Characteristics of short-crested waves and currents behind offshore man-made island type power plant
Ikeno, Masaaki; Kajima, Ryoichi; Matsuyama, Masafumi; Sakakiyama, Tsutomu
1995-12-31
This paper describes the diffracted waves with breaking and the nearshore currents caused by short-crested waves, behind a man-made island, on which nuclear power plants are constructed. Firstly, hydraulic model tests with a multi-directional wave maker were performed. Effects of the irregularity and directional spreading of waves, and the effects of cooling water intake flow on diffracted waves and nearshore currents behind a man-made island, were investigated experimentally. Secondly, a numerical model was developed to simulate deformation of multi-directional irregular waves and nearshore currents. The validity of the numerical model was verified through comparison with the experimental results.
NASA Astrophysics Data System (ADS)
Fang, Ming-chung; Lee, Zi-yi
2013-08-01
This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional-Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.
Lowest order QED radiative corrections to longitudinally polarized Moeller scattering
Ilyichev, A.; Zykunov, V.
2005-08-01
The total lowest-order electromagnetic radiative corrections to the observables in Moeller scattering of longitudinally polarized electrons have been calculated. The final expressions obtained by the covariant method for the infrared divergency cancellation are free from any unphysical cut-off parameters. Since the calculation is carried out within the ultrarelativistic approximation our result has a compact form that is convenient for computing. Basing on these expressions the FORTRAN code MERA has been developed. Using this code the detailed numerical analysis performed under SLAC (E-158) and JLab kinematic conditions has shown that the radiative corrections are significant and rather sensitive to the value of the missing mass (inelasticity) cuts.
Dynamics of momentum entanglement in lowest-order QED
Lamata, L.; Leon, J.; Solano, E.
2006-01-15
We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.
Scintillation advantages of lowest order Bessel-Gaussian beams
NASA Astrophysics Data System (ADS)
Eyyuboğlu, H. T.; Baykal, Y.; Sermutlu, E.; Cai, Y.
2008-08-01
For a weak turbulence propagation environment, the scintillation index of the lowest order Bessel-Gaussian beams is formulated. Its triple and single integral versions are presented. Numerical evaluations show that at large source sizes and large width parameters, when compared at the same source size, Bessel-Gaussian beams tend to exhibit lower scintillations than the Gaussian beam scintillations. This advantage is lost however for excessively large width parameters and beyond certain propagation lengths. Large width parameters also cause rises and falls in the scintillation index of off-axis positions toward the edges of the received beam. Comparisons against the fundamental Gaussian beam are made on equal source size and equal power basis.
Bordbar, G. H.; Bigdeli, M.
2008-01-15
In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.
Lowest order constrained variational calculation of polarized neutron matter at finite temperature
Bordbar, G. H.; Bigdeli, M.
2008-11-15
Some properties of polarized neutron matter at finite temperature have been studied using the lowest order constrained variational (LOCV) method with the Argonne V18 (AV18) potential. Our results indicate that a spontaneous transition to the ferromagnetic phase does not occur. Effective mass, free energy, magnetic susceptibility, entropy, and the equation of state of polarized neutron matter at finite temperature are also calculated. A comparison is also made between our results and those of other many-body techniques.
Lowest order QED radiative corrections to longitudinally polarized Møller scattering
NASA Astrophysics Data System (ADS)
Ilyichev, A.; Zykunov, V.
2005-08-01
The total lowest-order electromagnetic radiative corrections to the observables in Møller scattering of longitudinally polarized electrons have been calculated. The final expressions obtained by the covariant method for the infrared divergency cancellation are free from any unphysical cut-off parameters. Since the calculation is carried out within the ultrarelativistic approximation our result has a compact form that is convenient for computing. Basing on these expressions the FORTRAN code MERA has been developed. Using this code the detailed numerical analysis performed under SLAC (E-158) and JLab kinematic conditions has shown that the radiative corrections are significant and rather sensitive to the value of the missing mass (inelasticity) cuts.
carlomat, version 2 of the program for automatic computation of lowest order cross sections
NASA Astrophysics Data System (ADS)
Kołodziej, Karol
2014-01-01
Version 2 of carlomat, a program for automatic computation of the lowest order cross sections of multiparticle reactions, is described. The substantial modifications with respect to version 1 of the program include: generation of a single phase space parameterization for the Feynman diagrams of the same topology, an interface to parton density functions, improvement of the color matrix computation, the Cabibbo-Kobayashi-Maskawa mixing in the quark sector, the effective models including scalar electrodynamics, the Wtb interaction with operators of dimension up to 5 and a general top-Higgs coupling. Moreover, some minor modifications have been made and several bugs in the program have been corrected.
NASA Astrophysics Data System (ADS)
Zhao, Jinfeng; Bonello, Bernard; Boyko, Olga
2016-05-01
We have investigated the focusing of the lowest-order antisymmetric Lamb mode (A0) behind a positive gradient-index (GRIN) acoustic metalens consisting of air holes drilled in a silicon plate with silicon pillars erected on one face of the lens. We have analyzed the focusing in the near field as the result of the coupling between the flexural resonant mode of the pillars and the vibration mode of the air/silicon phononic crystal. We highlight the role played by the polarization coherence between the resonant mode and the vibration of the plate. We demonstrate both numerically and experimentally the focusing behind the lens over a spot less than half a wavelength, paving a way for performance of acoustic lenses beyond the diffraction limit. Our findings can be easily extended to other types of elastic wave.
carlomat: A program for automatic computation of lowest order cross sections
NASA Astrophysics Data System (ADS)
Kołodziej, Karol
2009-09-01
The current version of carlomat, a program for automatic computation of the lowest order cross sections of multiparticle reactions, is described. The program can be used as the Monte Carlo generator of unweighted events as well. Program summaryProgram title:carlomat Catalogue identifier: AEDQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 101 613 No. of bytes in distributed program, including test data, etc.: 1 092 251 Distribution format: tar.gz Programming language: Fortran 90/95 Computer: all Operating system: Linux Classification: 4.4, 11.2 Nature of problem: Description of two particle scattering reactions with possibly up to 10 particles in the final state with a complete set of the Feynman diagrams in the lowest order of the Standard Model. Solution method: The matrix element for a user specified process and phase space parametrizations, which are necessary for the multichannel Monte Carlo integration of the lowest order cross sections and event generation, are generated automatically. Both the electroweak and quantum chromodynamics lowest order contributions are taken into account. Particle masses are not neglected in the program. Matrix elements are calculated numerically with the helicity amplitude method. Constant widths of unstable particles are implemented by modifying mass parameters in corresponding propagators. Restrictions: The number of external particles is limited to 12. Only the Standard Model is implemented at the moment in the program. No higher order effects are taken into account, except for assuming the fine structure constant and the strong coupling at appropriate scale and partial summation of the one particle irreducible loop corrections by introducing fixed widths of
Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria
NASA Astrophysics Data System (ADS)
Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.
2016-08-01
We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold–Beltrami–Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.
Bigdeli, M.; Bordbar, G. H.; Poostforush, A.
2010-09-15
The lowest order constrained variational technique has been used to investigate some of the thermodynamic properties of spin-polarized hot asymmetric nuclear matter, such as the free energy, symmetry energy, susceptibility, and equation of state. We have shown that the symmetry energy of the nuclear matter is substantially sensitive to the value of spin polarization. Our calculations show that the equation of state of the polarized hot asymmetric nuclear matter is stiffer for higher values of the polarization as well as the isospin asymmetry parameter. Our results for the free energy and susceptibility show that spontaneous ferromagnetic phase transition cannot occur for hot asymmetric matter.
Frolov, Alexei M.; Wardlaw, David M.
2014-09-14
Mass-dependent and field shift components of the isotopic shift are determined to high accuracy for the ground 1{sup 1}S−states of some light two-electron Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} ions. To determine the field components of these isotopic shifts we apply the Racah-Rosental-Breit formula. We also determine the lowest order QED corrections to the isotopic shifts for each of these two-electron ions.
Bordbar, G. H.; Rezaei, Z.; Montakhab, Afshin
2011-04-15
In this article, the lowest order constrained variational method is used to investigate the magnetic properties of spin-polarized neutron matter in the presence of strong magnetic field at zero temperature employing the AV{sub 18} potential. Our results indicate that a ferromagnetic phase transition is induced by a strong magnetic field with strength greater than 10{sup 18} G, leading to a partial spin polarization of the neutron matter. It is also shown that the equation of state of neutron matter in the presence of a magnetic field is stiffer than in the absence of a magnetic field.
NASA Astrophysics Data System (ADS)
Kohno, M.
2015-12-01
The nuclear saturation mechanism is discussed in terms of two-nucleon and three-nucleon interactions in chiral effective field theory (Ch-EFT), using the framework of lowest-order Brueckner theory. After the Coester band, which is observed in calculating saturation points with various nucleon-nucleon (NN) forces, is revisited using modern NN potentials and their low-momentum equivalent interactions, a detailed account of the saturation curve of the Ch-EFT interaction is presented. The three-nucleon force (3NF) is treated by reducing it to an effective two-body interaction by folding the third nucleon degrees of freedom. Uncertainties due to the choice of the 3NF low-energy constants c_D and c_E are discussed. The reduction of the cutoff-energy dependence of the NN potential is explained by demonstrating the effect of the 3NF in the ^1S_0 and ^3S_1 states.
Marine pipeline dynamic response to waves from directional wave spectra
Lambrakos, K.F.
1982-07-01
A methodology has been developed to calculate the dynamic probabilistic movement and resulting stresses for marine pipelines subjected to storm waves. A directional wave spectrum is used with a Fourier series expansion to simulate short-crested waves and calculate their loads on the pipeline. The pipeline displacements resulting from these loads are solutions to the time-dependent beam-column equation which also includes the soil resistance as external loading. The statistics of the displacements for individual waves are combined with the wave statistics for a given period of time, e.g. pipeline lifetime, to generate probabilistic estimates for net pipeline movement. On the basis of displacements for specified probability levels the pipeline configuration is obtained from which pipeline stresses can be estimated using structural considerations, e.g. pipeline stiffness, end restraints, etc.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Moulton, J.D.; Ascher, U.M.; Morel, J.E.
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
NASA Astrophysics Data System (ADS)
Qi, Yusheng; Yue, Dick
2015-11-01
We use direct nonlinear phase-resolved simulations based on a High-Order Spectral (HOS) method (Dommermuth & Yue 1987) to understand and quantify wave-breaking dissipation in the evolution of general irregular short-crested wave-fields. We achieve this by incorporating a robust phenomenological-based wave breaking model in HOS simulations to account for energy dissipation. This model can automatically simulate the onset of wave breaking, and the simulated wave-breaking dissipation strength differentiates corresponding to different wave breaking type (such as spilling or plunging breaking waves). The efficacy of this model is confirmed by direct comparisons against measurements for the energy loss in 2D and 3D breaking events. By comparing simulated wave-fields with and without the dissipation model in HOS, we obtain the dissipation field, which provides the times, locations and intensity of wave breaking events. From the dissipation field we further calculate the distribution of total length of breaking wave front per unit surface area per unit increment of breaking velocity (Phillips 1985), and obtain qualitative agreement with Phillips theoretical power-law.
A consistent collinear triad approximation for operational wave models
NASA Astrophysics Data System (ADS)
Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.
2016-08-01
In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.
Transverse mode imaging of guided matter waves
Dall, R. G.; Hodgman, S. S.; Johnsson, M. T.; Baldwin, K. G. H.; Truscott, A. G.
2010-01-15
Ultracold atoms whose de Broglie wavelength is of the same order as an extended confining potential can experience waveguiding along the potential. When the transverse kinetic energy of the atoms is sufficiently low, they can be guided in the lowest order mode of the confining potential by analogy with light guided by a single mode optical fiber. We have obtained the first images of the transverse mode structure of guided matter waves in a confining potential with up to 65% of atoms in the lowest order mode. The coherence of the guided atomic de Broglie waves is demonstrated by the diffraction pattern produced when incident upon a two dimensional periodic structure. Such coherent waveguides will be important atom optic components in devices with applications such as atom holography and atom interferometry.
Bergshoeff, E.A. ); Kallosh, R.; Ortin, T. )
1993-06-15
We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and the axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.
Simplified theory of large-amplitude wave propagation
NASA Technical Reports Server (NTRS)
Kim, H.
1976-01-01
An orbit perturbation procedure was applied to the description of monochromatic, large-amplitude, electrostatic plasma wave propagation. In the lowest order approximation, untrapped electrons were assumed to follow constant-velocity orbits and trapped electrons were assumed to execute simple harmonic motion. The deviations of these orbits from the actual orbits were regarded as perturbations. The nonlinear damping rate and frequency shift were then obtained in terms of simple functions. The results are in good agreement with previous less approximate analyses.
Space-time extreme wind waves: Observation and analysis of shapes and heights
NASA Astrophysics Data System (ADS)
Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Filippo; Carniel, Sandro; Sclavo, Mauro
2016-04-01
We analyze here the temporal shape and the maximal height of extreme wind waves, which were obtained from an observational space-time sample of sea surface elevations during a mature and short-crested sea state (Benetazzo et al., 2015). Space-time wave data are processed to detect the largest waves of specific 3-D wave groups close to the apex of their development. First, maximal elevations of the groups are discussed within the framework of space-time (ST) extreme statistical models of random wave fields (Adler and Taylor, 2007; Benetazzo et al., 2015; Fedele, 2012). Results of ST models are also compared with observations and predictions of maxima based on time series of sea surface elevations. Second, the time profile of the extreme waves around the maximal crest height is analyzed and compared with the expectations of the linear (Boccotti, 1983) and second-order nonlinear extension (Arena, 2005) of the Quasi-Determinism (QD) theory. Main purpose is to verify to what extent, using the QD model results, one can estimate the shape and the crest-to-trough height of large waves in a random ST wave field. From the results presented, it emerges that, apart from the displacements around the crest apex, sea surface elevations of very high waves are greatly dispersed around a mean profile. Yet the QD model furnishes, on average, a fair prediction of the wave height of the maximal waves, especially when nonlinearities are taken into account. Moreover, the combination of ST and QD model predictions allow establishing, for a given sea condition, a framework for the representation of waves with very large crest heights. The results have also the potential to be implemented in a phase-averaged numerical wave model (see abstract EGU2016-14008 and Barbariol et al., 2015). - Adler, R.J., Taylor, J.E., 2007. Random fields and geometry. Springer, New York (USA), 448 pp. - Arena, F., 2005. On non-linear very large sea wave groups. Ocean Eng. 32, 1311-1331. - Barbariol, F., Alves, J
Plasmon wave function of graphene nanoribbons
NASA Astrophysics Data System (ADS)
Silveiro, I.; Plaza Ortega, J. M.; García de Abajo, F. J.
2015-08-01
We find the low-frequency optical response of highly doped individual and arrayed graphene nanoribbons to be accurately described in terms of plasmon wave functions (PWFs). More precisely, we focus on the lowest-order transverse dipolar mode, for which we define the wave function as the induced charge density associated with the plasmon. We show that a single universal wave function is capable of describing the normal-incidence interaction of paired, co-planar, and stacked arrays of ribbons down to small inter-ribbon distances. Our work provides both intuitive insight into graphene plasmon interactions and a practical way of accurately describing complex graphene geometries based on the PWFs of the individual components.
Boundary conditions on internal three-body wave functions
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Variational formulation of covariant eikonal theory for vector waves
Kaufman, A.N.; Ye, H.; Hui, Y.
1986-10-01
The eikonal theory of wave propagation is developed by means of a Lorentz-covariant variational principle, involving functions defined on the natural eight-dimensional phase space of rays. The wave field is a four-vector representing the electromagnetic potential, while the medium is represented by an anisotropic, dispersive nonuniform dielectric tensor D/sup ..mu nu../(k,x). The eikonal expansion yields, to lowest order, the Hamiltonian ray equations, which define the Lagrangian manifold k(x), and the wave-action conservation law, which determines the wave-amplitude transport along the rays. The first-order contribution to the variational principle yields a concise expression for the transport of the polarization phase. The symmetry between k-space and x-space allows for a simple implementation of the Maslov transform, which avoids the difficulties of caustic singularities.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Mediterranean space-time extremes of wind wave sea states
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro; Marcello Falcieri, Francesco; Bonaldo, Davide; Bergamasco, Andrea; Benetazzo, Alvise
2014-05-01
Traditionally, wind wave sea states during storms have been observed, modeled, and predicted mostly in the time domain, i.e. at a fixed point. In fact, the standard statistical models used in ocean waves analysis rely on the implicit assumption of long-crested waves. Nevertheless, waves in storms are mainly short-crested. Hence, spatio-temporal features of the wave field are crucial to accurately model the sea state characteristics and to provide reliable predictions, particurly of wave extremes. Indeed, the experimental evidence provided by novel instrumentations, e.g. WASS (Wave Acquisition Stereo System), showed that the maximum sea surface elevation gathered in time over an area, i.e. the space-time extreme, is larger than that one measured in time at a point, i.e. the time extreme. Recently, stochastic models used to estimate maxima of multidimensional Gaussian random fields have been applied to ocean waves statistics. These models are based either on Piterbarg's theorem or Adler and Taylor's Euler Characteristics approach. Besides a probability of exceedance of a certain threshold, they can provide the expected space-time extreme of a sea state, as long as space-time wave features (i.e. some parameters of the directional variance density spectrum) are known. These models have been recently validated against WASS observation from fixed and moving platforms. In this context, our focus was modeling and predicting extremes of wind waves during storms. Thus, to intensively gather space-time extremes data over the Mediterranean region, we used directional spectra provided by the numerical wave model SWAN (Simulating WAves Nearshore). Therefore, we set up a 6x6 km2 resolution grid entailing most of the Mediterranean Sea and we forced it with COSMO-I7 high resolution (7x7 km2) hourly wind fields, within 2007-2013 period. To obtain the space-time features, i.e. the spectral parameters, at each grid node and over the 6 simulated years, we developed a modified version
Gravitational waves in bimetric MOND
NASA Astrophysics Data System (ADS)
Milgrom, Mordehai
2014-01-01
I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian dynamics (BIMOND)—the lowest order in the small departures hμν=gμν-ημν, h stretchy="false">^μν=g stretchy="false">^μν-ημν from double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of BIMOND. The WFL splits into two sectors for two linear combinations, hμν±, of hμν and h stretchy="false">^μν. The hμν+ sector is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum gravitational waves. The hμν- sector is fully nonlinear even for the weakest hμν-, and inherits none of the coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave packets of hμν and h stretchy="false">^μν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.
Plasma waves in parametric interactions
NASA Astrophysics Data System (ADS)
Yampolsky, Nikolai Andreevich
The nonlinear laser-plasma interaction is widely discussed in the modern plasma literature with applications to inertial confinement fusion, generation of fast electrons, and amplification of high power radiation. Among nonlinear wave phenomena in plasma, the parametric wave coupling often plays the dominant role in laser-plasma interaction at moderate laser intensities since it is the lowest order nonlinear effect. The plasma wave can mediate the parametric laser coupling with high efficiency. We study the interplay of the parametric laser-plasma interaction and other physical effects which may affect this interaction. We study this interplay with an emphasis on the plasma-based backward Raman amplifier (BRA) based on the three-wave coupling. Three major types of physical effects in the parametric wave coupling are studied. In the first part of the thesis, we find the longitudinal profiles of the interacting waves in cases of interest for pulse compression. We find the solution for the output pulse in backward Raman amplification seeded by a laser pulse of finite duration. We also propose a new scheme for high-power amplification for pulses in the terahertz frequency range. For this scheme, based on the four-wave mixing in a capillary filled with plasma, we find the profile of the output pulse. The second part of this thesis is devoted to transverse effects, which may reduce the focusability of the output pulse in backward Raman amplification. We find that the transverse modulations of the pump can be averaged and do not reduce the amplified pulse focusability if the longitudinal length of these modulations is much smaller than the amplification length. In the third part, we study the kinetic effects. We propose a simplified fluid model for the nonlinear Landau damping of a parametrically driven plasma wave and study the effect of nonlinear Landau damping in backward Raman amplification. This simplified model can be useful not only for understanding complex
Electromagnetic plasma wave propagation along a magnetic field. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Olson, C. L.
1970-01-01
The linearized response of a Vlasov plasma to the steady-state excitation of transverse plasma waves along an external magnetic field is examined. Assuming a delta-function excitation mechanism, and performing a detailed Vlasov-Maxwell equation analysis using Fourier-Laplace transforms, the plasma response is found to consist of three terms: a branch-cut term, a free-streaming term, and a dielectric-pole term. Also considered is the phenomenon of plasma wave echoes. The case of longitudinal electrostatic waves is extended to the case of transverse plasma waves that propagate along an external magnetic field. It is shown that a transverse echo results in lowest order only when one excitation is transverse and the other is longitudinal.
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
Hagstrom, George I.; Hameiri, Eliezer
2014-02-15
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.
Plasma equilibrium in a semiclassical plasma due to non-resonant wave particle interactions
Bose, Anirban; Janaki, M. S.
2013-03-15
A nonresonant perturbative approach has been utilized to probe the modification of the equilibrium plasma distribution function due to plasma interaction with externally launched high-frequency large-amplitude RF waves in the presence of quantum effects. The quantum distribution function from the complete Wigner equation has been obtained for a high-frequency wave with constant amplitude. For waves with weak spatial or temporal modulation, the equilibrium distribution function has been obtained by solving the Wigner equation as an initial or boundary-value problem and retaining only lowest-order quantum effects. In the dipole approximation, a higher order diffusion has been identified in addition to quantum modified ponderomotive and quasilinear diffusion effects. Additional terms of the Wigner equation give the impression of higher order diffusion effects in the system.
Tilted Rossby-wave critical layers in stratified atmospheres
NASA Astrophysics Data System (ADS)
Parham, Frederick Melvin, Jr.
The quasigeostrophic potential vorticity equations linearized about a zonal mean flow, which describe Rossby waves, become singular at the critical level where the mean flow equals the wave's phase velocity. The Wentzel-Kramer-Brillouin solution describes a superposition of two eigenmodes, each of which has meridional structure corresponding to that of Dickenson's (1968) two-dimensional solutions. Rossby waves in a continuously stratified atmosphere are studied whose basic state zonal winds vary over large meridional scales. Again, WKB is used. The linearized potential vorticity equation is separable to lowest order. The WKB analysis applies to the outer solution. The inner solution, which provides a condition on the jump in the derivative of the outer solution across the critical line, depends on whether the critical line is desingularized by damping or by weak nonlinearity. Using the results on the matching across the critical line, the vertical structure eigenfunctions and eigenvalues are calculated for low critical layer heights with the basic state as given in the Charney model. Asymptotic values of the eigenvalues are also calculated as the critical height approaches zero or infinity. Finally, the eigenfunctions and eigenvalues are used to calculate the structure of waves on a basic state with a region of easterly winds surrounded by westerlies. The assumption of constant N makes it possible to compute the wave-forced change in the mean flow by means of modified Bessel functions.
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
Generation of Tollmien-Schlichting waves by free-stream disturbances at low Mach numbers
NASA Technical Reports Server (NTRS)
Goldstein, M. E.
1983-01-01
The method of matched asymptotic expansions is used to study the generation of Tollmien-Schlichting waves by free stream disturbances incident on a flat plate boundary layer. Near the leading edge, the motion is governed by the unsteady boundary layer equation, while farther downstream it is governed (to lowest order) by the Orr-Sommerfeld equation with slowly varying coefficients. It is shown that there is an overlap domain where the Tollmien-Schlichting wave solutions to the Orr-Sommerfeld equation and an appropriate asymptotic solution of the unsteady boundary layer equation match, in the matched asymptotic expansion sense. The analysis leads to a set of scaling laws for the asymptotic structure of the unsteady boundary layer.
Edge states for the Kalmeyer-Laughlin wave function
NASA Astrophysics Data System (ADS)
Herwerth, Benedikt; Sierra, Germán; Tu, Hong-Hao; Cirac, J. Ignacio; Nielsen, Anne E. B.
2015-12-01
We study lattice wave functions obtained from the SU(2)1 Wess-Zumino-Witten conformal field theory. Following Moore and Read's construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function with each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.
ERIC Educational Resources Information Center
Reed, Chris
2000-01-01
Third Wave is a Christian charity based in Derby (England) that offers training in vocational skills, preindustrial crafts, horticultural and agricultural skills, environmental education, and woodland survival skills to disadvantaged people at city and farm locations. Third Wave employs a holistic approach to personal development in a community…
Utz, Marcel; Begley, Matthew R; Haj-Hariri, Hossein
2011-11-21
The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s(-1) result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667
NASA Technical Reports Server (NTRS)
2007-01-01
With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.
Beklaryan, Leva A
2011-02-11
A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.
NASA Technical Reports Server (NTRS)
Thompson, B. J.
1999-01-01
"Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.
NASA Technical Reports Server (NTRS)
Sharman, R. D.; Wurtele, M. G.
1983-01-01
Dynamics analogous to those of surface ship waves on water of finite depth are noted for the three-dimensional trapped lee wave modes produced by an isolated obstacle in a stratified fluid. This vertical trapping of wave energy is modeled by uniform upstream flow and stratification, bounded above by a rigid lid, and by a semiinfinite fluid of uniform stability whose wind velocity increases exponentially with height, representing the atmosphere. While formal asymptotic solutions are produced, limited quantitative usefulness is obtained through them because of the limitations of the approximations and the infinity of modes in the solution. Time-dependent numerical models are accordingly developed for both surface ship waves and internal and atmospheric ship waves, yielding a variety of results.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2016-07-01
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.
An x band backward-wave oscillator experiment
NASA Astrophysics Data System (ADS)
Camacho, J. F.; Rosenbury, E. T.; Poole, B. R.
A backward-wave oscillator (BWO) experiment is being conducted using a slow-wave structure which consists of a non-sinusoidal corrugated-wall waveguide with period z sub 0 = 1.67 cm, r sub min = 1.17 cm, r sub max = 1.97 cm, and length L = 15.03 cm (nine periods). An annular electron beam is injected with the following parameters: Phi sub cathode = 1 MV, 1 kA less than or = I sub beam less than or = 7 kA in 1 kA increments, r sub beam = 0.9 cm, and t sub pulse approx. 60 ns. The guiding axial magnetic field is varied from 0.6 T to 3.0 T in 0.4 T increments. The device is designed to operate at 8.0 GHz less than f less than 8.5 GHz in the lowest-order TM mode of the coupled beam-structure system. The experimental design and results are presented. In addition, the theoretical and modeling work is discussed.
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Dias, A. G.; Ferrari, A. F.; Nascimento, J. R.; Petrov, A. Yu.
2016-05-01
We study the perturbative generation of higher-derivative Lorentz violating operators as quantum corrections to the photon effective action, originated from a specific Lorentz violation background, which has already been studied in connection with the physics of light pseudoscalars. We calculate the complete one loop effective action of the photon field through the proper-time method, using the zeta function regularization. This result can be used as a starting point to study possible effects of the Lorentz violating background we are considering in photon physics. As an example, we focus on the lowest order corrections and investigate whether they could influence the propagation of electromagnetic waves through the vacuum. We show, however, that no effects of the kind of Lorentz violation we consider can be detected in such a context, so that other aspects of photon physics have to be studied.
Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.
Alzahrani, Mohammed A; Gauthier, Robert C
2015-10-01
Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques. PMID:26480087
NASA Astrophysics Data System (ADS)
Sardar, Sankirtan; Bandyopadhyay, Anup; Das, K. P.
2016-07-01
A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KP and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.
NASA Astrophysics Data System (ADS)
Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.
2009-03-01
Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.
Ignatovich, V. K.
2009-01-15
It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1985-01-01
Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.
Drift-Wave Instabilities and Transport in Non - Tokamak Geometry
NASA Astrophysics Data System (ADS)
Hua, Daniel Duc
Motivated by experimental scaling laws that suggest an improvement in the confinement time of fusion plasmas in tokamaks with elongated cross section, we search theoretically for favorable dependence on elongation for drift-wave instabilities, which may be responsible for anomalous transport in tokamaks. First, using thermodynamic methods, we derive upper bounds on thermal diffusivities for drift-wave instabilities in tokamaks but find no elongation dependence to lowest order. Also, compared with experimentally inferred ion thermal diffusivities from the DIIID tokamak, the thermodynamic bounds are as much as 100 times bigger in the plasma core. Second, utilizing a simulation code to calculate linear growth rates, we obtain mixing-length estimates of ion thermal diffusivities for a specific drift wave, the ion-temperature-gradient (ITG) mode, which becomes unstable only if the temperature gradient exceeds a finite threshold value (whereas the thermodynamic constraints allow instability for any value). We find that the simulation growth rates and the diffusivities estimated from them do decrease for increasing elongation, due to finite Larmor radius effects (which do not explicitly appear in the thermodynamic constraints). Compared with the experimentally inferred diffusivities, the simulation diffusivities are similar near the edge but are 10 times bigger in the core. However, a small adjustment in the temperature profile, within experimental and theoretical uncertainties, would produce good agreement everywhere. Therefore, we suggest that for the DIIID experiments studied, the plasma is actually very close to the ITG instability threshold in the core and farther away from threshold near the edge, but not far enough to induce the full thermodynamic level of diffusivities. This conjecture is supported by model transport calculations that reproduce the experimental diffusivity profile fairly well.
Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.
Turbulence, Transport, and Waves in Ohmic Dead Zones
NASA Astrophysics Data System (ADS)
Gole, Daniel; Simon, Jacob B.; Lubow, Stephen H.; Armitage, Philip J.
2016-07-01
We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This implies that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin & Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi & Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.
Tunable ground states in helical p-wave Josephson junctions
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao
2016-07-01
We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg–Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.
Zhao, J.; Boyko, O.; Bonello, B.
2014-12-15
This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.
NASA Technical Reports Server (NTRS)
2000-01-01
The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels
MHD simple waves and the divergence wave
Webb, G. M.; Pogorelov, N. V.; Zank, G. P.
2010-03-25
In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.
ERIC Educational Resources Information Center
Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.
2007-01-01
Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1984-01-01
Vertically polarized shear wave velocity (VSV), determined primarily from fundamental mode Rayleigh waves, and the difference between the velocity of horizontally polarized shear waves (VSH) and VSV, therefore a measure of anisotropy, are shown.
Wave propagation on a random lattice
Sahlmann, Hanno
2010-09-15
Motivated by phenomenological questions in quantum gravity, we consider the propagation of a scalar field on a random lattice. We describe a procedure to calculate the dispersion relation for the field by taking a limit of a periodic lattice. We use this to calculate the lowest order coefficients of the dispersion relation for a specific one-dimensional model.
Geometrical versus wave optics under gravitational waves
NASA Astrophysics Data System (ADS)
Angélil, Raymond; Saha, Prasenjit
2015-06-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell's equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics—rather than solving Maxwell's equations directly for the fields, as in most previous approaches—we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
NASA Astrophysics Data System (ADS)
Bokil, Vrushali A.; Glowinski, Roland
2005-05-01
We propose a novel fictitious domain method based on a distributed Lagrange multiplier technique for the solution of the time-dependent problem of scattering by an obstacle. We study discretizations that include a fully conforming approach as well as mixed finite element formulations utilizing the lowest order Nédélec edge elements (in 2D) on rectangular grids. We also present a symmetrized operator splitting scheme for the scattering problem, which decouples the operator that propagates the wave from the operator that enforces the Dirichlet condition on the boundary of an obstacle. A new perfectly matched layer (PML) model is developed to model the unbounded problem of interest. This model is based on a formulation of the wave equation as a system of first-order equations and uses a change of variables approach that has been developed to construct PML's for Maxwell's equations. We present an analysis of our fictitious domain approach for a one-dimensional wave problem. Based on calculations of reflection coefficients, we demonstrate the advantages of our fictitious domain approach over the staircase approximation of the finite difference method. We also demonstrate some important properties of the distributed multiplier approach that are not shared by a boundary multiplier fictitious domain approach for the same problem. Numerical results for two-dimensional wave problems that validate the effectiveness of the different methods are presented.
Mixing of blackbodies: entropy production and dissipation of sound waves in the early Universe
NASA Astrophysics Data System (ADS)
Khatri, R.; Sunyaev, R. A.; Chluba, J.
2012-07-01
Mixing of blackbodies with different temperatures creates a spectral distortion which, at lowest order, is a y-type distortion, indistinguishable from the thermal y-type distortion produced by the scattering of cosmic microwave background (CMB) photons by hot electrons residing in clusters of galaxies. This process occurs in the radiation-pressure dominated early Universe, when the primordial perturbations excite standing sound waves on entering the sound horizon. Photons from different phases of the sound waves, having different temperatures, diffuse through the electron-baryon plasma and mix together. This diffusion, with the length defined by Thomson scattering, dissipates sound waves and creates spectral distortions in the CMB. Of the total dissipated energy, 2/3 raises the average temperature of the blackbody part of spectrum, while 1/3 creates a distortion of y-type. It is well known that at redshifts 105 ≲ z ≲ 2 × 106, comptonization rapidly transforms y-distortions into a Bose-Einstein spectrum. The chemical potential of the Bose-Einstein spectrum is again 1/3 the value we would get if all the dissipated energy was injected into a blackbody spectrum but no extra photons were added. We study the mixing of blackbody spectra, emphasizing the thermodynamic point of view, and identifying spectral distortions with entropy creation. This allows us to obtain the main results connected with the dissipation of sound waves in the early Universe in a very simple way. We also show that mixing of blackbodies in general, and dissipation of sound waves in particular, leads to creation of entropy.
ERIC Educational Resources Information Center
Temiz, Burak Kagan; Yavuz, Ahmet
2015-01-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…
NASA Astrophysics Data System (ADS)
Yan, Zhen-Ya
2010-11-01
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black—Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
Gravity wave transmission diagram
NASA Astrophysics Data System (ADS)
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Shear wave logging using guided waves
Winbow, G.A.; Chen, S.T.; Rice, J.A.
1988-09-27
This patent describes a method for acoustically logging an earth formation surrounding a borehole which contains a liquid where the approximate shear wave velocity v of the formation is known. The method consists of: vibrating a dipole source in the liquid to generate in the liquid a guided wave the frequencies of which include a critical frequency f given by zeta = ..nu..12a where a is the borehole radius, so that the fastest component of the guided wave has velocity substantially equal to ..nu..; and detecting the arrival of the fastest component of the guided wave at least one location in the liquid spaced longitudinally along the borehole from the dipole source.
NASA Technical Reports Server (NTRS)
Thomas, J. H.
1983-01-01
A theoretical treatment of magneto-atmospheric waves is presented and applied to the modelling of waves in the solar atmosphere. The waves arise in compressible, stratified, electrically conductive atmospheres within gravitational fields when permeated by a magnetic field. Compression, buoyancy, and distortion of the magnetic field all contribute to the existence of the waves. Basic linearized equations are introduced to describe the waves and attention is given to plane-stratified atmospheres and their stability. A dispersion relation is defined for wave propagation in a plane-stratified atmosphere when there are no plane-wave solutions. Solutions are found for the full wave equation in the presence of either a vertical or a horizontal magnetic field. The theory is applied to describing waves in sunspots, in penumbrae, and flare-induced coronal disturbances.
NASA Astrophysics Data System (ADS)
Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.
2016-02-01
This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.
Nihei, K.T.; Yi, W.; Myer, L.R.; Cook, N.G.; Schoenberg, M.
1999-03-01
The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A{sub 0} mode) and demonstrates the ease with which a fracture channel wave can be generated and detected. {copyright} 1999 American Geophysical Union
Dust-Acoustic Waves: Visible Sound Waves
Merlino, Robert L.
2009-11-10
A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.
NASA Technical Reports Server (NTRS)
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...
Menikoff, Ralph
2015-12-14
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
Oceanic wave measurement system
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Miles, R. T. (Inventor)
1980-01-01
An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.
NASA Astrophysics Data System (ADS)
Abramson, Guillermo
2003-03-01
A spatially extended model of the hantavirus infection in deer mice is analyzed. Traveling waves solutions of the infected and susceptible populations are studied in different regimes, controlled by an environmental parameter. The wave of infection is shown to lag behind the wave of susceptible population, and the delay between the two is analyzed numerically and through a piecewise linearization.
Wave turbulence in annular wave tank
NASA Astrophysics Data System (ADS)
Onorato, Miguel; Stramignoni, Ettore
2014-05-01
We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.
Detectors of gravitational waves
NASA Astrophysics Data System (ADS)
Pizzella, G.
Gravitational waves Motion of test bodies in a g.w. field Energy carried by gravitational waves Gravitational-wave sources Spinning star Double-star systems Fall into a Schwarzschild black hole Radiation from gravitational collapse Gravitational-wave detectors The nonresonant detectors The resonant detectors Electromechnical transducers Piezoelectric ceramic The capacitor The inductor Data analysis The Brownian noise The back-action The wide-band noise, data analysis and optimization The resonant transducer The Wiener-Kolmogoroff filter The cross-section and the effective temperature The antenna bandwidth The gravitational-wave experiments in the world The laser interferometers The resonant detectors
NASA Astrophysics Data System (ADS)
Okihiro, Michele; Guza, R. T.; Seymour, R. J.
1992-07-01
Model predictions of bound (i.e., nonlinearly forced by and coupled to wave groups) infragravity wave energy are compared with about 2 years of observations in 8- to 13-m depths at Imperial Beach, California, and Barbers Point, Hawaii. Frequency-directional spectra of free waves at sea and swell frequencies, estimated with a small array of four pressure sensors, are used to predict the bound wave spectra below 0.04 Hz. The predicted total bound wave energy is always less than the observed infragravity energy, and the underprediction increases with increasing water depth and especially with decreasing swell energy. At most half, and usually much less, of the observed infragravity energy is bound. Bound wave spectra are also predicted with data from a single wave gage in 183-m depth at Point Conception, California, and the assumption of unidirectional sea and swell. Even with energetic swell, less than 10% of the total observed infragravity energy in 183-m depth is bound. Free waves, either leaky or edge waves, are more energetic than bound waves at both the shallow and deep sites. The low level of infragravity energy observed in 183-m depth compared with 8- to 13-m depths, with similarly moderate sea and swell energy, suggests that leaky (and very high-mode edge) waves contribute less than 10% of the infragravity energy in 8-13 m. Most of the free infragravity energy in shallow water is refractively trapped and does not reach deep water.
NASA Astrophysics Data System (ADS)
Sych, Robert
2016-02-01
The study of magnetohydrodynamic (MHD) waves and oscillations in the solar atmosphere is one of the fastest developing fields in solar physics, and lies in the mainstream of using solar instrumentation data. This chapter first addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, and height localization with the mechanism of cutoff frequency that forms the observed emission variability. Then, it presents a review dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, and investigates the oscillation frequency transformation depending on the wave energy. The chapter also addresses the initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves.
NASA Technical Reports Server (NTRS)
Pirraglia, J. A.
1975-01-01
Mariner 9 television pictures of Mars extensive mountain lee wave phenomenon in the northern mid-latitudes during winter were evaluated. The characteristic wave length of the lee waves is readily observable, and in a few cases the boundaries of the wave patterns, as well as the wave length, are observed. The cloud patterns resulting from the waves generated by the flow across a mountain or crater are shown to be dependent upon the velocity profile of the air stream and the vertical stability of the atmosphere. Using the stability as inferred by the temperature structure obtained from the infrared spectrometer data, a two layer velocity model of the air stream is used in calculations based on the theory of mountain lee waves. Results yield magnitudes generally in agreement with various other circulation models.
Teleseismic S wave microseisms.
Nishida, Kiwamu; Takagi, Ryota
2016-08-26
Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior. PMID:27563094
NASA Astrophysics Data System (ADS)
Coco, G.; Guza, R. T.; Garnier, R.; Lomonaco, P.; Lopez De San Roman Blanco, B.; Dalrymple, R. A.; Xu, M.
2014-12-01
Edge waves, gravity waves trapped close to the shoreline by refraction, can in some cases form a standing wave pattern with alongshore periodic sequence of high and low runup. Nonlinear mechanisms for generation of edge waves by monochromatic waves incident on a planar beach from deep water have been elaborated theoretically and in the lab. Edge waves have been long considered a potential source for alongshore periodic morphological patterns in the swash (e.g., beach cusps), and edge-wave based predictions of cusp spacing compare qualitatively well with many field observations. We will discuss the extension of lab observations and numerical modeling to include incident waves with significant frequency and directional bandwidth. Laboratory experiments were performed at the Cantabria Coastal and Ocean Basin. The large rectangular basin (25 m cross-shore by 32 m alongshore) was heavily instrumented, had reflective sidewalls, and a steep concrete beach (slope 1:5) with a constant depth (1m) section between the wavemaker and beach. With monochromatic, normally incident waves we observed the expected, previously described subharmonic observations. Edge wave vertical heights at the shoreline reached 80cm, and edge wave uprushes exceeded the sloping beach freeboard. When frequency and frequency-directional spread are increased, the excited edge wave character changes substantially. In some cases, subharmonic excitation is suppressed completely. In other cases, edge waves are excited intermittently and unpredictably. The spatially and temporally steady forcing required for strong, persistent subharmonic instability is lacking with even modestly spread (direction and frequency) incident waves. An SPH numerical model is capable of reproducing aspects of the observations. It seems unlikely to us that subhamonic edge waves alone are responsible for most cusp formation on natural beaches. The steady incident wave forcing needed to initiate subharmonic growth, and to maintain
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
NASA Astrophysics Data System (ADS)
Fontana, Giorgio
2005-02-01
There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated
Propagation of ultrasonic guided waves in lap-shear adhesive joints
NASA Astrophysics Data System (ADS)
Lanza di Scalea, Francesco; Rizzo, Piervincenzo; Marzani, Alessandro
2004-07-01
This paper deals with the propagation of ultrasonic guided waves in adhesively-bonded lap-shear joints. The topic is relevant to ultrasonic bond inspection in aerospace components. Specifically, the propagation of the lowest-order, antisymmetric a0 mode through the joint is examined. This mode can be easily generated and detected in the field due to the predominant out-of-plane displacements at the surface of the test piece. An important aspect is the mode conversion at the boundaries between the single-plate adherends and the multilayer overlap. The a0 strength of transmission is studied for three different bond states in aluminum joints, namely a fully cured adhesive bond, a poorly cured adhesive bond, and a slip bond. Theoretical predictions based on the Global Matrix Method indicate that the dispersive behavior of the guided waves in the multilayer overlap is highly dependent on bond state. Experimental tests of the joints are conducted by a hybrid, broadband laser/air-coupled ultrasonic setup in a through-transmission configuration. This system does not require any wet coupling and it can be moved flexibly across the test piece. The Gabor Wavelet transform is employed to extract energy transmission coefficients in the 100 kHz - 1.4 MHz range for the three different bond states examined. The cross-sectional mode shapes of the guided waves are shown to have a substantial role in the energy transfer through the joint. A rationale for the selection of the a0 excitation frequencies highly sensitive to bond state will be given.
Wouters, L.F.
1960-08-30
Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.
Eccentric orbit E/IMRI gravitational wave fluxes to 7PN order
NASA Astrophysics Data System (ADS)
Forseth, Erik; Evans, Charles R.; Hopper, Seth
2016-03-01
Knowledge of gravitational wave fluxes (energy and angular momentum, at both infinity and the horizon) from eccentric-orbit inspirals is extended from 3PN to 7PN order at lowest order in small mass ratio. Previous post-Newtonian eccentric-orbit results up to 3PN relative order are confirmed by our new black hole perturbation calculations. The calculations are based on Mano, Suzuki, and Takasugi (MST) analytic function expansions, and results are computed to 200 decimal places of accuracy using Mathematica. Over 1,700 distinct orbits were computed, each with as many as 7,000 Fourier-harmonic modes. A large number of PN coefficients between 3.5PN and 7PN orders were determined, either in exact analytic form or with accurate numerical values, in expansions in powers of a PN compactness parameter and its logarithm, and powers of eccentricity. We show a parametrization that removes singularities in the fluxes as the eccentricity approaches unity, thus making the expansions more convergent at high eccentricity. We also found (nearly) arbitrarily accurate expansions for the previously discussed 1.5PN, 2.5PN, and 3PN hereditary terms.
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-15
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.
Kinesthetic Transverse Wave Demonstration
NASA Astrophysics Data System (ADS)
Pantidos, Panagiotis; Patapis, Stamatis
2005-09-01
This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
NASA Astrophysics Data System (ADS)
Boyd, Jeffrey
2010-02-01
As preposterous as it might sound, if quantum waves travel in the reverse direction from subatomic particles, then most of quantum physics can be explained without quantum weirdness or Schr"odinger's cat. Quantum mathematics is unchanged. The diffraction pattern on the screen of the double slit experiment is the same. This proposal is not refuted by the Innsbruck experiments; this is NOT a hidden local variable theory. Research evidence will be presented that is consistent with the idea waves travel in the opposite direction as neutrons. If one's thinking shifts from forwards to backwards quantum waves, the world changes so drastically it is almost unimaginable. Quantum waves move from the mathematical to the real world, multiply in number, and reverse in direction. Wave-particle duality is undone. In the double slit experiment every part of the target screen is emitting such quantum waves in all directions. Some pass through the two slits. Interference occurs on the opposite side of the barrier than is usually imagined. They impinge on ``S'' and an electron is released at random. Because of the interference it is more likely to follow some waves than others. It follows one and only one wave backward; hitting the screen where it's wave originated. )
Solli, D R; Ropers, C; Koonath, P; Jalali, B
2007-12-13
Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation. PMID:18075587
Internal Solitary Wave Tunnelling
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Keating, Scott; Shrivistava, Ishita
2013-11-01
In a two-layer fluid, solitary waves of depression (elevation) propagate in a shallow upper (lower) layer. The transition from depressed to elevated is known to occur as a solitary wave of depression passes over a bottom slope. If impacting a coastline the shoaling waves deposit some energy and partially reflect. Here we consider what happens if a solitary wave passes over a sill or the shoulder of an island. Specifically, through lock-release laboratory experiments, we examine the evolution of a solitary wave of depression incident upon a submerged thin vertical barrier and triangular submarine topography. From the measured interface displacement, we determine the available potential energy associated with the wave. The method of Hilbert transforms is used to subdivide the displacement signal into rightward- and leftward-propagating disturbances, from which we measure the available potential energy of the transmitted and reflected waves. These are used to measure the relative transmission, reflection and deposition of energy in terms of the barrier height and slope, the relative depths of the ambient fluid and the amplitude of the incident wave. Implications for internal wave scattering around Dongsha Atoll in the South China Sea are discussed. Research performed while visiting the University of Alberta under the UARE program.
Modal Waves Solved in Complex Wave Number
NASA Astrophysics Data System (ADS)
Xu, W.-J.; Jenot, F.; Ourak, M.
2005-04-01
A numerical algorithm is proposed for the resolution in complex domain of the ultrasonic modal waves from the characteristic equation of elastic structures. The method is applicable to any numerically available function given explicitly or implicitly. The complex root loci of the modal waves are constructed by varying other parameters. Different situations which can cause the roots searching and following failure are analysed and the corresponding solutions are proposed. The computation examples are given for a three layered adhesive joint and a composite plate.
Oceanic-wave-measurement system
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Miles, R. T.
1980-01-01
Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.
Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.
2012-02-01
Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan
Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.
Wu, Tsung-Tsong; Hsu, Jin-Chen; Sun, Jia-Hong
2011-10-01
In the past two decades, phononic crystals (PCs) which consist of periodically arranged media have attracted considerable interest because of the existence of complete frequency band gaps and maneuverable band structures. Recently, Lamb waves in thin plates with PC structures have started to receive increasing attention for their potential applications in filters, resonators, and waveguides. This paper presents a review of recent works related to phononic plate waves which have recently been published by the authors and coworkers. Theoretical and experimental studies of Lamb waves in 2-D PC plate structures are covered. On the theoretical side, analyses of Lamb waves in 2-D PC plates using the plane wave expansion (PWE) method, finite-difference time-domain (FDTD) method, and finite-element (FE) method are addressed. These methods were applied to study the complete band gaps of Lamb waves, characteristics of the propagating and localized wave modes, and behavior of anomalous refraction, called negative refraction, in the PC plates. The theoretical analyses demonstrated the effects of PC-based negative refraction, lens, waveguides, and resonant cavities. We also discuss the influences of geometrical parameters on the guiding and resonance efficiency and on the frequencies of waveguide and cavity modes. On the experimental side, the design and fabrication of a silicon-based Lamb wave resonator which utilizes PC plates as reflective gratings to form the resonant cavity are discussed. The measured results showed significant improvement of the insertion losses and quality factors of the resonators when the PCs were applied. PMID:21989878
ERIC Educational Resources Information Center
Newman, J. N.
1979-01-01
Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)
Those Elusive Gravitational Waves
ERIC Educational Resources Information Center
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
NASA Astrophysics Data System (ADS)
Shugan, I.; Hwung, Hwung-Hweng; Yang, Ray-Yeng
2012-04-01
The problem of wave interaction with current is still a big challenge in physical oceanography. In spite of numerous numbers of papers devoting to the analysis of the phenomenon some very strong effects are still waiting for its clear description. One of the problems here is the Benjamin-Feir instability in the presence of variable current. Modulation instability is one of the most ubiquitous types of instabilities in nature. In modern nonlinear physics, it is considered as a basic process that classifies the qualitative behavior of modulated waves (``envelope waves'') and may initialize the formation of stable entities such as envelope solitons. We theoretically describe the explosion instability of waves on the adverse blocking current and corresponding frequency downshifting. Waves can be blocked only partly and overpass the opposite current barrier at the lower side band resonance frequency. Theoretical results are compared with available experiments.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
NASA Astrophysics Data System (ADS)
Groenenboom, P. H. L.
The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.
NASA Astrophysics Data System (ADS)
Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang
2015-10-01
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.
NASA Astrophysics Data System (ADS)
Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon
2010-12-01
The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.
Sculpting Waves (Presentation Recording)
NASA Astrophysics Data System (ADS)
Engheta, Nader
2015-09-01
In electronics controlling and manipulating flow of charged carriers has led to design of numerous functional devices. In photonics, by analogy, this is done through controlling photons and optical waves. However, the challenges and opportunities are different in these two fields. Materials control waves, and as such they can tailor, manipulate, redirect, and scatter electromagnetic waves and photons at will. Recent development in condensed matter physics, nanoscience, and nanotechnology has made it possible to tailor materials with unusual parameters and extreme characteristics and with atomic precision and thickness. One can now construct structures much smaller than the wavelengths of visible light, thus ushering in unprecedented possibilities and novel opportunities for molding fields and waves at the nanoscale with desired functionalities. At such subwavelength scales, sculpting optical fields and waves provides a fertile ground for innovation and discovery. I will discuss some of the exciting opportunities in this area, and forecast some future directions and possibilities.
NASA Astrophysics Data System (ADS)
Yan, Zhenya
2011-11-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.
Phase randomization of three-wave interactions in capillary waves.
Punzmann, H; Shats, M G; Xia, H
2009-08-01
We present new experimental results on the transition from coherent-phase to random-phase three-wave interactions in capillary waves under parametric excitation. Above the excitation threshold, coherent wave harmonics spectrally broaden. An increase in the pumping amplitude increases spectral widths of wave harmonics and eventually causes a strong decrease in the degree of the three-wave phase coupling. The results point to the modulation instability of capillary waves, which leads to breaking of continuous waves into ensembles of short-lived wavelets or envelope solitons, as the reason for the phase randomization of three-wave interactions. PMID:19792572
Standing Waves on a Shoestring.
ERIC Educational Resources Information Center
Hendrix, Laura
1992-01-01
Describes the construction of a wave generator used to review the algebraic relationships of wave motion. Students calculate and measure the weight needed to create tension to generate standing waves at the first eight harmonics. (MDH)
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along
Lucia, L.V.
1982-03-16
A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.
NASA Astrophysics Data System (ADS)
Ewans, Kevin; Feld, Graham; Jonathan, Philip
2014-09-01
The SAAB REX WaveRadar sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave radars may not be as good as expected. We review the functionality of a WaveRadar using numerical simulations to better understand how WaveRadar estimates compare with known surface elevations. In addition, we review recent field measurements made with a WaveRadar set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB radars and buoy measurements for locations in the North Sea.
Undamped electrostatic plasma waves
Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.
2012-09-15
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
Kerschensteiner, Daniel
2016-01-01
Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446
NASA Astrophysics Data System (ADS)
Chen, P. F.
2016-02-01
After the Solar and Heliospheric Observatory (SOHO) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named ``EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the Solar Dynamics Observatory (SDO) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal loop. Such a two-wave paradigm was proposed more than 13 years ago, and now is being recognized by more and more colleagues. In this paper, we review how various controversies can be resolved in the two-wave framework and how important it is to have two different names for the two types of coronal waves.
Stress wave focusing transducers
Visuri, S.R., LLNL
1998-05-15
Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.
NASA Astrophysics Data System (ADS)
Gurnett, Donald
2008-11-01
Although low-frequency radio waves of extra-terrestrial origin were known over a century ago, it wasn't until the beginning of the space era fifty years ago that the origin of these waves could be adequately investigated. Since then spacecraft-borne instruments have shown that space plasmas exhibit an almost bewildering variety of wave phenomena, sometimes referred to as the plasma wave zoo. In this talk I will focus on two types of waves that occur in the magnetospheres of the strongly magnetized planets. They are whistler mode emissions and cyclotron maser radiation. Whistler mode emissions are generated in the now famous plasma wave mode known as the whistler mode, and cyclotron maser radiation is emitted mainly in the right-hand polarized free space mode. Both involve a cyclotron resonant interaction and require a perpendicular anisotropy to achieve wave growth. However, the origin of the anisotropy is different in the two cases. Whistler mode emissions occur in planetary radiation belts and are driven by the loss-cone anisotropy imposed by the planet. The resulting waves play a major role in the scattering and loss of radiation belt electrons. In contrast, the cyclotron maser radiation is generated in the auroral regions where parallel electric fields accelerate down-going electrons to high energies. The wave growth is driven by the shell distribution that arises from a combination of the parallel electric field and the magnetic mirror force. The resulting radiation is extremely intense and can be detected at great distances as an escaping radio emission. Both the whistler mode emissions and the cyclotron maser radiation display an amazing amount of fine structure. This structure is thought to be due to nonlinear trapping of the resonant electrons. The exact nonlinear mechanisms involved are still a topic of current study.
Atmospheric waves and the ionosphere.
NASA Technical Reports Server (NTRS)
Beer, T.
1972-01-01
A review of evidence supporting the existence of atmospheric waves is presented, and a simple, theoretical approach for describing them is shown. Suggestions for gravity wave sources include equatorial and auroral electrojet, auroral and polar substorm heating, atmospheric jet streams, and large oceanic tides. There are reviewed previous studies dealing with the interaction between ionization and atmospheric waves believed to exist at ionospheric heights. These waves include acoustic waves, evanescent waves, and internal atmospheric gravity waves. It is explained that mode analysis, often employed when an increased number of layers is used for a more complete profile, is inapplicable for waves very close to a source.
Progress in gravitational wave detection
NASA Astrophysics Data System (ADS)
Cheng, Jing-Quan; Yang, De-Hua
2005-09-01
General theory of Einstein's relativity predicts the existence of gravitational wave when mass is accelerated. However, no material has direct effect when the gravitational wave passes. Therefore, gravitational wave can only be detected indirectly. The effort in gravitational wave detection was started in the 60s of last century by using a huge cylinder of aluminum. This paper introduced all the relevant projects in the gravitational wave detection. These projects include Weber's bar, Laser interferometer Gravitational wave Detector (LGD), Laser Interferometer Gravitational wave Observatory (LIGO), GEO600, VIRGO, TAMA300, Advanced LIGO, Large scale Cryogenic Gravitational wave Telescope (LCGO), and Laser Interferometer Space Antenna (LISA).
Wave-wave interactions in solar type III radio bursts
Thejappa, G.; MacDowall, R. J.
2014-02-11
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
NASA Astrophysics Data System (ADS)
Zetie, K. P.
2015-05-01
There are many examples on the internet of videos of ‘pendulum wave machines’ and how to make them (for example, www.instructables.com/id/Wave-Pendulum/). The machine is simply a set of pendula of different lengths which, when viewed end on, produce wave-like patterns from the positions of the bobs. These patterns change with time, with new patterns emerging as the bobs change phase. In this article, the physics of the machine is explored and explained, along with tips on how to build such a device.
Acoustic and electromagnetic waves
NASA Astrophysics Data System (ADS)
Jones, Douglas Samuel
Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.
Investigating the use of ultrasonic guided waves for aging wire insulation assessment
NASA Astrophysics Data System (ADS)
Anastasi, Robert F.; Madaras, Eric I.
2002-06-01
Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase-velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 349 degree(s)C and 399 degree(s)C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.
Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2002-01-01
Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.
Lattice Waves, Spin Waves, and Neutron Scattering
DOE R&D Accomplishments Database
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Resonance wave pumping with surface waves
NASA Astrophysics Data System (ADS)
Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration
2015-11-01
The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves. PMID:24580164
ERIC Educational Resources Information Center
Fisher, Arthur
1983-01-01
Physicists and engineers advance the state of several arts in the design of gravitational-wave detection equipment. Provides background information and discusses the equipment (including laser interferometer), its use, and results of several experimental studies. (JN)
... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... care for heat- related emergencies … ❏ Listen to local weather forecasts and stay aware of upcoming temperature changes. ❏ ...
NASA Astrophysics Data System (ADS)
seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi
2016-03-01
In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).
Observation of Gravitational Waves
NASA Astrophysics Data System (ADS)
Gonzalez, Gabriela
2016-06-01
On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.
Weinstein, Alla
2011-11-01
Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S.
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Energy Science and Technology Software Center (ESTSC)
2007-01-08
WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see Users Manual [1].
Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2016-06-01
We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate subcritically toward highly nonlinear ones with twice their amplitude. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results. PMID:27415365
NASA Astrophysics Data System (ADS)
Gemmrich, J.; Farmer, D.
2003-04-01
Breaking surface waves are believed to provide a major pathway for the energy input from the atmosphere to the ocean and are a source of enhanced turbulent kinetic energy levels in the near-surface layer. Increased turbulence levels relate to enhanced air-sea exchange processes. The ocean surface is a complex system with a wide range of relevant scales. We use direct measurement of the small-scale velocity field as a first step to evaluate near-surface turbulence. At wind speed up to 14 m/s, velocity profiles were obtained with pulse-to-pulse coherent acoustic Doppler profilers. Based on wavenumber spectra calculated with the empirical mode decomposition, dissipation of turbulent kinetic energy at ~1m beneath the free surface and 1 Hz sampling rate is estimated. In addition, bubble size distributions were obtained from acoustic resonator measurements and whitecap occurrence was monitored with video cameras. High turbulence levels with dissipation rates more than four orders larger than the background dissipation are linked to wave breaking. The decay and depth-dependence of the wave-induced turbulence are examined and implications for turbulence models are discussed. In individual breaking waves, the onset of enhanced dissipation occurs up to a quarter wave period prior to the air entrainment. Magnitude and occurrence of the pre-breaking turbulence are consistent with wave-turbulence interaction in a rotational wave field. The detailed structure of the turbulence and bubble field associated with breaking waves will be presented. Implications for air-sea exchange processes will be discussed.
NASA Astrophysics Data System (ADS)
López Ariste, A.; Centeno, R.; Khomenko, E.
2016-06-01
Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.
Zhokhov, P A; Zheltikov, A M
2013-05-01
Shock-wave formation is a generic scenario of wave dynamics known in nonlinear acoustics, fluid dynamics, astrophysics, seismology, and detonation physics. Here, we show that, in nonlinear optics, remarkably short, attosecond shock transients can be generated through a strongly coupled spatial and temporal dynamics of ultrashort light pulses, suggesting a pulse self-compression scenario whereby multigigawatt attosecond optical waveforms can be synthesized. PMID:23683197
The wave of the future - Searching for gravity waves
NASA Astrophysics Data System (ADS)
Goldsmith, Donald
1991-04-01
Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang.
Magnetosphere-ionosphere waves
NASA Astrophysics Data System (ADS)
Russell, A. J. B.; Wright, A. N.
2012-01-01
Self-consistent electrodynamic coupling of the ionosphere and magnetosphere produces waves with clearly defined properties, described here for the first time. Large scale (ideal) disturbances to the equilibrium, for which electron inertia is unimportant, move in the direction of the electric field at a characteristic speed. This may be as fast as several hundred meters per second or approximately half the E × B drift speed. In contrast, narrow scale (strongly inertial) waves are nearly stationary and oscillate at a specific frequency. Estimates of this frequency suggest periods from several tenths of a second to several minutes may be typical. Both the advection speed and frequency of oscillation are derived for a simple model and depend on a combination of ionospheric and magnetospheric parameters. Advection of large scale waves is nonlinear: troughs in E-region number density move faster than crests and this causes waves to break on their trailing edge. Wavebreaking is a very efficient mechanism for producing narrow (inertial) scale waves in the coupled system, readily accessing scales of a few hundred meters in just a few minutes. All magnetosphere-ionosphere waves are damped by recombination in the E-region, suggesting that they are to be best observed at night and in regions of low ionospheric plasma density. Links with observations, previous numerical studies and ionospheric feedback instability are discussed, and we propose key features of experiments that would test the new theory.
Ocean wave electric generators
Rosenberg, H.R.
1986-02-04
This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbine and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.
Ultrasonic Lamb wave tomography
NASA Astrophysics Data System (ADS)
Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.
2002-12-01
Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.
NASA Astrophysics Data System (ADS)
Dehandschoewercker, Eline; Quere, David; Clanet, Christophe
2014-11-01
Surfing is a free surface sport in which the athlete rides a wave standing on a board. However, any object plunged into the water or put on its surface is not always captured by an approaching wave, just like the classic example of a fisching float. So, a particle can be captured or not by a wave. Two regimes are defined: surf (captured) and drift (not captured). We focus on the question of the transition between these two regimes. Here we address the question with a magnetic wave. We have developed an experimental setup which allows the control of all relevant physical parameters. Liquid oxygen, which is paramagnetic and undergoes Leidenfrost effect, can be used to ensure magnetic and frictionless particles. A permanent magnet in translatory movement allows us to create a definite magnetic wave. We discuss the motion of oxygen drops deposited on an smooth and horizontal surface above an approaching magnet. First we show the existence of a critical speed below which drops are captured and determine how it depends on the velocity and intensity of the magnetic wave. Then we experimentally investigate the parameters that would affect the movement of drops in each regime. Finally, models have been developed to interpret magnetic drops motion and guarantee an efficient control.
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
NASA Astrophysics Data System (ADS)
Conklin, John
2016-03-01
With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.
NASA Astrophysics Data System (ADS)
Kağan Temiz, Burak; Yavuz, Ahmet
2015-08-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the wheel starts to turn at a constant angular speed. A rod that is fixed on the wheel turns at the same constant angular speed, too. A tight string that the wave will be created on is placed at a distance where the rod can touch the string. During each rotation of the wheel, the rod vibrates the string up and down. The vibration frequency of this rod equals the wheel’s rotation frequency, and this frequency value can be measured easily with a small magnet and a bicycle speedometer. In this way, the frequency of the waves formed in the rope can also be measured.
NASA Astrophysics Data System (ADS)
Cavaleri, Luigi; Bertotti, Luciana; Bidlot, Jean-Raymond
2015-05-01
We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Historical and sailors' reports suggest that this leads to calmer wave conditions, certainly so for the action of breakers. We have explored this situation using a fully coupled meteorological-wave model system, adding an artificial rain rate-dependent damping of the tail. Contrarily to direct marine experience, the experimental results show higher wind speeds and wave heights. A solid indication of the truth is achieved with the direct comparison between operational model (where rain effect is ignored) and measured data. These strongly support the sailors' claims of less severe wave conditions under heavy rain. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping, and how this is presently modeled in operational activity. We suggest that some revision is due and that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.
Rain waves-wind waves interaction application to scatterometry
NASA Technical Reports Server (NTRS)
Kharif, C.; Giovanangeli, J. P.; Bliven, L.
1989-01-01
Modulation of a rain wave pattern by longer waves has been studied. An analytical model taking into account capillarity effects and obliquity of short waves has been developed. Modulation rates in wave number and amplitude have been computed. Experiments were carried out in a wave tank. First results agree with theoretical models, but higher values of modulation rates are measured. These results could be taken into account for understanding the radar response from the sea surface during rain.
Various Boussinesq solitary wave solutions
Yates, G.T.
1995-12-31
The generalized Boussinesq (gB) equations have been used to model nonlinear wave evolution over variable topography and wave interactions with structures. Like the KdV equation, the gB equations support a solitary wave solution which propagates without changing shape, and this solitary wave is often used as a primary test case for numerical studies of nonlinear waves using either the gB or other model equations. Nine different approximate solutions of the generalized Boussinesq equations are presented with simple closed form expressions for the wave elevation and wave speed. Each approximates the free propagation of a single solitary wave, and eight of these solutions are newly obtained. The author compares these solutions with the well known KdV solution, Rayleigh`s solution, Laitone`s higher order solution, and ``exact`` numerical integration of the gB equations. Existing experimental data on solitary wave shape and wave speed are compared with these models.
NASA Astrophysics Data System (ADS)
Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.
2013-05-01
Complex events are formed by two or more large-scale structures which interact in the solar wind. Typical cases are interactions of: (i) a magnetic cloud/interplanetary coronal mass ejection (MC/ICME) with another MC/ICME transient; (ii) a MC/ICME embedded within a stream interaction region (SIR); and (iii) a MC/ICME followed by a fast stream. Using data from the STEREO mission during the years 2007-2011 we found 17 ICMEs forming complex events with an associated shock wave. All the ICMEs included in this study showed a smooth rotation of the magnetic field and low proton beta plasma, and were classified as MCs. We use magnetic field and plasma data to study the waves observed within these MCs. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also analyze 10 MCs driving shocks which were not associated with complex events. We compare wave characteristics within the Magnetic Clouds forming Complex Events (MCCE), with those waves observed within the Magnetic Clouds that were isolated (IMC), i. e., not associated with complex events. Transverse and almost parallel propagating ion cyclotron waves were observed within both, MCCE and IMC. Compressive mirror mode waves were observed only within MCCE. Both modes can grow due to temperature anisotropy. Most of the mirror mode events found within MCCE are observed in regions with enhanced plasma beta. This is in agreement with kinetic theory, which predicts that mirror mode growth is favored by high plasma beta values. It is possible that the observed enhancements in plasma beta are due to compressions inside MCCE.
NASA Astrophysics Data System (ADS)
Nembach, Hans; Shaw, Justin; Boone, Carl; McMichael, Robert; Silva, Tom
2014-03-01
It was recently shown that modes localized at the edges are sensitive to presumed defects. We measured localized spin-wave modes of individual Ni80Fe20 nanomagnets (NMs) with sizes ranging from 100 nm to 400 nm via heterodyne magneto-optical microwave microscopy. Comparison of field-swept spectra with micromagnetic simulations allows for identification of the observed spin-wave modes. One of the modes, the ``center-mode'', extends throughout the NM. The lowest order (highest resonance field) ``end-modes'' are localized at the ends of the nanomagnet. As such, it is expected that the end modes are more susceptible to edge defects. Spectra from nominally identical nanomagnets show that the resonance fields of the two end-modes vary substantially between nanomagnets.. We measured the lateral shape of the NMs with scanning electron microscopy, and then used the measured shapes to simulate the mode-spectra, but shape distortions cannot explain the observed mode distortions. Sidewall angle, re-deposition, and mill-induced edge-damage might also be important to accurately model end-mode distortions.
NASA Astrophysics Data System (ADS)
Finn, Lee Samuel
2012-03-01
If two black holes collide in a vacuum, can they be observed? Until recently, the answer would have to be "no." After all, how would we observe them? Black holes are "naked" mass: pure mass, simple mass, mass devoid of any matter whose interactions might lead to the emission of photons or neutrinos, or any electromagnetic fields that might accelerate cosmic rays or leave some other signature that we could observe in our most sensitive astronomical instruments. Still, black holes do have mass. As such, they interact—like all mass—gravitationally. And the influence of gravity, like all influences, propagates no faster than that universal speed we first came to know as the speed of light. The effort to detect that propagating influence, which we term as gravitational radiation or gravitational waves, was initiated just over 50 years ago with the pioneering work of Joe Weber [1] and has been the object of increasingly intense experimental effort ever since. Have we, as yet, detected gravitational waves? The answer is still "no." Nevertheless, the accumulation of the experimental efforts begun fifty years ago has brought us to the point where we can confidently say that gravitational waves will soon be detected and, with that first detection, the era of gravitational wave astronomy—the observational use of gravitational waves, emitted by heavenly bodies—will begin. Data analysis for gravitational wave astronomy is, today, in its infancy and its practitioners have much to learn from allied fields, including machine learning. Machine learning tools and techniques have not yet been applied in any extensive or substantial way to the study or analysis of gravitational wave data. It is fair to say that this owes principally to the fields relative youth and not to any intrinsic unsuitability of machine learning tools to the analysis problems the field faces. Indeed, the nature of many of the analysis problems faced by the field today cry-out for the application of
NASA Astrophysics Data System (ADS)
Yuan, Tao
Sensing and imaging using Terahertz (THz) radiation has attracted more and more interest in the last two decades thanks to the abundant material 'finger prints' in the THz frequency range. The low photon energy also makes THz radiation an attractive tool for nondestructive evaluation of materials and devices, biomedical applications, security checks and explosive screening. Due to the long wavelength, the far-field THz wave optical systems have relatively low spatial resolution. This physical limitation confines THz wave sensing and imaging to mostly macro-size samples. To investigate local material properties or micro-size structures and devices, near-field technology has to be employed. In this dissertation, the Electro-Optical THz wave emission microscope is investigated. The basic principle is to focus the femtosecond laser to a tight spot on a thin THz emitter layer to produce a THz wave source with a similar size as the focus spot. The apparatus provides a method for placing a THz source with sub-wavelength dimension in the near-field range of the investigated sample. Spatial resolution to the order of one tenth of the THz wavelength is demonstrated by this method. The properties of some widely used THz wave emission materials under tight focused pump light are studied. As an important branch of THz time domain spectroscopy (THz-TDS), THz wave emission spectroscopy has been widely used as a tool to investigate the material physics, such as energy band structure, carrier dynamics, material nonlinear properties and dynamics. As the main work of this dissertation, we propose to combine the THz wave emission spectroscopy with scanning probe microscopy (SPM) to build a tip-assisted THz wave emission microscope (TATEM), which is a valuable extension to current SPM science and technology. Illuminated by a femtosecond laser, the biased SPM tip forms a THz wave source inside the sample beneath the tip. The source size is proportional to the apex size of the tip so
Wave interaction in relativistic harmonic gyro-traveling-wave devices
Ngogang, R.; Nusinovich, G. S.; Antonsen, T. M. Jr.; Granatstein, V. L.
2006-05-15
In gyro-traveling-wave devices, several waves can be excited at different cyclotron harmonics simultaneously. This paper analyzes the interaction between three waves synchronous with gyrating electrons at different cyclotron harmonics in two relativistic gyro-amplifier configurations; viz., gyro-traveling-wave tubes and gyrotwystrons. Two types of nonlinear interactions are considered: (a) excitation of two waves at cyclotron harmonics by a wave excited at the fundamental resonance, and (b) excitation of a wave at the fundamental resonance and another wave at the third harmonic by a wave excited at the second cyclotron harmonic. The effect of the overlapping of electron cyclotron resonances on the performance of relativistic gyrodevices is investigated as well.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
NASA Astrophysics Data System (ADS)
McGourty, L.; Rideout, K.
2005-12-01
"Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.
NASA Astrophysics Data System (ADS)
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
Hurricane, O A; Hammer, J H
2005-10-11
Radiation driven heat waves (Marshak Waves) are ubiquitous in astrophysics and terrestrial laser driven high energy density plasma physics (HEDP) experiments. Generally, the equations describing Marshak waves are so nonlinear, that solutions involving more than one spatial dimension require simulation. However, in this paper we show how one may analytically solve the problem of the two-dimensional nonlinear evolution of a Marshak wave, bounded by lossy walls, using an asymptotic expansion in a parameter related to the wall albedo and a simplification of the heat front equation of motion. Three parameters determine the nonlinear evolution, a modified Markshak diffusion constant, a smallness parameter related to the wall albedo, and the spacing of the walls. The final nonlinear solution shows that the Marshak wave will be both slowed and bent by the non-ideal boundary. In the limit of a perfect boundary, the solution recovers the original diffusion-like solution of Marshak. The analytic solution will be compared to a limited set of simulation results and experimental data.
NASA Astrophysics Data System (ADS)
McNutt, David; Milson, Robert; Coley, Alan
2013-03-01
We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.
Potential changes of wave steepness and occurrence of rogue waves
NASA Astrophysics Data System (ADS)
Bitner-Gregersen, Elzbieta M.; Toffoli, Alessandro
2015-04-01
Wave steepness is an important characteristic of a sea state. It is also well established that wave steepness is one of the parameter responsible for generation of abnormal waves called also freak or rogue waves. The study investigates changes of wave steepness in the past and future wave climate in the North Atlantic. The fifth assessment report IPCC (2013) uses four scenarios for future greenhouse gas concentrations in the atmosphere called Representative Concentration Pathways (RCP). Two of these scenarios RCP 4.5 and RCP 8.5 have been selected to project future wave conditions in the North Atlantic. RCP 4.5 is believed to achieve the political target of a maximum global mean temperature increase of 2° C while RPC 8.5 is close to 'business as usual' and expected to give a temperature increase of 4° C or more. The analysis includes total sea, wind sea and swell. Potential changes of wave steepness for these wave systems are shown and compared with wave steepness derived from historical data. Three historical data sets with different wave model resolutions are used. The investigations show also changes in the mean wind direction as well as in the relative direction between wind sea and swell. Consequences of wave steepness changes for statistics of surface elevation and generation of rogue waves are demonstrated. Uncertainties associated with wave steepness projections are discussed.
Neural field theory of nonlinear wave-wave and wave-neuron processes
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Roy, N.
2015-06-01
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
NASA Technical Reports Server (NTRS)
Connolly, D. J. (Inventor)
1978-01-01
A traveling wave tube (TWT) has a slow wave structure (SWS) which is severed into two or more sections. A signal path, connects the end of an SWS section to the beginning of the following SWS section. The signal path comprises an impedance matching coupler (IMC), followed by an isolator, a variable phase shifter, and a second IMC. The aggregate band pass characteristic of the components in the signal path is chosen to reject, or strongly attenuate, all frequencies outside the desired operating frequency range of the TWT and yet pass, with minimal attenuation in the forward direction, all frequencies within the desired operating frequency range. The isolator is chosen to reject, or strongly attenuate, waves, of all frequencies, which propagate in the backward direction. The aggregate phase shift characteristic of the components in the signal path is chosen to apply signal power to the beginning of the following SWS section with the phase angle yielding maximum efficiency.
Tuck, J.L.
1955-03-01
This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.
Surface Acoustic Wave Microfluidics
NASA Astrophysics Data System (ADS)
Yeo, Leslie Y.; Friend, James R.
2014-01-01
Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1986-01-01
Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.
Graham, T. B.
2010-04-01
The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
The gravitational wave experiment
NASA Technical Reports Server (NTRS)
Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.
1992-01-01
Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Yerganian, Simon Scott
2003-02-11
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
NASA Technical Reports Server (NTRS)
Russell, C. T.; Luhmann, J. G.; Schwingenschuh, K.; Riedler, W.; Eroshenko, E.
1992-01-01
Weak, about 0.15 nT, narrow band emissions at the proton gyro frequency are observed by the Phobos magnetometer MAGMA, upstream from the bow shock of Mars. These waves are left-hand elliptically polarized. They may be associated with the pick up of protons from the Martian hydrogen exosphere. Strong turbulence, similar to that observed at the terrestrial bow shock, is found on occasion in the upstream region when the IMF connects to the bow shock. On two occasions this turbulence occurred when the spacecraft crossed the orbit of Phobos. This coincidence raises the possibility that material in the orbits of Phobos interacts with the solar wind in such a way to either affect the direction of the IMF or to cause instabilities in the solar wind plasma. However, since on a third occasion these waves did not occur, these waves may be shock associated rather than Phobos associated.
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Wave Turbulence on Water Surface
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey; Lukaschuk, Sergei
2016-03-01
We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.
THERMOPLASTIC WAVES IN MAGNETARS
Beloborodov, Andrei M.; Levin, Yuri E-mail: yuri.levin@monash.edu.au
2014-10-20
Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure, and velocity, and discuss implications for observed magnetar activity.
NASA Astrophysics Data System (ADS)
Mottola, Emil
2016-03-01
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.
Offshore wave energy experiment
Nielsen, K.; Scholten, N.C.; Soerensen, K.A. |
1995-12-31
This article describes the second phase of the off-shore wave energy experiment, taking place in the Danish part of the North Sea near Hanstholm. The wave power converter is a scale model consisting of a float 2.5 meter in diameter connected by rope to a seabed mounted piston pump installed on 25 meter deep water 2,5 km offshore. The structure, installation procedure results and experience gained during the test period will be presented and compared to calculations based on a computer model.
Wouters, L.F.
1958-10-28
The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Wave Motion Electric Generator
Jacobi, E. F.; Winkler, R. J.
1983-12-27
Set out herein is an electrical generator conformed for installation in a buoy, the generator comprising an inverted pendulum having two windings formed at the free end thereof and aligned to articulate between two end stops each provided with a magnetic circuit. As the loops thus pass through the magnetic circuit, electrical current is induced which may be rectified through a full way rectifier to charge up a storage battery. The buoy itself may be ballasted to have its fundamental resonance at more than double the wave frequency with the result that during each passing of a wave at least two induction cycles occur.
NASA Astrophysics Data System (ADS)
Gogberashvili, Merab; Mantidze, Irakli; Sakhelashvili, Otari; Shengelia, Tsotne
2016-05-01
The class of nonstationary braneworld models generated by the coupled gravitational and scalar fields is reviewed. The model represents a brane in a spacetime with single time and one large (infinite) and several small (compact) spacelike extra dimensions. In some particular cases the model has the solutions corresponding to the bulk gravi-scalar standing waves bounded by the brane. Pure gravitational localization mechanism of matter particles on the node of standing waves, where the brane is placed, is discussed. Cosmological applications of the model is also considered.
Ultrasonic shear wave couplant
Kupperman, D.S.; Lanham, R.N.
1984-04-11
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Ultrasonic shear wave couplant
Kupperman, David S.; Lanham, Ronald N.
1985-01-01
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Electron Signatures and Alfven Waves
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Clemmons, J.; Namgaladze, A. A.; Gustavsson, B.; Wahlund, J.-E.; Eliasson, L.; Yurik, R. Y.
2000-01-01
The electron signatures which appear together with Alfven waves observed by the Freja satellite in the auroral region are reported. Precipitating electrons are detected both with and just before the wave. The observed Alfven waves must therefore be capable of accelerating electrons to higher energies than the local phase velocity of these waves in order for the electrons to move in advance of the wave. The characteristics of such electrons suggest electrons moving infront of the wave have characteristics of origin from warmer and lower density plasma while the electrons moving with the wave have characteristics of cooler and denser plasma. The pitch angle distribution of the electrons moving with the wave indicates that there is continuous acceleration of new particles by the wave, i.e. a propagating Alfven wave is the source of these electrons . A simple model of a propagating source is made to model the electrons that are moving in advance of the wave. Depending on whether accelerated electrons leave the wave above or below the altitude where the Alfven wave has the highest phase velocity, the detected electron signatures will be different; electron dispersion or potential drop like, respectively. It is shown that the Alfven wave acceleration can create electron signatures similar to inverted-V structures.
On the generation of internal wave modes by surface waves
NASA Astrophysics Data System (ADS)
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Wave Tank Studies of Phase Velocities of Short Wind Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Shear wave transmissivity measurement by color Doppler shear wave imaging
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi
2016-07-01
Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.
Continuous-wave Submillimeter-wave Gyrotrons
Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.
2007-01-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605
Continuous-wave Submillimeter-wave Gyrotrons.
Han, Seong-Tae; Griffin, Robert G; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D; Mastovsky, Ivan; Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J; Torrezan, Antonio C; Woskov, Paul P
2006-01-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605
Continuous-wave submillimeter-wave gyrotrons
NASA Astrophysics Data System (ADS)
Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.
2006-10-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine.
Wave "Coherency" and Implications for Wave-Particle Interactions
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce; Lakhina, Gurbax; Remya, Banhu; Lee, Lou
2016-04-01
Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency and quasicoherency for: electromagnetic whistler mode chorus, electromagnetic ion cyclotron waves and plasmaspheric hiss waves. We will show how to measure coherency/quasicoherency quantitatively. This will be important for modeling purposes. Perhaps even more important is how coherent waves affect wave-particle interactions. Specific wave examples will be used to show that the pitch angle scattering rate for energetic electrons is roughly 3 orders of magnitude faster than Kennel-Petschek diffusion (which assumes incoherent waves).
NASA Astrophysics Data System (ADS)
Muhs, H. P.
1985-07-01
The present low profile seeker front end's slotted waveguide antenna was primarily developed to investigate the feasibility of the application of standard manufacturing techniques to mm-wave hardware. A dual plane monopulse comparator was constructed to mate with the antenna via integrated packaging techniques. The comparator was fabricated by CAD/CAM milling operations.
ERIC Educational Resources Information Center
Tucker, Vance A.
1971-01-01
Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)
Characteristics of pressure waves
NASA Technical Reports Server (NTRS)
1977-01-01
Air blast characteristics generated by most types of explosions are discussed. Data cover both negative and positive blast load phases and net transverse pressure as a function of time. The effects of partial or total confinement, atmospheric propagation, absorption of energy by ground shock or cratering, and transmission over irregular terrain on blast wave properties were also considered.
Atmospheric Science Data Center
2013-04-16
article title: Waves on White: Ice or Clouds? View ... captured this image showing a wavy pattern in a field of white. At most other latitudes, such wavy patterns would likely indicate ... are yellow; dark blue shows confidently clear areas, while light blue indicates clear with lower confidence. The ASCM works particularly ...
NASA Technical Reports Server (NTRS)
Ray, Richard D.
1999-01-01
Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.
NASA Astrophysics Data System (ADS)
Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus
2007-11-01
We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
Oscilloscope Traveling Wave Experiment.
ERIC Educational Resources Information Center
Cloud, S. D.
1985-01-01
The moving pattern that appears on an oscilloscope screen is used to illustrate two kinds of wave motion and the relationship between them. Suggestions are presented for measuring wavelength, frequency, phase shift, and phase velocity in this college-level laboratory exercise. (DH)
Submillimeter wave heterodyne receiver
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)
2011-01-01
In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.
Menikoff, Ralph
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.
ERIC Educational Resources Information Center
Bennett, J.
1973-01-01
Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza
2014-02-01
Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576
Marto, Natália
2005-01-01
During the summer of 2003, record high temperatures were reported across Europe, causing thousands of casualties. Heat waves are sporadic recurrent events, characterised by intense and prolonged heat, associated with excess mortality and morbidity. The most frequent cause of death directly attributable to heat is heat stroke but heat waves are known to cause increases in all-cause mortality, specially circulatory and respiratory mortality. Epidemiological studies demonstrate excess casualties cluster in specific risk groups. The elderly, those with chronic medical conditions and the socially isolated are particularly vulnerable. Air conditioning is the strongest protective factor against heat-related disorders. Heat waves cause disease indirectly, by aggravating chronic disorders, and directly, by causing heat-related illnesses (HRI). Classic HRI include skin eruptions, heat cramps, heat syncope, heat exhaustion and heat stroke. Heat stroke is a medical emergency characterised by hyperthermia and central nervous system dysfunction. Treatment includes immediate cooling and support of organ-system function. Despite aggressive treatment, heat stroke is often fatal and permanent neurological damage is frequent in those who survive. Heat related illness and death are preventable through behavioural adaptations, such as use of air conditioning and increased fluid intake. Other adaptation measures include heat emergency warning systems and intervention plans and environmental heat stress reduction. Heat related mortality is expected to rise as a consequence of the increasing proportion of elderly persons, the growing urban population, and the anticipated increase in number and intensity of heat waves associated with global warming. Improvements in surveillance and response capability may limit the adverse health conditions of future heat waves. It is crucial that health professionals are prepared to recognise, prevent and treat HRI and learn to cooperate with local health
Gravity waves in a realistic atmosphere.
NASA Technical Reports Server (NTRS)
Liemohn, H. B.; Midgley, J. E.
1966-01-01
Internal atmospheric gravity waves in isothermal medium, solving hydrodynamic equations, determining wave propagation in realistic atmosphere for range of wave parameters, wind amplitude, reflected energy, etc
Gravitational Waves: The Evidence Mounts
ERIC Educational Resources Information Center
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
Curved characteristics behind blast waves.
NASA Technical Reports Server (NTRS)
Laporte, O.; Chang, T. S.
1972-01-01
The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.
Heat Waves Hit Seniors Hardest
... https://medlineplus.gov/news/fullstory_160425.html Heat Waves Hit Seniors Hardest Risk of high-temperature trouble ... much of the Northeast struggles with a heat wave that isn't expected to ease until the ...
... https://medlineplus.gov/news/fullstory_159694.html Heat Waves Are Health Threats Drink plenty of water and ... 2016 SATURDAY, July 2, 2016 (HealthDay News) -- Heat waves are more than uncomfortable, they can be deadly. ...
Are Rogue Waves Really Unexpected?
NASA Astrophysics Data System (ADS)
Fedele, Francesco
2016-05-01
An unexpected wave is defined by Gemmrich & Garrett (2008) as a wave that is much taller than a set of neighboring waves. Their definition of "unexpected" refers to a wave that is not anticipated by a casual observer. Clearly, unexpected waves defined in this way are predictable in a statistical sense. They can occur relatively often with a small or moderate crest height, but large unexpected waves that are rogue are rare. Here, this concept is elaborated and statistically described based on a third-order nonlinear model. In particular, the conditional return period of an unexpected wave whose crest exceeds a given threshold is developed. This definition leads to greater return periods or on average less frequent occurrences of unexpected waves than those implied by the conventional return periods not conditioned on a reference threshold. Ultimately, it appears that a rogue wave that is also unexpected would have a lower occurrence frequency than that of a usual rogue wave. As specific applications, the Andrea and WACSIS rogue wave events are examined in detail. Both waves appeared without warning and their crests were nearly $2$-times larger than the surrounding $O(10)$ wave crests, and thus unexpected. The two crest heights are nearly the same as the threshold~$h_{0.3\\cdot10^{6}}\\sim1.6H_{s}$ exceeded on average once every~$0.3\\cdot 10^{6}$ waves, where $H_s$ is the significant wave height. In contrast, the Andrea and WACSIS events, as both rogue and unexpected, would occur slightly less often and on average once every~$3\\cdot10^{6}$ and~$0.6\\cdot10^6$ waves respectively.
ULF waves in the magnetosphere
Takahashi, Kazue )
1991-01-01
Research efforts in the area of magnetospheric ULF waves in the 1987-1990 period are reviewed. Attention is given to externally excited hydromagnetic waves including field line resonance, the global cavity mode, bow-shock-associated upstream waves, and Kelvin-Helmholtz waves. Consideration is given to internally excited Pc 4-5 pulsations and the role of these pulsations in the diffusion of ring-current ions based on the observed properties of the pulsations. 154 refs.
Are freaque waves really freak?
NASA Astrophysics Data System (ADS)
Liu, P. C.; Schwab, D. J.
2003-04-01
Navigation records are rife with tragic accounts of shipping disasters due to freaque wave encounters. Generations of sailors and mariners have experienced it throughout the ages but for decades ocean-wave scholars have disregarded its existence. Now with emerging recognition and enlivened interest on this natural hazard, we still have to contend with a dearth of freaque wave data in actual field measurements. In essence, along with widening conjecture and numerical simulation of freaque waves, we do not really know what is actually happening out there in the ocean. To remedy the lack of wave data the GLERL deployed two bottomed-mounted, upward-looking Acoustic Doppler Current Profiler (ADCP) at depths of 20 m and 12 m to make wave measurements in eastern Lake Michigan in the late autumn of 2002. From the middle of October to the beginning of December, over 40 days of continuous, non-intermittent wave measurements were collected. While we might expect to capture some freaque waves from this extensive data set, preliminary analysis of these data show that waves with a ratio of maximum wave height to significant wave height greater than 2.2 turn up quite frequently. It is distinctively possible that the so called freaque waves are really an intrinsic part of the natural ocean wave process, only the paradigm we use for inferring the wave process in the last 50 years - the random Gaussian process and the frequency wave spectrum - actually prevented its total recognition. So a plausible answer to the question posted by the title of this paper would be: "No, there is nothing really freak about the freaque waves!"
Phenomena Associated with EIT Waves
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.; Fisher, Richard R. (Technical Monitor)
2002-01-01
We discuss phenomena associated with 'EIT Wave' transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to infer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.
Phenomena Associated With EIT Waves
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.
2003-01-01
We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.
Spiral Waves in Accretion Disks
NASA Astrophysics Data System (ADS)
Harlaftis, Emilios
A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.
NASA Astrophysics Data System (ADS)
Lieberman, R. S.; Riggin, D. M.; Siskind, D. E.
2013-04-01
Quasi-stationary planetary-scale waves in the wintertime mesosphere and lower thermosphere (MLT) are thought to be forced in part by drag imparted by gravity waves that have been modulated by underlying stratospheric waves. Although this mechanism has been demonstrated numerically, there have been very few observational studies that examine wave driving as a source of planetary waves in the MLT. This study uses data from EOS Aura and TIMED between 2005 and 2011 to examine the momentum budget of MLT wintertime planetary waves. Monthly averages for January indicate that the dynamics of zonal wave number 1 are determined from a three-way balance among the Coriolis acceleration, the pressure gradient force, and a momentum residual term that reflects wave drag. The MLT circulations in January 2005, 2006, 2009, and 2011 are qualitatively consistent with a simple model of wave forcing by drag from gravity waves that have been modulated by stratospheric planetary waves. MLT winds during these years are also consistent with analyses from a high-altitude operational prediction model that includes parameterized nonorographic gravity wave drag. The importance of wave drag for the MLT momentum budget suggests that the gradient wind approximation is inadequate for deriving planetary-scale winds from global temperature measurements. Our results underscore the need for direct global wind measurements in the MLT.
ERIC Educational Resources Information Center
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…
NASA Astrophysics Data System (ADS)
Thorpe, S. A.
1988-10-01
Some simple general properties of wave breaking are deduced from the known behaviour of surface gravity waves in deep water, on the assumption that breaking occurs in association with wave groups. In particular we derive equations for the time interval, τ, between the onset of breaking of successive waves: τ = T/|1-(c\\cdot c_g)/c^2|, and for the propagation vector c_b (referred to as the 'wave-breaking vector') of the position at which breaking, once initiated, will proceed: c_b = c(1-frac{c\\cdot c_g}/{c^2})+c_g. Here c is the phase velocity, and c_g the group velocity, of waves of period T. Interfacial waves, internal gravity waves, inertial waves and planetary waves are considered as particular examples. The results apply not only to wave breaking, but to the movement of any property (e.g. fluid acceleration, gradient Richardson number) that is carried through a medium in association with waves. One application is to describe the distribution, in space and time, of regions of turbulent mixing, or transitional phenomena, in the oceans or atmosphere.
ECG Diagnosis: Hyperacute T Waves.
Levis, Joel T
2015-01-01
After QT prolongation, hyperacute T waves are the earliest-described electrocardiographic sign of acute ischemia, preceding ST-segment elevation. The principle entity to exclude is hyperkalemia-this T-wave morphology may be confused with the hyperacute T wave of early transmural myocardial infarction. PMID:26176573
Wave/current interaction model
NASA Technical Reports Server (NTRS)
Liu, A. K.
1988-01-01
The wave-current interaction for the application to remote sensing data via numerical simulations and data comparison is modelled. Using the field data of surface current shear, wind condition and ambient wave spectrum, the numerical simulations of directional wave spectrum evolution were used to interpret and to compare with the aircraft data from Radar Ocean Wave Spectrometer (ROWS) and Surface Contour Radar (SCR) across the front during Frontal Air Sea Interaction Experiment (FASINEX). The wave-ice interaction was inspired by the observation of large amplitude waves hundreds of kms inside the ice pack in the Weddell Sea, resulting in breakup of the ice pack. The developed analysis of processes includes the refraction of waves at the pack edge, the effects of pack compression on wave propagation, wave train stability and buckling stability in the ice pack. Sources of pack compression and interaction between wave momentum and pack compression are investigated. Viscous camping of propagating waves in the marginal ice zone are also studied. The analysis suggests an explanation for the change in wave dispersion observed from the ship and the sequence of processes that cause ice pack breakup, pressure ridge formation and the formation of open bands of water.
The Wave Carpet: An Omnidirectional and Broadband Wave Energy Converter
NASA Astrophysics Data System (ADS)
Alam, M.-Reza
2015-11-01
Inspired by the strong attenuation of ocean surface waves by muddy seafloors, we have designed, theoretically investigated the performance, and experimentally tested the ``Wave Carpet:'' a mud-resembling synthetic seabed-mounted mat composed of vertically-acting linear springs and generators that can be used as an efficient wave energy absorption device. The Wave Carpet is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). It is survivable against the high momentum of storm surges and in fact can perform even better under very energetic (e.g. stormy) sea conditions when most existing wave energy devices are needed to shelter themselves by going into an idle mode. In this talk I will present an overview of analytical results for the linear problem, direct simulation of highly nonlinear wave fields, and results of the experimental wave tank investigation.
Looking for radio waves with a simple radio wave detector
NASA Astrophysics Data System (ADS)
Sugimoto (Stray Cats), Norihiro
2011-11-01
I created a simple device that can detect radio waves in a classroom. In physics classes I tell students that we live in a sea of radio waves. They come from TV, radio, and cell phone signals as well as other sources. Students don't realize this because those electromagnetic waves are invisible. So, I wondered if I could come up with a way to detect the waves and help students to understand them better. Electromagnetic wave meters, which measure intensity of radio waves quantitatively, are commercially available. However, to students most of these are black boxes, and at the introductory level it is more effective to detect radio waves in a simpler way. This paper describes my device and how I have used it in my classes.
The wave and wave forecasting in the China Seas
Xu Fuxiang
1993-12-31
The China Seas located at the Southeastern part of the large Eurasia continent, and beside the largest ocean, the Pacific. They are greatly influenced by continent and the ocean. Due to it across the tropical zone, the subtropical zone and the extropical zone, the cold and warm air circulation in Northsouth is a very active exchange. In the summer, the South China Sea and the East China Sea are frequently hit by typhoon waves. In spring and autumn, the bohai sea, the Yellow sea and the East China Seas had series disasters caused by the extropical cyclone wave and the cold air wave. In this paper the time-space distribution and formative cases of wave disaster in the China Seas, and the wave monitoring and prediction system, the wave prediction method, and two automatic systems of numerical wave forecasting are briefly introduced.
Evaluation of Fracture Azimuth by EM Wave and Elastic Wave
NASA Astrophysics Data System (ADS)
Feng, X.; Wang, Q.; Liu, C.; Lu, Q.; Zeng, Z.; Liang, W.; Yu, Y.; Ren, Q.
2013-12-01
Fracture system plays an important role in the development of underground energy, for example enhanced geothermal system (EGS), oil shale and shale gas, etc. Therefore, it becomes more and more important to detect and evaluate the fracture system. Geophysical prospecting is an useful method to evaluate the characteristics of the subsurface fractures. Currently, micro-seismology, multi-wave seismic exploration, and electromagnetic (EM) survey are reported to be used for the purpose. We are studying a method using both elastic wave and EM wave to detect and evaluate the fracture azimuth in laboratory. First, we build a 3D horizontal transverse isotropy (HTI) model, shown in the figure 1, by dry parallel fractures system, which was constructed by plexiglass plates and papers. Then, we used the ultrasonic system to obtain reflected S-wave data. Depending on the shear wave splitting, we evaluated the fracture azimuth by the algorithm of Pearson correlation coefficient. In addition, we used the full Polarimetric ultra wide band electromagnetic (FP-UWB-EM) wave System, shown in the figure 2, to obtain full polarimetric reflected EM-wave data. Depending on the rotation of the EM wave polarimetry, we evaluated the fracture azimuth by the the ration between maximum amplitude of co-polarimetric EM wave and maximum amplitude of cross-polarimetric EM wave. Finally, we used both EM-wave data and S-wave data to evaluate the fracture azimuth by the method of cross plot and statistical mathematics. To sum up, we found that FP-UWB-EM wave can be used to evaluated the fracture azimuth and is more accurate than ultrasound wave. Also joint evaluation using both data could improve the precision.
Gravity wave initiated convection
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
Sources of gravitational waves
NASA Technical Reports Server (NTRS)
Schutz, Bernard F.
1989-01-01
Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.
Hopfe, H.H.
1982-06-22
A device for producing fresh water from salt sea water by utilizing the hydrodynamic energy of waves, comprising a buoyant platform; means for mooring the platform; a pump connected to the mooring means; a reservoir for pressurized sea water; a desalination system for extracting fresh water from the sea water; hydraulic flow control means for causing the pump to pump sea water into the sea water reservoir, as motion of the buoyant platform is produced due to the passing of waves beneath it; measuring means for measuring parameters of the sea adjacent the buoyant platform; and a control device connected to control the pressure in the sea water reservoir and the flow of sea water from the reservoir through the desalination system in response to the parameters of the sea.
Nonlinear Hysteretic Torsional Waves.
Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-07-31
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters. PMID:26274421
NASA Astrophysics Data System (ADS)
Finn, L. S.
Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.
Millimeter wave nonreciprocal devices
NASA Astrophysics Data System (ADS)
Morgenthaler, F. R.
1983-01-01
The Microwave and Quantum Magnetics Group within the MIT Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics proposed a three year research program aimed at developing coherent magnetic wave signal-processing techniques for microwave energy which may form either the primary signal or else the intermediate frequency (IF) modulation of millimeter wavelength signals-especially at frequencies in the 50-94 GHz. range. Emphasis has been placed upon developing advanced types of signal processors that make use of quasi-optical propagation of electromagnetic and magnetostatic waves propagating in high quality single crystal ferrite thin films. A strong theoretical effort is required in order to establish valid models useful for predicting device performance. We emphasized new filter and circulator designs that employ combinations of the Faraday effect, field displacement nonreciprocity and magnetostatic resonance and periodic structures.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Tracy, Eugene R
2009-09-21
Quadratic corrections to the metaplectic formulation of mode conversions. In this work we showed how to systematically deal with quadratic corrections beyond the usual linearization of the dispersion matrix at a conversion. The linearization leads to parabolic cylinder functions as the local approximation to the full-wave behavior, but these do not include the variation in amplitude associated with ray refraction in the neighborhood of the conversion. Hence, the region over which they give a good fit to the incoming and outgoing WKB solutions is small. By including higher order corrections it is possible to provide a much more robust matching. We also showed that it was possible, in principle, to extend these methods to arbitrary order. A new normal form for mode conversion. This is based upon our earlier NSF-DOE-funded work on ray helicity. We have begun efforts to apply these new ideas in practical ray tracing algorithms. Group theoretical foundation of path integrals and phase space representations of wave problems. Using the symbol theory of N. Zobin, we developed a new understanding of path integrals on phase space. The initial goal was to find practical computational tools for dealing with non-standard mode conversions. Along the way we uncovered a new way to represent wave functions directly on phase space without the intermediary of a Wigner function. We are exploring the use of these ideas for numerical studies of conversion, with the goal of eventually incorporating kinetic effects. Wave packet studies of gyroresonance crossing. In earlier work, Huanchun Ye and Allan Kaufman -- building upon ideas due to Lazar Friedland -- had shown that gyroresonance crossings could be treated as a double conversion. This perspective is one we have used for many of our papers since then. We are now performing a detailed numerical comparison between full-wave and ray tracing approaches in the study of minority-ion gyroresonance crossing. In this study, a fast magnetosonic
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Hollenbach, D. J.
1980-01-01
The structure of interstellar shocks driven by supernova remnants and by expanding H II regions around early-type stars is discussed. Jump conditions are examined, along with shock fronts, post-shock relaxation layers, collisional shocks, collisionless shocks, nonradiative shocks, radiative atomic shocks, and shock models of observed nebulae. Effects of shock waves on interstellar molecules are examined, with reference to the chemistry behind shock fronts, infrared and vibrational-rotational cooling by molecules, and observations of shocked molecules. Some current problems and applications of the study of interstellar shocks are summarized, including the initiation of star formation by radiative shock waves, interstellar masers, the stability of shocks, particle acceleration in shocks, and shocks in galactic nuclei.
NASA Astrophysics Data System (ADS)
Tian, Jing
2001-03-01
The telecom wave is sweeping the globe; however, many of us feel caught in backwater disciplines. How does one leverage her skills to become a player in a fast-growing field? This talk will suggest some strategies and share some personal experiences: in transitioning from established companies (electronics and biotech) to a very early stage telecom start-up; in choosing an appropriate industry segment and the right startup; and in preparing for immersing oneself in the start up environment.
NASA Technical Reports Server (NTRS)
2006-01-01
Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.
With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.
The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.
The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.
Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1
NASA Astrophysics Data System (ADS)
Montagnier, L.; Aissa, J.; Del Giudice, E.; Lavallee, C.; Tedeschi, A.; Vitiello, G.
2011-07-01
Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.
Waves in Strong Centrifugal Field
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.
Spiral waves in Saturn's rings
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
1989-01-01
Spiral density waves and spiral bending waves have been observed at dozens of locations within Saturn's rings. These waves are excited by resonant gravitational perturbations from moons orbiting outside the ring system. Modeling of spiral waves yields the best available estimates for the mass and the thickness of Saturn's ring system. Angular momentum transport due to spiral density waves may cause significant orbital evolution of Saturn's rings and inner moons. Similar angular momentum transfer may occur in other astrophysical systems such as protoplanetary disks, binary star systems with disks and spiral galaxies with satellites.
Wave transformation over coral reefs
NASA Astrophysics Data System (ADS)
Young, Ian R.
1989-07-01
Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping
NASA Astrophysics Data System (ADS)
Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.
2016-07-01
We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.
Guided Waves with and Without Dispersion
NASA Astrophysics Data System (ADS)
Joshi, Narayan R.
2008-02-01
In the application of elastic waves of ultrasonic frequencies for nondestructive evaluations of industrial components and welded structures various types of waves like Rayleigh waves, Surface waves, Longitudinal body waves, Shear body waves, and Lamb waves are used to detect defects in the objects under investigation. In many cases these waves travel in bounded media and are affected by boundaries. Because they are guided by boundaries of objects under investigation, they are called sometimes guided waves or waveguides at other times. Some of these guided waves are dispersive in character while others are nondispersive. Efforts are made here to distinguish between guided waves with dispersion and those without dispersion.
NASA Technical Reports Server (NTRS)
Russell, C. T.; Lepping, R. P.; Smith, C. W.
1990-01-01
Since the Mach number of the solar wind increases with increasing heliocentric distance, the ratio of thermal to magnetic pressure, or beta, of the Uranian magnetosheath is expected to be much higher than in the terrestrial magnetosheath. Consistent with this expectation, the magnetosheat is observed to be extremely turbulent, and many particles may leak back upstream into the solar wind and/or be scattered from the bow shock. In accord with the expected presence of backstreaming particles, waves of the type associated with terrestrial backstreaming particles are seen outbound along the trajectory of Voyager in the preshock solar wind with frequencies close to 0.001 Hz. The wave frequency is close to that expected for upstream waves based on measurements closer to the sun. Upstream from the bow shock, the magnetic field was found to be much weaker than expected from observations in the inner solar system. The cause of this depression is unlikely to be the upstream particles; rather, the cause is probably intrinsic to the solar wind such as reconnection across the heliospheric current sheet.
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
Gravitational wave astronomy and cosmology
NASA Astrophysics Data System (ADS)
Hughes, Scott A.
2014-09-01
The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.
NASA Astrophysics Data System (ADS)
Wang, T. J.
2016-02-01
The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime, they are generally classified into cool, warm, and hot loops. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. This chapter reviews the recent progress made in studies based on observations of four types of wave phenomena mainly occurring in coronal loops of active regions, including: flare-excited slow-mode waves; impulsively excited kink-mode waves; propagating slow magnetoacoustic waves; and ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively discusses these waves and coronal seismology but also topics that are newly emerging or hotly debated in order to provide the reader with useful guidance on further studies.
Generation of rogue waves in a wave tank
NASA Astrophysics Data System (ADS)
Lechuga, A.
2012-04-01
Rogue waves have been reported as causing damages and ship accidents all over the oceans of the world. For this reason in the past decades theoretical studies have been carried out with the double aim of improving the knowledge of their main characteristics and of attempting to predict its sudden appearance. As an effort on this line we are trying to generate them in a water tank. The description of the procedure to do that is the objective of this presentation. After Akhmediev et al. (2011) we use a symmetric spectrum as input on the wave maker to produce waves with a rate(Maximun wave height/ significant wave height) of 2.33 and a kurtosis of 4.77, clearly between the limits of rogue waves. As it was pointed out by Janssen (2003), Onorato et al. (2006) and Kharif, Pelinovsky and Slunyaev (2009) modulation instability is enhanced when waves depart from Gaussian statistics (i.e. big kurtosis) and therefore both numbers enforce the criterion that we are generating genuine rogue waves. The same is confirmed by Shemer (2010) and Dudley et al.(2009) from a different perspective. If besides being symmetrical the spectrum is triangular, following Akhmediev(2011),the generated waves are even more conspicuously rogue waves.
Satellite observations of the QBO wave driving by Kelvin waves and gravity waves
NASA Astrophysics Data System (ADS)
Ern, Manfred; Preusse, Peter; Kalisch, Silvio; Riese, Martin
2014-05-01
The quasi-biennial oscillation (QBO) of the zonal wind in the tropical stratosphere is an important process in atmospheric dynamics influencing a wide range of altitudes and latitudes. Effects of the QBO are found also in the mesosphere and in the extra-tropics. The QBO even has influence on the surface weather and climate, for example during winter in the northern hemisphere at midlatitudes. Still, climate models have large difficulties in reproducing a realistic QBO. One reason for this deficiency are uncertainties in the wave driving by planetary waves and, in particular, gravity waves that are usually too small-scale to be resolved in global models. Different global equatorial wave modes (e.g., Kelvin waves) have been identified by longitude-time 2D spectral analysis in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite temperature data, as well as ECMWF temperatures. We find good agreement between SABER satellite observations and ECMWF wave variances in both QBO-related temporal variations and their magnitude. Slow phase speed waves are strongly modulated by the QBO, higher phase speed waves are almost unaffected by the QBO, and ultra-fast equatorial waves can even reach the MLT region. Momentum fluxes and zonal wind drag due to Kelvin waves are derived, and the relative contribution of Kelvin waves to the QBO wind reversal from westward to eastward wind is estimated to be about 30% of the total wave driving. This is in good agreement with the general assumption that gravity waves (GWs) are probably more important for the QBO driving than global-scale waves. This is further supported by SABER and High Resolution Dynamics Limb Sounder (HIRDLS) satellite observations of gravity wave drag in the equatorial region. These observations are compared with the drag still missing in the ECMWF ERA Interim (ERAI) tropical momentum budget after considering zonal wind tendency, Coriolis force, advection terms and drag of resolved global
Relevance of Infragravity Waves in a Wave Dominated Shallow Inlet
NASA Astrophysics Data System (ADS)
Olabarrieta, M.; Bertin, X.
2014-12-01
Infragravity (IG) waves have received a growing attention over the last decade and they have been shown to partly control dune erosion, barrier breaching, development of seiches in harbors or the circulation on fringing reefs. Although the relevance IG waves in surf and swash zone dynamics is well recognized, their dynamics and effects on tidal inlets and estuaries have not been analyzed. This study investigates the importance of IG waves at Albufeira Lagoon Inlet, a shallow wave-dominated inlet located on the western Coast of Portugal. Water levels and currents were measured synchronously during a two-day field experiment carried out at Albufeira Lagoon Inlet in September 2010. Apart from the tidally induced gravity wave modulations and wave induced setup inside the lagoon, an important IG wave contribution was identified. Low frequency oscillations were noticeable in the free surface elevation records and produced fluctuations of up to 100% in current intensities. While IG waves in the ebb shoal were present during the whole tidal cycle, the absence of IG waves characterized the ebbing tide inside the lagoon. The energy in the IG frequency band gradually increased from low tide to high tide, and disappeared during the ebbing tide. The modeling system Xbeach was applied to hindcast the hydrodynamics during the field experiment period. The model captures the main physics related with the IG wave generation and propagation inside the inlet, and reproduced the IG blocking during the ebb as identified in the measurements. This behavior was explained by the combination of advection and wave blocking induced by opposing tidal currents. Both measurements and numerical results suggested the bound wave release as the dominant mechanism responsible for IG wave generation. The fact that IG waves only propagate at flood tide has strong implications on the sediment balance of the inlet and contribute to inlet infilling under energetic wave conditions. It is expected that IG
Wave age and wave forecasting in the NW Mediterranean
NASA Astrophysics Data System (ADS)
Sánchez-Arcilla, A.; Bolaños, R.; Gómez Aguar, J.; Sairoun, A.
2003-04-01
Introduction The North-western Mediterranean is characterized by a high industrial and touristic activity and is vulnerable to environmental phenomena such as snow, rain and wave storms. This paper will focus on the improvement of wave predictions by using the wave-age parameter with a view to reduce coastal vulnerability. This will be done with the WAM model (WAMDI group, 1988). The runs have used a grid covering the Mediterranean with a resolution of 0.166º (approximately 18km). The wind fields used as input for the wave model were generated by the MASS model (Codina et al, 1997) with the same spatial resolution as the wave model. The wind input selected to force the wave model was updated every 6 hours. Wave forecasting The WAM model is relatively slow to respond to rapidly variable wind events, particularly for limited fetches. This is the situation normally found in the North-western Mediterranean where atmospheric storms may last less than 12 hours and feature heavy land originated winds. The characterization and parameterization of conditions for such waves is far from straight forward and even the classical distintion between sea and swell needs a different threshold. In this context the wave-age parameter (wave celerity to wind spin ratio) can help to understand and parameterize the momentum transfer of wind to surface waves (Donelan, 1988). This can allow increasing the drag coefficient for younger seas, such as the ones presented in (Bortkovskii and Novak, 1993) or (Volkov, 2001). By selecting as test storms the ones recorded by buoys in November 2001 and March/April 2002, the paper will show an analysis of wave-age and wave prediction quality for these two periods. Discussion The obtained simulations show that the more complex sea states are well correlated with higher error bounds. This suggests using the wave-age parameter for parameterizing the momentum transfer and even various other related parameters involved in wave predictions. This also
Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.
Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe
2014-09-01
The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics. PMID:25314555
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.
Upper atmospheric planetary-wave and gravity-wave observations
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.
Are Electron Partial Waves Real
NASA Astrophysics Data System (ADS)
Yenen, O.; McLaughlin, K. W.
2005-05-01
Experiments determining the partial wave content of electrons are uncommon. The standard approach to partial wave expansion of the wavefunction of electrons often ignores their spin. In this non-relativistic approximation the partial waves are labeled by their orbital angular momentum quantum number, e.g. d-waves. As our previous work has shown, this non-relativistic approximation usually fails for photoelectrons. Partial waves should be further specified by their total angular momentum. With d-waves for example, one would need to distinguish between d3/2 and d5/2 partial waves. Although energetically degenerate, fully relativistic d3/2 and d5/2 partial waves of photoelectrons have fundamentally different angular distributions. Using experimental and theoretical methods we have developed, we obtain partial wave probabilities of photoelectrons from polarization measurements of ionic fluorescence. We found that for selected states of the residual ion, there are energy regions where the photoelectron is in a single partial wave with predictable angular distributions.
One-dimensional wave turbulence
NASA Astrophysics Data System (ADS)
Zakharov, Vladimir; Dias, Frédéric; Pushkarev, Andrei
2004-08-01
The problem of turbulence is one of the central problems in theoretical physics. While the theory of fully developed turbulence has been widely studied, the theory of wave turbulence has been less studied, partly because it developed later. Wave turbulence takes place in physical systems of nonlinear dispersive waves. In most applications nonlinearity is small and dispersive wave interactions are weak. The weak turbulence theory is a method for a statistical description of weakly nonlinear interacting waves with random phases. It is not surprising that the theory of weak wave turbulence began to develop in connection with some problems of plasma physics as well as of wind waves. The present review is restricted to one-dimensional wave turbulence, essentially because finer computational grids can be used in numerical computations. Most of the review is devoted to wave turbulence in various wave equations, and in particular in a simple one-dimensional model of wave turbulence introduced by Majda, McLaughlin and Tabak in 1997. All the considered equations are model equations, but consequences on physical systems such as ocean waves are discussed as well. The main conclusion is that the range in which the theory of pure weak turbulence is valid is narrow. In general, wave turbulence is not completely weak. Together with the weak turbulence component, it can include coherent structures, such as solitons, quasisolitons, collapses or broad collapses. As a result, weak and strong turbulence coexist. In situations where coherent structures cannot develop, weak turbulence dominates. Even though this is primarily a review paper, new results are presented as well, especially on self-organized criticality and on quasisolitonic turbulence.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Wave and particle dynamics of the beat-wave accelerator
Gibbon, P. )
1989-10-15
We present two-dimensional wave-envelope studies of the interaction between a plasma beat-wave and the laser pumps which drive it. A new method of focusing is demonstrated which requires the plasma wave to be driven slightly below its resonant frequency. Test particles are employed to investigate possible means of extending the accelerator stage length. {copyright} 1989 American Institute of Physics
NASA Astrophysics Data System (ADS)
Trigg, Mark A.; Wilson, Matthew D.; Bates, Paul D.; Horritt, Matthew S.; Alsdorf, Douglas E.; Forsberg, Bruce R.; Vega, Maria C.
2009-07-01
SummaryA bathymetric survey of 575 km of the central Amazon River and one of its tributaries, the Purus, are combined with gauged data to characterise the Amazon flood wave, and for hydraulic modelling of the main channel for the period June 1995-March 1997 with the LISFLOOD-FP and HEC-RAS hydraulic models. Our investigations show that the Amazon flood wave is subcritical and diffusive in character and, due to shallow bed slopes, backwater conditions control significant reach lengths and are present for low and high water states. Comparison of the different models shows that it is necessary to include at least the diffusion term in any model, and the RMSE error in predicted water elevation at all cross sections introduced by ignoring the acceleration and advection terms is of the order of 0.02-0.03 m. The use of a wide rectangular channel approximation introduces an error of 0.10-0.15 m on the predicted water levels. Reducing the bathymetry to a simple bed slope and with mean cross section only, introduces an error in the order of 0.5 m. These results show that when compared to the mean annual amplitude of the Amazon flood wave of 11-12 m, water levels are relatively insensitive to the bathymetry of the channel model. The implication for remote sensing studies of the central Amazon channel, such as those proposed with the Surface Water and Ocean Topography mission (SWOT), is that even relatively crude assumptions regarding the channel bathymetry will be valid in order to derive discharge from water surface slope of the main channel, as long as the mean channel area is approximately correct.
Hydrodynamic Performance of a Wave Energy Converter
NASA Astrophysics Data System (ADS)
Yang, Yingchen
2010-11-01
To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1972-01-01
A working report is presented in order to document early results of research on the stability of laminar boundary layers. The report shows that constitutive equations for a structured continua may be derived by the technique of reinterpreting velocity in the conventional stress to rate-of-strain relationship so as to account for effects of particle rotation. It is demonstrated that accounting for particle structure even at a molecular level makes the fluid viscoelastic with the ability to propagate vector waves. It is shown that particle structure modifies the basic stability equation for the system, which in turn would alter values for critical Reynolds number.
Ion wave breaking acceleration
NASA Astrophysics Data System (ADS)
Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.
2016-07-01
Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.
NASA Astrophysics Data System (ADS)
Gokhberg, M. B.
1983-07-01
Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.
Energy Science and Technology Software Center (ESTSC)
2015-02-16
The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less
2015-02-16
The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce the time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.
Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.
2015-03-01
The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.
Iterated multidimensional wave conversion
NASA Astrophysics Data System (ADS)
Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.
2011-12-01
Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng
2011-01-01
We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.
Conversion of borehole Stoneley waves to channel waves in coal
Johnson, P.A.; Albright, J.N.
1987-01-01
Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.
Gabor Wave Packet Method to Solve Plasma Wave Equations
A. Pletzer; C.K. Phillips; D.N. Smithe
2003-06-18
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach.
Midlatitude Rossby wave forcing of equatorial Kelvin waves
NASA Astrophysics Data System (ADS)
Biello, J. A.; Kiladis, G. N.; Back, A.
2015-12-01
Observations strongly suggest that convectively coupled Kelvin waves can be generated by extratropical wave activity. This mechanism is particularly efficient over Australia, where wave activity appears immediately after the extratropical Rossby waves propagate into the region during the Austral winter. This interaction occurs where the zonal wind is strongly sheared both in the meridional and vertical directions. In order to understand this phenomenon the authors study the linear primitive equations in the presence of barotropic and baroclinic shear and the dispersion characteristics of the sheared Matsuno modes are calculated. Depending on the shear strength, the waves are stable or unstable and can be categorized into three groups. First there are the classical Matsuno modes modified by shear. Second there are extratropical "free" Rossby waves. Third, there are Rossby waves meridionally confined to the shear layer - these latter modes can be unstable, or stable and part of the continuous spectrum. In examples where the zonal winds are barotropically and baroclinically stable, we show that a continuous spectrum of Rossby waves exists. If the zonal winds are strong enough, the Rossby waves in the continuous spectrum have an equatorial signature exactly like the Matsuno Kelvin wave - despite the fact that, in these examples, the Matsuno Kelvin wave also exists on its own and that all modes are stable. For stronger shears, these continuous spectrum modes become unstable. Although the appear similar to Sakai's Rossby/Kelvin instability, their existence arises from a completely different phenomenon. The Sakai instability requires the frequency of a stable equatorial Rossby mode to coincide with the stable Kelvin wave frequency in order for the two modes to create a stable/unstable pair. Our results show that unstable Rossby waves need only have their frequencies Doppler shifted to that of the Kelvin wave frequency by the underlying shear in order that they acquire a
Helical localized wave solutions of the scalar wave equation.
Overfelt, P L
2001-08-01
A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch. PMID:11488494
Solitary waves in particle beams
Bisognano, J.J.
1996-07-01
Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally.
Plasma waves near the magnetopause
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Eastman, T. E.; Harvey, C. C.; Hoppe, M. M.; Tsurutani, B. T.; Etcheto, J.
1982-01-01
Plasma waves associated with the magnetosphere from the magnetosheath to the outer magnetosphere are investigated to obtain a clear definition of the boundaries and regions, to characterize the waves observed in these regions, to determine which wave modes are present, and to determine their origin. Emphasis is on high time resolution data and a comparison between measurements by different antenna systems. It is shown that the magnetosheath flux transfer events, the magnetopause current layer, the outer magnetosphere, and the boundary layer can be identified by their magnetic field and plasma wave characteristics, as well as by their plasma and energetic particle signatures. The plasma wave characteristics in the current layer and in the boundary layer are very similar to the features in the flux transfer events, and upon entry into their outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrostatic emissions.
Random focusing of tsunami waves
NASA Astrophysics Data System (ADS)
Degueldre, Henri; Metzger, Jakob J.; Geisel, Theo; Fleischmann, Ragnar
2016-03-01
Tsunamis exhibit surprisingly strong height fluctuations. An in-depth understanding of the mechanisms that lead to these variations in wave height is a prerequisite for reliable tsunami forecasting. It is known, for example, that the presence of large underwater islands or the shape of the tsunami source can affect the wave heights. Here we show that the consecutive effect of even tiny fluctuations in the profile of the ocean floor (the bathymetry) can cause unexpectedly strong fluctuations in the wave height of tsunamis, with maxima several times higher than the average wave height. A novel approach combining stochastic caustic theory and shallow water wave dynamics allows us to determine the typical propagation distance at which the strongly focused waves appear. We demonstrate that owing to this mechanism the small errors present in bathymetry measurements can lead to drastic variations in predicted tsunami heights. Our results show that a precise knowledge of the ocean's bathymetry is absolutely indispensable for reliable tsunami forecasts.
WINDII atmospheric wave airglow imaging
Armstrong, W.T.; Hoppe, U.-P.; Solheim, B.H.; Shepherd, G.G.
1996-12-31
Preliminary WINDII nighttime airglow wave-imaging data in the UARS rolldown attitude has been analyzed with the goal to survey gravity waves near the upper boundary of the middle atmosphere. Wave analysis is performed on O[sub 2](0,0) emissions from a selected 1[sup 0] x 1[sup 0] oblique view of the airglow layer at approximately 95 km altitude, which has no direct earth background and only an atmospheric background which is optically thick for the 0[sub 2](0,0) emission. From a small data set, orbital imaging of atmospheric wave structures is demonstrated, with indication of large variations in wave activity across land and sea. Comparison ground-based imagery is discussed with respect to similarity of wave variations across land/sea boundaries and future orbital mosaic image construction.
Investigation of Pressurized Wave Bearings
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dimofte, Florin
2003-01-01
The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.
Coherent Waves in Seismic Researches
NASA Astrophysics Data System (ADS)
Emanov, A.; Seleznev, V. S.
2013-05-01
Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of
Smith, R.W.
1980-08-01
Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.
Martinez, D.; Hartigan, P.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Foster, J.; Wilde, B.; Blue, B.; et al
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less
1935-01-01
It is submitted that the thermal action of short-wave therapy does not account for the therapeutic results obtained. The theory is put forward that many of the results obtained can be better explained by the disruptive and dispersive action of the impact of the electromagnetic vibrations. An analogy, indicating such disruptive effects at high frequency, is drawn from the molecular vibrations—transmitted through transformer oil, and excited by the application of high frequency currents to the layers of quartz in the piezo-electric oscillator of quartz. It is submitted that these disruptive and dispersive effects will be greatest where the conductivity of the tissues is low, such as in bones and fat, and it is shown that it is in these regions that the therapeutic action of these currents is most obvious. It is also pointed out that, if effects, comparable to those obtained in the subcutaneous area, are obtained in the deeper tissues and organs, the application of deep-wave therapy would be attended by serious risk. PMID:19990107
Rarefaction wave gun propulsion
NASA Astrophysics Data System (ADS)
Kathe, Eric Lee
A new species of gun propulsion that dramatically reduces recoil momentum imparted to the gun is presented. First conceived by the author on 18 March 1999, the propulsion concept is explained, a methodology for the design of a reasonable apparatus for experimental validation using NATO standard 35mm TP anti-aircraft ammunition is developed, and the experimental results are presented. The firing results are juxtaposed by a simple interior ballistic model to place the experimental findings into a context within which they may better be understood. Rarefaction wave gun (RAVEN) propulsion is an original contribution to the field of armament engineering. No precedent is known, and no experimental results of such a gun have been published until now. Recoil reduction in excess of 50% was experimentally achieved without measured loss in projectile velocity. RAVEN achieves recoil reduction by means of a delayed venting of the breech of the gun chamber that directs the high enthalpy propellant gases through an expansion nozzle to generate forward thrust that abates the rearward momentum applied to the gun prior to venting. The novel feature of RAVEN, relative to prior recoilless rifles, is that sufficiently delayed venting results in a rarefaction wave that follows the projectile though the bore without catching it. Thus, the projectile exits the muzzle without any compromise to its propulsion performance relative to guns that maintain a sealed chamber.
Rotational waves in geodynamics
NASA Astrophysics Data System (ADS)
Gerus, Artyom; Vikulin, Alexander
2015-04-01
The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)
NASA Astrophysics Data System (ADS)
Balmforth, N. J.; Liu, J. J.
2004-11-01
The stability of a viscoplastic fluid film falling down an inclined plane is explored, with the aim of determining the critical Reynolds number for the onset of roll waves. The Herschel Bulkley constitutive law is adopted and the fluid is assumed two-dimensional and incompressible. The linear stability problem is described for an equilibrium in the form of a uniform sheet flow, when perturbed by introducing an infinitesimal stress perturbation. This flow is stable for very high Reynolds numbers because the rigid plug riding atop the fluid layer cannot be deformed and the free surface remains flat. If the flow is perturbed by allowing arbitrarily small strain rates, on the other hand, the plug is immediately replaced by a weakly yielded ‘pseudo-plug’ that can deform and reshape the free surface. This situation is modelled by lubrication theory at zero Reynolds number, and it is shown how the fluid exhibits free-surface instabilities at order-one Reynolds numbers. Simpler models based on vertical averages of the fluid equations are evaluated, and one particular model is identified that correctly predicts the onset of instability. That model is used to describe nonlinear roll waves.
Holographic p -wave superfluid
NASA Astrophysics Data System (ADS)
Wu, Ya-Bo; Lu, Jun-Wang; Zhang, Wen-Xin; Zhang, Cheng-Yuan; Lu, Jian-Bo; Yu, Fang
2014-12-01
In the probe limit, we numerically construct a holographic p -wave superfluid model in the four-dimensional (4D) and five-dimensional (5D) anti-de Sitter black holes coupled to a Maxwell-complex vector field. We find that, for the condensate with the fixed superfluid velocity, the results are similar to the s -wave cases in both 4D and 5D spacetimes. In particular, the Cave of Winds and the phase transition, always being of second order, take place in the 5D case. Moreover, we find that the translating superfluid velocity from second order to first order S/yμ increases with the mass squared. Furthermore, for the supercurrent with fixed temperature, the results agree with the Ginzburg-Landau prediction near the critical temperature. In addition, this complex vector superfluid model is still a generalization of the SU(2) superfluid model, and it also provides a holographic realization of the H e3 superfluid system.
NASA Astrophysics Data System (ADS)
Walsh, J. E.
1982-11-01
Cerenkov Masers, which are mildly relativistic (100-200 KV), moderate-current, electron-beam (1-20A)-driven dielectric resonators, have been used to produce multihendred kW power levels in the middle part of the mm wavelength range. The devices make use of the fact that the evanescence scale length in the transverse direction of a slow wave is given by (lambda)(beta)(gamma) lambda - wavelength, beta velocity measured in units of the speed of light, gamma = 1/sg. root of(1-beta squared). The scaling (lambda)(beta)(gamma) approx. 1 will maintain good beam-to-wave-coupling in the mm range, while also maintaining convenient transverse resonator dimension. A variety of configurations and modifications are considered and discussed in detail. All experimental results presented pertain to oscillator configurations of the basic device. The basic interaction can, however, be used as the basis of an amplifier and a theoretical analysis of such a device is presented.
Volcanoes generate devastating waves
Lockridge, P. )
1988-01-01
Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.
NASA Astrophysics Data System (ADS)
Hartigan, P.; Foster, J.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Wilde, B.; Blue, B.; Martinez, D.; Rosen, P.; Farley, D.; Paguio, R.
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.
Holmes, W.A.
1986-12-09
A device is described to convert the motion of waves in a body of water to other forms of energy comprising: a. vertical supports fixed to the bottom of the body of water, b. rail means supported by the vertical supports, c. a frame fixed to the vertical supports at an elevation above the surface of the body of water, d. a shaft supported on the frame to rotate, e. rotating means fixed to the shaft, f. a float engaged with the rail means to move vertically up and down from the influence of waves, the float carrying actuating means in the form of two vertical racks pivotally connected to the float and with their upper extremities pivotally connected to a common link. One of the racks is adapted to drive the rotating means on an upstroke of the float and the other of the racks to drive the rotating means on a downstroke of the float. The actuating means cooperates with the rotating means to cause the rotating means to rotate unidirectionally during a power stroke of the actuating means, g. a power take-off from the shaft, and h. the float having a skirt fixed to the bottom thereof, the skirt having means to vent the space beneath it.
Waves and instabilities in plasmas
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Quantum Emulation of Gravitational Waves
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Infragravity waves across the oceans
NASA Astrophysics Data System (ADS)
Rawat, Arshad; Ardhuin, Fabrice; Aucan, Jerome
2014-05-01
The propagation of transoceanic Infragravity (IG) wave was investigated using a global spectral wave model together with deep-ocean pressure recorders. IG waves are generated mostly at the shorelines due to non-linear hydrodynamic effects that transfer energy from the main windsea and swell band, with periods of 1 to 25 s, to periods up to 500 s. IG waves are important for the study of near-shore processes and harbor agitation, and can also be a potential source of errors in satellite altimetry measurements. Setting up a global IG model was motivated by the investigation of these errors for the future planned SWOT mission. Despite the fact that the infragravity waves exhibit much smaller vertical amplitudes than the usual high frequency wind-driven waves, of the order of 1 cm in the deep oceans, their propagation throughout the oceans and signature in the wave spectrum can be clearly observed. Using a simplified empirical parameterization of the nearshore source of free IG waves as a function of the incoming wave parameters we extended to WAVEWATCH III model, used so far for windseas and swell, to the IG band, up to periods of 300 s. The spatial and temporal variability of the modeled IG energy was well correlated to the DART station records, making it useful to interpret the records of IG waves. Open ocean IG wave records appear dominated by trans-oceanic events with well defined sources concentrated on a few days, usually on West coasts, and affecting the entire ocean basin, with amplitude patterns very similar to those of tsunamis. Three particular IG bursts during 2008 are studied, 2 in the Pacific Ocean and 1 in the North Atlantic. It was observed that the liberated IG waves can travel long distances often crossing whole oceans with negligible dissipation. The IG signatures are clearly observed at sensors along their propagation paths.
Conformal Gravity and Gravitational Waves
NASA Astrophysics Data System (ADS)
Fabbri, Luca; Paranjape, M. B.
We consider monochromatic, plane gravitational waves in a conformally invariant theory of general relativity. We show that the simple, standard ansatz for the metric, usually that which is taken for the linearized theory of these waves, is reducible to the metric of Minkowski spacetime via a sequence of conformal and coordinate transformations. This implies that we have in fact, exact plane wave solutions. However they are simply coordinate/conformal artifacts. As a consequence, they carry no energy.
Quantitative wave-particle duality
NASA Astrophysics Data System (ADS)
Qureshi, Tabish
2016-07-01
The complementary wave and particle character of quantum objects (or quantons) was pointed out by Niels Bohr. This wave-particle duality, in the context of the two-slit experiment, is here described not just as two extreme cases of wave and particle characteristics, but in terms of quantitative measures of these characteristics, known to follow a duality relation. A very simple and intuitive derivation of a closely related duality relation is presented, which should be understandable to the introductory student.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Wave energy: a Pacific perspective.
Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen
2012-01-28
This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy. PMID:22184673
Effects of Wave Nonlinearity on Wave Attenuation by Vegetation
NASA Astrophysics Data System (ADS)
Wu, W. C.; Cox, D. T.
2014-12-01
The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell
Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves
NASA Technical Reports Server (NTRS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-01-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.
Wave propagation in solids and fluids
Davis, J. L.
1988-01-01
The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.
Wave energy and intertidal productivity
Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.
1987-01-01
In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813
Source modeling sleep slow waves
Murphy, Michael; Riedner, Brady A.; Huber, Reto; Massimini, Marcello; Ferrarelli, Fabio; Tononi, Giulio
2009-01-01
Slow waves are the most prominent electroencephalographic (EEG) feature of sleep. These waves arise from the synchronization of slow oscillations in the membrane potentials of millions of neurons. Scalp-level studies have indicated that slow waves are not instantaneous events, but rather they travel across the brain. Previous studies of EEG slow waves were limited by the poor spatial resolution of EEGs and by the difficulty of relating scalp potentials to the activity of the underlying cortex. Here we use high-density EEG (hd-EEG) source modeling to show that individual spontaneous slow waves have distinct cortical origins, propagate uniquely across the cortex, and involve unique subsets of cortical structures. However, when the waves are examined en masse, we find that there are diffuse hot spots of slow wave origins centered on the lateral sulci. Furthermore, slow wave propagation along the anterior−posterior axis of the brain is largely mediated by a cingulate highway. As a group, slow waves are associated with large currents in the medial frontal gyrus, the middle frontal gyrus, the inferior frontal gyrus, the anterior cingulate, the precuneus, and the posterior cingulate. These areas overlap with the major connectional backbone of the cortex and with many parts of the default network. PMID:19164756
Current drive by helicon waves
Paul, Manash Kumar; Bora, Dhiraj
2009-01-01
Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due to the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.
Properties of resonance wave functions.
NASA Technical Reports Server (NTRS)
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
Wave propagation in isogrid structures
NASA Astrophysics Data System (ADS)
Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon
2011-04-01
This work focuses on an analysis of wave propagation in isogrid structures as it relates to Structural Health Monitoring (SHM) methods. Assembly, integration, and testing (AI&T) of satellite structures in preparation for launch includes significant time for testing and reworking any issues that may arise. SHM methods are being investigated as a means to validate the structure during assembly and truncate the number of tests needed to qualify the structure for the launch environment. The most promising of these SHM methods uses an active wave-based method in which an actuator propagates a Lamb wave through the structure; the Lamb wave is then received by a sensor and evaluated over time to detect structural changes. To date this method has proven effective in locating structural defects in a complex satellite panel; however, the attributes associated with the first wave arrival change significantly as the wave travels through ribs and joining features. Previous studies have been conducted in simplified ribbed structures, giving initial insight into the complex wave propagation phenomena. In this work, the study has been extended numerically to the isogrid plate case. Wave propagation was modeled using commercial finite element analysis software. The results of the analyses offer further insight into the complexities of wave propagation in isogrid structures.
Guided acoustic wave inspection system
Chinn, Diane J.
2004-10-05
A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.
Stabilized wave segments in an excitable medium with a phase wave at the wave back
NASA Astrophysics Data System (ADS)
Zykov, V. S.; Bodenschatz, E.
2014-04-01
The propagation velocity and the shape of a stationary propagating wave segment are determined analytically for excitable media supporting excitation waves with trigger fronts and phase backs. The general relationships between the medium's excitability and the wave segment parameters are obtained in the framework of the free boundary approach under quite usual assumptions. Two universal limits restricting the region of existence of stabilized wave segments are found. The comparison of the analytical results with numerical simulations of the well-known Kessler-Levine model demonstrates their good quantitative agreement. The findings should be applicable to a wide class of systems, such as the propagation of electrical waves in the cardiac muscle or wave propagation in autocatalytic chemical reactions, due to the generality of the free-boundary approach used.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
NASA Astrophysics Data System (ADS)
Ghezali, S.; Taleb, A.
2008-09-01
A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely
Novel itinerant transverse spin waves
NASA Astrophysics Data System (ADS)
Feldmann, John Delaney
In 1956, Lev Davidovich Landau put forth his theory on systems of interacting fermions, or fermi liquids. A year later, Viktor Pavlovich Silin described spin waves that such a system of fermions would support. The treatment of the contribution of the molecular field to the spin wave dispersion was a novel aspect of these spin waves. Silin predicted that there would exist a hierarchy of spin waves in a fermi liquid, one for each component of the spherical harmonic expansion of the fermi surface. In 1968, Anthony J. Leggett and Michael J. Rice derived from fermi liquid theory how the behavior of the spin diffusion coefficient of a fermi liquid could be directly experimentally observable via the spin echo effect [24]. Their prediction, that the diffusion coefficient of a fermi liquid would not decay exponentially with temperature, but rather would have a maximum at some non-zero temperature, was a direct consequence of the fermi liquid molecular field and spin wave phenomena, and this was corroborated by experiment in 1971 by Corruccini, et al. [13]. A parallel advancement in the theory of fermi liquid spin waves came with the extension of the theory to describe weak ferromagnetic metals. In 1959, Alexei Abrikosov and I. E. Dzyaloshiski put forth a theoretical description of a ferromagnetic fermi liquid [1]. In 2001, Kevin Bedell and Krastan Blagoev showed that a non-trivial contribution to the dispersion of the ferromagnetic current spin wave arises from the necessary consideration of higher harmonic moments in the distortion of the fermi surface from its ground state [8]. In the chapters to follow, the author presents new results for transverse spin waves in a fermi liquid, which arise from a novel ground state of a fermi liquid-one in which an l = 1 harmonic distortion exists in the ground state polarization. It is shown that such an instability can lead to spin waves with dispersions that are characterized by a linear dependence on the wave number at long
Advanced millimeter wave chemical sensor.
Gopalsami, N.
1999-03-24
This paper discusses the development of an advanced millimeter-wave (mm-wave) chemical sensor and its applications for environmental monitoring and arms control treaty verification. The purpose of this work is to investigate the use of fingerprint-type molecular rotational signatures in the mm-wave spectrum to sense airborne chemicals. The mm-wave spectrum to sense airborne chemicals. The mm-wave sensor, operating in the frequency range of 220-300 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the mm-wave sensor is a monostatic swept-frequency radar consisting of a mm-wave sweeper, a hot-electron-bolometer or Schottky barrier detector, and a trihedral reflector. The chemical plume to be detected is situated between the transmitter/detector and the reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this work by designing a fast sweeping source over a broad frequency range. The heart of the system is a Russian backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the Russian BWO tube, a mm-wave radar system was built and field-tested at the DOE Nevada Test Site at a standoff distance of 60 m. The mm-wave system detected chemical plumes very well; the detection sensitivity for polar molecules like methyl chloride was down to a concentration of 12 ppm.
Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.
Beating HF waves to generate VLF waves in the ionosphere
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John
2012-03-01
Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.
Standing wave tube electro active polymer wave energy converter
NASA Astrophysics Data System (ADS)
Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.
2012-04-01
Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.
The role of wave-wave interaction during stratospheric splits
NASA Astrophysics Data System (ADS)
Miller, Andreas; Plumb, Alan
2016-04-01
Sudden Stratospheric Warmings (SSWs) are the most studied example of troposphere-stratosphere coupling. They are often categorized as either splits (dominated by wavenumber 2) or displacements (wavenumber 1) and many studies (e.g. Charlton and Polvani (2007)) found statistically significant differences between the zonal wind fields and associated momentum fluxes. These differences are observed from the stratosphere to the surface. Our study focuses on how wave-wave interactions within the stratosphere can determine the type of SSW. We derive an energy budget for each wavenumber that allows us to quantify the major stratospheric processes within each wavenumber as well as the energy transfer from one wavenumber into another. Calculating these budgets, using MERRA reanalysis data, we find that for many split events the energy flux into the stratosphere is predominantly in wavenumber one. Thus, wave-wave interactions within the stratosphere, which can flux energy between wavenumbers, play a key role in splitting the polar stratospheric vortex. However, the signal is weak when we calculate composites over all splits as the timing of wave-wave interactions is unrelated to classic definitions (e.g. central date) highlighting the need for a dynamically more meaningful definition of SSWs. In order to better understand the role of wave-wave interactions, we employ GFDL's FMS shallow water model to simulate the stratospheric vortex under idealized forcings (similar to Polavani et al. (1994)). Contrary to many other idealized experiments, we are able to simulate both types of warmings with pure wavenumber one or two forcings. We further explore the strength of the necessary forcing to cause stratospheric splits in relation to the state of of the polar vortex. These results are compared to the work of Matthewman and Esler (2011) on splits being a result of resonance. We finally use the energy budget described above to determine the importance of wave-wave interaction in this
Ion cyclotron waves at Mars: Occurrence and wave properties
NASA Astrophysics Data System (ADS)
Wei, H. Y.; Cowee, M. M.; Russell, C. T.; Leinweber, H. K.
2014-07-01
Ion cyclotron waves (ICWs) are generated during the interaction between the solar wind and the Martian exosphere in a process called ion pickup. Mars Global Surveyor (MGS) detected waves near the proton gyrofrequency, indicating pickup of the exospheric hydrogen. To analyze these waves, we first improve the zero levels of the MGS magnetic field data taken during the first aerobreaking phase and then perform a statistical study of the ICWs observed from just outside the Martian bow shock to over 14 Mars radii away. These ICW events typically last for 5 to 30 min but can occasionally last for hours. The wave power decreases slowly with distance on both the upstream and downstream sides. From the variation of wave properties with the strength of the background field, we find that there are likely still remaining offsets in at least some the data sets even after applying our calibration technique. Thus, we use the events with a strong background field to examine the wave properties that depend on an accurate determination of the field direction and strength. We find the pickup angle associated with the largest occurrence rate of ICWs to be around 45°, but neither the wave amplitude, nor wave frequency, nor wave duration appear to vary with pickup angle. Finally, we find the waves with background field strength greater than 4 nT occur on both the positive and negative electric field sides of Mars but have a larger occurrence rate on the side of Mars in the positive electric field direction (which is defined as the direction of the cross product of the magnetic field vector and solar wind flow vector).
Three-dimensional freak waves and higher-order wave-wave resonances
NASA Astrophysics Data System (ADS)
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995
NASA Technical Reports Server (NTRS)
1999-01-01
This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.
The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.
Localized wave pulse experiments
Chambers, D L; Henderson, T L; Krueger, K L; Lewis, D K; Zilkowski, R N
1999-06-01
The Localized Wave project of the Strategic System Support Program has recently finished an experiment in cooperation with the Advanced SONAR group of the Applied Research Laboratory of the University of Texas at Austin. The purpose of the experiment was three-fold. They wanted to see if (1) the LW pulse could propagate over significant distances, to see if (2) a new type of array and drive system specifically designed for the pulse would increase efficiency over single frequency tone bursts, and to see if (3) the complexity of our 24 channel drivers resulted in better efficiency than a single equivalent pulse driving a piston. In the experiment, several LW pulses were launched from the Lake Travis facility and propagated over distances of either 100 feet or 600 feet, through a thermocline for the 600 foot measurements. The results show conclusively that the Localized Wave will propagate past the near field distance. The LW pulses resulted in extremely broad frequency band width pulses with narrow spatial beam patterns and unmeasurable side lobes. Their array gain was better than most tone bursts and further, were better than their equivalent piston pulses. This marks the first test of several Low Diffraction beams against their equivalent piston pulses, as well as the first propagation of LW pulses over appreciable distances. The LW pulse is now proven a useful tool in open water, rather than a laboratory curiosity. The experimental system and array were built by ARL, and the experiments were conducted by ARL staff on their standard test range. The 600 feet measurements were made at the farthest extent of that range.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
Magnetodynamic waves in the air
NASA Astrophysics Data System (ADS)
Korolev, Alexander I.
2013-02-01
The paper describes experiments to search for a variable magnetic field close to a rechargeable conductive flat plate and a ball in the air, as well as an experiment looking for a variable electric field near a rotating permanent magnet. It has been found that variable electric and magnetic fields do not induce each other within the measurement error. It means that rotary Maxwell's equations are not applicable in the near-field zone and the classical concept of displacement current in vacuum (air) has no physical meaning. A conclusion is made on the existence of transverse magnetodynamic waves. Statics and dynamics of the magnetic field near the permanent magnet rod are investigated experimentally. The methods to compute magnetodynamic waves from any source are presented. Four types of polarization of these waves are identified: linear, circular, toroidal and mixed. Concentration and deflection of magnetodynamic waves are observed on introducing inhomogeneity in the form of a ferrite rod into their propagation way, which is similar to diffraction in optics. Secondary magnetodynamic waves from the induced magnetic moments in atoms of ferrite are registered near its surface, which is like reflection in optics. Some ideas for observation of effects similar to dispersion and interference are presented for magnetodynamic waves. The structure and properties of electrodynamic, magnetodynamic and electromagnetic waves are discussed. The ideas of experiments to search for their unknown properties are described. In conclusion, technical applications of magnetodynamic waves such as magnetography, magnetic tomography and other are considered.
Drift waves in rotating plasmas
Horton, W.; Liu, J.
1983-09-01
The stability of the electron drift wave is investigated in the presence of E x B plasma rotation typical of the central cell plasma in tandem mirrors. It is shown that a rotationally-driven drift wave may occur at low azimuthal mode numbers. Conditions for rotational instabilities are derived. Quasilinear formulas are given for the anomalous transport associated with the unstable fluctuations.
Rogue Waves and Modulational Instability
NASA Astrophysics Data System (ADS)
Zakharov, V. E.; Dyachenko, A.
2015-12-01
The most plausible cause of rogue wave formation in a deep ocean is development of modulational instability of quasimonochromatic wave trains. An adequate model for study of this phenomenon is the Euler equation for potential flow of incompressible fluid with free surface in 2-D geometry. Numerical integration of these equations confirms completely the conjecture of rogue wave formation from modulational instability but the procedure is time consuming for determination of rogue wave appearance probability for a given shape of wave energy spectrum. This program can be realized in framework of simpler model using replacement of the exact interaction Hamiltonian by more compact Hamiltonian. There is a family of such models. The popular one is the Nonlinear Schrodinger equation (NLSE). This model is completely integrable and suitable for numerical simulation but we consider that it is oversimplified. It misses such important phenomenon as wave breaking. Recently, we elaborated much more reliable model that describes wave breaking but is as suitable as NLSE from the point of numerical modeling. This model allows to perform massive numerical experiments and study statistics of rogue wave formation in details.
ERIC Educational Resources Information Center
Shipman, Bob
2006-01-01
When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of
Planar Reflection of Detonations Waves
NASA Astrophysics Data System (ADS)
Damazo, Jason; Shepherd, Joseph
2012-11-01
An experimental study examining normally reflected gaseous detonation waves is undertaken so that the physics of reflected detonations may be understood. Focused schlieren visualization is used to describe the boundary layer development behind the incident detonation wave and the nature of the reflected shock wave. Reflected shock wave bifurcation-which has received extensive study as it pertains to shock tube performance-is predicted by classical bifurcation theory, but is not observed in the present study for undiluted hydrogen-oxygen and ethylene-oxygen detonation waves. Pressure and thermocouple gauges are installed in the floor of the detonation tube so as to examine both the wall pressure and heat flux. From the pressure results, we observe an inconsistency between the measured reflected shock speed and the measured reflected shock strength with one dimensional flow predictions confirming earlier experiments performed in our laboratory. This research is sponsored by the DHS through the University of Rhode Island, Center of Excellence for Explosives Detection.
Korneev, Valeri A [LaFayette, CA
2009-05-05
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Integrated coherent matter wave circuits
NASA Astrophysics Data System (ADS)
Ryu, C.; Boshier, M. G.
2015-09-01
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. Here we report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. The source of coherent matter waves is a Bose-Einstein condensate (BEC). We launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.
Korneev, Valeri A.; Bakulin, Andrey
2009-10-13
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Stigloher, J; Decker, M; Körner, H S; Tanabe, K; Moriyama, T; Taniguchi, T; Hata, H; Madami, M; Gubbiotti, G; Kobayashi, K; Ono, T; Back, C H
2016-07-15
We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications. PMID:27472134
Electrostatic waves in the magnetosphere.
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.
1972-01-01
Electric dipole antennas on magnetospheric spacecraft measure E field components of many kinds of electromagnetic waves. In addition, lower hybrid resonance emissions are frequently observed well above the ionosphere. The Ogo 5 plasma wave experiment has also detected new forms of electrostatic emissions that appear to interact very strongly with the local plasma particles. Greatly enhanced wave amplitudes have been found during the expansion phases of substorms, and analysis indicates that these emissions produce strong pitch angle diffusion. Intense broadband electrostatic turbulence is also detected at current layers containing steep magnetic field gradients. This current-driven instability is operative at the bow shock and also at field null regions just within the magnetosheath, and at the magnetopause near the dayside polar cusp. The plasma turbulence appears to involve ion acoustic waves, and the wave particle scattering provides an important collisionless dissipation mechanism for field merging.
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
NASA Astrophysics Data System (ADS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-08-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the
Millimeter-wave generation via plasma three-wave mixing
NASA Astrophysics Data System (ADS)
Schumacher, Robert W.; Santoru, Joseph
1988-06-01
Plasma three-wave mixing is a collective phenomena whereby electron-beam-driven electron plasma waves (EPWs) are nonlinearly coupled to an electromagnetic (EM) radiation field. The basic physics of three-wave mixing is investigated in the mm-wave regime and the scaling of mm-wave characteristics established with beam and plasma parameters. Our approach is to employ two counterinjected electron beams in a plasma-loaded circular waveguide to drive counterstreaming EPWs. The nonlinear coupling of these waves generates an EM waveguide mode which oscillates at twice the plasma frequency and is coupled out into rectangular waveguides. Independent control of the waveguide plasma, beam voltage, and beam current is exercised to allow a careful parametric investigation of beam transport, EPW dynamics and three-wave-mixing physics. The beam-plasma experiment, which employs a wire-anode discharge to generate high-density plasma in a 3.8 cm-diameter waveguide, has been used to generate radiation at frequencies from 7 to 60 GHz. Two cold-cathode, secondary-emission electron guns are used to excite the EPWs. Output radiation is observed only when both beams are injected, and the total beam current exceeds a threshold value of 3 A. The threshold is related to the self-magnetic pinch of each beam which increases the beam density and growth rate of the EPWs.
Modification of the edge wave in shock wave lithotripsy
NASA Astrophysics Data System (ADS)
Zhou, Yufeng
2012-10-01
To reduce the bubble cavitation and the consequent vascular injury of shock wave lithotripsy (SWL), a new method was devised to modify the diffraction wave generated at the aperture of a Dornier HM-3 lithotripter. Subsequently, the duration of the tensile wave was shortened significantly (3.2±0.54 μs vs. 5.83±0.56 μs). However, the amplitude and duration of the compressive wave of LSW between these two groups as well as the -6 dB beam width and the amplitude of the tensile wave are almost unchanged. The suppression on bubble cavitation was confirmed using the passive cavitation technique. At the lithotripter focus, while 30 shocks can cause rupture of blood vessel phantom using the HM-3 lithotripter at 20 kV; no rupture could be found after 300 shocks with the edge extender. On the other hand, after 200 shocks the HM-3 lithotripter at 20 kV can achieve a stone fragmentation of 50.4±2.0% on plaster-of-Paris stone phantom, which is comparable to that of using the edge extender (46.8±4.1%, p=0.005). Altogether, the modification on the diffraction wave at the lithotripter aperture can significantly reduce the bubble cavitation activities. As a result, potential for vessel rupture in shock wave lithotripsy is expected.
Wave "Coherency" and Implications for Wave-Particle Interactions
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang
2016-07-01
Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa. PMID:26420468
Analysis of spurious bulk waves in ball surface wave device.
Ishikawa, Satoru; Cho, Hideo; Tsukahara, Yusuke; Nakaso, Noritaka; Yamanaka, Kazushi
2003-01-01
We analyzed the acoustic waves propagating in a sphere to establish a useful guideline for the design of NDE apparatus and ball surface acoustic wave (SAW) device exploiting the diffraction-free propagation of SAW on a sphere. First, we calculated the laser-generated acoustic displacements both under ablation condition and under thermoelastic condition and verified experimentally the validity of the calculation. Next, the acoustic waves excited by out-of-plane stress and those excited by in-plane stress were compared. The results showed that when the out-of-plane stress was applied, the relative amplitudes of the bulk waves to that of the SAW were larger and the number of bulk waves was larger than that when the in-plane stress was applied, while the SAW had similar waveforms in each case. The ratio of the relative amplitude of the bulk waves for the out-of-plane stress and the in-plane stress was 3.1:1 at phi(1)=90 degrees and 1.67:1 at phi(1)=0 degrees. The large amplitude for the out-of-plane stress can be explained by wide directivities of bulk waves. Consequently, we found that it is necessary for ball SAW device to select a piezoelectric material and form of interdigital transducer so that the in-plane stress becomes dominant. PMID:12464407
Solitary waves and other long-wave phenomena
NASA Astrophysics Data System (ADS)
Chen, Hongqiu
This thesis studies solitary waves and other propagating disturbances with long wave-length and small amplitude. The KdV equation ut + ux + uux + uxxx = 0 and the RLW equation ut + ux + uux - uxxt = 0 are frequently used to model one-way propagation of inviscid water waves in a channel or long-crested waves in shallow water. The same principles which underlie their derivation also lead to the equation ut + ux + uux + uxtt = 0. Unlike the aforementioned two equations, the initial- value problem for this equation is somewhat subtle. Especially if used as a model for surface water waves, it relies strongly on the way the initial data is imposed. In particular, the analysis presented here shows clearly that formally small terms are not necessarily small and provides a somewhat surprising theory of comparison between the three equations. The Benjamin equation ut + ux - /alpha Lux + uux /pm /beta uxxx = 0 describes internal waves propagating on the interface between a shallow layer of fluid resting upon a heavier, deep layer. Surface tension effect are not ignored if the constant /beta > 0 while frequency dispersion brought on by finite-wavelength effects appear when /alpha > 0. The operator L is a Fourier multiplier defined in terms of Fourier transforms by /widehat[Lv](/xi) = /vert /xi/vert / v(/xi). Two techniques are used to deal with existence of solitary waves for this equation, namely, degree theory of positive operators and the concentration-compactness principle. These solitary-wave solutions decay to zero algebraically instead of exponentially at infinity because of the lack of smoothness of the symbol of L. These methods are extended to various other interesting systems of nonlinear dispersive wave equations, including the regularized Boussinesq and the Gear-Grimshaw systems. The essay concludes with a study of travelling-wave solutions of the generalized KdV-Burgers equation ut + upux - /mu uxx + uxxx = 0, which describes nonlinear dispersive waves suffering
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
NASA Astrophysics Data System (ADS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2008-06-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, resembles the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development within the critical layer is given by the intersection of the wave's critical latitude and trough axis, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally this "marsupial paradigm" one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. This translation requires an appropriate "gauge" that renders translating streamlines and isopleths of translating stream function approximately equivalent to flow trajectories. In the translating frame, the closed circulation is stationary, and a dividing streamline effectively separates air within the critical layer from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because it provides (i) a region of
Laurence, Stuart J; Deiterding, Ralf
2011-01-01
A phenomenon referred to as shock-wave surfing , in which a body moves in such a way as to follow the shock wave generated by another upstream body, is investigated numerically and theoretically. This process can lead to the downstream body accumulating a significantly higher lateral velocity than would otherwise be possible, and thus is of importance in situations such as meteoroid fragmentation, in which the fragment separation behaviour following disruption is determined to a large extent by aerodynamic effects. The surfing effect is first investigated in the context of interactions between a sphere and a planar oblique shock. Numerical simulations are performed and a simple theoretical model is developed to determine the forces acting on the sphere. A phase-plane description is employed to elucidate features of the system dynamics. The theoretical model is then generalised to the more complex situation of aerodynamic interactions between two spheres, and, through comparisons with further computations, is shown to adequately predict, in particular, the final separation velocity of the surfing sphere in initially touching configurations. Both numerical simulations and theory indicate a strong influence of the body radius ratio on the separation process and predict a critical radius ratio for initially touching fragments that delineates entrainment of the smaller fragment within the larger fragment s shock from expulsion; this critical ratio also results in the most extended surfing. Further, these results show that an earlier prediction for the separation velocity to scale with the square root of the radius ratio does not accurately describe the separation behaviour. The theoretical model is then employed to investigate initial configurations with varying relative sphere positions and initial velocities. A phase-space description is also shown to be useful in elucidating the dynamics of the sphere-sphere system. With regard to meteoroid fragmentation, it is shown
New wave effects in nonstationary plasma
Schmit, P. F.; Fisch, N. J.
2013-05-15
Through particle-in-cell simulations and analytics, a host of interesting and novel wave effects in nonstationary plasma are examined. In particular, Langmuir waves serve as a model system to explore wave dynamics in plasmas undergoing compression, expansion, and charge recombination. The entire wave life-cycle is explored, including wave excitation, adiabatic evolution and action conservation, nonadiabatic evolution and resonant wave-particle effects, collisional dissipation, and potential laboratory applications of the aforementioned phenomenology.
Dichromatic Langmuir waves in degenerate quantum plasma
Dubinov, A. E. Kitayev, I. N.
2015-06-15
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Ultrasonic guided wave nondestructive evaluation using generalized anisotropic interface waves
NASA Astrophysics Data System (ADS)
Gardner, Michael D.
The motivation for this work is a goal to inspect interfaces between thick layers of materials that can be anisotropic. The specific application is a thick composite bonded to a metal substrate. The interface is inspected for disbonds between the metal and composite. The large thickness allows the problem to be modeled as a half space. The theory behind guided waves in plates is presented. This theory includes the calculation and analysis of dispersion curves and the resulting wave structure. It is noted that for high frequency-thickness values, certain modes will converge to the half-space waves, e.g. the Rayleigh wave and the Stoneley wave. Points of high energy, especially shear energy, at the interface are desirable for interfacial inspection. Therefore, the wave structure for all modes and frequencies is searched for ideal inspection points. Interface waves are inherently good modes to use for interface inspection. Results from the dispersion curves and wave structures are verified in the finite element model software package called Abaqus. It is confirmed that the group speeds and wave structures of the modes match the predicted values. A theoretical development of interface waves is given wherein Rayleigh, Stoneley, and generalized interface waves are discussed. This is applied to both isotropic and anisotropic materials. It is shown that the Stoneley wave only exists for a certain range of material parameters. Because the Stoneley wave is the interface wave between two solid half spaces, it might appear that only certain pairs of solids would allow for inspection via interface wave. However, it is shown that for perturbations of the Stoneley-wave-valid material properties, interface waves which leak energy away from the interface can still propagate. They can also be used for inspection. Certain choices of materials will leak less energy and will therefore allow for longer inspection distances. The solutions to the isotropic leaky wave problem exist on
Dark Matter, Waves, and Identification
NASA Astrophysics Data System (ADS)
Wagner, Orvin
2011-10-01
In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.
NASA Astrophysics Data System (ADS)
Roldugin, V. C.; Nikulin, G. N.; Henriksen, K.
The wave-like character of the total ozone variations is examined from the Aral Sea and Karaganda observatories in Middle Asia, and from Tromsø and Murmansk in the Arctic. The waves have a period of 10-20 days and an amplitude of about 20-50 DU. They are seen practically every year when the ozone data do not contain too many gaps. In Middle Asia waves with the same periods are found in geopotential height and tropopause pressure variations. The ozone waves are caused by dynamic meteorological disturbances near the tropopause. The passing of a wave crest in the pressure field causes the convergence of ozone poor air under the tropopause and the divergence of ozone rich air above the tropopause giving rise to a total ozone content decrease. The passing of a wave trough stimulates the opposite process. By crosscorrelation analysis the wave-like movement was determined as eastward for both pairs of stations with a velocity of 11-15 °/day.
Wave dissipation by muddy seafloors
NASA Astrophysics Data System (ADS)
Elgar, Steve; Raubenheimer, Britt
2008-04-01
Muddy seafloors cause tremendous dissipation of ocean waves. Here, observations and numerical simulations of waves propagating between 5- and 2-m water depths across the muddy Louisiana continental shelf are used to estimate a frequency- and depth-dependent dissipation rate function. Short-period sea (4 s) and swell (7 s) waves are shown to transfer energy to long-period (14 s) infragravity waves, where, in contrast with theories for fluid mud, the observed dissipation rates are highest. The nonlinear energy transfers are most rapid in shallow water, consistent with the unexpected strong increase of the dissipation rate with decreasing depth. These new results may explain why the southwest coast of India offers protection for fishing (and for the 15th century Portuguese fleet) only after large waves and strong currents at the start of the monsoon move nearshore mud banks from about 5- to 2-m water depth. When used with a numerical nonlinear wave model, the new dissipation rate function accurately simulates the large reduction in wave energy observed in the Gulf of Mexico.
Restless rays, steady wave fronts.
Godin, Oleg A
2007-12-01
Observations of underwater acoustic fields with vertical line arrays and numerical simulations of long-range sound propagation in an ocean perturbed by internal gravity waves indicate that acoustic wave fronts are much more stable than the rays comprising these wave fronts. This paper provides a theoretical explanation of the phenomenon of wave front stability in a medium with weak sound-speed perturbations. It is shown analytically that at propagation ranges that are large compared to the correlation length of the sound-speed perturbations but smaller than ranges at which ray chaos develops, end points of rays launched from a point source and having a given travel time are scattered primarily along the wave front corresponding to the same travel time in the unperturbed environment. The ratio of root mean square displacements of the ray end points along and across the unperturbed wave front increases with range as the ratio of ray length to correlation length of environmental perturbations. An intuitive physical explanation of the theoretical results is proposed. The relative stability of wave fronts compared to rays is shown to follow from Fermat's principle and dimensional considerations. PMID:18247745
NASA Astrophysics Data System (ADS)
Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.
2016-03-01
During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.
Surface acoustic wave microfluidics
Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun
2014-01-01
The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527
COMPRESSION WAVES AND PHASE PLOTS: SIMULATIONS
Orlikowski, D; Minich, R
2011-08-01
Compression wave analysis started nearly 50 years ago with Fowles. Coperthwaite and Williams gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general. One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.
High Resolution Full Wave Modeling of Fast Waves in NSTX
NASA Astrophysics Data System (ADS)
Phillips, C. K.; Berk, L.; Hosea, J. C.; Leblanc, B. P.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Berry, L. A.; Jaeger, E. F.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.
2010-11-01
High Harmonic Fast Waves (HHFW) are being used in NSTX for plasma heating and noninductive current profile control. Numerical solutions for the wave fields obtained with the full wave TORIC and AORSA codes with ultrafine spatial resolution reveal the presence of a short wavelength feature that is predominantly polarized in the direction parallel to the equilibrium magnetic field and which is predicted by the codes to damp on electrons. A similar short wavelength mode also appears in simulations of the rf fields in C-Mod in the ICRF regime. Preliminary analysis indicates that the mode may be related to a slow mode that can propagate above the fundamental ion cyclotron frequency. The predicted power deposition profiles will be compared to those inferred from experimental measurements to see if the mode has a significant effect on the wave propagation and absorption. Possibilities for detecting the mode in NSTX and C-Mod will be discussed.
Full Wave Modeling of Wave -- Plasma Interactions in NSTX.
NASA Astrophysics Data System (ADS)
Phillips, C. K.; Bernabei, S.; Fredrickson, E.; Gorelenkov, N.; Hosea, J. C.; Leblanc, B.; Valeo, E. J.; Wilson, J. R.; Bonoli, P. T.; Wright, J. C.; Ryan, P. M.; Wilgen, J. B.
2006-10-01
Wave plasma interactions play an important role in the dynamics of NSTX plasmas in a wide range of frequencies. High harmonic fast waves (HHFW), with frequencies significantly above the fundamental ion cyclotron frequency, are used to heat and drive noninductive currents in NSTX plasmas. Fast ions from neutral beam injection can excite compressional and / or global Alfven eigenmodes (CAE/GAE) with frequencies near the fundamental ion cyclotron frequency. Simulations of power deposition profiles obtained with the full wave code, TORIC, will be compared to the observations from recent HHFW experiments that show that the wave propagation and absorption depend strongly on the antenna phasing and plasma conditions [i]. The issue of mode conversion of the HHFWs to shorter wavelength modes will be revisited. Initial simulations of driven eigenmodes in the CAE / GAE frequency range will also be discussed. [i] See contributed Oral Talk by J. C. Hosea et al this conference
Full wave description of VLF wave penetration through the ionosphere
NASA Astrophysics Data System (ADS)
Kuzichev, Ilya; Shklyar, David
2010-05-01
Of the many problems in whistler study, wave propagation through the ionosphere is among the most important, and the most difficult at the same time. Both satellite and ground-based investigations of VLF waves include considerations of this problem, and it has been in the focus of research since the beginning of whistler study (Budden [1985]; Helliwell [1965]). The difficulty in considering VLF wave passage through the ionosphere is, after all, due to fast variation of the lower ionosphere parameters as compared to typical VLF wave number. This makes irrelevant the consideration in the framework of geometrical optics, which, along with a smooth variations of parameters, is always based on a particular dispersion relation. Although the full wave analysis in the framework of cold plasma approximation does not require slow variations of plasma parameters, and does not assume any particular wave mode, the fact that the wave of a given frequency belongs to different modes in various regions makes numerical solution of the field equations not simple. More specifically, as is well known (e.g. Ginzburg and Rukhadze [1972]), in a cold magnetized plasma, there are, in general, two wave modes related to a given frequency. Both modes, however, do not necessarily correspond to propagating waves. In particular, in the frequency range related to whistler waves, the other mode is evanescent, i.e. it has a negative value of N2 (the refractive index squared). It means that one of solutions of the relevant differential equations is exponentially growing, which makes a straightforward numerical approach to these equations despairing. This well known difficulty in the problem under discussion is usually identified as numerical swamping (Budden [1985]). Resolving the problem of numerical swamping becomes, in fact, a key point in numerical study of wave passage through the ionosphere. As it is typical of work based on numerical simulations, its essential part remains virtually hidden
Diffracted and head waves associated with waves on nonseparable surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory is presented for computing waves radiated from waves on a smooth surface. With the assumption that attention of the surface wave is due only to radiation and not to dissipation in the surface material, the radiation coefficient is derived in terms of the attenuation factor. The excitation coefficient is determined by the reciprocity condition. Formulas for the shape and the spreading of the radiated wave are derived, and some sample calculations are presented. An investigation of resonant phase matching for nonseparable surfaces is presented with a sample calculation. A discussion of how such calculations might be related to resonant frequencies of nonseparable thin shell structures is included. A description is given of nonseparable surfaces that can be modeled in the vector that facilitates use of the appropriate formulas of differential geometry.
Strong turbulence of plasma waves
NASA Technical Reports Server (NTRS)
Goldman, M. V.
1984-01-01
This paper reviews recent work related to modulational instability and wave envelope self-focusing in dynamical and statistical systems. After introductory remarks pertinent to nonlinear optics realizations of these effects, the author summarizes the status of the subject in plasma physics, where it has come to be called 'strong Langmuir turbulence'. The paper treats the historical development of pertinent concepts, analytical theory, numerical simulations, laboratory experiments, and spacecraft observations. The role of self-similar self-focusing Langmuir envelope wave packets is emphasized, both in the Zakharov equation model for the wave dynamics and in a statistical theory based on this dynamical model.
Density waves in granular flow
NASA Astrophysics Data System (ADS)
Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.
Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.
Blast waves in rotating media.
NASA Technical Reports Server (NTRS)
Rossner, L. F.
1972-01-01
The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.
Arterial pulse wave pressure transducer
NASA Technical Reports Server (NTRS)
Kim, C.; Gorelick, D.; Chen, W. (Inventor)
1974-01-01
An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls.
Wave slamming on offshore structures
NASA Astrophysics Data System (ADS)
Miller, B. L.
1980-03-01
Experimental and theoretical work on the slamming of circular cylinders is surveyed. Data are included from controlled drop tests. The influence of inclined impact and beam dynamics on the resulting stresses is calculated for a wide range of wave conditions. The statistical distributions of the estimated stresses are analyzed to provide data for the calculation of slamming loads on fixed offshore structures using simple formulas in which the slamming coefficients incorporate both the member dynamics and the sea wave statistics. Slamming coefficients and associated stress calculation methods are presented for extreme values and fatigue damage. These may also be used for slamming during jacket launching. A film of wave slam was also produced.
Reduced Model for Detonation Wave
NASA Astrophysics Data System (ADS)
Maillet, Jean-Bernard; Soulard, Laurent; Stoltz, Gabriel
2007-06-01
We present a mesoscopic model for reactive waves which extends the model proposed by G. Stoltz (G. Stoltz, Europhys. Lett. 76 (2006) 849). A complex molecule (or a group of molecules) is replaced by a single mesoparticle, evolving according to some Dissipative Particle Dynamics. Chemical reactions can be handled in a mean way by considering an additional variable per particle describing a rate of reaction. The evolution of this rate is governed by the kinetics of a reversible exothermic reaction. Numerical results show that the reactive wave behaves like a detonation wave.
Recirculation in multiple wave conversions
Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.
2008-07-30
A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.
How Forgetful are Seismic Waves ?
NASA Astrophysics Data System (ADS)
Milkereit, B.
2005-05-01
3D surface seismic and vertical seismic profiling (VSP) techniques can be employed to image crustal structures in complex geological settings. The effects of heterogeneities on seismic wave propagation can be described in terms of different propagation regimes (Wu, 1989): quasi-homogeneous for heterogeneities too small to be seen by seismic waves, Rayleigh scattering, Mie scattering and small-angle scattering. These scattering regimes cause characteristic amplitude, phase and travel time fluctuation, which can be used to obtain estimates of scale length. Horizontal resolution of exploration seismic data is often discussed in terms of Fresnel zone. For surface and VSP data, the Fresnel radius increases with increasing depth of investigation. In addition, the lateral resolution is limited by the effective frequency content of the seismic signal. Based on strong contrast in petrophysical data, crustal exploration targets (such as gas-hydrates, permafrost or massive sulfide ores) should make strong P-wave, S-wave and converted wave reflectors against most background velocity models. In the context of realistic geological models, 3D numerical simulations are required to better assess elastic wave interactions with high acoustic impedance targets. In addition, it is important to study the influence of composition and shape of high acoustic impedance targets on the full scattered wavefield through a series of numerical modeling experiments based on the 3D elastic finite-difference (FD) method. Massive sulfide ores consisting of the end-member sulfide minerals pyrite, sphalerite, and galena, which span the full range of observed P- and S- wave velocities and densities in ore rocks, as well as gabbro inclusions, are investigated for different shapes which represent the complex morphologies often observed for ore deposits. 3D FD modeling reveals that large ore deposits lead to a strong and complex scattering response that is often dominated by shear-wave events (Bohlen et al
Solitonization of a dispersive wave.
Braud, F; Conforti, M; Cassez, A; Mussot, A; Kudlinski, A
2016-04-01
We report the observation of a nonlinear propagation scenario in which a dispersive wave is transformed into a fundamental soliton in an axially varying optical fiber. The dispersive wave is initially emitted in the normal dispersion region and the fiber properties change longitudinally so that the dispersion becomes anomalous at the dispersive wave wavelength, which allows it to be transformed into a soliton. The solitonic nature of the field is demonstrated by solving the direct Zakharov-Shabat scattering problem. Experimental characterization performed in spectral and temporal domains show evidence of the solitonization process in an axially varying photonic crystal fiber. PMID:27192249
Principle of least wave change.
Abramson, N
1989-05-01
Fermat's principle of least time has some well-known limitations. It does not, for example, apply to diffraction gratings and holograms, because it does not include the concept of waves. The substitution of least number of waves in flight for least time of flight and the addition of a term that is a function of the grating frequency result in a generalized principle. It is easy to remember because it is based on only the number of waves minus the number of grooves, and it would be especially useful when refraction and diffraction are combined, as, for example, in some holographic optical elements. PMID:2723846
Producing undistorted acoustic sine waves.
Boutin, Henri; Smith, John; Wolfe, Joe
2014-04-01
A simple digital method is described that can produce an undistorted acoustic sine wave using an amplifier and loudspeaker having considerable intrinsic distortion, a common situation at low frequencies and high power. The method involves, first, using a pure sine wave as the input and measuring the distortion products. An iterative procedure then progressively adds harmonics with appropriate amplitude and phase to cancel any distortion products. The method is illustrated by producing a pure 52 Hz sine wave at 107 dB sound pressure level with harmonic distortion reduced over the audible range to >65 dB below the fundamental. PMID:25234964
Upstream waves in Saturn's foreshock
NASA Technical Reports Server (NTRS)
Bavassano Cattaneo, M. B.; Cattaneo, P.; Moreno, G.; Lepping, R. P.
1991-01-01
An analysis based on plasma and magnetic-field data obtained from Voyager 1 during its Saturn encounter is reported. The plasma data provided every 96 sec and magnetic-field data averaged over 48 sec are utilized. The evidence of upstream waves at Saturn are detected. The waves have a period, in the spacecraft frame, of about 550 sec and a relative amplitude larger than 0.3, are left- and right-hand elliptically polarized, and propagate at about 30 deg with respect to the average magnetic field. The appearance of the waves is correlated with the spacecraft being magnetically connected to the bow shock.
Adiabatic nonlinear waves with trapped particles. III. Wave dynamics
Dodin, I. Y.; Fisch, N. J.
2012-01-15
The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.
Waves and wave-driven flow on a coral reef
NASA Astrophysics Data System (ADS)
Monismith, Stephen
2012-11-01
It has been long appreciated that surface wave breaking is a primary mechanism for driving flows over coral reefs and so influences a wide variety of reef ecological processes. In this talk I will discuss measurements of waves and wave-driven flows made on the north shore of Moorea, FP. Despite the steep slope and large wave steepness, integral properties of the waves we observe match linear longwave theory to a remarkable extent, although their vertical structure does seem to differ from what is expected from theory. Our observations also show that the net transport over the reef is carried by both Stokes drift and a mean Eulerian flow, although the portioning changes as the waves shoal, break and dissipate. The balance between mean setup due to breaking, which also matches simple theory, and friction inshore of the surfzone/reef crest sets the overall flow rate. While simple theories match the observations quite well, their predictive value is somewhat reduced by the fact that they include 3 parameters that must be found empirically because they involve the basic geometry of the reef and the complex nature of frictional resistance associated with reef roughness. 0622967 for their support.
The wave-induced boundary layer under long internal waves
NASA Astrophysics Data System (ADS)
Lin, Yuncheng; Redekopp, Larry G.
2011-08-01
The boundary layer formed under the footprint of an internal solitary wave is studied by numerical simulation for waves of depression in a two-layer model of the density stratification. The inviscid outer flow, in the perspective of boundary-layer theory, is based on an exact solution for the long wave-phase speed, yielding a family of fully nonlinear solitary wave solutions of the extended Korteweg-de Vries equation. The wave-induced boundary layer corresponding to this outer flow is then studied by means of simulation employing the Reynolds-averaged Navier-Stokes (RANS) formulation coupled with a turbulence closure model validated for wall-bounded flows. Boundary-layer characteristics are computed for an extensive range of environmental conditions and wave amplitudes. Boundary-layer transition, identified by monitoring the eddy viscosity, is correlated in terms of a boundary-layer Reynolds number. The frictional drag is evaluated for laminar, transitional, and turbulent cases, and correlations are presented for the friction coefficient plus relevant measures of the boundary-layer thickness.
Patsourakos, Spiros; Vourlidas, Angelos E-mail: vourlidas@nrl.navy.mil
2009-08-01
The nature of coronal mass ejection (CME)-associated low corona propagating disturbances, 'extreme ultraviolet (EUV) waves', has been controversial since their discovery by EIT on SOHO. The low-cadence, single-viewpoint EUV images and the lack of simultaneous inner corona white-light observations have hindered the resolution of the debate on whether they are true waves or just projections of the expanding CME. The operation of the twin EUV imagers and inner corona coronagraphs aboard STEREO has improved the situation dramatically. During early 2009, the STEREO Ahead (STA) and Behind (STB) spacecrafts observed the Sun in quadrature having a {approx}90 deg. angular separation. An EUV wave and CME erupted from active region 11012, on February 13, when the region was exactly at the limb for STA and hence at disk center for STB. The STEREO observations capture the development of a CME and its accompanying EUV wave not only with high cadence but also in quadrature. The resulting unprecedented data set allowed us to separate the CME structures from the EUV wave signatures and to determine without doubt the true nature of the wave. It is a fast-mode MHD wave after all.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Waves in strong centrifugal fields: dissipationless gas
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2015-04-01
Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.
... medlineplus/news/fullstory_159694.html Heat Waves Are Health Threats Drink plenty of water and use air ... on: Heat Illness Recent Health News Related MedlinePlus Health Topics Heat Illness About MedlinePlus Site Map FAQs ...
The Propagation of Radio Waves
NASA Astrophysics Data System (ADS)
Budden, K. G.
1988-08-01
Preface; 1. The ionosphere and magnetosphere; 2. The basic equations; 3. The constitutive relations; 4. Magnetoionic theory I. Polarisation and refractive index; 5. Magnetoionic theory II. Rays and group velocity; 6. Stratified media. The booker quartic; 7. Slowly varying medium. The W.K.B. solution; 8. The Airy integral function and the Stokes phenomenon; 9. Integration by steepest descents; 10. Ray tracing in a loss-free stratified medium; 11. Reflection and transmission coefficients; 12. Ray theory results for isotropic ionosphere; 13. Ray theory results for anisotropic plasmas; 14. General ray tracing; 15. Full wave solutions for isotropic ionosphere; 16. Coupled wave eqations; 17. Coalescence of couling points; 18. Full wave methods for anisotropic stratified media; 19. Applications of full wave methods; Answers to problems; Bibliography; Index of definitions of the more important symbols; Subject and name index.
Refraction of coastal ocean waves
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Kasischke, E. S.
1981-01-01
Refraction of gravity waves in the coastal area off Cape Hatteras, NC as documented by synthetic aperture radar (SAR) imagery from Seasat orbit 974 (collected on September 3, 1978) is discussed. An analysis of optical Fourier transforms (OFTs) from more than 70 geographical positions yields estimates of wavelength and wave direction for each position. In addition, independent estimates of the same two quantities are calculated using two simple theoretical wave-refraction models. The OFT results are then compared with the theoretical results. A statistical analysis shows a significant degree of linear correlation between the data sets. This is considered to indicate that the Seasat SAR produces imagery whose clarity is sufficient to show the refraction of gravity waves in shallow water.
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
Electron cyclotron harmonic wave acceleration
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.
1987-01-01
A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.
Whirling waves in Interference experiments
NASA Astrophysics Data System (ADS)
Sinha, Urbasi; Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna
2014-03-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well- known text books in quantum mechanics implicitly and/or explicitly use this assumption, the wave function hypothesis, which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in interference experiments which provide a measurable deviation from the wave function hypothesis. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. I will also describe some ongoing experimental efforts towards testing our theoretical findings.
Tunnel effect wave energy detection
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1995-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Multibaseline gravitational wave radiometry
Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit
2011-03-15
We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.
Seismic waves increase permeability.
Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C
2006-06-29
Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253
Mesosphere Dynamics with Gravity Wave Forcing. 2; Planetary Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
We present results from a non-linear, 3D, time dependent numerical spectral model (NSM) which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere where wave interactions are playing a dominant role. We discuss planetary waves in the present paper and diurnal and semi-diurnal tides in the companion paper. Without external time dependent energy or momentum sources, planetary waves (PWs) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 30 m/s and periods between 2 and 50 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW driven reversal in the latitudinal temperature gradient) is playing an important role. Results from a numerical experiment show that GWs are also involved directly in generating the PWs. For the zonal wavenumber m = 1, the predominant wave periods in summer are around 4 days and in winter between 6 and 10 days. For m = 2, the periods are in summer and close to 2.5 and 3.5 days respectively For m = 3, 4 the predominant wave periods are in both seasons close to two days. The latter waves have the characteristics of Rossby gravity waves with meridional winds at equatorial latitudes. A common feature of the PWs (m = 1 to 4) generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PWs propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter altitudes below 80 km. During spring and fall, for m = 1 and 2 eastward propagating long period PWs are generated that are launched from the smaller
Surface waves on Saturn's magnetopause
NASA Astrophysics Data System (ADS)
Masters, A.; Achilleos, N.; Cutler, J. C.; Coates, A. J.; Dougherty, M. K.; Jones, G. H.
2012-05-01
Waves on the surface of a planetary magnetopause promote energy transport into the magnetosphere, representing an important aspect of solar wind-magnetosphere coupling. At Saturn's magnetopause it has been proposed that growth of the Kelvin-Helmholtz (K-H) instability produces greater wave activity on the dawn side of the surface than on the dusk side. We test this hypothesis using data taken by the Cassini spacecraft during crossings of Saturn's magnetopause. Surface orientation perturbations are primarily controlled by the local magnetospheric magnetic field orientation, and are generally greater at dusk than at dawn. 53% of all crossings were part of a sequence of regular oscillations arising in consecutive surface normals that is strong evidence for tailward propagating surface waves, with no detectable local time asymmetry in this phenomenon. We estimate the dominant wave period to be ∼5 h at dawn and ∼3 h at dusk. The role played by the magnetospheric magnetic field, tailward wave propagation, and the dawn-dusk difference in wave period suggests that K-H instability is a major wave driving mechanism. Using linear K-H theory we estimate the dominant wavelength to be ∼10 Saturn radii (RS) and amplitude to be ∼1 RS at both dawn and dusk, giving propagation speeds of ∼30 and ∼50 km s-1 at dawn and dusk, respectively. The lack of the hypothesized dawn-dusk asymmetry in wave activity demonstrates that we need to revise our understanding of the growth of the K-H instability at Saturn's magnetopause, which will have implications for the study of other planetary magnetospheres.
Wave Detection in Acceleration Plethysmogram
2015-01-01
Objectives Acceleration plethysmogram (APG) obtained from the second derivative of photoplethysmography (PPG) is used to predict risk factors for atherosclerosis with age. This technique is promising for early screening of atherosclerotic pathologies. However, extraction of the wave indices of APG signals measured from the fingertip is challenging. In this paper, the development of a wave detection algorithm including a preamplifier based on a microcontroller that can detect the a, b, c, and d wave indices is proposed. Methods The 4th order derivative of a PPG under real measurements of an APG waveform was introduced to clearly separate the components of the waveform, and to improve the rate of successful wave detection. A preamplifier with a Sallen-Key low pass filter and a wave detection algorithm with programmable gain control, mathematical differentials, and a digital IIR notch filter were designed. Results The frequency response of the digital IIR filter was evaluated, and a pulse train consisting of a specific area in which the wave indices existed was generated. The programmable gain control maintained a constant APG amplitude at the output for varying PPG amplitudes. For 164 subjects, the mean values and standard deviation of the a wave index corresponding to the magnitude of the APG signal were 1,106.45 and ±47.75, respectively. Conclusions We conclude that the proposed algorithm and preamplifier designed to extract the wave indices of an APG in real-time are useful for evaluating vascular aging in the cardiovascular system in a simple healthcare device. PMID:25995963
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe
2013-07-29
The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.
Splash singularity for water waves.
Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-17
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372
Ghesquiere, H.
1980-08-12
This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.
Gravitational-wave sensitivity curves
NASA Astrophysics Data System (ADS)
Moore, C. J.; Cole, R. H.; Berry, C. P. L.
2015-01-01
There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.
Energy Science and Technology Software Center (ESTSC)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Conceptual Learning Approach to Waves
NASA Astrophysics Data System (ADS)
Cerne, John; Nappo, Frank; Gerfin, Michael
2008-03-01
Waves represent one of the most important concepts in physics, playing a crucial role in topics ranging from acoustical phenomena, electricity and magnetism, optics, Fourier analysis, and even quantum mechanics. However, since waves have both a temporal and spatial dependence (often in more than one dimension) that may be difficult to visualize, many undergraduate and graduate students have a poor understanding of even basic wave concepts. We are creating a web site (electron.physics.buffalo.edu/claw/) that explains many basic wave concepts using dynamic and interactive graphical simulations. Our goal is to create simulations that enable students to visualize how waves behave and better connect this behavior to the equations and concepts that describe the use of waves in applications. There are many excellent web sites using similar graphical interactive tools, but they tend to focus on mechanics, electrostatics, and magnetism. I am actively using this site for my introductory physics courses, as well as a magneto-polarimetry teaching lab that I have created (www.physics.buffalo.edu/cerne/education/mokemanual.pdf).
New singularities for Stokes waves
NASA Astrophysics Data System (ADS)
Crew, Samuel C.; Trinh, Philippe H.
2016-07-01
In 1880, Stokes famously demonstrated that the singularity that occurs at the crest of the steepest possible water wave in infinite depth must correspond to a corner of $120^\\circ$. Here, the complex velocity scales like $f^{1/3}$ where $f$ is the complex potential. Later in 1973, Grant showed that for any wave away from the steepest configuration, the singularity $f = f^*$ moves into the complex plane, and is of order $(f-f^*)^{1/2}$ (J. Fluid Mech., vol. 59, 1973, pp. 257-262). Grant conjectured that as the highest wave is approached, other singularities must coalesce at the crest so as to cancel the square-root behaviour. Despite recent advances, the complete singularity structure of the Stokes wave is still not well understood. In this work, we develop numerical methods for constructing the Riemann surface that represents the extension of the water wave into the complex plane. We show that a countably infinite number of distinct singularities exists on other branches of the solution, and that these singularities coalesce as Stokes' highest wave is approached.
Compaction Waves in Granular HMX
E. Kober; R. Menikoff
1999-01-01
Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.
NASA Astrophysics Data System (ADS)
Noguchi, Y.; Yamada, T.; Otomori, M.; Izui, K.; Nishiwaki, S.
2015-11-01
This letter presents an acoustic metasurface that converts longitudinal acoustic waves into transverse elastic waves in an acoustic-elastic coupled system. Metasurface configurations are obtained by a level set-based topology optimization method, and we describe the mechanism that changes the direction of the wave motion. Numerical examples of 2D problems with prescribed frequencies of incident acoustic waves are provided, and transverse elastic wave amplitudes are maximized by manipulating the propagation of the acoustic waves. Frequency analysis reveals that each of the different metasurface designs obtained for different wavelengths of incident waves provides peak response at the target frequency.
Quantum Opportunities in Gravitational Wave Detectors
Mavalvala, Negris
2012-03-14
Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. PMID:24658144
Coupling between whistler waves and slow-mode solitary waves
Tenerani, A.; Califano, F.; Pegoraro, F.; Le Contel, O.
2012-05-15
The interplay between electron- and ion-scale phenomena is of general interest for both laboratory and space plasma physics. In this paper, we investigate the linear coupling between whistler waves and slow magnetosonic solitons through two-fluid numerical simulations. Whistler waves can be trapped in the presence of inhomogeneous external fields such as a density hump or hole where they can propagate for times much longer than their characteristic time scale, as shown by laboratory experiments and space measurements. Space measurements have detected whistler waves also in correspondence to magnetic holes, i.e., to density humps with magnetic field minima extending on ion-scales. This raises the interesting question of how ion-scale structures can couple to whistler waves. Slow magnetosonic solitons share some of the main features of a magnetic hole. Using the ducting properties of an inhomogeneous plasma as a guide, we present a numerical study of whistler waves that are trapped and transported inside propagating slow magnetosonic solitons.
Freak waves statistics measured off Brazil
NASA Astrophysics Data System (ADS)
Pinho, Uggo; Babanin, Alexander; Liu, Paul
2015-04-01
Freaque wave statistics is analysed based on the data of South East coast of the Brazil. It is shown that such waves can be both due to linear and nonlinear dynamics. The wave climate in this area is very often dominated by a few uncorrelated wave systems and then the superposition of waves from different directions become likely. The available wave data was measured by wave buoys deployed off Rio de Janeiro State coast, where swell coming from the south are usually concomitant with northeast windsea generated by the South Atlantic anticyclone.
Remarks on the travelling wave decomposition
Pollitz, F.F.
2001-01-01
In elastic wave propagation on a spherically symmetric earth model, a normal mode sum is converted into a sum of equivalent travelling waves by means of a travelling wave decomposition (TWD). For two decades, seismologists have assumed that each travelling wave in the TWD is associated with only real phase velocities, that is, no evanescent waves travel on a spherically symmetric earth model. In this paper, this assumption is proven false. By including a countably infinite set of waves travelling as evanescent waves, several conceptual difficulties confronting the TWD are resolved.
Freaque wave happenings in 2013
NASA Astrophysics Data System (ADS)
Liu, Paul
2014-05-01
Freaque wave happening is always something of interest to observe. Because it is unpredictable and unexpected, no one knows where, when, how, and why a freaque wave happens; whenever a freaque wave case happens, it is usually newsworthy, at least locally. With the prevalent of internet, local news can readily become worldwide accessible. In this paper I wish to present an effort trying to tracking the various happenings of freaque waves in 2013 around the globe from the availability news on the internet. It is found that there have been a total 23 cases of freaque wave happenings in 2013. Among them, based on the happenings in clearly defined physically specific environments: there were 3 cases in deep ocean, 6 in nearshore area, 7 on sandy beaches, and 7 rocky shore cases. Note that most of the academic research has been on deep ocean happenings that only accounts for 13 percent of all happenings. With the majority of reported happenings, 87 percent, are in the near shore or along the beach area which research studies do not seem to, have paid much attention to. Geographically these cases are also fairly evenly spread around different regions of the globe. As up to now there's no general knowledge regarding frequency of occurrence of these freaque waves, 2013 is certainly appearing to be an ordinary year of happenings. May be if we can start to tracking yearly happenings, it might be possible to develop in the future more accurate statistics on what to expect on freaque wave happenings in a given year.
Rainey, R C T
2012-01-28
For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays. PMID:22184669
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves. PMID:17799185
Fundamental plasma emission involving ion sound waves
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Selfsimilar Spherical Compression Waves in Gas Dynamics
NASA Astrophysics Data System (ADS)
Meyer-ter-Vehn, J.; Schalk, C.
1982-08-01
A synopsis of different selfsimilar spherical compression waves is given pointing out their fundamental importance for the gas dynamics of inertial confinement fusion. Strong blast waves, various forms of isentropic compression waves, imploding shock waves and the solution for non-isentropic collapsing hollow spheres are included. A classification is given in terms of six singular points which characterise the different solutions and the relations between them. The presentation closely follows Guderley's original work on imploding shock waves
VLF wave-wave interaction experiments in the magnetosphere
NASA Technical Reports Server (NTRS)
Chang, D. C. D.
1978-01-01
VLF wave-wave interaction experiments were carried out by injecting various forms of VLF pulses into the magnetosphere from a 21.2 km dipole antenna at Siple, Antarctica. The injected signals propagate along a geomagnetic field line and often interact strongly with energetic electrons trapped in the radiation belts near the equator. Signals may be amplified and trigger emissions. These signals may then interact with one another through these energetic electrons. This report is divided into three parts. In the first part, simulations of VLF pulses propagating in the magnetosphere are carried out. In the second part, it is found for the first time that a 10 ms gap in a triggering wave can induce emission, which may then interact with the post-gap signals. In the third part, sideband triggering is reported for the first time.
Nonlinear density waves in the single-wave model
Marinov, Kiril B.; Tzenov, Stephan I.
2011-03-15
The single-wave model equations are transformed to an exact hydrodynamic closure by using a class of solutions to the Vlasov equation corresponding to the waterbag model. The warm fluid dynamic equations are then manipulated by means of the renormalization group method. As a result, amplitude equations for the slowly varying wave amplitudes are derived. Since the characteristic equation for waves has in general three roots, two cases are examined. If all the three roots of the characteristic equation are real, the amplitude equations for the eigenmodes represent a system of three coupled nonlinear equations. In the case where the dispersion equation possesses one real and two complex conjugate roots, the amplitude equations take the form of two coupled equations with complex coefficients. The analytical results are then compared to the exact system dynamics obtained by solving the hydrodynamic equations numerically.
Bifurcation of tracked scalar waves
Glimm, J.; Grove, J.; Lindquist, B.; McBryan, O.A.; Tryggvason, G.
1986-05-01
The dynamic evolution of tracked waves by a front-tracking algorithm may lead on either numerical or physical grounds to intersections of the waves. The correct resolution of these intersections is described locally by the solution of Riemann problems and requires a bifurcation of the topology defined by the tracked waves. An algorithm is described which is appropriate for the resolution of scalar tracked waves, such as material discontinuities, contact dicontinuities in gas dynamics, or constituent concetration waves including oil-water banks in oil reservoirs Even here the algorithm is not fully general, and the resolution of the intersections of an arbitrary set of curves in the plane for the above range of physical problems remains unsolved. However with the assumption that the set of intersections to be resolved is a small perturbation (resulting for example from a small time step in an evolution) of a valid, non-intersecting front, the algorithm seems to be general. In any case examples will be presented that show that complicated interfaces can be generated automatically from simple ones through successive bifurcations. 15 refs., 9 figs.
Pancreatic calcium waves and secretion.
Kasai, H
1995-01-01
Pancreatic acinar cells display stereotypic Ca2+ waves resulting from Ca2+ release from internal stores during stimulation. The Ca2+ waves are initiated at the luminal pole, and, at high agonist concentrations, spread towards the basal pole. Two key mechanisms behind the generation of Ca2+ waves have been identified. First, the Ca2+ waves are composite, mediated by three distinct Ca2+ release mechanisms with a polarized distribution: high-sensitivity inositol 1,4,5-trisphosphate (InsP3) receptors at a small trigger zone (T zone) in the secretory granule area, Ca(2+)-induced Ca2+ release channels in the granular area and low-sensitivity InsP3 receptors in the basal area. Second, InsP3 can readily diffuse in the cytosol, whereas rises in cytosolic Ca2+ concentration ([Ca2+]i) can be confined through strong buffering and sequestration of Ca2+. InsP3 is thus used as a long-range messenger to transmit agonist signals to the T zone, and [Ca2+]i rises at the T zone are used as a local switch. These mechanisms enable preferential activation of the T zone, irrespective of localization of stimuli and agonist receptors. The secretion of enzymes and fluid is a direct consequence of [Ca2+]i rises at the T zone. The Ca2+ waves and oscillations probably boost the T zone functions. PMID:7587613
Ionosphere Waves Service - A demonstration
NASA Astrophysics Data System (ADS)
Crespon, François
2013-04-01
In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.
NASA Astrophysics Data System (ADS)
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed simple harmonic2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest, while those at the centerline (zero displacement) have the greatest speed, as shown in Fig. 1. Irrespective of this, they are less familiar with the energy associated with the wave. They may fail to answer a question such as, "In a traveling string wave, which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?" The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE, being proportional to the square of speed, is the greatest. To the PE, what immediately comes to their mind may be the simple harmonic motion (SHM), in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately, this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3
Ion Bernstein wave heating research
Ono, Masayuki.
1992-03-01
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.
Ion Bernstein wave heating research
Ono, Masayuki
1992-03-01
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.
The Polar Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.
1995-01-01
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).
The Polar Plasma Wave Instrument
NASA Astrophysics Data System (ADS)
Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.; Mitchell, M. A.; Pham, B. T.; Phillips, J. R.; Schintler, W. J.; Sheyko, P.; Tomash, D. R.
1995-02-01
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s-1.
Autoresonant beat-wave generation
Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.; Friedland, L.; Shadwick, B. A.
2006-12-15
Autoresonance offers an efficient and robust means for the ponderomotive excitation of nonlinear Langmuir waves by phase-locking of the plasma wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This mechanism is analyzed for the case of a cold, relativistic, underdense electron plasma, and its suitability for particle acceleration is discussed. Compared to traditional approaches, this new autoresonant scheme achieves larger accelerating electric fields for given laser intensity; the plasma wave excitation is much more robust to variations in plasma density; it is largely insensitive to the precise choice of chirp rate, provided only that it is sufficiently slow; and the suitability of the resulting plasma wave for accelerator applications is, in some respects, superior. As in previous schemes, modulational instabilities of the ionic background ultimately limit the useful interaction time, but nevertheless peak electric fields approaching the wave-breaking limit seem readily attainable. The total frequency shift required is only of the order of a few percent of the laser carrier frequency, and might be implemented with relatively little additional modification to existing systems based on chirped pulse amplification techniques, or, with somewhat greater technological effort, using a CO{sub 2} or other gas laser system.
Breaking waves, turbulence and bubbles
NASA Astrophysics Data System (ADS)
Gemmrich, Johannes; Vagle, Svein; Thomson, Jim
2014-05-01
The air-sea fluxes of heat, momentum, and gases are to a large extent affected by wave-induced turbulence in the near-surface ocean layer, and are generally increased over the fluxes in a law-of-the-wall type boundary layer. However, air-bubbles generated during the wave breaking process may affect the density stratification and in turn reduce turbulence intensity in the near-surface layer. The turbulence field beneath surface waves is rather complex and provides great challenges for detailed observations. We obtained high resolution near-surface velocity profiles, bubble cloud measurements and video recordings of the breaking activity in a coastal strait. Conditions ranged from moderate to strong wind forcing with wind speed ranging from 5 m/s to 20 m/s. Estimates of the dissipation rates of turbulence kinetic energy are calculated from the in-situ velocity measurements. We find dissipation rates, fluctuating by more than two orders of magnitude, are closely linked to the air-fraction associated with micro-bubbles. Combining these turbulence estimates and the bubble cloud characteristics we infer differences in the strength of wave breaking and its effect on wave-induced mixing and air-sea exchange processes.
Hydroelectric power from ocean waves
NASA Astrophysics Data System (ADS)
Raghavendran, K.
1981-02-01
This paper describes a system which converts the variable energy of ocean waves into a steady supply of energy in a conventional form. The system consists of a set of floats and Persian wheels located off-shore and a storage reservoir on the shore. The floats oscillate vertically as the waves pass below them and turn their respective Persian wheels which lift sea water to a height and deliver to the reservoir through an interconnecting pipeline. The head of water in the reservoir operates a hydraulic turbine which in turn works a generator to supply electricity. Due to the recurrent wave action, water is maintained at the optimum level in the reservoir to ensure continuous power supply.
Tide following wave power machine
Murphy, J.T.
1982-09-21
At least two spaced piers are constructed on a suitable tidal beach extending from the shore into the water a predetermined distance to meet the first breaking waves at low tide. A carriage is movably supported on the piers on an inclined path, the carriage having a frame supporting a pair of spaced sprocket wheels on each end over which is passed an endless belt. The ends of a plurality of blades are secured to the chain in spaced relation completely thereabout. Each sprocket wheels closest to shore is connected to a gear train for transmitting the torque generated by the wave action to a power belt extending along each pier to a transducer located at the shore end of the pier. Means are provided for moving the carriage on the pier on an inclined path in and out from the shore to meet the level of the changing tide so as to continuously generate power throughout the tidal wave.
Silivra, A.
1995-12-31
A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.
Lamb Wave Helical Ultrasonic Tomography
NASA Astrophysics Data System (ADS)
Leonard, K. R.; Hinders, M. K.
2004-02-01
Ultrasonic guided waves have been used for a wide variety of ultrasonic inspection techniques. We describe here a new variation called helical ultrasound tomography (HUT). This new technique, among other things, has direct application to advanced pipe inspection. HUT uses guided ultrasonic waves along with an adaptation of the tomographic reconstruction algorithms developed by seismologists for what they call "cross borehole" tomography. In HUT, the Lamb-like guided waves travel in various helical crisscross paths between two parallel circumferential transducer arrays instead of the planar crisscross seismic paths between two boreholes. Although the measurement itself is fairly complicated, the output of the tomographic reconstruction is a readily interpretable map of a quantity of interest such as pipe wall thickness. We demonstrate the feasibility of the HUT technique via laboratory scans on steel pipe segments into which controlled thinnings have been introduced.
Solitary waves in diatomic chains
NASA Astrophysics Data System (ADS)
Vainchtein, Anna; Starosvetsky, Yuli; Wright, J. Douglas; Perline, Ron
2016-04-01
We consider the mechanism of formation of isolated localized wave structures in the diatomic Fermi-Pasta-Ulam (FPU) model. Using a singular multiscale asymptotic analysis in the limit of high mass mismatch between the alternating elements, we obtain the typical slow-fast time scale separation and formulate the Fredholm orthogonality condition approximating a sequence of mass ratios supporting the formation of solitary waves in the general type of diatomic FPU models. This condition is made explicit in the case of a diatomic Toda lattice. Results of numerical integration of the full diatomic Toda lattice equations confirm the formation of these genuinely localized wave structures at special values of the mass ratio that are close to the analytical predictions when the ratio is sufficiently small.
Crawling wave optical coherence elastography.
Meemon, Panomsak; Yao, Jianing; Chu, Ying-Ju; Zvietcovich, Fernando; Parker, Kevin J; Rolland, Jannick P
2016-03-01
Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compared with its parent imaging resolution, the detection sensitivity and accuracy, and the cost of the overall system. Here we report for the first time, we believe, on an elastography technique-crawling wave optical coherence elastography (CRW-OCE)-which significantly lowers the requirements on the imaging speed and opens the path to high-resolution and high-sensitivity OCE at relatively low cost. Methods of crawling wave excitation, data acquisition, and crawling wave tracking are presented. PMID:26974061
Waves from an underground explosion
NASA Astrophysics Data System (ADS)
Krymskii, A. V.; Lyakhov, G. M.
1984-05-01
The problem of the propagation of a spherical detonation wave in water-saturated soil was solved in [1, 2] by using a model of a liquid porous multicomponent medium with bulk viscosity. Experiments show that soils which are not water saturated are solid porous multicomponent media having a viscosity, nonlinear bulk compression limit diagrams, and irreversible deformations. Taking account of these properties, and using the model in [2], we have solved the problem of the propagation of a spherical detonation wave from an underground explosion. The solution was obtained by computer, using the finite difference method [3]. The basic wave parameters were determined at various distances from the site of the explosion. The values obtained are in good agreement with experiment. Models of soils as viscous media which take account of the dependence of deformations on the rate of loading were proposed in [4 7] also. In [8] a model was proposed corresponding to a liquid multicomponent medium with a variable viscosity.
Gravitational waves from gravitational collapse
Fryer, Christopher L; New, Kimberly C
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Plane Wave and Coulomb Asymptotics
NASA Astrophysics Data System (ADS)
Mulligan, P. G.; Crothers, D. S. F.
2004-01-01
A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Johnson, Mary L.
1994-01-01
Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.
Electron diffraction by plasmon waves
NASA Astrophysics Data System (ADS)
García de Abajo, F. J.; Barwick, B.; Carbone, F.
2016-07-01
An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.
Huge waves of meteorite origin
NASA Astrophysics Data System (ADS)
Pelinovsky, Efim; Kozelkov, Andrey; Kurkin, Andrey
2016-04-01
Asteroid and meteorite risk is now actively investigated in various aspects. If the meteorite falls in the ocean it can generate huge waves with heights exceeded 10 m. For whole history about 10-20 events related with entry of meteorite in water are known. The last event occurred on February 15, 2013 when the meteorite exploded in sky of Chelyabinsk (Russia) and its big piece entered in the Chebarkul Lake. Very often, huge waves of meteorite origin are computed using the conception of equivalent (parametrical) source, whose parameters are determined through meteorite characteristics. Recently, direct methods based on numerical simulations of the Reynolds-averaged Navier-Stokes equations (RANS) have been applied to study wave processes generated by the entry of meteorite. These approaches and their applications to the historic events are discussed in paper.
Chasman, R.R.
1995-08-01
In the past few years, we developed many-body variational wave functions that allow one to treat pairing and particle-hole two-body interactions on an equal footing. The complexity of these wave functions depends on the number of levels included in the valence space, but does not depend on the number of nucleons in the system. By using residual interaction strengths (e.g. the quadrupole interaction strength or pairing interaction strength) as generator coordinates, one gets many different wave functions, each having a different expectation value for the relevant interaction mode. These wave functions are particularly useful when one is dealing with a situation in which the mean-field approximation is inadequate. Because the same basis states are used in the construction of the many-body wave functions, it is possible to calculate overlaps and interaction matrix elements for the many-body wave functions (which are not in general orthogonal) easily. The valence space can contain a large number of single-particle basis states, when there are constants of motion that can be used to break the levels up into groups. We added a cranking term to the many-body Hamiltonian and modified the projection procedure to get states of good signature before variation. In our present implementation, each group is limited to eight pairs of single-particle levels. We are working on ways of increasing the number of levels that can be included in each group. We are also working on including particle-particle residual interaction modes, in addition to pairing, in our Hamiltonian.
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Transversally periodic solitary gravity-capillary waves.
Milewski, Paul A; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
Global coherence of dust density waves
Killer, Carsten; Melzer, André
2014-06-15
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Astrocytes generate Na+-mediated metabolic waves
NASA Astrophysics Data System (ADS)
Bernardinelli, Yann; Magistretti, Pierre J.; Chatton, Jean-Yves
2004-10-01
Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.
Extreme wave runup on a vertical cliff
NASA Astrophysics Data System (ADS)
Carbone, Francesco; Dutykh, Denys; Dudley, John M.; Dias, FréDéRic
2013-06-01
Wave impact and runup onto vertical obstacles are among the most important phenomena which must be taken into account in the design of coastal structures. From linear wave theory, we know that the wave amplitude on a vertical wall is twice the incident wave amplitude with weakly nonlinear theories bringing small corrections to this result. In this present study, however, we show that certain simple wave groups may produce much higher runups than previously predicted, with particular incident wave frequencies resulting in runup heights exceeding the initial wave amplitude by a factor of 5, suggesting that the notion of the design wave used in coastal structure design may need to be revisited. The results presented in this study can be considered as a note of caution for practitioners, on one side, and as a challenging novel material for theoreticians who work in the field of extreme wave-coastal structure interaction.
Primordial gravitational waves and cosmology.
Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan
2010-05-21
The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale. PMID:20489015
NASA Technical Reports Server (NTRS)
Rousseau, Art; Tammaru, Ivo; Vaszari, John
1988-01-01
New space traveling-wave tube (TWT) provides coherent source of 75 watts of continuous-wave power output over bandwidth of 5 GHz at frequency of 65 GHz. Coupled-cavity TWT provides 50 dB of saturated gain. Includes thermionic emitter, M-type dispenser cathode providing high-power electron beam. Beam focused by permanent magnets through center of radio-frequency cavity structure. Designed for reliable operation for 10 years, and overall efficiency of 35 percent minimizes prime power input and dissipation of heat.
Plane waves in noncommutative fluids
NASA Astrophysics Data System (ADS)
Abdalla, M. C. B.; Holender, L.; Santos, M. A.; Vancea, I. V.
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2015-07-01
The problem of wave-particle duality is considered within the framework of the algebraic approach. Contrary to the widespread belief, we demonstrate that wave-particle duality can be reconciled with the assumption that there exists some local physical reality determining the results of local measurements. A number of quantum experiments—double-slit electron scattering, Wheeler's delayed choice experiment, the past of photons passed through the interferometer—are discussed using the concept of locality. A clear physical interpretation of these experiments that does not contradict classical concepts is provided.
GRAVITATIONAL WAVES FROM STELLAR COLLAPSE
C. L. FRYER
2001-01-01
Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.
Analyzing Ramp Compression Wave Experiments
NASA Astrophysics Data System (ADS)
Hayes, D. B.
2007-12-01
Isentropic compression of a solid to 100's of GPa by a ramped, planar compression wave allows measurement of material properties at high strain and at modest temperature. Introduction of a measurement plane disturbs the flow, requiring special analysis techniques. If the measurement interface is windowed, the unsteady nature of the wave in the window requires special treatment. When the flow is hyperbolic the equations of motion can be integrated backward in space in the sample to a region undisturbed by the interface interactions, fully accounting for the untoward interactions. For more complex materials like hysteretic elastic/plastic solids or phase changing material, hybrid analysis techniques are required.
Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric
2011-01-01
We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186
Achromatic axially symmetric wave plate.
Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru
2012-12-31
An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751
Self-Interfering Wave Packets.
Colas, David; Laussy, Fabrice P
2016-01-15
We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields-much like self-accelerating beams-shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal. PMID:26824554
Ocean wave energy converting vessel
Boyce, P.F.
1986-08-26
An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.
NASA Astrophysics Data System (ADS)
Garfinkle, David
1991-08-01
An attempt to solve Einstein's equations by assuming the existence of symmetries and by treating metrics that possess a Killing vector is presented. A spacetime with a null Killing field can be regarded as the history of a disturbance that propagates at the speed of light without changing its amplitude or shape. Such spacetimes are referred to as traveling waves. A new technique for generating solutions of Einstein's equations is then presented. The technique produces a new traveling wave spacetime given an old one. It applies to both the vacuum Einstein equations and Einstein's equations coupled to various types of matter.
NASA Astrophysics Data System (ADS)
Colas, David; Laussy, Fabrice P.
2016-01-01
We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields—much like self-accelerating beams—shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal.
Traveling-Wave Membrane Photomixers
NASA Technical Reports Server (NTRS)
Wyss, R. A.; Martin, S. C.; Nakamura, B. J.; Neto, A.; Pasqualini, D.; Siegel, P. H.; Kadow, C.; Gossard, A. C.
2001-01-01
Traveling-wave photomixers have superior performance when compared with lumped area photomixers in the 1 to 3 THz frequency range. Their large active area and distributed gain mechanism assure high thermal damage threshold and elimination of the capacitive frequency roll-off. However, the losses experienced by the radio frequency wave traveling along the coplanar strips waveguide (due to underlying semi-infinite GaAs substrate) were a serious drawback. In this paper we present device designs and an experimental setup that make possible the realization of photomixers on membranes which eliminate the losses.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results. PMID:27408830
Basic concepts of kinematic-wave models
Miller, J.E.
1984-01-01
The kinematic-wave model is one of a number of approximations of the dynamic-wave model. The dynamic-wave model describes one-dimensional shallow-water waves (unsteady, gradually varied, open-channel flow). The report provides a basic reference on the theory and application of kinematic-wave models and describes the limitations of the model in relation to the other approximations of the dynamic-wave model. In the kinematic-wave approximation, a number of the terms in the equation of motion are assumed to be insignificant. The equation of motion is replaced by an equation describing uniform flow. Thus, the kinematic-wave model is described by the continuity equation and a uniform flow equation such as the well-known Chezy or Manning formulas. Kinematic-wave models are applicable to overland flow where lateral inflow is continuously added and is a large part of the total flow. For channel-routing applications, the kinematic-wave model always predicts a steeper wave with less dispersion and attenuation than actually occurs. The effect of the accumulation of errors in the kinematic-wave model shows that the approximations made in the development of the kinematic-wave equations are not generally justified for most channel-routing applications. Modified flow-routing models can be used which help to stop the accumulation of error that occurs when the kinematic-wave model is applied. (USGS)
Nonlinear electron magnetohydrodynamics physics. II. Wave propagation and wave-wave interactions
Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.
2008-04-15
The propagation of low-frequency whistler modes with wave magnetic field exceeding the ambient field is investigated experimentally. Such nonlinear waves are excited with magnetic loop antennas whose axial field is aligned with the background magnetic field and greatly exceeds its strength. The oscillatory antenna field excites propagating wave packets with field topologies alternating between whistler spheromaks and mirrors. The propagation speed of spheromaks is observed to decrease with amplitude while that of mirrors increases with amplitude. The field distribution varies with amplitude: Spheromaks contract axially while mirrors spread out compared to linear whistlers. Consequently, the peak magnetic field and current densities in spheromaks exceed that of mirrors. Wave-wave interactions of nonlinear whistler modes is also studied. Counterpropagating spheromaks collide inelastically and form a stationary field-reversed configuration. The radius of the toroidal current ring depends on current and can be larger than that of the loop antenna. A tilted field-reversed configuration precesses in the direction of the electron drift. The free magnetic energy is dissipated in the plasma volume and converted into electron heat.
Global wave modeling of electron interactions with fast magnetosonic waves
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Batchelor, D. B.; Murakami, M.
Electron interactions with fast magnetosonic waves are of interest for both direct electron heating and fast-wave current drive (FWCD) in tokamaks. Here the authors apply the full-wave ICRF code PICES to examples of both of these applications. To realistically account for the actual D-shaped magnetic geometry of present-day tokamaks, PICES is interfaced with the 3-D MHD equilibrium code VMEC. Likewise, to correctly model the real toroidal structure of both source and image currents in ICRF current drive antennas, PICES is interfaced with the 2-D recessed antenna impedance code RANT. Both current drive and electron heating by fast waves can be strongly altered through modification of the kappa(sub (parallel))-spectrum by the poloidal magnetic field. A poloidal mode expansion in PICES allows such variations in kappa(sub (parallel)) to be included correctly. In this paper, comparisons are made to observations of the direct electron heating profile on TFTR and to the FWCD efficiency on DIII-D. They also extrapolate to make predictions for future tokamaks such as TPX and ITER.
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments. PMID:26357093
Langley, Philip; Caldwell, Jane
2016-01-01
The atrial T wave (Ta wave) is the body surface manifestation of atrial repolarisation and, unlike the P wave (atrial depolarisation), is little recognised. We report the case of a patient with shifting pacemaker which clearly demonstrates the effect of the Ta wave on ST segment and T wave. A simple conceptual model is used to explain the observed phenomenon. The case serves as a reminder of this often forgotten ECG wave and its potential effects on other ECG features. PMID:27215648
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Nonlinear Fourier analysis with cnoidal waves
Osborne, A.R.
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. PMID:26873972
Sati, Priti; Tripathi, V. K.
2012-12-15
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Plasma wave aided two photon decay of an electromagnetic wave in a plasma
Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod
2014-11-15
The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.
Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves
Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin
2008-09-07
The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.
Modeling the effect of wave-vegetation interaction on wave setup
NASA Astrophysics Data System (ADS)
van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.
2016-06-01
Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).
Global observations of ocean Rossby waves
Chelton, D.B.; Schlax, M.G.
1996-04-12
Rossby waves play a critical role in the transient adjustment of ocean circulation to changes in large-scale atmospheric forcing. The TOPEX/POSEIDON satellite altimeter has detected Rossby waves throughout much of the world ocean from sea level signals with {approx_lt} 10-centimeters amplitude and {approx_lt} 500-kilometer wavelength. Outside of the tropics Rossby waves are abruptly amplified by major topographic features. Analysis of 3 years of data reveals discrepancies between observed and theoretical Rossby wave phase speeds that indicate that the standard theory for free, linear Rossby waves in an incomplete description of the observed waves. 32 refs., 5 figs.
Initiation and Evolution of Global Coronal Waves
NASA Astrophysics Data System (ADS)
Vršnak, B.; Muhr, N.; Žic, T.; Lulić, S.; Kienreich, I. W.; Temmer, M.; Veronig, A. M.
Some essential outcomes of a detailed analysis of the formation and evolution of the coronal EUV wave of 15 February 2011 are presented, focused on the relationship between the source region expansion, wave kinematics, and the evolution of the wave amplitude. The observations are explained in terms of the results of the numerical MHD simulations, providing new insights into the physical background of coronal waves, especially considering the nature of the relationship of the wave amplitude and propagation velocity in different phases of the wave evolution.
Controllable parabolic-cylinder optical rogue wave
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
Unidirectional Transition Waves in Bistable Lattices
NASA Astrophysics Data System (ADS)
Nadkarni, Neel; Arrieta, Andres F.; Chong, Christopher; Kochmann, Dennis M.; Daraio, Chiara
2016-06-01
We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Equatorial waves in the stratosphere of Uranus
NASA Technical Reports Server (NTRS)
Hinson, David P.; Magalhaes, Julio A.
1991-01-01
Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.
Izu, Leighton T.; Xie, Yuanfang; Sato, Daisuke; Bányász, Tamás; Chen-Izu, Ye
2013-01-01
Ca2+ waves were probably first observed in the early 1940s. Since then Ca2+ waves have captured the attention of an eclectic mixture of mathematicians, neuroscientists, muscle physiologists, developmental biologists, and clinical cardiologists. This review discusses the current state of mathematical models of Ca2+ waves, the normal physiological functions Ca2+ waves might serve in cardiac cells, as well as how the spatial arrangement of Ca2+ release channels shape Ca2+ waves, and we introduce the idea of Ca2+ phase waves that might provide a useful framework for understanding triggered arrhythmias. This article is part of a Special Issue entitled ‘Calcium Signaling in Heart’. PMID:23220129
Nonlinear evolution of astrophysical Alfven waves
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Undulations from amplified low frequency surface waves
Coutant, Antonin; Parentani, Renaud
2014-04-15
We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.
Kinetic Alfven waves on auroral field lines
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1984-01-01
It is suggested on the basis of several observations of Alfven waves near auroral arcs that kinetic Alfven waves play a significant role in the process of particle acceleration. The characteristic properties of kinetic Alfven waves are summarized according to the theoretical classifications provided by Hasegawa and Mima (1979). The resonant coupling of large-scale surface waves to kinetic Alfven waves is also discussed. It is shown that kinetic Alfven waves can explain observations of what have previously been known as 'electrostatic' shocks.
Lee waves, benign and malignant
NASA Technical Reports Server (NTRS)
Wurtele, M. G.; Datta, A.
1992-01-01
The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.
Reconnections of Wave Vortex Lines
ERIC Educational Resources Information Center
Berry, M. V.; Dennis, M. R.
2012-01-01
When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…
Schools Brace for Bhutanese Wave
ERIC Educational Resources Information Center
Zehr, Mary Ann
2008-01-01
American educators in cities such as Syracuse, NY, Burlington, VT, and St. Paul, MN, for reasons including civic culture, existing ethnic communities, availability of jobs, and the location of refugee-resettlement organizations, periodically receive waves of resettling immigrants. Officials in those communities have become adept at educating…
Teaching Waves with Google Earth
ERIC Educational Resources Information Center
Logiurato, Fabrizio
2012-01-01
Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)
The Galileo plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.
1992-01-01
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.
NASA Technical Reports Server (NTRS)
Calvert, Wynne
1994-01-01
Activities under this project have included participation in the Waves in Space Plasmas (WISP) program, a study of the data processing requirements for WISP, and theoretical studies of radio sounding, ducting, and magnetoionic theory. An analysis of radio sounding in the magnetosphere was prepared.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Solitary waves and homoclinic orbits
Balmforth, N.J.
1994-03-01
The notion that fluid motion often organizes itself into coherent structures has increasingly permeated modern fluid dynamics. Such localized objects appear in laminar flows and persist in turbulent states; from the water on windows on rainy days, to the circulations in planetary atmospheres. This review concerns solitary waves in fluids. More specifically, it centres around the mathematical description of solitary waves in a single spatial dimension. Moreover, it concentrates on strongly dissipative dynamics, rather than integrable systems like the KdV equation. One-dimensional solitary waves, or pulses and fronts as they are also called, are the simplest kinds of coherent structure (at least from a geometrical point of view). Nevertheless, their dynamics can be rich and complicated. In some circumstances this leads to the formation of spatio-temporal chaos in the systems giving birth to the solitary waves, and understanding that phenomenon is one of the major goals in the theory outlined in this review. Unfortunately, such a goal is far from achieved to date, and the author assess its current status and incompleteness.
Wave turbulence in quantum fluids
Kolmakov, German V.; McClintock, Peter Vaughan Elsmere; Nazarenko, Sergey V.
2014-01-01
Wave turbulence (WT) occurs in systems of strongly interacting nonlinear waves and can lead to energy flows across length and frequency scales much like those that are well known in vortex turbulence. Typically, the energy passes although a nondissipative inertial range until it reaches a small enough scale that viscosity becomes important and terminates the cascade by dissipating the energy as heat. Wave turbulence in quantum fluids is of particular interest, partly because revealing experiments can be performed on a laboratory scale, and partly because WT among the Kelvin waves on quantized vortices is believed to play a crucial role in the final stages of the decay of (vortex) quantum turbulence. In this short review, we provide a perspective on recent work on WT in quantum fluids, setting it in context and discussing the outlook for the next few years. We outline the theory, review briefly the experiments carried out to date using liquid H2 and liquid 4He, and discuss some nonequilibrium excitonic superfluids in which WT has been predicted but not yet observed experimentally. By way of conclusion, we consider the medium- and longer-term outlook for the field. PMID:24704881