron-doped multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y.

    2008-09-01

    A novel growth technique of boron-doped multi-walled carbon nanotubes (MWNTs) was developed. Our new technique uses a methanol solution of boric acid as a source material. Resistivity of the boron-doped MWNTs was successfully reduced independently of chirality by our technique. Temperature dependence of resistivity in each individual boron-doped MWNT was measured by using small-sized four-point contacts, which were fabricated by electron beam (EB) lithography technique. Conduction carriers were introduced into the MWNT effectively by boron-doping.

  6. Testing of a low resistance CICC joint for a 50 kA superconducting transformer

    NASA Astrophysics Data System (ADS)

    Liu, H. J.; Wu, Y.; Peng, J. Q.; Shi, Y.; Wu, S. T.

    2010-09-01

    A 50 kA superconducting transformer has been manufactured and tested. In order to be assembled easily, two terminal boxes were fabricated and connected to the legs of the secondary coil. The performances of the transformer were tested. This paper is focused on the test of the joints resistance and the heat transfer calculation of losses in the supercritical helium channel of the terminal boxes. The temperature of the copper block of a terminal box was calculated and compared with the temperature measured in the test in the current range of 0-55.8 kA. The test results indicated that the design satisfied the requirements.

  7. Turning an organic semiconductor into a low-resistance material by ion implantation

    NASA Astrophysics Data System (ADS)

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-12-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance.

  8. Fabric fastenings

    NASA Technical Reports Server (NTRS)

    Walen, E D; Fisher, R T

    1920-01-01

    The study of aeronautical fabrics has led to a consideration of the best methods of attaching and fastening together such materials. This report presents the results of an investigation upon the proper methods of attaching fabrics to airplane wings. The methods recommended in this report have been adopted by the military services.

  9. The structure of a magnetic-field front propagating non-diffusively in low-resistivity multi-species plasma

    NASA Astrophysics Data System (ADS)

    Rubinstein, B.; Doron, R.; Maron, Y.; Fruchtman, A.; Mehlhorn, T. A.

    2016-04-01

    We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.

  10. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  11. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation

  12. Low-temperature deposition of low resistivity ZnSe films by reactive sputtering

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Nouhi, A.

    1986-01-01

    The use of reactive dc magnetron cosputtering of Zn and the dopant In in an H2Se/Ar gaseous mixture is described. It is observed that initial deposition using pure Zn targets produced yellowish transparent ZnSe films on glass with a film resistivity of 10 to the 8th ohms cm and deposition using a Zn target doped with a fixed 1 percent of In produced ZnSe films with resistivities of about 10,000 ohms cm. The improvement of film conductivity by optimizing the In content in the ZnSe films is discussed; the ZnSe resistivity dependence on In flux is studied. Optical absorption/transmission measurements reveal a photon energy band gap of 2.65 eV at room temperature and X-ray diffraction show highly oriented polycrystalline films on glass with the c axis parallel to the plane of the film. Compositional analysis was performed and the Zn/Se ratio is measure as 48.8/49.0 with an In concentration of 1.16 percent. ZnSe films deposited on glass and conducting SnO2-coated glass substrates with a resistance of 20 ohms cm and a substrate temperature of 120 C have been fabricated.

  13. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  14. "Precision" drug development?

    PubMed

    Woodcock, J

    2016-02-01

    The concept of precision medicine has entered broad public consciousness, spurred by a string of targeted drug approvals, highlighted by the availability of personal gene sequences, and accompanied by some remarkable claims about the future of medicine. It is likely that precision medicines will require precision drug development programs. What might such programs look like? PMID:26331240

  15. Low resistivity lateral P-I-N junction formed by Ni-InGaAsP alloy for carrier injection InGaAsP photonic devices

    NASA Astrophysics Data System (ADS)

    Park, Jin-Kwon; Takenaka, Mitsuru; Takagi, Shinichi

    2016-04-01

    In this study, we investigate low-resistivity InGaAsP lateral P-I-N junctions using Ni-InGaAsP alloy in conjunction with Zn diffusion. It is found that Ni-InGaAsP alloy is formed via a direct reaction between Ni and InGaAsP after annealing at more than 300 °C. The Ni-InGaAsP preserves the initial Schottky junction properties between Ni and InGaAsP, and thus exhibits an ohmic contact for n-InGaAsP and a Schottky contact for p-InGaAsP. Hence, the Ni-InGaAsP alloy can be used instead of the Si ion implantation process to form the P-I-N junction. The Ni-InGaAsP alloy exhibits significantly lower contact resistance and sheet resistance than Si implanted n+-InGaAsP. The InGaAsP lateral P-I-N junction formed with the Ni-InGaAsP alloy and Zn diffusion shows approximately 10 times lower access resistance than the n+-InGaAsP junction. Thus, we successfully achieve large on-current in the lateral P-I-N junction with the Ni-InGaAsP alloy. The fabrication procedure of the lateral P-I-N junction using the Ni-InGaAsP alloy is promising for carrier-injection photonic devices on the III-V CMOS photonics platform.

  16. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and Associated Carbonate Sediments in Coastal Plain Sequences on the Savannah River Site, South Carolina

    SciTech Connect

    Cumbest, R. J.

    1999-01-05

    The objectives of the pilot study were to investigate the limitations of the technique for imaging the presence, extent, and boundaries of the low-resistance intervals and associated carbonate sediments.

  17. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.

    PubMed

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-01-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10(-8) (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10(-8) to 5.08 × 10(-8) (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558

  18. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-02-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10-8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10-8 to 5.08 × 10-8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved.

  19. Productive Nanosystems: The Physics of Molecular Fabrication

    ERIC Educational Resources Information Center

    Drexler, K. Eric

    2005-01-01

    Fabrication techniques are the foundation of physical technology, and are thus of fundamental interest. Physical principles indicate that nanoscale systems will be able to fabricate a wide range of structures, operating with high productivity and precise molecular control. Advanced systems of this kind will require intermediate generations of…

  20. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  1. Advanced irrigation engineering: Precision and Precise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation advances in precision irrigation (PI) or site-specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for it is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variable ra...

  2. Advanced irrigation engineering: Precision and Precise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation advances in precision irrigation (PI) or site specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for PI/SSI is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variabl...

  3. Micro-structural characterization of low resistive metallic Ni germanide growth on annealing of Ni-Ge multilayer

    SciTech Connect

    Swain, Mitali Singh, Surendra Bhattacharya, Debarati; Basu, Saibal; Singh, Ajay; Prajapat, C. L.; Tokas, R.B.

    2015-07-15

    Nickel-Germanides are an important class of metal semiconductor alloys because of their suitability in microelectronics applications. Here we report successful formation and detailed characterization of NiGe metallic alloy phase at the interfaces of a Ni-Ge multilayer on controlled annealing at relatively low temperature ∼ 250 °C. Using x-ray and polarized neutron reflectometry, we could estimate the width of the interfacial alloys formed with nanometer resolution and found the alloy stoichiometry to be equiatomic NiGe, a desirable low-resistance interconnect. We found significant drop in resistance (∼ 50%) on annealing the Ni-Ge multilayer suggesting metallic nature of alloy phase at the interfaces. Further we estimated the resistivity of the alloy phase to be ∼ 59μΩ cm.

  4. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    SciTech Connect

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-12-04

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ∼10{sup 3} Ωcm for un-implanted samples to ∼10{sup −2} Ωcm for as-implanted ones are observed. The resistivity is further decreased to ∼10{sup −3} Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  5. Low-resistance and high-resistance states in strontium titanate films formed by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Sohrabi Anaraki, H.; Gaponenko, N. V.; Litvinov, V. G.; Ermachikhin, A. V.; Kolos, V. V.; Pyatlitski, A. N.; Ivanov, V. A.

    2015-10-01

    A change in the resistance of strontium titanate structures formed by the sol-gel method has been demonstrated. The transition of a strontium titanate film with a thickness of about 300 nm from the highresistance to low-resistance state occurs when the bias voltage on the silicon/titanium dioxide/platinum/strontium titanate/nickel capacitor structure reaches the values of about 10 V. The resistance changes from several ohms to several tens of kiloohms. For a thicker film (~400 nm), the switching voltage increases while the resistance of the structure in the high-resistance state reaches several hundreds of kiloohms. Supposedly, the main role in changing the resistance is played by deep levels whose population changes by the applied voltage. The prospects for the application of strontium titanate films in memory memristor elements have been discussed.

  6. On the luminescence of freshly introduced a-screw dislocations in low-resistance GaN

    SciTech Connect

    Medvedev, O. S. Vyvenko, O. F.; Bondarenko, A. S.

    2015-09-15

    Using scanning electron microscopy in the cathodoluminescence mode, it is shown that straight segments of a-screw dislocations introduced by plastic deformation at room temperature into unintentionally doped low-resistance gallium nitride luminesce in the spectral range 3.1–3.2 eV at 70 K. The spectral composition of dislocation luminescence shows a fine doublet structure with a component width of ∼15 meV and splitting of ∼30 meV, accompanied by LO-phonon replicas. Luminescent screw dislocations move upon exposure to an electron beam and at low temperatures, but retain immobility for a long time without external excitation. Optical transitions involving the quantum-well states of a stacking fault in a split-dislocation core are considered to be the most probable mechanism of the observed phenomenon.

  7. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  8. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-12-01

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ˜103 Ωcm for un-implanted samples to ˜10-2 Ωcm for as-implanted ones are observed. The resistivity is further decreased to ˜10-3 Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zni) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  9. Dual-donor codoping approach to realize low-resistance n-type ZnS semiconductor

    SciTech Connect

    Li , D. F.; Deng, Bo; Xue, Shuwen; Wang, Zhiguo; Gao, Fei

    2011-08-01

    Based on first-principles calculations, we explored a good candidate for achieving low-resistance and high carrier concentration of n-type ZnS by a dual-donor codoping method, where the ionization energy was effectively reduced. We found that the SnZn-FS pair has a shallow donor level of 17.2 meV, a small formation energy of 1.27 eV and a high binding energy of 1.28 eV. The density of states analysis showed that the SnZn-FS pair induces the downward shift of the conduction band minimum by about 0.15 eV, while the basis electronic structure does not change. Thus, the SnZn-FS pair is likely to be a best n-type dopant for ZnS.

  10. Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals

    SciTech Connect

    Luan, Qingbin; Ni, Zhenyi; Zhu, Tiejun; Yang, Deren; Pi, Xiaodong; Koura, Setsuko

    2014-12-15

    Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature is the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤  ∼ 30 cm{sup -2}V{sup -1}s{sup -1}) mainly due to the scattering of carriers induced by structural defects such as pores.

  11. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics

    PubMed Central

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-01-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10−8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10−8 to 5.08 × 10−8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558

  12. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  13. Improving the precision matrix for precision cosmology

    NASA Astrophysics Data System (ADS)

    Paz, Dante J.; Sánchez, Ariel G.

    2015-12-01

    The estimation of cosmological constraints from observations of the large-scale structure of the Universe, such as the power spectrum or the correlation function, requires the knowledge of the inverse of the associated covariance matrix, namely the precision matrix, Ψ . In most analyses, Ψ is estimated from a limited set of mock catalogues. Depending on how many mocks are used, this estimation has an associated error which must be propagated into the final cosmological constraints. For future surveys such as Euclid and Dark Energy Spectroscopic Instrument, the control of this additional uncertainty requires a prohibitively large number of mock catalogues. In this work, we test a novel technique for the estimation of the precision matrix, the covariance tapering method, in the context of baryon acoustic oscillation measurements. Even though this technique was originally devised as a way to speed up maximum likelihood estimations, our results show that it also reduces the impact of noisy precision matrix estimates on the derived confidence intervals, without introducing biases on the target parameters. The application of this technique can help future surveys to reach their true constraining power using a significantly smaller number of mock catalogues.

  14. Atomically Precise Surface Engineering for Producing Imagers

    NASA Technical Reports Server (NTRS)

    Greer, Frank (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor)

    2015-01-01

    High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

  15. Fabrication of precision glass shells by joining glass rods

    DOEpatents

    Gac, Frank D.; Blake, Rodger D.; Day, Delbert E.; Haggerty, John S.

    1988-01-01

    A method for making uniform spherical shells. The present invention allows niform hollow spheres to be made by first making a void in a body of material. The material is heated so that the viscosity is sufficiently low so that the surface tension will transform the void into a bubble. The bubble is allowed to rise in the body until it is spherical. The excess material is removed from around the void to form a spherical shell with a uniform outside diameter.

  16. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  17. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  18. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  19. Low resistance electrode construction

    DOEpatents

    Redey, Laszlo; Karell, Eric J.

    2002-01-01

    An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800.degree. C. inside said receptacle chamber. A second metal with a melting point greater than about 800.degree. C. is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.

  20. Low Resistance Electrode Construction

    SciTech Connect

    Redey, Laszlo; Karell, Eric

    2000-01-20

    An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800 C inside said receptacle chamber. A second metal with a melting point greater than about 800 C is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.

  1. Transparent conductive Nb-doped TiO2 films deposited by reactive dc sputtering using Ti-Nb alloy target, precisely controlled in the transition region using impedance feedback system

    NASA Astrophysics Data System (ADS)

    Oka, Nobuto; Sanno, Yuta; Jia, Junjun; Nakamura, Shin-ichi; Shigesato, Yuzo

    2014-05-01

    In this study, a stable reactive sputtering process using a Ti-Nb alloy target was achieved by applying a plasma impedance feedback system. High-quality transparent conductive Nb-doped TiO2 (Nb:TiO2) films were fabricated with high reproducibility. The films were deposited on unheated substrate and subsequently annealed at 873 K under vacuum conditions (below 6.0 × 10-4 Pa) for 1 h. During reactive sputtering, the feedback system precisely controlled the oxidation of the target surface in the so-called transition region. The post-annealing process yielded polycrystalline Nb:TiO2 films whose lattice defects decreased with increasing Nb concentration. An extremely low resistivity (7.2 × 10-4 Ω cm) was achieved for Nb:TiO2 film with 60-70% transmittance in the visible region. The reactive sputtering using Ti-Nb alloys is considered to be a strong candidate for industrial-scale thin-film deposition. Furthermore, it can also control the metal-oxygen stoichiometry of Nb:TiO2 films precisely to achieve desirable properties for each industrial application.

  2. Triaxial Fabrics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Gentax Corporation's triaxal fabrics are woven from three separate yarn sets whose intersections form equilateral triangles. This type of weave, derived from space shuttle pressure suits, assures practically equal strength in every direction; has essentially no bias, or weak dimension offering greater resistance to tear and shear along with significant weight reduction. Applications of the Triax line include inflatable equipment, life vests, aircraft evacuation slides, helicopter flotation devices, tension structures, safety clothing and sailcloth for boats. Ability to accept compound curvatures with no distortion of the weave configuration makes it useful in manufacturing molded composites.

  3. A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment

    PubMed Central

    Amadi, Ovid C.; Steinhauser, Matthew L.; Nishi, Yuichi; Chung, Seok; Kamm, Roger D.; McMahon, Andrew P.

    2011-01-01

    The advent of microfluidic technology allows control and interrogation of cell behavior by defining the local microenvironment with an assortment of biochemical and biophysical stimuli. Many approaches have been developed to create gradients of soluble factors, but the complexity of such systems or their inability to create defined and controllable chemical gradients has limited their widespread implementation. Here we describe a new microfluidic device which employs a parallel arrangement of wells and channels to create stable, linear concentration gradients in a gel region between a source and a sink well. Pressure gradients between the source and sink wells are dissipated through low resistance channels in parallel with the gel channel, thus minimizing the convection of solute in this region. We demonstrate the ability of the new device to quantitate chemotactic responses in a variety of cell types, yielding a complete profile of the migratory response and representing the total number of migrating cells and the distance each cell has migrated. Additionally we show the effect of concentration gradients of the morphogen Sonic hedgehog on the specification of differentiating neural progenitors in a 3-dimensional matrix. PMID:20661647

  4. Low-resistance magnetic tunnel junctions prepared by partial remote plasma oxidation of 0.9 nm Al barriers

    SciTech Connect

    Ferreira, Ricardo; Freitas, Paulo P.; MacKenzie, Maureen; Chapman, John N.

    2005-05-09

    Current perpendicular to the plane read-head elements suitable for high-density magnetic storage require low resistance while maintaining a reasonable magnetoresistive (MR) signal (RxA<1 {omega} {mu}m{sup 2} and MR>20% for areal densities >200 Gb/in{sup 2}). This letter shows that competitive low RxA junctions can be produced using underoxidized barriers starting from 0.9 nm thick Al layers. For as-deposited junctions, tunneling magnetoresistance (TMR) {approx}20% for RxA{approx}2-15 {omega} {mu}m{sup 2} is obtained, while in the RxA{approx}60-150 {omega} {mu}m{sup 2} range, TMR values between 40% to 45% are achieved. A limited number of junctions exhibits considerably lower RxA values with respect to the average, while keeping a similar MR (down to 0.44 {omega} {mu}m{sup 2} with TMR of 20% and down to 2.2 {omega} {mu}m{sup 2} with TMR of 52%). Experimental data suggest that current confinement to small regions (barrier defects/hot spots) may explain these results.

  5. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  6. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-05-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  7. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  8. Precision Higgs Physics

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja

    2015-04-01

    The future of the high energy physics program will increasingly rely upon precision studies looking for deviations from the Standard Model. Run I of the Large Hadron Collider (LHC) triumphantly discovered the long-awaited Higgs boson, and there is great hope in the particle physics community that this new state will open a portal onto a new theory of Nature at the smallest scales. A precision study of Higgs boson properties is needed in order to test whether this belief is true. New theoretical ideas and high-precision QCD tools are crucial to fulfill this goal. They become even more important as larger data sets from LHC Run II further reduce the experimental errors and theoretical uncertainties begin to dominate. In this talk, I will review recent progress in understanding Higgs properties,including the calculation of precision predictions needed to identify possible physics beyond the Standard Model in the Higgs sector. New ideas for measuring the Higgs couplings to light quarks as well as bounding the Higgs width in a model-independent way will be discussed. Precision predictions for Higgs production in association with jets and ongoing efforts to calculate the inclusive N3LO cross section will be reviewed.

  9. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  10. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  11. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  12. Precision Nova operations

    SciTech Connect

    Ehrlich, R.B.; Miller, J.L.; Saunders, R.L.; Thompson, C.E.; Weiland, T.L.; Laumann, C.W.

    1995-09-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations includes routine precision power balance to within 10% rms in the ``foot`` and 5% nns in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 {mu}m rms. We have also added a ``fail-safe chirp`` system to avoid Stimulated Brillouin Scattering (SBS) in optical components during high energy shots.

  13. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  14. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  15. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  16. Precision Nova operations

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert B.; Miller, John L.; Saunders, Rodney L.; Thompson, Calvin E.; Weiland, Timothy L.; Laumann, Curt W.

    1995-12-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations include routine precision power balance to within 10% rms in the 'foot' and 5% rms in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 micrometer rms. We have also added a 'fail-safe chirp' system to avoid stimulated Brillouin scattering (SBS) in optical components during high energy shots.

  17. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  18. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  19. Precision in Stereochemical Terminology

    ERIC Educational Resources Information Center

    Wade, Leroy G., Jr.

    2006-01-01

    An analysis of relatively new terminology that has given multiple definitions often resulting in students learning principles that are actually false is presented with an example of the new term stereogenic atom introduced by Mislow and Siegel. The Mislow terminology would be useful in some cases if it were used precisely and correctly, but it is…

  20. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  1. Precision metal molding

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Method provides precise alignment for metal-forming dies while permitting minimal thermal expansion without die warpage or cavity space restriction. The interfacing dowel bars and die side facings are arranged so the dies are restrained in one orthogonal angle and permitted to thermally expand in the opposite orthogonal angle.

  2. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  3. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  4. Precision physics at LHC

    SciTech Connect

    Hinchliffe, I.

    1997-05-01

    In this talk the author gives a brief survey of some physics topics that will be addressed by the Large Hadron Collider currently under construction at CERN. Instead of discussing the reach of this machine for new physics, the author gives examples of the types of precision measurements that might be made if new physics is discovered.

  5. Vernier scales and other early devices for precise measurement

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2011-04-01

    Vernier scales have been extensively used since the 17th century. They replaced the Nonius scale, a unpopular device due to difficulty in its fabrication and use, and they coexisted alongside other types of scales that increased measurement precision and accuracy in complementary ways. I suggest that the success of Vernier and diagonal scales is due not only to simplicity of fabrication, but also to their exploitation of visual hyperacuities.

  6. High-Precision Twist-Controlled Bilayer and Trilayer Graphene.

    PubMed

    Chen, Xu-Dong; Xin, Wei; Jiang, Wen-Shuai; Liu, Zhi-Bo; Chen, Yongsheng; Tian, Jian-Guo

    2016-04-01

    Twist-controlled bilayer graphene (tBLG) and double-twisted trilayer graphene (DTTG) with high precision are fabricated and their controllable optoelectronic properties are investigated for the first time. The successful fabrication of tBLG and DTTG with designated θ provides an attractive starting point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry. PMID:26822255

  7. Contacting nanowires and nanotubes with atomic precision for electronic transport

    SciTech Connect

    Qin, Shengyong; Hellstrom, Sondra L; Bao, Zhenan; Boyanov, Boyan; Li, An-Ping

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes.

  8. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  9. Precision Polarization of Neutrons

    NASA Astrophysics Data System (ADS)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  10. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  11. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  12. Towards precision medicine.

    PubMed

    Ashley, Euan A

    2016-08-16

    There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery - including DNA-sequencing technologies and analysis algorithms - need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision. PMID:27528417

  13. A passion for precision

    ScienceCinema

    None

    2011-10-06

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  14. Precision laser aiming system

    SciTech Connect

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  15. Precision disablement aiming system

    DOEpatents

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  16. Precise linear sun sensor

    NASA Technical Reports Server (NTRS)

    Johnston, D. D.

    1972-01-01

    An evaluation of the precise linear sun sensor relating to future mission applications was performed. The test procedures, data, and results of the dual-axis, solid-state system are included. Brief descriptions of the sensing head and of the system's operational characteristics are presented. A unique feature of the system is that multiple sensor heads with various fields of view may be used with the same electronics.

  17. A simple, low resistance contact system for shallow junction p{sup +}nn{sup +} InP solar cells that preserves emitter integrity during sintering

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.W.; Weizer, V.G.; Wilt, D.M.

    1994-12-31

    The authors have discovered what appears to be a unique contact system for use on p-type InP. The new contacts provide low resistance contact to p-InP without the violent metallurgical intermixing that would normally take place between the emitter material and the contact metallization during the contact sintering process. With this new contact system it is possible, for the first time, to make low resistance ohmic contact directly to a shallow junction p/n InP solar cell without destroying the cell in the process. The use of this contact system eliminates the need for an InGaAs cap layer under the metallization, greatly facilitating the use of low cost substrates.

  18. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  19. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  20. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2010-09-01

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  1. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  2. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  3. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  4. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  5. 8. VIEW OF A MOLD FOR PRECISION CASTING. THE MOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF A MOLD FOR PRECISION CASTING. THE MOLD WAS USED IN FOUNDRY OPERATIONS THAT CAST PLUTONIUM EITHER AS INGOTS SUITABLE FOR ROLLING AND FURTHER WROUGHT PROCESSING OR INTO SHAPES AMENABLE TO DIRECT MACHINING OPERATIONS. (5/6/59) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  6. Simplified Fabrication of Helical Copper Antennas

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    2006-01-01

    A simplified technique has been devised for fabricating helical antennas for use in experiments on radio-frequency generation and acceleration of plasmas. These antennas are typically made of copper (for electrical conductivity) and must have a specific helical shape and precise diameter.

  7. Fabrication of Submillimeter Axisymmetric Optical Components

    NASA Technical Reports Server (NTRS)

    Grudinin, Ivan; Savchenkov, Anatoliy; Strekalov, Dmitry

    2007-01-01

    It is now possible to fashion transparent crystalline materials into axisymmetric optical components having diameters ranging from hundreds down to tens of micrometers, whereas previously, the smallest attainable diameter was 500 m. A major step in the fabrication process that makes this possible can be characterized as diamond turning or computer numerically controlled machining on an ultrahigh-precision lathe.

  8. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  9. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  10. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  11. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  12. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  13. Progressive Precision Surface Design

    SciTech Connect

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on an underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.

  14. Stirling Microregenerators Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  15. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  16. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  17. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  18. Non-destructive, ultra-low resistance, thermally stable contacts for use on shallow junction InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Korenyi-Both, A. L.

    1993-01-01

    Contact formation to InP is plagued by violent metal-semiconductor intermixing that takes place during the contact sintering process. Because of this the InP solar cell cannot be sintered after contact deposition. This results in cell contact resistances that are orders of magnitude higher than those that could be achieved if sintering could be performed in a non-destructive manner. We report here on a truly unique contact system involving Au and Ge, which is easily fabricated, which exhibits extremely low values of contact resistivity, and in which there is virtually no metal-semiconductor interdiffusion, even after extended sintering. We present a description of this contact system and suggest possible mechanisms to explain the observed behavior.

  19. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Wan, Yimao; Bullock, James; Allen, Thomas; Cuevas, Andres

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuOx:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuOx:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuOx:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contact resistivity of ˜10 mΩ cm2 has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.

  20. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  1. System dynamic simulation of precision segmented reflector

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    A joint effort was undertaken on a Precision Segmented Reflector (PSR) Project. The missions in which the PSR is to be used will use large (up to 20 m in diameter) telescopes. The essential requirement for the telescopes is that the reflector surface of the primary mirror must be made extremely precise to allow no more than a few microns of errors and, additionally, this high surface precision must be maintained when the telescope is subjected to on-orbital mechanical and thermal disturbances. Based on the mass, size, and stability considerations, reflector surface formed by segmented, probably actively or passively controlled, composite panels are regarded as most suitable for future space based astronomical telescope applications. In addition to the design and fabrication of composite panels with a surface error of less than 3 microns RMS, PSR also develops related reflector structures, materials, control, and sensing technologies. As part of the planning effort for PSR Technology Demonstration, a system model which couples the reflector, consisting of panels, support truss and actuators, and the optical bench was assembled for dynamic simulations. Random vibration analyses using seismic data obtained from actual measurements at the test site designated for PSR Technology Demonstration are described.

  2. Electrosurgery with cellular precision.

    PubMed

    Palanker, Daniel V; Vankov, Alexander; Huie, Philip

    2008-02-01

    Electrosurgery, one of the most-often used surgical tools, is a robust but somewhat crude technology that has changed surprisingly little since its invention almost a century ago. Continuous radiofrequency is still used for tissue cutting, with thermal damage extending to hundreds of micrometers. In contrast, lasers developed 70 years later, have been constantly perfected, and the laser-tissue interactions explored in great detail, which has allowed tissue ablation with cellular precision in many laser applications. We discuss mechanisms of tissue damage by electric field, and demonstrate that electrosurgery with properly optimized waveforms and microelectrodes can rival many advanced lasers. Pulsed electric waveforms with burst durations ranging from 10 to 100 micros applied via insulated planar electrodes with 12 microm wide exposed edges produced plasma-mediated dissection of tissues with the collateral damage zone ranging from 2 to 10 microm. Length of the electrodes can vary from micrometers to centimeters and all types of soft tissues-from membranes to cartilage and skin could be dissected in liquid medium and in a dry field. This technology may allow for major improvements in outcomes of the current surgical procedures and development of much more refined surgical techniques. PMID:18270030

  3. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  4. Efficient photoelectric converters of ultraviolet radiation based on ZnS and CdS with low-resistivity surface layers

    SciTech Connect

    Bobrenko, Yu. N.; Pavelets, S. Yu. Pavelets, A. M.; Kiselyuk, M. P.; Yaroshenko, N. V.

    2010-08-15

    The formation of thin high- and low-resistivity layers in the space-charge region of Cu{sub 1.8}S-CdS and Cu{sub 1.8}S-ZnS surface-barrier photoconverter structures leads to a considerable increase in photosensitivity and a reduction in the dark tunneling-recombination currents. Highly efficient and stable ultraviolet photoconverters based on CdS and ZnS were obtained, and their electrical and photoelectrical properties were studied. The main operational parameters of the photoconverters are reported.

  5. Fabrication of micro metallic valve and pump

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2009-12-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  6. Fabrication of micro metallic valve and pump

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  7. Probing electronic transport of individual nanostructures with atomic precision

    SciTech Connect

    Qin, Shengyong; Li, An-Ping

    2012-01-01

    Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

  8. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  9. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  10. Precision medicine in myasthenia graves: begin from the data precision

    PubMed Central

    Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng

    2016-01-01

    Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759

  11. Fabrication of brittle materials -- current status

    SciTech Connect

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  12. Precision compression molding of chalcogenide glass optical elements

    NASA Astrophysics Data System (ADS)

    Qi, Chaowei; Ma, Tao; Chen, Fan

    2013-12-01

    Precision glass molding process (GMP) is a promising process to manufacture small precision optical elements in large volume. In this paper, we report on the fabrication of a molded chalcogenide glass lens as an optical element. A set of mold was designed and manufactured with silicon carbide material for the molding test. The structure of the mold set was semi-closed and detachable which can make the molded lens easy releasing with non-invasion. The surfaces of the mold cores are coated with thin protecting DLC film to relieve adhesion problem and increase the working life. Experiments were also performed using a precision glass molding machine Toshiba GMP-311V to determine the molding parameters i.e. molding temperature, pressure and cooling rate. The glass lens breakage during precision molding process was analyzed according to the glass property and the molding parameters. By modifying the mold design and optimization the processing parameters, ultimately achieve the desired molded lens.

  13. Potassium-argon (argon-argon), structural fabrics

    USGS Publications Warehouse

    Cosca, Michael A.

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  14. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-06-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  15. Fabrication of Superhydrophilic Wool Fabrics By Nanotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Dong

    Because of the fatty layer on its surface, wool fiber is hydrophobic, which results in poor water absorption and wicking properties that affect the comfort of wool textiles. The purpose of this research is to improve the wettability and comfort of wool textiles using nanotechnology. To reveal the knowledge gaps and ensure the originality of this study, a critical review of literature was conducted in relevant areas. To achieve the objectives of the research, a simple method for fabricating environmentally stable superhydrophilic wool fabrics was developed. Silica sols with diameters of 27 nm were prepared and then coated on the surface of pristine wool fibers to form an ultrathin layer, increasing both the surface roughness and energy. The morphology and composition of silica-sol-coated wool fabrics were characterized by a combination of SEM, TEM, FTIR, and XPS measurements. After evaluating the wettability and washing durability of the silica-sol-coated wool fabrics, it was found that the durability of these wool fabrics needed to be improved. To achieve superhydrophilic wool fabrics with good washing durability, reactive siloxane was functionalized on wool fiber surface, and an ultrathin silica nanoparticles layer was grafted on the surface by in-situ growth method. To evaluate the wettability change of silica grafted wool fabric, in addition to the contact angle, in-depth characterizations of water absorbing and drying properties of wool fabrics were measured. According to Chinese National Standard (GB/T 21655.1-2008 and GB/T 21655.2-2009), the prepared silica grafted wool fabric has excellent water absorbing and quick drying properties that can be maintained after washing 20 times in a washing machine. The strategy of siloxane bonding and in-situ growth was successfully extended to durable multifunctional wool fabrics combined with superhydrophilic, self-cleaning, and antibacterial properties. To study the relationships between functional properties and nano

  16. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  17. Centroid precision and orientation precision of planar localization microscopy.

    PubMed

    McGray, C; Copeland, C R; Stavis, S M; Geist, J

    2016-09-01

    The concept of localization precision, which is essential to localization microscopy, is formally extended from optical point sources to microscopic rigid bodies. Measurement functions are presented to calculate the planar pose and motion of microscopic rigid bodies from localization microscopy data. Physical lower bounds on the associated uncertainties - termed centroid precision and orientation precision - are derived analytically in terms of the characteristics of the optical measurement system and validated numerically by Monte Carlo simulations. The practical utility of these expressions is demonstrated experimentally by an analysis of the motion of a microelectromechanical goniometer indicated by a sparse constellation of fluorescent nanoparticles. Centroid precision and orientation precision, as developed here, are useful concepts due to the generality of the expressions and the widespread interest in localization microscopy for super-resolution imaging and particle tracking. PMID:26970565

  18. Traditions of optical fabrication

    NASA Astrophysics Data System (ADS)

    Parks, R. E.

    1982-05-01

    The history of optical fabrication is traced from Roman times to the 1900s to indicate the level of the art. This background serves as a reference for discussing the particular optical fabrication problems associated with grazing incidence optics. It is suggested that 'bend and polish' techniques may be particularly applicable to the fabrication of vacuum ultraviolet and X-ray collimator optics.

  19. Space reactor shielding fabrication

    NASA Technical Reports Server (NTRS)

    Welch, F. H.

    1972-01-01

    The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.

  20. High-precision camera distortion measurements with a ``calibration harp''

    NASA Astrophysics Data System (ADS)

    Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel

    2012-10-01

    This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.

  1. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  2. Precision pointing and control of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Bantell, M. H., Jr.

    1987-01-01

    The problem and long term objectives for the precision pointing and control of flexible spacecraft are given. The four basic objectives are stated in terms of two principle tasks. Under Task 1, robust low order controllers, improved structural modeling methods for control applications and identification methods for structural dynamics are being developed. Under Task 2, a lab test experiment for verification of control laws and system identification algorithms is being developed. For Task 1, work has focused on robust low order controller design and some initial considerations for structural modeling in control applications. For Task 2, work has focused on experiment design and fabrication, along with sensor selection and initial digital controller implementation. Conclusions are given.

  3. Fabrication of targets to support laser-driven shockwave experiments. Progress report

    SciTech Connect

    Stein, J.D.

    1980-12-01

    Methods are being examined to fabricate and characterize precise multiple-stepped foils. Physical vapor deposition of metals onto substrates using precise masking to define each step was evaluated. A process for depositing metal onto preetched substrates to replicate precise steps is being developed.

  4. Precise-Conductance Valve Insert

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Hoyt, R. F.

    1986-01-01

    Valve modification provides two operating modes fully open and small, precise leak. Copper insert with radially oriented holes allows small, controllable, precise effusion rate when valve closed or nearly unobstructed flow when valve open. Numerous applications in surface physics, vacuum physics, materials science, gas kinetics, thin films, and other areas of research requiring measured flows of gas into or out of system.

  5. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  6. PRECISION FARMING FOR NITROGEN MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approaches to precision nitrogen management vary from region to region depending on crop, soils, landscape, and climate yet all strategies essentially attempt to estimate crop nitrogen demand or plant available nitrogen. In this chapter, we provide case studies that illustrate precision nitrogen ma...

  7. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  8. Photochemical cutting of fabrics

    SciTech Connect

    Piltch, M.S.

    1994-11-22

    Apparatus is described for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged. 1 fig.

  9. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun; Lin, Xiao; Berger, Reinhard; Feng, Xinliang E-mail: feng@mpip-mainz.mpg.de; Müllen, Klaus

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02 eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  10. Measuring devices for precision manufacturing and quality control

    NASA Astrophysics Data System (ADS)

    Wilhelm, J.; Jacoby, H. D.; Preuss, H. J.

    1980-12-01

    Various miniaturized and low cost transducers were developed for different applications in metrology, precision manufacturing and fabrication control. They comprise: (1) photoelectric linear transducer with micron step pression; (2) incremental and coded transducers; (3) concave mirror x-y transducer; (4) correlation systems for linear and speed measurements; (5) high resolution angle transducers; and (6) correlation optical sensor for distance measurement. Operation principles are explained and several applications are illustrated. Some of the devices are already available.