Science.gov

Sample records for lowland rain forest

  1. Tropical Rain Forest and Climate Dynamics of the Atlantic Lowland, Southern Brazil, during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Negrelle, Raquel R. B.

    2001-11-01

    Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge "valley," located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.

  2. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations.

    PubMed

    Sahner, Josephine; Budi, Sri Wilarso; Barus, Henry; Edy, Nur; Meyer, Marike; Corre, Marife D; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems. PMID:26366576

  3. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations

    PubMed Central

    Edy, Nur; Meyer, Marike; Corre, Marife D.; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems. PMID:26366576

  4. Holocene History of the Chocó Rain Forest from Laguna Piusbi, Southern Pacific Lowlands of Colombia

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Hooghiemstra, Henry; Negret, Alvaro José

    1998-11-01

    A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS 14C dates that range from ca. 7670 to 220 14C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 6100 14C yr B.P. (500-265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 4400 14C yr B.P. From the interval of about 6000 14C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae, Cecropia,Melastomataceae/Combretaceae, Acalypha, Alchornea,Fabaceae, Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,and Wettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 3460 14C yr B.P. Evidence of agricultural activity, shown by cultivation of Zea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.

  5. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    USGS Publications Warehouse

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  6. Monocot Leaves are Eaten Less than Dicot Leaves in Tropical Lowland Rain Forests: Correlations with Toughness and Leaf Presentation

    PubMed Central

    Grubb, Peter J.; Jackson, Robyn V.; Barberis, Ignacio M.; Bee, Jennie N.; Coomes, David A.; Dominy, Nathaniel J.; De La Fuente, Marie Ann S.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.; Vargas, Orlando

    2008-01-01

    Background and Aims In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. Methods At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. Key Results At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. Conclusions The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf

  7. The Genetic Population Structure of Wild Western Lowland Gorillas (Gorilla gorilla gorilla) Living in Continuous Rain Forest

    PubMed Central

    FÜNFSTÜCK, TILLMANN; ARANDJELOVIC, MIMI; MORGAN, DAVID B.; SANZ, CRICKETTE; BREUER, THOMAS; STOKES, EMMA J.; REED, PATRICIA; OLSON, SARAH H.; CAMERON, KEN; ONDZIE, ALAIN; PEETERS, MARTINE; KÜHL, HJALMAR S.; CIPOLLETTA, CHLOE; TODD, ANGELIQUE; MASI, SHELLY; DORAN-SHEEHY, DIANE M.; BRADLEY, BRENDA J.; VIGILANT, LINDA

    2014-01-01

    To understand the evolutionary histories and conservation potential of wild animal species it is useful to assess whether taxa are genetically structured into different populations and identify the underlying factors responsible for any clustering. Landscape features such as rivers may influence genetic population structure, and analysis of structure by sex can further reveal effects of sex-specific dispersal. Using microsatellite genotypes obtained from noninvasively collected fecal samples we investigated the population structure of 261 western lowland gorillas (WLGs) (Gorilla gorilla gorilla) from seven locations spanning an approximately 37,000km2 region of mainly continuous rain forest within Central African Republic (CAR), Republic of Congo and Cameroon. We found our sample to consist of two or three significantly differentiated clusters. The boundaries of the clusters coincided with courses of major rivers. Moreover, geographic distance detoured around rivers better-explained variation in genetic distance than straight line distance. Together these results suggest that major rivers in our study area play an important role in directing WLG gene flow. The number of clusters did not change when males and females were analyzed separately, indicating a lack of greater philopatry in WLG females than males at this scale. PMID:24700547

  8. The genetic population structure of wild western lowland gorillas (Gorilla gorilla gorilla) living in continuous rain forest.

    PubMed

    Fünfstück, Tillmann; Arandjelovic, Mimi; Morgan, David B; Sanz, Crickette; Breuer, Thomas; Stokes, Emma J; Reed, Patricia; Olson, Sarah H; Cameron, Ken; Ondzie, Alain; Peeters, Martine; Kühl, Hjalmar S; Cipolletta, Chloe; Todd, Angelique; Masi, Shelly; Doran-Sheehy, Diane M; Bradley, Brenda J; Vigilant, Linda

    2014-09-01

    To understand the evolutionary histories and conservation potential of wild animal species it is useful to assess whether taxa are genetically structured into different populations and identify the underlying factors responsible for any clustering. Landscape features such as rivers may influence genetic population structure, and analysis of structure by sex can further reveal effects of sex-specific dispersal. Using microsatellite genotypes obtained from noninvasively collected fecal samples we investigated the population structure of 261 western lowland gorillas (WLGs) (Gorilla gorilla gorilla) from seven locations spanning an approximately 37,000 km(2) region of mainly continuous rain forest within Central African Republic (CAR), Republic of Congo and Cameroon. We found our sample to consist of two or three significantly differentiated clusters. The boundaries of the clusters coincided with courses of major rivers. Moreover, geographic distance detoured around rivers better-explained variation in genetic distance than straight line distance. Together these results suggest that major rivers in our study area play an important role in directing WLG gene flow. The number of clusters did not change when males and females were analyzed separately, indicating a lack of greater philopatry in WLG females than males at this scale. PMID:24700547

  9. The Influence of Habitat Structure on Bird Species Composition in Lowland Malaysian Rain Forests

    PubMed Central

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd

    2012-01-01

    Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild. PMID:24575221

  10. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers

    NASA Astrophysics Data System (ADS)

    Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades

    2010-04-01

    We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.

  11. In Tropical Lowland Rain Forests Monocots have Tougher Leaves than Dicots, and Include a New Kind of Tough Leaf

    PubMed Central

    Dominy, Nathaniel J.; Grubb, Peter J.; Jackson, Robyn V.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.

    2008-01-01

    Background and Aims There has been little previous work on the toughness of the laminae of monocots in tropical lowland rain forest (TLRF) despite the potential importance of greater toughness in inhibiting herbivory by invertebrates. Of 15 monocot families with >100 species in TLRF, eight have notably high densities of fibres in the lamina so that high values for toughness are expected. Methods In north-eastern Australia punch strength was determined with a penetrometer for both immature leaves (approx. 30 % final area on average) and fully expanded, fully toughened leaves. In Singapore and Panama, fracture toughness was determined with an automated scissors apparatus using fully toughened leaves only. Key Results In Australia punch strength was, on average, 7× greater in shade-tolerant monocots than in neighbouring dicots at the immature stage, and 3× greater at the mature stage. In Singapore, shade-tolerant monocots had, on average, 1·3× higher values for fracture toughness than neighbouring dicots. In Panama, both shade-tolerant and gap-demanding monocots were tested; they did not differ in fracture toughness. The monocots had markedly higher values than the dicots whether shade-tolerant or gap-demanding species were considered. Conclusions It is predicted that monocots will be found to experience lower rates of herbivory by invertebrates than dicots. The tough monocot leaves include both stiff leaves containing relatively little water at saturation (e.g. palms), and leaves which lack stiffness, are rich in water at saturation and roll readily during dry weather or even in bright sun around midday (e.g. gingers, heliconias and marants). Monocot leaves also show that it is possible for leaves to be notably tough throughout the expansion phase of development, something never recorded for dicots. The need to broaden the botanist's mental picture of a ‘tough leaf’ is emphasized. PMID:18387969

  12. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers

    USGS Publications Warehouse

    Solomon, D. Kip; Genereux, David P.; Plummer, L. Niel; Busenberg, Eurybiades

    2010-01-01

    We tested three models of mixing between old interbasin groundwater flow (IGF) and young, locally derived groundwater in a lowland rain forest in Costa Rica using a large suite of environmental tracers. We focus on the young fraction of water using the transient tracers CFC-11, CFC-12, CFC-113, SF6, 3H, and bomb 14C. We measured 3He, but 3H/3He dating is generally problematic due to the presence of mantle 3He. Because of their unique concentration histories in the atmosphere, combinations of transient tracers are sensitive not only to subsurface travel times but also to mixing between waters having different travel times. Samples fall into three distinct categories: (1) young waters that plot along a piston flow line, (2) old samples that have near-zero concentrations of the transient tracers, and (3) mixtures of 1 and 2. We have modeled the concentrations of the transient tracers using (1) a binary mixing model (BMM) of old and young water with the young fraction transported via piston flow, (2) an exponential mixing model (EMM) with a distribution of groundwater travel times characterized by a mean value, and (3) an exponential mixing model for the young fraction followed by binary mixing with an old fraction (EMM/BMM). In spite of the mathematical differences in the mixing models, they all lead to a similar conceptual model of young (0 to 10 year) groundwater that is locally derived mixing with old (>1000 years) groundwater that is recharged beyond the surface water boundary of the system.

  13. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.

  14. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest.

    PubMed

    Ichie, Tomoaki; Inoue, Yuta; Takahashi, Narumi; Kamiya, Koichi; Kenzo, Tanaka

    2016-07-01

    The vertical structure of a tropical rain forest is complex and multilayered, with strong variation of micro-environment with height up to the canopy. We investigated the relation between morphological traits of leaf surfaces and tree ecological characteristics in a Malaysian tropical rain forest. The shapes and densities of stomata and trichomes on the abaxial leaf surfaces and their relation with leaf characteristics such as leaf area and leaf mass per area (LMA) were studied in 136 tree species in 35 families with different growth forms in the tropical moist forest. Leaf physiological properties were also measured in 50 canopy and emergent species. Most tree species had flat type (40.4 %) or mound type (39.7 %) stomata. In addition, 84 species (61.76 %) in 22 families had trichomes, including those with glandular (17.65 %) and non-glandular trichomes (44.11 %). Most leaf characteristics significantly varied among the growth form types: species in canopy and emergent layers and canopy gap conditions had higher stomatal density, stomatal pore index (SPI), trichome density and LMA than species in understory and subcanopy layers, though the relation of phylogenetically independent contrasts to each characteristic was not statistically significant, except for leaf stomatal density, SPI and LMA. Intrinsic water use efficiency in canopy and emergent tree species with higher trichome densities was greater than in species with lower trichome densities. These results suggest that tree species in tropical rain forests adapt to a spatial difference in their growth forms, which are considerably affected by phylogenetic context, by having different stomatal and trichome shapes and/or densities. PMID:26879931

  15. The Children's Rain Forest.

    ERIC Educational Resources Information Center

    Thornton, Carol A.; And Others

    1995-01-01

    Describes a unit on rain forests in which first graders studied about rain forests, built a classroom rain forest, and created a bulletin board. They also graphed rainfall, estimated body water, and estimated the number of newspapers that could be produced from one canopy tree. (MKR)

  16. Rain Forest Murals

    ERIC Educational Resources Information Center

    Kleiner, Cheryl

    2010-01-01

    The rain forest murals in the author's school began as a request from her principal to have students decorate the cafeteria with their own paintings. She decided to brainstorm ideas with her eighth-grade students. Taking into consideration the architectural space and the environmental concerns they wanted to convey, students chose the rain forest…

  17. People & Tropical Rain Forests.

    ERIC Educational Resources Information Center

    NatureScope, 1989

    1989-01-01

    Discusses ways people who live in rain forests make a living and some of the products that enrich our lives. Provides activities covering forest people, tropical treats, jungle in the pantry, treetop explorers, and three copyable pages to accompany activities. (Author/RT)

  18. Rain Forests: Tropical Treasures.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Rain Forests: Tropical Treasures." Contents are organized into the following…

  19. Lessons from the Rain Forest.

    ERIC Educational Resources Information Center

    Phillips, Shelley

    2002-01-01

    Presents a first-grade art project after students learned about the rain forest and heard the story, "The Great Kapok Tree: A Tale of the Amazon Rain Forest" (Lynn Cherry). Explains that the students created pictures of the rain forest. (CMK)

  20. A long pollen record from lowland Amazonia: Forest and cooling in glacial times

    SciTech Connect

    Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.

    1996-10-04

    A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23 refs., 22 tabs.

  1. Seven Guideposts for Tropical Rain Forest Education.

    ERIC Educational Resources Information Center

    Rillero, Peter

    1999-01-01

    Identifies seven guideposts for tropical rain forest education. Aids teachers in finding structure and creating educational experiences that promote more complete understanding of tropical rain forests. (CCM)

  2. An analysis of modern pollen rain from the Maya lowlands of northern Belize

    USGS Publications Warehouse

    Bhattacharya, T.; Beach, T.; Wahl, D.

    2011-01-01

    In the lowland Maya area, pollen records provide important insights into the impact of past human populations and climate change on tropical ecosystems. Despite a long history of regional paleoecological research, few studies have characterized the palynological signatures of lowland ecosystems, a fact which lowers confidence in ecological inferences made from palynological data. We sought to verify whether we could use pollen spectra to reliably distinguish modern ecosystem types in the Maya lowlands of Central America. We collected 23 soil and sediment samples from eight ecosystem types, including upland, riparian, secondary, and swamp (bajo) forests; pine savanna; and three distinct wetland communities. We analyzed pollen spectra with non-metric multidimensional scaling (NMDS), and found significant compositional differences in ecosystem types' pollen spectra. Forested sites had spectra dominated by Moraceae/Urticaceae pollen, while non-forested sites had significant portions of Poaceae, Asteraceae, and Amaranthaceae pollen. Upland, bajo, and riparian forest differed in representation of Cyperaceae, Bactris-type, and Combretaceae/Melastomataceae pollen. High percentages of pine (Pinus), oak (Quercus), and the presence of Byrsonima characterized pine savanna. Despite its limited sample size, this study provides one of the first statistical analyses of modern pollen rain in the Maya lowlands. Our results show that pollen assemblages can accurately reflect differences between ecosystem types, which may help refine interpretations of pollen records from the Maya area. ?? 2010 Elsevier B.V.

  3. A Walk in the Rain Forest.

    ERIC Educational Resources Information Center

    Gustafson, Glenn

    2001-01-01

    Presents a learning project in which students prepare a guided, multisensory rain forest tour representing its ecology. Develops five stop points presenting a theme or an important aspect of the rain forest. Includes a list of selected resources for rain forest studies. (YDS)

  4. Create a Rain Forest in the Gym.

    ERIC Educational Resources Information Center

    Kane, Karen

    1995-01-01

    Describes a creative interdisciplinary program for K-3 students that involves setting up a rain forest in the gymnasium to teach students gymnastic skills in the context of the Amazon rain forest. The paper describes how to set up the rain forest and teach a variety of classes. Rainforest resources are included. (SM)

  5. Environmental Education about the Rain Forest.

    ERIC Educational Resources Information Center

    Berkmuller, Klaus

    Designed to help in the development of an educational program about the value of rain forests, this handbook presents a condensation of issues, facts, and concepts. The handbook is divided into three parts. Part one introduces the rain forest ecosystem and provides conceptual background material needed in the determination of problems, the…

  6. Soil phosphorus and the ecology of lowland tropical forests

    NASA Astrophysics Data System (ADS)

    Turner, Ben

    2016-04-01

    In this presentation I will explore the extent to which phosphorus influences the productivity, diversity, and distribution of plant species in tropical forests. I will highlight the range of soils that occur in tropical forests and will argue that pedogenesis and associated phosphorus depletion is a primary driver of forest diversity over long timescales. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined predominantly as a function of dry season intensity and soil phosphorus availability, and will suggest potential mechanistic explanations for this pattern in relation to phosphorus acquisition. Finally, I will present observational and experimental evidence from Panama to show how phosphorus, nitrogen, and potassium, limit plant productivity and microbial communities on strongly-weathered soils in the lowland tropics.

  7. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

    PubMed

    Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R

    2016-02-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  8. Rain Forests: Do They Hold Up the Sky?

    ERIC Educational Resources Information Center

    Shaw, Donna Gail; Dybdahl, Claudia S.

    1992-01-01

    This paper uses the topic of rain forests to demonstrate how a meaningful and relevant Science, Technology, and Society program can be designed for intermediate-level students. Students create and immerse themselves in a tropical rain forest, explore the forest ecosystem and peoples, and consider solutions to the problem of deforestation. (JDD)

  9. Monitoring Fires in Southwestern Amazonia Rain Forests

    NASA Astrophysics Data System (ADS)

    Brown, I. Foster; Schroeder, Wilfrid; Setzer, Alberto; de Los Rios Maldonado, Monica; Pantoja, Nara; Duarte, Alejandro; Marengo, Jose

    2006-06-01

    From mid-July to mid-October 2005, an environmental disaster unfolded in the trinational region of Madre de Dios, Peru; Acre, Brazil; and Pando, Bolivia (the MAP region), in southwestern Amazonia. A prolonged dry season and human-initiated fires resulted in smoke pollution affecting more than 400,000 persons, fire damage to over 300,000 hectares of rain forest, and over US$50 million of direct economic losses. Indicators suggest that anomalous drought conditions could occur again this year.

  10. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  11. Lowland forest loss in protected areas of Indonesian Borneo.

    PubMed

    Curran, L M; Trigg, S N; McDonald, A K; Astiani, D; Hardiono, Y M; Siregar, P; Caniago, I; Kasischke, E

    2004-02-13

    The ecology of Bornean rainforests is driven by El Niño-induced droughts that trigger synchronous fruiting among trees and bursts of faunal reproduction that sustain vertebrate populations. However, many of these species- and carbon-rich ecosystems have been destroyed by logging and conversion, which increasingly threaten protected areas. Our satellite, Geographic Information System, and field-based analyses show that from 1985 to 2001, Kalimantan's protected lowland forests declined by more than 56% (>29,000 square kilometers). Even uninhabited frontier parks are logged to supply international markets. "Protected" forests have become increasingly isolated and deforested and their buffer zones degraded. Preserving the ecological integrity of Kalimantan's rainforests requires immediate transnational management. PMID:14963327

  12. Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years

    PubMed Central

    Tng, David Y P; Murphy, Brett P; Weber, Ellen; Sanders, Gregor; Williamson, Grant J; Kemp, Jeanette; Bowman, David M J S

    2012-01-01

    Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO2 as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire

  13. Rain forest provides pollinating beetles for atemoya crops.

    PubMed

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards < or = 0.5 km from rain forest were predominantly visited by five previously unrecognized native beetle pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production. PMID:16156571

  14. Plant mineral concentrations related to foraging preferences of western lowland gorilla in Central African forest clearings.

    PubMed

    Metsio Sienne, Julia; Buchwald, Rainer; Wittemyer, George

    2014-12-01

    In the Central African rain forest, mineral resources essential to organisms are distributed heterogeneously. Forest clearings, locally known as bais, attract numerous species presumably due to the mineral richness of these sites, though understanding of the factors drawing species to bais remains speculative. Western lowland gorillas (Gorilla g. gorilla) selectively feed on particular plant species and parts within bais, but studies of such feeding preferences have focused on one site. Here, we compared concentrations of minerals and macronutrients from plants gorillas consumed and those they did not in 16 bais to gain inference regarding drivers of resource selection within bais and bai use. The availability of gorilla feeding plants varied between surveyed bais, with some consumed species occurring only at a few bais. Regardless of bai specific species composition, significantly higher concentrations of Na, K, and Ca were found in consumed plants, and other trace minerals were more common in consumed plants. In contrast, macronutrients appeared to play no major role in feeding plant selectivity with consumed species often having lower concentrations than non-consumed species. We found evidence for seasonal differences in Mg and Na concentrations, but the concentrations of other minerals in consumed plants were consistent across time. These findings provide insight to the drivers of bai visitation by gorillas. The high variation in species across bais may elicit use of multiple bais, but the general increased mineral composition of consumed species across bais suggests metabolic requirements may be met through consumption of a variety of species. PMID:24865332

  15. Behavioral ecology of euglossine bees of the Atlantic rain forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before the colonization of Brazil, the Atlantic rain forest extended from Rio Grande do Norte to Rio Grande do Sul. Today, however, the Atlantic forest has been reduced to only 8% of its original size and is highly fragmented. Because of its biological diversity, endemism and number of endangered ...

  16. Can lowland dry forests represent a refuge from avian malaria for native Hawaiian birds?

    USGS Publications Warehouse

    Tucker-Mohl, Katherine; Hart, Patrick; Atkinson, Carter T.

    2010-01-01

    Hawaii's native birds have become increasingly threatened over the past century. Introduced mosquito borne diseases such as avian malaria may be responsible for the near absence of endemic Hawaiian forest birds in low-elevation habitats. The recent recognition that some native Hawaiian forest birds may be repopulating moist lowland habitats as a result of evolved resistance to this disease has increased the conservation value of these areas. Here, we investigate whether remnant low elevation dry forests on Hawaii Island provide natural 'refuges' from mosquito-transmitted malaria by nature of their low rainfall and absence of suitable natural sources of water for mosquito breeding. Unlike lowland wet forests where high rates of disease transmission may be selecting for disease resistance, lowland dry forests may provide some refuge for native forest birds without natural resistance to malaria. We mistnetted forest birds in two lowland dry forests and tested all native birds by microscopy and serology for avian malaria caused by the Plasmodium relictum parasite. We also conducted surveys for standing water and mosquito larvae. Overall prevalence of infections with Plasmodium relictum in the Hawaii Amakihi Hemignathus virens virens was 15%. Most infected birds had lowlevel parasitemias, suggesting chronic infections. Although avian malaria is present in these lowland dry forest Amakihi populations, infection rates are significantly lower than in wet forest populations at similar elevations. Sources of breeding mosquitoes in these forests appeared to be largely anthropogenic; thus, there is potential to manage dry forests as mosquito-free habitat for Hawaii Amakihi and other Hawaiian forest birds.

  17. Carbon dioxide transfer over a Central Amazonian rain forest

    NASA Astrophysics Data System (ADS)

    Malhi, Yadvinder; Nobre, Antonio D.; Grace, John; Kruijt, Bart; Pereira, Maria G. P.; Culf, Alistair; Scott, Steve

    1998-12-01

    Tropical rain forests are among the most important and least monitored of terrestrial ecosystems. In recent years, their influence on atmospheric concentrations of carbon dioxide and water vapor has become the subject of much speculation. Here we present results from a yearlong study of CO2 fluxes at a tropical forest in central Amazonia, using the micrometeorological technique of eddy covariance. The diurnal cycle of CO2 flux was consistent with previous short-term studies in tropical rain forests, implying that the Amazonian rain forest shows a fair degree of spatial uniformity in bulk ecophysiological characteristics. Typical peak daytime photosynthesis rates were 24-28 μmol CO2 m-2 s-1, and respiration rates were 6-8 μmol CO2 m-2 s-1. There was significant seasonality in peak photosynthesis over the year, which appeared strongly correlated with soil moisture content. On the other hand, there was no evidence of strong seasonality in soil respiration. Central Amazonia has only a short, 3-month dry season, not atypical of tropical rain forest, and it is therefore likely that large areas of Amazonia exhibit significant seasonality in photosynthetic capacity. The gross primary production was calculated to be 30 t C ha-1 yr-1. An analysis of data quality is included in the appendix.

  18. Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different?

    NASA Astrophysics Data System (ADS)

    Costa, Marcos H.; Biajoli, MáRcia C.; Sanches, Luciana; Malhado, Ana C. M.; Hutyra, Lucy R.; Da Rocha, Humberto R.; Aguiar, Renata G.; de Araújo, Alessandro C.

    2010-12-01

    This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.

  19. Seasonal Variation in Seed Dispersal by Tamarins Alters Seed Rain in a Secondary Rain Forest

    PubMed Central

    Muñoz Lazo, Fernando Julio João; Huynen, Marie-Claude; Poncin, Pascal; Heymann, Eckhard W.

    2010-01-01

    Reduced dispersal of large seeds into degraded areas is one of the major factors limiting rain forest regeneration, as many seed dispersers capable of transporting large seeds avoid these sites with a limited forest cover. However, the small size of tamarins allows them to use small trees, and hence to disperse seeds into young secondary forests. Seasonal variations in diet and home range use might modify their contribution to forest regeneration through an impact on the seed rain. For a 2-yr period, we followed a mixed-species group of tamarins in Peru to determine how their role as seed dispersers in a 9-yr-old secondary-growth forest varied across seasons. These tamarins dispersed small to large seeds of 166 tree species, 63 of which were into a degraded area. Tamarins’ efficiency in dispersing seeds from primary to secondary forest varied across seasons. During the late wet season, high dietary diversity and long forays in secondary forest allowed them to disperse large seeds involved in later stages of regeneration. This occurred precisely when tamarins spent a more equal amount of time eating a high diversity of fruit species in primary forest and pioneer species in secondary forest. We hypothesized that well-balanced fruit availability induced the movement of seed dispersers between these 2 habitats. The noteworthy number of large-seeded plant species dispersed by such small primates suggests that tamarins play an important, but previously neglected, role in the regeneration and maintenance of forest structure. Electronic supplementary material The online version of this article (doi:10.1007/s10764-010-9413-7) contains supplementary material, which is available to authorized users. PMID:20651905

  20. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    PubMed

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem. PMID:26032606

  1. The Effects of Acid Rain on Forest Nutrient Status

    NASA Astrophysics Data System (ADS)

    Johnson, Dale W.; Turner, John; Kelly, J. M.

    1982-06-01

    The effects of acidic atmospheric inputs on forest nutrient status must be assessed within the context of natural, internal acid production by carbonic and organic acids as well as the nutrient inputs and drains by management practices such as harvesting, fire, and fertilization. In all cases the anion associated with acid inputs must be mobile in the soil if leaching is to occur; immobilization of anions can effectively prevent cation leaching. Soil acidification will occur only if the often substantial buffering capacity of the soil in question is exceeded by acid inputs and if cation weathering from primary minerals is insufficient to offset cation losses by leaching. Such circumstances are rare but certainly could occur in theory, at least, given sufficiently large acid inputs on poorly buffered soils. Soils most sensitive to change are thought to be those of moderately acid pH and low cation exchange capacity. Neither very acid soils nor neutral, highly buffered soils are sensitive to acidification by acid rain. Given extremely high acid inputs, acid rain can cause temporary increases in nitrogen mineralization and nitritication as well as Al mobilization in soils. While temporary increases in N availability can cause increased forest growth in N-deficient forests, increased Al availability can cause toxic reactions in tree roots. Little is known about tree Al toxicity levels as yet, however. It must be emphasized that assessment of acid rain effects is a problem of quantification. Given sufficiently high inputs on sensitive sites, negative effects of acid rain must occur, as is true of inputs of any substance, including H2O. Acid rain inputs of sufficient magnitude to cause acute effects, such as growth increase due to N mobilization or growth decrease due to Al mobilization, are apparently very rare under ambient field conditions. Long-term effects on forest nutrient status can be either beneficial or adverse, depending on site nutrient status, silvicultural

  2. Current and Future Carbon Budgets of Tropical Rain Forest: A Cross Scale Analysis. Final Report

    SciTech Connect

    Oberbauer, S. F.

    2004-01-16

    The goal of this project was to make a first assessment of the major carbon stocks and fluxes and their climatic determinants in a lowland neotropical rain forest, the La Selva Biological Station, Costa Rica. Our research design was based on the concurrent use of several of the best available approaches, so that data could be cross-validated. A major focus of our effort was to combine meteorological studies of whole-forest carbon exchange (eddy flux), with parallel independent measurements of key components of the forest carbon budget. The eddy flux system operated from February 1998 to February 2001. To obtain field data that could be scaled up to the landscape level, we monitored carbon stocks, net primary productivity components including tree growth and mortality, litterfall, woody debris production, root biomass, and soil respiration in a series of replicated plots stratified across the major environmental gradients of the forest. A second major focus of this project was on the stocks and changes of carbon in the soil. We used isotope studies and intensive monitoring to investigate soil organic stocks and the climate-driven variation of soil respiration down the soil profile, in a set of six 4m deep soil shafts stratified across the landscape. We measured short term tree growth, climate responses of sap flow, and phenology in a suite of ten canopy trees to develop individual models of tree growth to daytime weather variables.

  3. Nitrate reduction in sediments of lowland tropical streams draining swamp forest in Costa Rica: An ecosystem perspective

    USGS Publications Warehouse

    Duff, J.H.; Pringle, C.M.; Triska, F.J.

    1996-01-01

    Nitrate reduction and denitrification were measured in swamp forest streams draining lowland rain forest on Costa Rica's Atlantic slope foothills using the C2H2-block assay and sediment-water nutrient fluxes. Denitrification assays using the C2H2-block technique indicated that the full suite of denitrifying enzymes were present in the sediment but that only a small fraction of the functional activity could be expressed without adding NO3/-. Under optimal conditions, denitrification enzyme activity averaged 15 nmoles cm-3 sediment h-1. Areal NO3/- reduction rates measured from NO3/- loss in the overlying water of sediment- water flux chambers ranged from 65 to 470 umoles m-2 h-1. Oxygen loss rates accompanying NO3/-depletion averaged 750 umoles m-2 h-1. Corrected for denitrification of NO3/- oxidized from NH4/+ in the sediment, gross NO3/- reduction rates increase by 130 umoles m-2 h-1, indicating nitrification may be the predominant source of NO3/- for NO3/- reduction in swamp forest stream sediments. Under field conditions approximately 80% of the increase in inorganic N mass along a 1250-m reach of the Salto River was in the form of NO3/- with the balance NH4/+. Scrutiny of potential inorganic N sources suggested that mineralized N released from the streambed was a major source of the inorganic N increase. Despite significant NO3/- reduction potential, swamp forest stream sediments appear to be a source of inorganic N to downstream communities.

  4. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  5. Bird communities associated with succession and management of lowland conifer forests

    USGS Publications Warehouse

    Dawson, D.K.

    1979-01-01

    Data from published bird censuses were used to determine changes in avian communities in relation to plant succession, fire, type conversion, and timber management practices in lowland conifer forests in the northeastern United States. With modifications in current logging practices, habitat for the bird species that nest in undisturbed stands can be provided. Management guidelines are recommended.

  6. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms

    NASA Astrophysics Data System (ADS)

    Falcon-Lang, Howard J.

    2004-08-01

    Pennsylvanian tropical rain forests flourished during an icehouse climate mode. Although it is well established that Milankovitch-band glacial-interglacial rhythms caused marked synchronous changes in Pennsylvanian tropical climate and sea level, little is known of vegetation response to orbital forcing. This knowledge gap has now been addressed through sequence- stratigraphic analysis of megafloral and palynofloral assemblages within the Westphalian D Cantabrian Sydney Mines Formation of eastern Canada. This succession was deposited in a low- accommodation setting where sequences can be attributed confidently to glacio-eustasy. Results show that long-lived, low-diversity peat mires dominated by lycopsids were initiated during deglaciation events, but were mostly drowned by rising sea level at maximum interglacial conditions. Only upland coniferopsid forests survived flooding without significant disturbance. Mid- to late interglacial phases witnessed delta-plain progradation and establishment of high-diversity, mineral-substrate rain forests containing lycopsids, sphenopsids, pteridosperms, cordaites, and tree ferns. Renewed glaciation resulted in sea-level fall, paleovalley incision, and the onset of climatic aridity. Glacial vegetation was dominated by cordaites, pteridosperms, and tree ferns; hydrophilic lycopsids and sphenopsids survived in paleovalley refugia. Findings clearly demonstrate the dynamic nature of Pennsylvanian tropical ecosystems and are timely given current debates about the impact of Quaternary glacial-interglacial rhythms on the biogeography of tropical rain forest.

  7. The effects of drought on Amazonian rain forests

    NASA Astrophysics Data System (ADS)

    Meir, P.; Brando, P. M.; Nepstad, D.; Vasconcelos, S.; Costa, A. C. L.; Davidson, E.; Almeida, S.; Fisher, R. A.; Sotta, E. D.; Zarin, D.; Cardinot, G.

    The functioning of Amazonian rain forest ecosystems during drought has become a scientific focal point because of associated risks to forest integrity and climate. We review current understanding of drought impacts on Amazon rain forests by summarising the results from two throughfall exclusion (TFE) experiments in old-growth rain forests at Caxiuanã and Tapajós National Forest Reserves, and an irrigation experiment in secondary forest, near Castanhal, Brazil. Soil physical properties strongly influenced drought impacts at each site. Over years 1 to 3 of soil moisture reduction, leaf area index declined by 20-30% at the TFE sites. Leaf physiology and tree mortality results suggested some species-based differences in drought resistance. Mortality was initially resistant to drought but increased after 3 years at Tapajós to 9%, followed by a decline. Transpiration and gross primary production were reduced under TFE at Caxiuanã by 30-40% and 12-13%, respectively, and the maximum fire risk at Tapajós increased from 0.27 to 0.47. Drought reduced soil CO2 emissions by more than 20% at Caxiuanã and Castanhal but not at Tapajós, where N2O and CH4 emissions declined. Overall, the results indicate short-term resistance to drought with reduced productivity, but that increased mortality is likely under substantial, multiyear, reductions in rainfall. These data sets from field-scale experimental manipulations uniquely complement existing observations from Amazonia and will become increasingly powerful if the experiments are extended. Estimating the long-term (decadal-scale) impacts of continued drought on Amazonian forests will also require integrated models to couple changes in vegetation, climate, land management, and fire risk.

  8. Dimethyl sulfide in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-01

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  9. Acid rain report focuses on forests

    NASA Astrophysics Data System (ADS)

    Recent research on acid precipitation yields “increasing general concern about possible effects on forests,” according to the second annual report of the National Acid Precipitation Assessment Program (NAPAP). Prepared by the Interagency Task Force on Acid Precipitation, the report outlines the accomplishments of the national program during fiscal 1983, summarizes the current state of scientific knowledge (including a change in the baseline acidity of precipitation), and describes the outlook for current progress by federally funded acid precipitation research. Chris Bernabo is the program's executive director.NAPAP's annual report agrees with the finding of a National Research Council (NRC) committee that a linear relationship exists between sulfur dioxide emissions and wet deposition of sulfate (Eos, July 26, 1983, p. 475). NRC's Committee on Atmospheric Transport and Chemical Transformation in Acid Precipitation, which issued its report last year, was chaired by Jack G. Calvert of the National Center for Atmospheric Research.

  10. The effects of acid rain on forest nutrient status

    SciTech Connect

    Johnson, D.W.; Turner, J.; Kelly, J.M.

    1982-06-01

    The effects of acidic atmospheric inputs on forest nutrient status must be assessed within the context of natural, internal acid production by carbonic and organic acids as well as the nutrient inputs and drains by management practices such as harvesting, fire, and fertilization. Soil acidification will occur only if the often substantial buffering capacity of the soil in question is exceeded by acid inputs and if cation weathering from primary minerals is insufficient to offset cation losses by leaching. Such circumstances are rare but certainly could occur given sufficiently large acid inputs on poorly buffered soils. Soils most sensitive to change are thought to be those of moderately acid pH and low cation exchange capacity. Neither very acid soils nor neutral, highly buffered soils are sensitive to acidification by acid rain. Given extremely high acid inputs, acid rain can cause temporary increases in nitrogen mineralization and nitrification as well as Al mobilization in soils. While temporary increases in N availability can cause increased forest growth in N-deficient forests, increased Al availability can cause toxic reactions in tree roots. Given sufficiently high inputs on sensitive sites, negative effects of acid rain must occur, as is true of inputs of any substance, including H/sub 2/O. Acid rain inputs of sufficient magnitude to cause acute effects, such as growth increase due to N mobilization or growth decrease due to Al mobilization, are apparently very rare under ambient field conditions. Long-term effects on forest nutrient status can be either beneficial or adverse, depending on site nutrient status, silvicultural practices, and amount of atmospheric inputs. (JMT)

  11. Protecting rain forests and forager's rights using LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Wilkie, David S.

    1991-01-01

    Creating rain forest reserves is vital given the global decline in biodiversity. Yet, the plants and animals that will be protected from untrammeled commercial exploitation within such reserves constitute essential resources for indigenous foragers and farmers. Balancing the needs of local subsistence level populations with the goals of national and international conservation agencies requires a thorough understanding of the mutual impacts that arise from the interaction of park and people. In the Ituri forest of Zaire, LANDSAT TM image analysis and GPS ground truth data were used to locate human settlements so that boundaries of the proposed Okapi Reserve could be chosen to minimize its impact on the subsistence practices of the local foragers and farmers. Using satellite imagery in conjunction with cultural information should help to ensure traditional resource exploitation rights of indigenous peoples whilst simultaneously protecting the largest contiguous area of undisturbed forest.

  12. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation.

    PubMed

    McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L

    2012-05-01

    Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities. PMID:22080256

  13. Species Turnover and Diel Flight Activity of Species of Dung Beetles, Onthophagus, in the Tropical Lowland Forest of Peninsular Thailand

    PubMed Central

    Boonrotpong, Singtoe; Sotthibandhu, Sunthorn; Satasook, Chutamas

    2012-01-01

    Species turnover and temporal variation of forest insects were used to explain the ecological succession and ecological segregation between efficiently competing species. In this study, species richness, abundance, and beta-diversity of the genus Onthophagus (Coleoptera: Scarabaeidae) assemblages between 2003 and 2007 were described and the diel—flight activity was examined in the disturbed forest and the interior forest of the lowland tropical rain forest at Ton Nga Chang Wildlife Sanctuary in peninsular Thailand. A total of 2,260 individuals of 22 species in 2003 and 2,382 individuals of 24 species in 2007 were collected. Although species richness and abundance did not differ significantly between the two years, all similarity indices were significantly different. The community structure of Onthophagus assemblage in 2003 demonstrated a heterogeneous pattern, whereas there was a tendency for the pattern to shift toward a more homogeneous structure in 2007. The temporal variation showed two distinct diel—flight activities; diurnal and crepuscular patterns. Six species were crepuscular (O. deflexicollis Lansberge, O. orientalis Harold, O. rudis Sharp, O. sp 1, O. sp 2, and O. sp 4), whereas most of Onthophagus species demonstrated diurnal pattern. Remarkably, five species (O. taurinus White, O. pilularius Lansberge, O. punneeae Masumoto, O. laevis Harold, and O. sp 3.) could not be classified as either diurnal or crepuscular species. It was suggested that the species turnover was probably influenced by the recovery of the forest structure and the decrease of anthropogenic disturbance. Resource partitioning was suggested to be a key factor for crepuscular adaptation in Onthophagus species. PMID:23418986

  14. Modelling the Carbon Stocks Estimation of the Tropical Lowland Dipterocarp Forest Using LIDAR and Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Zaki, N. A. M.; Latif, Z. A.; Suratman, M. N.; Zainal, M. Z.

    2016-06-01

    Tropical forest embraces a large stock of carbon in the global carbon cycle and contributes to the enormous amount of above and below ground biomass. The carbon kept in the aboveground living biomass of trees is typically the largest pool and the most directly impacted by the anthropogenic factor such as deforestation and forest degradation. However, fewer studies had been proposed to model the carbon for tropical rain forest and the quantification still remain uncertainties. A multiple linear regression (MLR) is one of the methods to define the relationship between the field inventory measurements and the statistical extracted from the remotely sensed data which is LiDAR and WorldView-3 imagery (WV-3). This paper highlight the model development from fusion of multispectral WV-3 with the LIDAR metrics to model the carbon estimation of the tropical lowland Dipterocarp forest of the study area. The result shown the over segmentation and under segmentation value for this output is 0.19 and 0.11 respectively, thus D-value for the classification is 0.19 which is 81%. Overall, this study produce a significant correlation coefficient (r) between Crown projection area (CPA) and Carbon stocks (CS); height from LiDAR (H_LDR) and Carbon stocks (CS); and Crown projection area (CPA) and height from LiDAR (H_LDR) were shown 0.671, 0.709 and 0.549 respectively. The CPA of the segmentation found to be representative spatially with higher correlation of relationship between diameter at the breast height (DBH) and carbon stocks which is Pearson Correlation p = 0.000 (p < 0.01) with correlation coefficient (r) is 0.909 which shown that there a good relationship between carbon and DBH predictors to improve the inventory estimates of carbon using multiple linear regression method. The study concluded that the integration of WV-3 imagery with the CHM raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the Lowland Dipterocarp forest.

  15. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    PubMed

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of

  16. Ice-age rain forest found moist, cooler

    SciTech Connect

    Kerr, R.A.

    1996-10-04

    Climate researchers have argued for years about whether the tropics cooled a little or a lot during the height of the last ice age 18000 years ago. The answer will offer clues to the sensitivity of the Earth`s climate system to the strengthening greenhouse effect. On a different front, arguments have raged about how the Amazon flora and fauna became so divers. A single study of lake mud from deep in the Amazon rain forest sheds new light on both of these controveries by point toward a cool, but still wet ice age Amazon. This article goes on to discuss the background of the study, other view points, and the implications.

  17. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  18. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  19. The food web of a tropical rain forest

    SciTech Connect

    Reagan, D.P.; Waide, R.B.

    1996-12-31

    This book summarizes the natural history and trophic dynamics of a relatively simple tropical rain forest community. The community consists of the plants and animals inhabiting a 40 ha area of forest around the El Verde Field Station in the Luquillo Experimental Forest of Puerto Rico. The understanding is based on three decades (1963 to 1993) of investigations conducted or coordinated by the biologists in the Terrestrial Ecology Division of the University of Puerto Rico (formerly the Center for Energy and Environment Research) and by many visiting scientists who have worked at El Verde. The authors construct a comprehensive food web documenting the relationships among species in this community as a means of organizing the information that`s been collected. Lay-people, students, academics, resource managers, professional scientists, and others interested in the natural history of tropical forests should find points of interest in this book. In addition, ecologists specializing in the study of trophic dynamics are provided with a detailed food web from a biome underrepresented in the available data base and with the interpretations of the importance of this web.

  20. Air pollution, acid rain, and the future of forests. Part 3. Counting the costs

    SciTech Connect

    Postel, S.

    1984-09-01

    Economic losses are predicted due to the effects of acid rain on forests in Europe and the United States. Growth declines and tree damage on forest lands intensively managed for marketable timber are described. Forest industries which produce paper and other forest products which consume large amounts of energy are said to be reluctant to support acid rain control measures. Few studies have examined the effects of acid deposition combined with intensive forestry practices.

  1. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    NASA Astrophysics Data System (ADS)

    Kristensen, P. B.; Kristensen, E. A.; Riis, T.; Baisner, A. J.; Larsen, S. E.; Verdonschot, P. F. M.; Baattrup-Pedersen, A.

    2013-05-01

    Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m) when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature revealed that canopy

  2. Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil

    PubMed Central

    Tng, David Y. P.; Janos, David P.; Jordan, Gregory J.; Weber, Ellen; Bowman, David M. J. S.

    2014-01-01

    Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an “ashbed effect”). PMID:25339968

  3. Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil.

    PubMed

    Tng, David Y P; Janos, David P; Jordan, Gregory J; Weber, Ellen; Bowman, David M J S

    2014-01-01

    Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an "ashbed effect"). PMID:25339968

  4. Ecosystem Consequences of Tree Monodominance for Nitrogen Cycling in Lowland Tropical Forest

    PubMed Central

    Brookshire, E. N. Jack; Thomas, Steven A.

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system. PMID:23936215

  5. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    PubMed

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system. PMID:23936215

  6. Changes in rainfall interception along a secondary forest succession gradient in lowland Panama

    NASA Astrophysics Data System (ADS)

    Zimmermann, B.; Zimmermann, A.; Scheckenbach, H. L.; Schmid, T.; Hall, J. S.; van Breugel, M.

    2013-11-01

    Secondary forests are rapidly expanding in tropical regions. Yet, despite the importance of understanding the hydrological consequences of land-cover dynamics, the relationship between forest succession and canopy interception is poorly understood. This lack of knowledge is unfortunate because rainfall interception plays an important role in regional water cycles and needs to be quantified for many modeling purposes. To help close this knowledge gap, we designed a throughfall monitoring study along a secondary succession gradient in a tropical forest region of Panama. The investigated gradient comprised 20 forest patches 3 to 130 yr old. We sampled each patch with a minimum of 20 funnel-type throughfall collectors over a continuous 2-month period that had nearly 900 mm of rain. During the same period, we acquired forest inventory data and derived several forest structural attributes. We then applied simple and multiple regression models (Bayesian model averaging, BMA) and identified those vegetation parameters that had the strongest influence on the variation of canopy interception. Our analyses yielded three main findings. First, canopy interception changed rapidly during forest succession. After only a decade, throughfall volumes approached levels that are typical for mature forests. Second, a parsimonious (simple linear regression) model based on the ratio of the basal area of small stems to the total basal area outperformed more complex multivariate models (BMA approach). Third, based on complementary forest inventory data, we show that the influence of young secondary forests on interception in real-world fragmented landscapes might be detectable only in regions with a substantial fraction of young forests. Our results suggest that where entire catchments undergo forest regrowth, initial stages of succession may be associated with a substantial decrease of streamflow generation. Our results further highlight the need to study hydrological processes in all

  7. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. PMID:25640987

  8. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  9. Network of Environmental Sensors in Tropical Rain Forests

    NASA Astrophysics Data System (ADS)

    von Randow, C.; Dos Santos, R. D.; Da Rocha, H.

    2010-12-01

    The interaction between the Earth’s atmosphere and the terrestrial biosphere plays a fundamental role in the climate system and in biogeochemical and hydrological cycles, through the exchange of energy and mass (for example, water and carbon), between the vegetation and the atmospheric boundary layer, and the main focus of many environmental studies is to quantify this exchange over several terrestrial biomes. Over natural surfaces like the tropical forests, factors like spatial variations in topography or in the vegetation cover can significantly affect the air flow and pose big challenges for the monitoring of the regional carbon budget of terrestrial biomes. It is hardly possible to understand the air flow and reduce the uncertainties of flux measurements in complex terrains like tropical forests without an approach that recognizes the complexity of the spatial variability of the environmental variables. With this motivation, a partnership involving Microsoft Research, Johns Hopkins University, University of São Paulo and Instituto Nacional de Pesquisas Espaciais (INPE, the Brazilian national institute for space research) has been developing research activities to test the use of prototypes of environmental sensors (geosensors) in the Atlantic coastal and in the Amazonian rain forests in Brazil, forming sensor networks with high spatial and temporal resolution, and to develop software tools for data quality control and integration. The main premise is that the geosensors should have relatively low cost, what enables the formation of monitoring networks with a large number of sensors spatially distributed. A pilot study deployed 200+ sensors over the Atlantic coastal forest in Sao Paulo state, Brazil. Here we present the results from this study, highlighting the current discussions on applications of this type of measurements in studies of biosphere-atmosphere interaction in the tropics. Envisioning a possible wide deployment of geosensors in Amazonia in the

  10. Calculation of Individual Tree Water Use in a Bornean Tropical Rain Forest Using Individual-Based Dynamic Vegetation Model SEIB-DGVM

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.

    2015-12-01

    Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.

  11. Solubility of leaf litter phosphorus and nitrogen from taiga and lowland tropical forest

    NASA Astrophysics Data System (ADS)

    Schreeg, L.; Mack, M. C.; Turner, B. L.

    2011-12-01

    Leaf litter returns significant quantities of phosphorus (P) and nitrogen (N) to the soil environment in terrestrial ecosystems. The release of litter nutrients during decomposition can occur through mineralization of organic material and leaching. While leaching is an important component in our conceptual models of decomposition, the role of leaching in P and N release from leaf litter has been little investigated. Here we synthesize the results from two studies using recently senesced litter from taiga in Siberia and lowland tropical forest in Panama. We show that leaf litter P is highly soluble. On average, 35±10% (mean ± standard deviation) of total litter P was soluble from 41 species of trees and lianas from a lowland tropical forest during a 4 h extract. Similarly, the soluble fraction of litter P was high for recently senesced litter from the taiga - an average of 40±15% of total P was water soluble during a 24 h extract across nine species, which included a sedge, a tree and shrubs spanning two topographical positions (i.e., floodplain and upland). For both systems P extracted per gram litter mass was strongly predicted by total P concentration in initial litter (r2=0.66, p<0.001 in tropical forest; r2=0.63, p<0.001 in taiga). In addition, greater than 80% of the soluble P was inorganic P, suggesting leached P is readily available to plants and microbes. In contrast, litter N was relatively less soluble (<10±5% of the total leaf N on average for both systems), water soluble N per unit litter mass was only weakly predicted by total litter N (r2<0.35 for both systems), and organic N was prominent in extracts. The similarity in solubility results from two distinct latitudes and multiple life forms suggests differences in litter P and N solubility may be fundamental to how these two key nutrients cycle in terrestrial ecosystems across the globe.

  12. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands

    PubMed Central

    Zielińska, Katarzyna M.; Kiedrzyński, Marcin; Grzyl, Andrzej; Rewicz, Agnieszka

    2016-01-01

    The long-term survival of relict populations depends on the accessibility of appropriate sites (microrefugia). In recent times, due to the mass extinction of rare species that has resulted from the loss of natural habitats, the question is – Are there any human-made sites that can act as refugial habitats? We examined forest roadside populations of the mountain plant Pulsatilla vernalis in the last large lowland refugium in Central Europe. We compared the habitat conditions and community structure of roadsides with P. vernalis against the forest interior. Light availability and bryophyte composition were the main factors that distinguished roadsides. Pulsatilla occurred on sites that had more light than the forest interior, but were also more or less shaded by trees, so more light came as one-side illumination from the road. Roadsides had also a lower coverage of bryophytes that formed large, dense carpets. At the same time, they were characterised by a greater richness of vascular plants and ‘small’ bryophytes, which corresponds to a higher frequency of disturbances. In a warming and more fertile Anthropocene world, competition plays the main role in the transformation of forest communities, which is why relict populations have found refugia in extensively disturbed human-made habitats. PMID:27534690

  13. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands.

    PubMed

    Zielińska, Katarzyna M; Kiedrzyński, Marcin; Grzyl, Andrzej; Rewicz, Agnieszka

    2016-01-01

    The long-term survival of relict populations depends on the accessibility of appropriate sites (microrefugia). In recent times, due to the mass extinction of rare species that has resulted from the loss of natural habitats, the question is - Are there any human-made sites that can act as refugial habitats? We examined forest roadside populations of the mountain plant Pulsatilla vernalis in the last large lowland refugium in Central Europe. We compared the habitat conditions and community structure of roadsides with P. vernalis against the forest interior. Light availability and bryophyte composition were the main factors that distinguished roadsides. Pulsatilla occurred on sites that had more light than the forest interior, but were also more or less shaded by trees, so more light came as one-side illumination from the road. Roadsides had also a lower coverage of bryophytes that formed large, dense carpets. At the same time, they were characterised by a greater richness of vascular plants and 'small' bryophytes, which corresponds to a higher frequency of disturbances. In a warming and more fertile Anthropocene world, competition plays the main role in the transformation of forest communities, which is why relict populations have found refugia in extensively disturbed human-made habitats. PMID:27534690

  14. 1997 Canadian acid rain assessment. Volume 4: The effects on Canada`s forests

    SciTech Connect

    Hall, P.

    1997-12-31

    This report reviews the state of acid rain assessment related to Canadian forests as it has progressed since the last assessment carried out in 1990. The assessment also highlights key policy issues and the uncertainties associated with addressing them. Sections of the report cover the following: Acid rain and current forest decline in coastal birch, sugar maple, and high elevation forests; the effects of acid rain on tree physiology and soil chemistry; results of forest health monitoring in national, North American, Ontario, and Quebec networks; the critical loads or levels of acid deposition, with reference to case studies; and international involvement in acid rain research and abatement. Finally, research and information needs are identified.

  15. EFFECT OF SIMULATED ACID RAIN ON NITRIFICATION AND NITROGEN MINERALIZATION IN FOREST SOILS

    EPA Science Inventory

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100cm of simulated acid rain (pH3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2...

  16. Tropical rain forest conservation and the twin challenges of diversity and rarity

    PubMed Central

    Hubbell, Stephen P

    2013-01-01

    Data from a global network of large, permanent plots in lowland tropical forests demonstrate (1) that the phenomenon of tropical tree rarity is real and (2) that almost all the species diversity in such forests is due to rare species. Theoretical and empirically based reasoning suggests that many of these rare species are not as geographically widespread as previously thought. These findings suggest that successful strategies for conserving global tree diversity in lowland tropical forests must pay much more attention to the biogeography of rarity, as well as to the impact of climate change on the distribution and abundance of rare species. Because the biogeography of many tropical tree species is poorly known, a high priority should be given to documenting the distribution and abundance of rare tropical tree species, particularly in Amazonia, the largest remaining tropical forested region in the world. PMID:24223266

  17. Geologic mapping of Indonesian rain forest with analysis of multiple SIR-B incidence angles

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Sabins, F. F., Jr.; Asmoro, P., Jr.

    1984-01-01

    The discrimination and mapping capabilities are to be evaluated for shuttle imaging radar-B (SIR-B) images of geologic features in Indonesia that are covered by equatorial rain forest canopy. The SIR-B backscatter from the rain forest at L-band is to be compared to backscatter acquired by the SEASAT scatterometer system at Ku-band ever corresponding areas. The approach for data acquisition, handling, and analysis and the expected results of the investigation are discussed.

  18. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    USGS Publications Warehouse

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  19. The lethal fungus Batrachochytrium dendrobatidis is present in lowland tropical forests of far eastern Panamá.

    PubMed

    Rebollar, Eria A; Hughey, Myra C; Harris, Reid N; Domangue, Rickie J; Medina, Daniel; Ibáñez, Roberto; Belden, Lisa K

    2014-01-01

    The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15-34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11-24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen. PMID:24740162

  20. The Lethal Fungus Batrachochytrium dendrobatidis Is Present in Lowland Tropical Forests of Far Eastern Panamá

    PubMed Central

    Rebollar, Eria A.; Hughey, Myra C.; Harris, Reid N.; Domangue, Rickie J.; Medina, Daniel; Ibáñez, Roberto; Belden, Lisa K.

    2014-01-01

    The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15–34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11–24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen. PMID:24740162

  1. Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher

    PubMed Central

    Miller, Matthew J; Bermingham, Eldredge; Klicka, John; Escalante, Patricia; do Amaral, Fabio S. Raposo; Weir, Jason T; Winker, Kevin

    2008-01-01

    Most Neotropical lowland forest taxa occur exclusively on one side of the Andes despite the availability of appropriate habitat on both sides. Almost all molecular phylogenies and phylogenetic analyses of species assemblages (i.e. area cladograms) have supported the hypothesis that Andean uplift during the Late Pliocene created a vicariant barrier affecting lowland lineages in the region. However, a few widespread plant and animal species occurring in lowland forests on both sides of the Andes challenge the generality of this hypothesis. To understand the role of the Andes in the history of such organisms, we reconstructed the phylogeographic history of a widespread Neotropical flycatcher (Mionectes oleagineus) in the context of the other four species in the genus. A molecular phylogeny based on nuclear and mitochondrial sequences unambiguously showed an early basal split between montane and lowland Mionectes. The phylogeographic reconstruction of lowland taxa revealed a complex history, with multiple cases in which geographically proximate populations do not represent sister lineages. Specifically, three populations of M. oleagineus west of the Andes do not comprise a monophyletic clade; instead, each represents an independent lineage with origins east of the Andes. Divergence time estimates suggest that at least two cross-Andean dispersal events post-date Andean uplift. PMID:18285279

  2. Cryptic diversity in Afro-tropical lowland forests: The systematics and biogeography of the avian genus Bleda.

    PubMed

    Huntley, Jerry W; Voelker, Gary

    2016-06-01

    Recent investigations of distributional patterns of Afro-tropical lowland forest species have demonstrated to some degree our overall lack of understanding involving historical diversification patterns. Traditionally, researchers have relied upon two hypotheses, each of which views the lowland forest of Africa in differing roles. The Pleistocene Forest Refuge Hypothesis (PFRH) posits that biogeographic patterns of avian lowland species are explained via allopatric speciation during forest fragmentation cycles in the Pleistocene epoch (c. 1.8Ma-11,700Ka). The Montane Speciation Hypothesis (MSH) countered by suggesting that lowland forests are "evolutionary museums" where species, which originally evolved in montane forest refuge centers, remained without further diversification. Furthermore, investigations have largely regarded widespread, avian species which lack phenotypic variability as biogeographically "uninformative", with regards to historical biogeographic patterns. To test the tenets of these ideas, we investigated the systematics and biogeography of the genus Bleda, whose constituent species are restricted to lowland forest and are lacking in phenotypic variation. Using extracted DNA from 179 individuals, we amplified two mitochondrial genes and three nuclear loci and utilized Bayesian phylogenetic methods and molecular clock dating to develop a time-calibrated phylogeny of Bleda. We used LaGrange to develop an ancestral area reconstruction for the genus. Haplotype networks for three species were generated using Network. We recovered the four currently recognized species of Bleda, plus a monophyletic B. ugandae, a current sub-species which may warrant full species status. We found that the origins of the genus Bleda are estimated to be in the Upper Guinean forests of West Africa, dating to the Miocene (c. 7.5Ma), while the speciation events for the rest of the genus are dated to the Pliocene (c. 5-1.8Ma). Our analyses recovered discrete and highly

  3. Tropical forest changes during the late quaternary in African and South American lowlands

    NASA Astrophysics Data System (ADS)

    Servant, Michel; Maley, Jean; Turcq, Bruno; Absy, Maria-Lucia; Brenac, Patrice; Fournier, Marc; Ledru, Marie-Pierre

    1993-05-01

    Arboreal pollen and montane elements of Late Quaternary pollen assemblages from three lacustrine cores (West Cameroon, southeastern Amazonia and central Brazil) are correlated, by the radiocarbon chronology, with other palaeoenvironmental records in Africa and South America. We observe in both continents a well-developed dense forest at 30,000 and 9000 yr B.P. The succession of vegetation types during the Late Quaternary appeared strongly related to the regional conditions: (1) the dense forest was more or less degraded depending on the regions during the last full glacial period (20,000-15,000 yr B.P.); (2) a slow increase of tree elements is evidenced in some areas during the Late Glacial (15,000-10,000 yr B.P.), whereas short-term fluctuations occurred in central Brazil during the same time; (3) a strong regression of the forest during the middle Holocene (6000-5000 yr B.P.), in the southern tropical zone of South America, was in opposition to a full forest development in Africa. In both continents two main features characterize the tropical forest evolution: (1) Montane elements developed in the lowlands during the last glacial period and in some southern or northern regions during the early Holocene; and (2) the climate seasonality was enhanced in several regions since 8500-7500 yr B.P. For a tentative explanation, we relate the cold or cool climate, inferred by palaeoecological evidences in the glacial period and glacial-interglacial transition, to polar air-masses reaching more frequently the tropical zone. This interpretation explains the apparent contradiction between the markedly low temperature of the continental lowlands opposed: (1) at 18,000 yr B.P., to the 1-2°C lower Sea Surface Temperature of tropical oceans and (2) to the global warming during the late glacial. During the middle and Late Holocene, climate evolution was mainly influenced by the latitudinal shift of the ITCZ positions in July and January and, in South America, by short-term changes

  4. Influence of Fire on Permafrost in Lowland Forests of the Tanana Flats, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Jorgenson, T.; Douglas, T. A.; Romanovsky, V. E.; Kielland, K.; Euskirchen, E. S.; Ruess, R.

    2014-12-01

    The degradation of ice-rich permafrost in lowland ecosystems may have particularly strong ecological impacts due to the potential for thaw settlement and subsequent water impoundment. We examined the effects of fire disturbance on permafrost across a chronosequence of fire scars (1930-2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats of Interior Alaska, and utilized a thermal permafrost model (GIPL) to assess the roles of soil physical properties and historic climate. Field-based calculations of potential thaw settlement following the loss of ice-rich permafrost ranged from 0.4 m to 0.9 m. This subsidence would cause the surface elevations of current day forests to drop, on average, to 0.1 m below the surface water level of adjacent collapse-scar bogs, likely resulting in water impoundment. However, the vulnerability of permafrost to deep thawing and talik formation was variable among fire scars due to heterogeneity in organic layer thickness, soil texture, moisture, and associated thermal properties. Simulated reductions in organic layer thickness predicted talik formation in peat and silt loam-dominated soils, but not in sandy loams. The vulnerability of permafrost to talik formation increased under the climatic conditions since 1970, which were characterized by higher air temperatures. Pronounced permafrost thawing occurred during periods of high snow accumulation, whereas periods of low snow accumulation appeared to facilitate permafrost recovery. Simulations of the complete removal of the organic layer (high severity fire) in silt loam-dominated sites suggested the long-term loss of permafrost under the climate of the last century. Overall, the influence of fire on permafrost in these lowland ecosystems appears to be dependent on soil physical properties, fire severity, and climatic conditions.

  5. Mineral content as a basis for food selection by western lowland gorillas in a forest clearing.

    PubMed

    Magliocca, Florence; Gautier-Hion, Annie

    2002-06-01

    The forests in northwest Republic of Congo contain a number of herbaceous swamp clearings that provide foraging sites for lowland gorillas (G.g. gorilla). A 10-month study at the Maya Nord clearing (Parc National d'Odzala) showed that feeding activities occupied 72% of the time visiting gorillas spent on the clearing. They fed on four plant species: Enydra fluctuans (Asteraceae), Cyperus sp., Pycreus mundtii, and Rhynchospora corymbosa (Cyperaceae) among the 45 species recorded on the clearing. These clearing food species have higher mineral contents (especially Na and Ca) than the dominant Marantaceae species (Haumania liebrechtsiana) that constituted a staple food plant for gorillas in this forest. They also have higher potassium contents and contain less lignin than non-eaten clearing items/species. Finally, the most actively searched for clearing food (Enydra fluctuans) was characterized by the highest amount of Na and Ca. These results suggest that the mineral content (especially in Na, Ca, and/or K) could determine the feeding selectivity of gorillas at the clearing. They also tend to confirm that the amount of fiber plays a deterrent role in food selectivity, as has been found by many authors. The high density of gorillas in that region could result from the combination of the large areas of Marantaceae forests that provide abundant though monotonous food, and the number of clearings that provide sufficient mineral supplies. Clearings should thus be considered as key habitats for the conservation of gorillas. PMID:12111682

  6. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas D.; Islebe, Gerald A.; Hillesheim, Michael B.; Grzesik, Dustin A.; Anselmetti, Flavio S.; Ariztegui, Daniel; Brenner, Mark; Curtis, Jason H.; Hodell, David A.; Venz, Kathryn A.

    2009-03-01

    Palynological studies document forest disappearance during the late Holocene in the tropical Maya lowlands of northern Guatemala. The question remains as to whether this vegetation change was driven exclusively by anthropogenic deforestation, as previously suggested, or whether it was partly attributable to climate changes. We report multiple palaeoclimate and palaeoenvironment proxies (pollen, geochemical, sedimentological) from sediment cores collected in Lake Petén Itzá, northern Guatemala. Our data indicate that the earliest phase of late Holocene tropical forest reduction in this area started at ˜ 4500 cal yr BP, simultaneous with the onset of a circum-Caribbean drying trend that lasted for ˜ 1500 yr. This forest decline preceded the appearance of anthropogenically associated Zea mays pollen. We conclude that vegetation changes in Petén during the period from ˜ 4500 to ˜ 3000 cal yr BP were largely a consequence of dry climate conditions. Furthermore, palaeoclimate data from low latitudes in North Africa point to teleconnective linkages of this drying trend on both sides of the Atlantic Ocean.

  7. Environmental Drivers of Whole-Ecosystem Methane Fluxes from a Lowland Evergreen Forest

    NASA Astrophysics Data System (ADS)

    Shoemaker, J. K.; Keenan, T. F.; Hollinger, D. Y.; Richardson, A. D.

    2013-12-01

    Forests dominate the global carbon cycle, but their role in methane (CH4) biogeochemistry remains uncertain. Limitations in mesoscale sampling approaches has led to gaps in our knowledge of the dynamics of CH4 uptake and release from forested ecosystems and the environmental drivers that control these fluxes. Methane, a more potent greenhouse gas than carbon dioxide (CO2) over short timescales, may have an important role to play in determining the total climate influence of a forest system. Here we examine a time series of methane fluxes, obtained over 2 years by eddy flux covariance, from a lowland evergreen forest in central Maine, USA. During 2011, a wetter than average year, the forest was a net source of CH4 from the beginning of the measurement period in July through October. In 2012, a drier than average year, the forest was a small source only from early June through mid-July after which it transitioned to a weak sink for the remainder of the year. Using both a multiple linear regression and an artificial neural network approach, we find gross primary productivity (GPP, estimated from eddy covariance CO2 fluxes) to provide the strongest correlation with the seasonal trend in CH4 flux. While GPP alone provides the majority of the models' correlation during 2011, including soil moisture at 10cm significantly improves the fit of the model during 2012. Using a linear model of GPP and soil moisture, combined with Monte-Carlo resampling, we estimate that the total annual CH4 fluxes for 2011 and 2012 at Howland forest were 6900 +/- 4600 and -18000 +/- 2700 umol m-2 yr-1, respectively (means +/- 1sd). While these fluxes are very small compared to the annual CO2 consumption at this site (~300 g m-2 yr-1), these forest CH4 fluxes may contribute significantly to both short- and long-term variability in regional CH4 emissions. Understanding how environmental drivers influence CH4 fluxes at the landscape scale is critical to developing appropriate model structures for

  8. Giant eucalypts - globally unique fire-adapted rain-forest trees?

    PubMed

    Tng, D Y P; Williamson, G J; Jordan, G J; Bowman, D M J S

    2012-11-01

    CONTENTS: Summary    1 I. Introduction    1 II. Giant eucalypts in a global context    2 III. Giant eucalypts - taxonomy and distribution    4 IV. Growth of giant eucalypts    6 V. Fire and regeneration of giant eucalypts    8 VI. Are giant eucalypts different from other rain-forest trees?    9 VII. Conclusions 10 Acknowledgements 11 References 11 SUMMARY: Tree species exceeding 70 m in height are rare globally. Giant gymnosperms are concentrated near the Pacific coast of the USA, while the tallest angiosperms are eucalypts (Eucalyptus spp.) in southern and eastern Australia. Giant eucalypts co-occur with rain-forest trees in eastern Australia, creating unique vegetation communities comprising fire-dependent trees above fire-intolerant rain-forest. However, giant eucalypts can also tower over shrubby understoreys (e.g. in Western Australia). The local abundance of giant eucalypts is controlled by interactions between fire activity and landscape setting. Giant eucalypts have features that increase flammability (e.g. oil-rich foliage and open crowns) relative to other rain-forest trees but it is debatable if these features are adaptations. Probable drivers of eucalypt gigantism are intense intra-specific competition following severe fires, and inter-specific competition among adult trees. However, we suggest that this was made possible by a general capacity of eucalypts for 'hyper-emergence'. We argue that, because giant eucalypts occur in rain-forest climates and share traits with rain-forest pioneers, they should be regarded as long-lived rain-forest pioneers, albeit with a particular dependence on fire for regeneration. These unique ecosystems are of high conservation value, following substantial clearing and logging over 150 yr. PMID:23121314

  9. Recovery of forest structure and spectral properties after selective logging in lowland Bolivia.

    PubMed

    Broadbent, Eben N; Zarin, Daniel J; Asner, Gregory P; Peña-Claros, Marielos; Cooper, Amanda; Littell, Ramon

    2006-06-01

    Effective monitoring of selective logging from remotely sensed data requires an understanding of the spatial and temporal thresholds that constrain the utility of those data, as well as the structural and ecological characteristics of forest disturbances that are responsible for those constraints. Here we assess those thresholds and characteristics within the context of selective logging in the Bolivian Amazon. Our study combined field measurements of the spatial and temporal dynamics of felling gaps and skid trails ranging from <1 to 19 months following reduced-impact logging in a forest in lowland Bolivia with remote-sensing measurements from simultaneous monthly ASTER satellite overpasses. A probabilistic spectral mixture model (AutoMCU) was used to derive per-pixel fractional cover estimates of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil. Results were compared with the normalized difference in vegetation index (NDVI). The forest studied had considerably lower basal area and harvest volumes than logged sites in the Brazilian Amazon where similar remote-sensing analyses have been performed. Nonetheless, individual felling-gap area was positively correlated with canopy openness, percentage liana coverage, rates of vegetation regrowth, and height of remnant NPV. Both liana growth and NPV occurred primarily in the crown zone of the felling gap, whereas exposed soil was limited to the trunk zone of the gap. In felling gaps >400 m2, NDVI, and the PV and NPV fractions, were distinguishable from unlogged forest values for up to six months after logging; felling gaps <400 m2 were distinguishable for up to three months after harvest, but we were entirely unable to distinguish skid trails from our analysis of the spectral data. PMID:16827009

  10. Spatial variation of water and element fluxes in throughfall of a tropical lowland forest, Panama

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, Matthias; Messmer, Tobias; Wilcke, Wolfgang

    2013-04-01

    Quantity and chemical quality of throughfall fluxes are influenced by incident precipitation, interception loss, dry deposition and canopy exchange processes. During the passage through the canopy, water and nutrient fluxes are spatially redistributed resulting in a heterogeneous input of water and dissolved nutrients into the soil. Furthermore, different tree species influence the deposition of aerosols and canopy exchange processes differently. In this study, we quantified (i) the spatial variation of throughfall water and element fluxes and (ii) the influence of fig trees (Ficus insipida Willd.). The study was conducted in a tropical lowland forest in Panama (Barro Colorado Island 9° 10 N and 79° 50' W). Mean annual rainfall and temperature are 2600 mm and 27° C, respectively. We sampled twelve pairs of plots, each involving a F. insipida plot (F) and a reference plot without F. insipida (R). Each plot was equipped with nine throughfall samplers, totalling 216 samplers, which were individually sampled in May, June and July 2012. We determined water volumes and concentrations of Ca, K, Mg, Na, NH4+, NO3-, TN, Cl-, and organic C (TOC). Number of collectors needed to reach a standard error of 10% were calculated according to the methods of J.P Kimmins and B. Lawrence & I.J. Fernandez. The weekly average water was 87 mm and those of the studied elements 661 mg/m2 (TOC), K (545), Cl (367), TN (131), Na (111), Ca (98), NH4+ (77), Mg (48), NO3-(16). The highest variation in throughfall fluxes occurred for NO3-(R) (coefficient of variation, CV = 94%) and Ca(F)(80) and the lowest variation for H2O(F,R)(22) and TN(R)(37). The largest difference in the spatial variation between F and R plots occurred for NH4+ (CV(F) % - CV(R) % = 19), Ca (17), K (-7) and NO3- (-23). To reach a standard error of the mean below 10%, most collectors are needed for NO3-(R)(98),Ca(F)(77), K(R) (73), Mg(F) (72). Mean throughfall fluxes of Ca, K and NO3-were significantly (p < 0.05) different

  11. A conceptual model of the formation of the meso-scale geomorphology of lowland forested floodplains

    NASA Astrophysics Data System (ADS)

    Millington, C.; Sear, D.

    2004-12-01

    Within forested floodplains geomorphological processes are strongly modified by live and dead vegetation. However, interactions between the vegetation, water and sediments are poorly understood. Observations made along semi-natural rivers in the New Forest, UK suggest the presence of particular suites of landforms on the floodplain that owe their formation to such interactions. For example extensive networks of floodplain channels and the development of discrete areas of sand shadows. These features are only found in semi-natural reaches which have a high sinuosity, high frequencies of debris dams, longer sediment and organic matter residence times, and therefore experience relatively high frequencies of overbank flows during the flood season. This research explores the occurrence of such features and proposes a conceptual model for their formation. This model integrates the development of in-channel debris dams with the processes operating on the floodplain. The conceptual model is then applied in order to help set monitoring targets for a habitat restoration programme aimed at restoring wet woodlands along degraded lowland watercourses.

  12. Response of soil respiration to acid rain in forests of different maturity in southern China.

    PubMed

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  13. Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

    PubMed Central

    Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  14. Convective Draft Structure and Transport Over the Amazonian Rain Forest

    NASA Astrophysics Data System (ADS)

    Scala, John Richard

    1990-01-01

    Field observations acquired during two expeditions to the Amazon rain forest of Brazil (ABLE-2A, ABLE-2B), and two-dimensional moist cloud model simulations are used to determine: (1) the vertical structure of convective up- and downdrafts, (2) the major levels of entrainment and detrainment, and (3) the role of temperature and moisture in convective scale transport over the continental tropics. The thermodynamic and kinematic structure of the convective troposphere is obtained from aircraft surveys flown during the dry season and a surface-based network triangle designed for wet season multi-instrumental sampling. Dry season deep convection develops in an environment marked by a mid-tropospheric minimum in equivalent potential temperature. The available supply of cool, dry air supports penetrating downdrafts which feed propagating gust fronts at the surface. Model results indicate the existence of organized cloud fields characterized by multiple updraft cores. The upward vertical transport of air from the subcloud layer to a broad anvil is accomplished without extensive mid-level detrainment. Undilute cores are required to perform the vertical exchange in the presence of mid-tropospheric heat and moisture sinks. Marked moisture gradients are absent in the well -mixed environment of the wet season. Model predicted column heating budgets suggest the evaporation of rainwater into a rear inflow is insufficient to sustain strong downdrafts or an extensive surface cool pool. Complex mid-tropospheric circulations, particularly the existence of a rotor, account for the observed redistribution of a conservative tracer. Undilute transport of boundary layer air to the upper troposphere is markedly reduced by multiple levels of detrainment. In one case, greater than 50% of the air transported to the anvil region originated at or above 6 km rather than directly from the boundary layer. The vertical distribution of boundary layer aerosols in the presence of convection is

  15. Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees

    PubMed Central

    Couvreur, Thomas LP; Chatrou, Lars W; Sosef, Marc SM; Richardson, James E

    2008-01-01

    Background Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years – Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of

  16. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    PubMed

    Janos, David P; Scott, John; Aristizábal, Catalina; Bowman, David M J S

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary. PMID:23460899

  17. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru.

    PubMed

    Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P; Nottingham, Andrew T; Stott, Andrew W; Bardgett, Richard D; Salinas, Norma; Ccahuana, Adan J Q; Meir, Patrick

    2014-01-01

    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils. PMID:25566230

  18. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P.; Nottingham, Andrew T.; Stott, Andrew W.; Bardgett, Richard D.; Salinas, Norma; Ccahuana, Adan J. Q.; Meir, Patrick

    2014-01-01

    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., “positive priming effects” that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding 13C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils. PMID:25566230

  19. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests

    NASA Astrophysics Data System (ADS)

    Brown, Dana R. N.; Jorgenson, M. Torre; Douglas, Thomas A.; Romanovsky, Vladimir E.; Kielland, Knut; Hiemstra, Christopher; Euskirchen, Eugenie S.; Ruess, Roger W.

    2015-08-01

    We examined the effects of fire disturbance on permafrost degradation and thaw settlement across a series of wildfires (from ~1930 to 2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats lowland of interior Alaska. Field measurements were combined with numerical modeling of soil thermal dynamics to assess the roles of fire severity and climate history in postfire permafrost dynamics. Field-based calculations of potential thaw settlement following the loss of remaining ice-rich permafrost averaged 0.6 m. This subsidence would cause the surface elevations of forests to drop on average 0.1 m below the surface water level of adjacent collapse-scar features. Up to 0.5 m of thaw settlement was documented after recent fires, causing water impoundment and further thawing along forest margins. Substantial heterogeneity in soil properties (organic layer thickness, texture, moisture, and ice content) was attributed to differing site histories, which resulted in distinct soil thermal regimes by soil type. Model simulations showed increasing vulnerability of permafrost to deep thawing and thaw settlement with increased fire severity (i.e., reduced organic layer thickness). However, the thresholds of fire severity that triggered permafrost destabilization varied temporally in response to climate. Simulated permafrost dynamics underscore the importance of multiyear to multidecadal fluctuations in air temperature and snow depth in mediating the effects of fire on permafrost. Our results suggest that permafrost is becoming increasingly vulnerable to substantial thaw and collapse after moderate to high-severity fire, and the ability of permafrost to recover is diminishing as the climate continues to warm.

  20. Sustainable Harvest and marketing of rain forest products

    SciTech Connect

    Plotkin, M.J.; Famolare, L.M.

    1992-01-01

    The economics of nontimber rainforest products often make a strong case for forest protection and prevention of deforestation. This book contains 33 diverse papers falling into three catagories: tropical rainforests are underutilized sources of new plant products; increased use of tropical forest products should benefit human inhabitants of the rainforest; nontimber forest products many not be the panacea that some suggest.

  1. EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL

    EPA Science Inventory

    Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...

  2. Arbuscular-Mycorrhizal Networks Inhibit Eucalyptus tetrodonta Seedlings in Rain Forest Soil Microcosms

    PubMed Central

    Janos, David P.; Scott, John; Aristizábal, Catalina; Bowman, David M. J. S.

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks–previously unrecognized as contributors to the ashbed effect–probably help to maintain the rain forest–savanna boundary. PMID:23460899

  3. First records of Synoeca septentrionalis Richards, 1978 (Hymenoptera, Vespidae, Epiponini) in the Brazilian Atlantic Rain Forest.

    PubMed

    Menezes, Rodolpho S T; Andena, Sergio R; Carvalho, Antonio F; Costa, Marco A

    2011-01-01

    Nests of Synoeca septentrionalis were collected in two Brazilian Atlantic Rain Forest localities (Itabuna and Santa Terezinha, in the state of Bahia and Alfredo Chaves in the state of Espírito Santo). Synoeca septentrionalis was previously recorded only from Central America and northwestern South America. This findingextends its geographical distribution to Northeast and Southeast regions of Brazil, and represents the first record for Synoeca septentrionalis in the Brazilian Atlantic Rain forest, raising to three the number of Synoeca species known from Bahia State. PMID:22368453

  4. Dynamics and species richness of tropical rain forests.

    PubMed Central

    Phillips, O L; Hall, P; Gentry, A H; Sawyer, S A; Vásquez, R

    1994-01-01

    We present a worldwide analysis of humid tropical forest dynamics and tree species richness. New tree mortality, recruitment, and species richness data include the most dynamic and diverse mature tropical forests known. Twenty-five sites show a strong tendency for the most species-rich forests to be dynamic and aseasonal. Mean annual tree mortality and recruitment-turnover-is the most predictive factor of species richness, implying that small-scale disturbance helps regulate tropical forest diversity. Turnover rates are also closely related to the amount of basal area turnover in mature tropical forests. Therefore the contribution of small-scale disturbance to maintaining tropical forest diversity may ultimately be driven by ecosystem productivity. PMID:11607468

  5. Ecological Distribution of Indicator Species and Effective Edaphical Factors on the Northern Iran Lowland Forests

    NASA Astrophysics Data System (ADS)

    Kooch, Y.; Bahmanyar, H. Jalilvand M. A.; Pormajidian, M. R.

    The objectives of this research were to identify the ecological species groups and study the relationship between topographic and edaphic factors with plant species to determine the main factors affecting the separation of vegetation types in Khanikan lowland forests of Mazandaran province (North of Iran). Vegetation was sampled with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrate and using the two-way indicator species analysis (TWINSPAN). Vegetation was classified into different groups. The topographic conditions were recorded in quadrate locations. Soil samples were taken from organic horizon (litter layer) and mineral layers (0-10, 10-20 and 20-30 cm). Soil acidity, bulk density, saturation moisture, electrical conductivity, organic carbon, total nitrogen, cation exchangeable capacity, available phosphorous, soil texture, lime, biomass of earthworms, litter carbon and litter nitrogen were measured. Multivariate techniques were used to analyze the collected data. The results indicated that the vegetation distribution patters were mainly related to soil characteristics such as pH, bulk density, texture, phosphorous, organic carbon, nitrogen and CEC. Totally, considering the habitat conditions and ecological needs, each plant species has a significant relation with soil properties.

  6. The interaction of disturbances and small mammal community dynamics in a lowland forest in Belize.

    PubMed

    Klinger, R

    2006-11-01

    1. Three floods (July 2000, August 2002, September 2003) and a hurricane (October 2001) that occurred in a lowland forest in the southern Maya Mountains of Belize presented an opportunity to evaluate the influence of these disturbances on the structure of a small mammal assemblage. 2. Four terrestrial and four primarily scansorial/arboreal species were trapped July 2000-March 2005 in six grids over 14 irregularly spaced trapping periods. 3. Community dynamics were characterized more by changes in species composition than changes in diversity. The dynamics were driven by species-specific variation in abundance, with changes in composition generally, but not exclusively, due to the occurrence or disappearance of species at low abundance. Despite the disturbances, species richness remained relatively constant. Evenness within the assemblage was consistently low, primarily as a result of dominance by one species, Heteromys desmarestianus. 4. Effects of flooding on community structure were direct but relatively brief (< 1 year), and varied with the duration and intensity of flooding. Effects from the hurricane were indirect but long-lasting and strongly related to severely reduced food resources. 5. This study suggests that long-term dynamics in the structure of many animal communities in the tropics often results from interactions between direct and indirect effects of disturbance. It also suggests that community resistance will depend on variation in disturbance type and regime, but resilience will be determined by the life-history characteristics of each species. PMID:17032355

  7. Diurnal raptors in the fragmented rain forest of the Sierra Imataca, Venezuela

    USGS Publications Warehouse

    Alvarez, E.; Ellis, D.H.; Smith, D.G.; LaRue, C.T.

    1996-01-01

    The rain forest of the Sierra Imataca in eastern Venezuela has been subjected to extensive deforestation for pastures and agricultural settlements. In the last decade the opening of access roads combined with intensified logging and mining activities have fragmented a significant portion of the remaining forest. We noted local distribution and habitat use for 42 species of diurnal raptors observed in affected areas in this region. We observed some raptors considered as forest interior species and other open country species foraging and roosting in man-made openings inside the forest.

  8. Diurnal raptors in the fragmented rain forest of the Sierra Imataca, Venezuela

    USGS Publications Warehouse

    Alvarez, E.; Ellis, D.H.; Smith, D.G.; LaRue, C.T.

    1994-01-01

    The rain forest of the Sierra Imataca in eastern Venezuela has been subjected to extensive deforestation for pastures and agricultural settlements. In the last decade the opening of access roads combined with intensified logging and mining activities have fragmented a significant portion of the remaining forest. We noted local distribution and habitat use for 40 species of diurnal raptors observed in ten affected areas, including raptors considered as forest interior species and some open country species utilizing the man-made openings inside the forest for roosting and foraging.

  9. Bd on the beach: high prevalence of Batrachochytrium dendrobatidis in the lowland forests of Gorgona Island (Colombia, South America).

    PubMed

    Flechas, Sandra Victoria; Sarmiento, Carolina; Amézquita, Adolfo

    2012-09-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9 % in A. elegans (in 2010) and 52 % in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems. PMID:22669408

  10. Low-diversity tropical rain forests: Some possible mechanisms for their existence

    SciTech Connect

    Connell, J.H. ); Lowman, M.D. )

    1989-07-01

    The occurrence and characteristics of low-diversity forests are described, and compared with high-diversity ones and some hypotheses about possible mechanisms for their existence are discussed. The author suggest that after a single (EM) ectomycorrhizal tree species achieves dominance in a type-I forest, other species in the same family are more likely to invade than are those of a different family. Thus, a many-species (VAM) vesicular-arbuscular mycorrhizal rain forest might gradually shift to one with a single EM species dominant, leading to a forest of higher diversity dominated by several species from a few families that associate with EM fungi (e.g., as found in dipterocarp forests in southeastern Asia). The latter forests should tend to maintain their diversity because, like VAM forests, EM species in the same family may be nearly equivalent in competitive ability.

  11. Behavioral Ecology of Euglossine Bees of the Atlantic Rain Forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before the colonization of Brazil, the Atlantic Forest extended from Rio Grande do Norte to Rio Grande do Sul. As recently as 1832, Charles Darwin described it as "a forest which in the grandeur of all its parts could not be exceeded." It is now highly fragmented and only 8% of its former size, wi...

  12. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    PubMed

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-01

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (<1 μm) and coarse (>1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future

  13. Deforestation history of the eastern rain forests of Madagascar from satellite images

    SciTech Connect

    Green, G.M.; Sussman, R.W. )

    1990-04-13

    Madagascar is biologically one of the richest areas on Earth, and its plants and animals are among the most endangered. Satellite images and vegetation maps based on earlier aerial photographs were used to determine the extent of eastern rain forests in Madagascar and to monitor the rate of deforestation over a 35-year period. In 1985, 3.8 million hectares of rain forest remained, representing only 50% of the 7.6 million hectares existing in 1950 and 34% of the estimated original extent (11.2 million hectares). Between 1950 and 1985, the rate of deforestation averaged 111,000 hectares per year. Deforestation was most rapid in areas with low topographic relief and high population density. If cutting of forests continues at the same pace, only forests on the steepest slopes will survive the next 35 years.

  14. Nutrient leaching losses in lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Kurniawan, Syahrul; Corre, Marife D.; Rahayu Utami, Sri; Veldkamp, Edzo

    2015-04-01

    In the last two decades, Sumatra, Indonesia is experiencing rapid expansion of oil palm and rubber plantations by conversion of rainforest. This is evident from the 2.9 thousand km2 decrease in forest area in this region over the last 15 years. Such rapid land-use change necessitates assessment of its environmental impacts. Our study was aimed to assess the impact of forest conversion to oil palm and rubber plantations on nutrient leaching losses. Land-use conversion increases nutrient leaching losses due to changes in vegetation litter input, rooting depth, nutrient cycling and management (e.g. fertilization) practices. Our study area was in Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each soil landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured leaching losses using suction lysimeters installed at 1.5-m soil depth, which was well below the rooting depth, with bi-weekly to monthly sampling from February to December 2013. In general, the loam Acrisol landscape, particularly the forest and oil palm plantations, had lower soil solution pH and higher leaching fluxes of dissolved organic N, Na, Ca, Mg, total Al, total S and Cl than the clay Acrisol of the same land uses (all P ≤ 0.05). Among land uses in the loam Acrisol landscape, oil palm had lower soil solution pH and higher leaching fluxes of NH4+, NO3-, dissolved organic C, total P, total S and Cl than rubber plantation whereas forest and jungle rubber showed intermediate fluxes (all P ≤ 0.05, except P ≤ 0.09 for total P); oil palm had also higher Na, Ca, Mg and total Al leaching fluxes than all the other land uses (all P ≤ 0.05, except P ≤ 0.09 for Na

  15. Differences in seed rain composition in small and large fragments in the northeast Brazilian Atlantic Forest.

    PubMed

    Knörr, U C; Gottsberger, G

    2012-09-01

    Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8-388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1-year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal-dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small-sized seeds (<0.3 cm) and less large-seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small-sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large-seeded tree species may facilitate the maintenance of species diversity. PMID:22372687

  16. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  17. High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago

    NASA Astrophysics Data System (ADS)

    Lezine, Anne-Marie; Cazet, Jean-Pierre

    2005-11-01

    Pollen data from core KW31 recovered off the mouth of the Niger River (3°31'1N-05°34ʺ1E; 1181 m water depth) provide an exceptional record of vegetation changes in the West African lowlands between 40,000 and 3500 cal yr B.P. The highly diverse microflora testify for the permanency of rain and secondary forests in the Niger river catchment, at least as gallery formations along rivers, during the last glacial period when dry conditions occurred in relation to enhanced trade-wind circulation. The direct consequence of the post-glacial warming and the correlative increase in monsoon fluxes over West Africa was the increase in forest diversity and the expansion of rain and secondary forests on the nearby continent. Comparison between KW31 pollen record and continental pollen data from 5°S to 25°N allows the evaluation of migration rates of tropical forest populations throughout North West Africa at the beginning of the Holocene and the vegetation response to the shift toward aridity recorded widely at the end of the African Humid Period around 4000 cal yr B.P.

  18. Below- and above-ground controls on tree water use in lowland tropical forests

    NASA Astrophysics Data System (ADS)

    Meinzer, F. C.; Woodruff, D.; McCulloh, K.; Domec, J.

    2012-12-01

    Even in moist tropical forests, fluctuations in soil water availability and atmospheric evaporative demand can constrain tree water use. Our research in three lowland tropical forest sites in Panama over the past two decades has identified a series of tree biophysical and functional traits related to daily and seasonal patterns of uptake, transport and loss of water. Studies combining measurements of sap flow and natural abundance of hydrogen isotopes in soil and xylem water during the dry season show considerable variation in depth of soil water uptake among co-occurring species. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem water hydrogen isotope ratios, were also able to maintain constant or even increased rates of water use. Injections of a stable isotope tracer (deuterated water) into tree trunks revealed a considerable range of water transit and residence times among co-occurring, similarly-sized trees. Components of tree hydraulic architecture were also strong determinants of patterns of water use. Sapwood hydraulic capacitance, the amount of water released per unit change in tissue water potential, was a strong predictor of several tree water use and water relations traits, including sap velocity, water residence time, daily maximum branch xylem tension, and the time of day at which stomata began to increasingly restrict transpiration. Among early and late successional species, hydraulic traits such as trunk-to-branch tapering of xylem vessels, branch sap flux, branch sapwood specific conductivity and whole-tree leaf area-specific hydraulic conductance scaled uniformly with branch wood density. Consistent with differences in trunk-to-branch tapering of vessels between early and late successional species, the ratio of branch to trunk sap flux was substantially greater in early successional species. Among species, stomatal conductance and transpiration per unit leaf area

  19. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide.

    PubMed

    Grubb, Peter J; Bellingham, Peter J; Kohyama, Takashi S; Piper, Frida I; Valido, Alfredo

    2013-08-01

    For tropical lowland rain forests, Denslow (1987) hypothesized that in areas with large-scale disturbances tree species with a high demand for light make up a larger proportion of the flora; results of tests have been inconsistent. There has been no test for warm temperate rain forests (WTRFs), but they offer a promising testing ground because they differ widely in the extent of disturbance. WTRF is dominated by microphylls sensu Raunkiaer and has a simpler structure and range of physiognomy than tropical or subtropical rain forests. It occurs in six parts of the world: eastern Asia, New Zealand, Chile, South Africa, SE Australia and the Azores. On the Azores it has been mostly destroyed, so we studied instead the subtropical montane rain forest (STMRF) on the Canary Islands which also represents a relict of the kind of WTRF that once stretched across southern Eurasia. We sought to find whether in these six regions the proportion of tree species needing canopy gaps for establishment reflects the frequency and/or extent of canopy disturbance by wind, landslide, volcanic eruptions (lava flow and ash fall), flood or fire. We used standard floras and ecological accounts to draw up lists of core tree species commonly reaching 5 m height. We excluded species which are very rare, very localized in distribution, or confined to special habitats, e.g. coastal forests or rocky sites. We used published accounts and our own experience to classify species into three groups: (1) needing canopy gaps for establishment; (2) needing either light shade throughout or a canopy gap relatively soon (a few months or years) after establishment; and (3) variously more shade-tolerant. Group 1 species were divided according the kind of canopy opening needed: tree-fall gap, landslide, lava flow, flood or fire. Only some of the significant differences in proportion of Group 1 species were consistent with differences in the extent of disturbance; even in some of those cases other factors seem

  20. Agaricales Fungi from atlantic rain forest fragments in Minas Gerais, Brazil

    PubMed Central

    Rosa, Luiz Henrique; Capelari, Marina

    2009-01-01

    Two Atlantic Rain Forest fragments in Minas Gerais state were studied to access their Agaricales fungal richness. A total of 187 specimens were collected and 109 species, 39 genera, and eight families were identified. Thirty-three species were cited for the first time in Brazil. PMID:24031432

  1. Agaricales Fungi from atlantic rain forest fragments in Minas Gerais, Brazil.

    PubMed

    Rosa, Luiz Henrique; Capelari, Marina

    2009-10-01

    Two Atlantic Rain Forest fragments in Minas Gerais state were studied to access their Agaricales fungal richness. A total of 187 specimens were collected and 109 species, 39 genera, and eight families were identified. Thirty-three species were cited for the first time in Brazil. PMID:24031432

  2. EFFECTS OF SULFURIC ACID RAIN ON TWO MODEL HARDWOOD FORESTS: THROUGHFALL, LITTER LEACHATE, AND SOIL SOLUTION

    EPA Science Inventory

    Simulated sulfuric acid rain (pH 3.0, 3.5, 4.5, and 5.6) was applied to model forests containing either sugar maple (Acer saccharum) or red alder (Alnus rubra). Water samples were collected above and below the canopy, below the litter, and from 20 cm and 1 m below the surface of ...

  3. Primary forest dynamics in lowland dipterocarp forest at Danum Valley, Sabah, Malaysia, and the role of the understorey.

    PubMed Central

    Newbery, D M; Kennedy, D N; Petol, G H; Madani, L; Ridsdale, C E

    1999-01-01

    Changes in species composition in two 4-ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986-1996) for trees > or = 10 cm girth at breast height (gbh). Each included a lower-slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10-< 50cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi-stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade-off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential

  4. Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils

    SciTech Connect

    Strayer, R.F.; Lin, C.J.; Alexander, M.

    1981-01-01

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100cm of simulated acid rain (pH3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2 cm of simulated acid rain twice weekly for 19 weeks. The upper 1.0- to 1.5-cm portions of soil from treated columns were used to determine the changes in inorganic N levels in the soil. Nitrification of added ammonium (NH4(+)) was inhibited following continuous exposure of soil to simulated acid rain of pH 4.1-3.2. The extent of the inhibition was directly related to the acidity of the simulated rain solutions. The production of inorganic N in the absence of added NH(+) was either stimulated or unaffected following continuous treatment of soils with pH 3.2 simulated acid rain. The addition of nitrapyrine, an inhibitor of autotrophic nitrification, caused a decrease in nitrification in water-treated soil but had little effect on nitrification in soil treated with pH 3.2 simulated acid rain.

  5. Effects of simulated acid rain on glucose mineralization and some physicochemical properties of forest soils

    SciTech Connect

    Strayer, R.F.; Alexander, M.

    1981-10-01

    To study the effects of acid rain, samples of forest soils were exposed to a continuous application of 100 cm of simulated acid rain (pH 3.2-4.1) at 5 cm/hour, or to intermittent 1-hour applications of 5 cm of simulated acid rain three times per week for 7 weeks. The major effects of the simulated acid rain were localized at the top of the soil and included lower pH values and glucose mineralization rates, and higher exchangeable Al and total and exchange acidity. The acidity penetrated further in the more acid soils. The mineralization of /sup 14/C-glucose was measured at concentrations of 1.5-54 ..mu..g glucose/g of soil. Glucose mineralization in the test soils (pH values of 4.4-7.1) was inhibited by the continuous exposure to simulated acid rain at pH 3.2 but not a pH 4.1. The extent of inhibition depended on the soil and the initial glucose concentration. Exposure of one soil to 7 weeks of intermittent applications of simulated acid rain at pH 3.2 reduced the mineralization rate at the three glucose concentrations tested. These data suggest that acid rain may have a significant impact on microbial activity.

  6. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest

    USGS Publications Warehouse

    Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.

    2013-01-01

    Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.

  7. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    PubMed

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied

  8. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil

    PubMed Central

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding

  9. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    PubMed

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding

  10. Primary seed shadow generated by gibbons in the rain forests of Barito Ulu, central Borneo.

    PubMed

    McConkey, K R

    2000-09-01

    Gibbons are one of the main frugivores in the forests of Southeast Asia, and consequently have long been considered to be good seed dispersers. This is the first study in which the primary seed shadow they create by their ranging and foraging activities is evaluated in detail. I studied two gibbon groups over 12 months in lowland dipterocarp forest in central Borneo. The gibbons dispersed up to 81% of the species they consumed and destroyed the seeds of only 12%. Fruit with elongated seeds (up to 20 mm wide) were more likely to be dispersed than round seeds. Considering that the survival rate of seeds in the forest to one year was 8%, the gibbons effectively dispersed 13 seedlings ha(-1) group(-1) year(-1). Their effect on germination was very variable, although most species did eventually germinate. Most seeds were deposited along their major ranging routes and close to or under feeding trees. PMID:10993135

  11. Amazon Rain Forest Classification Using J-ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.

    1994-01-01

    The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.

  12. Effects of acid rain on mycorrhizal infection and N cycling in forest soils

    SciTech Connect

    Stroo, H.F.

    1986-01-01

    Increasing the acidity of simulated rain from pH 5.6 to 3.0 reduced the number of mycorrhizal roots on white pine seedlings by 20% after 16 weeks of exposure. Mycorrhizal infection of red oaks was 25% less at a rain pH of 3.5 than at pH 5.6. Simulated acid rain also caused increases in the N contents, net photosynthesis, and growth of seedlings, as well as decreases in root:shoot ratios and in the concentration of sucrose in the roots. To measure the effects of acid rain on N mineralization, nitrification, and total inorganic N, columns containing samples from the surface horizons of 12 forest soils were exposed to simulated rain at 3 times ambient deposition rates for 16 weeks. The effects on N mineralization varied between soils, with the greatest inhibitions being observed in soils with low organic matter contents. The apparent protection by organic matter was associated with an increase in short-term buffering capacity. The average amount of N mineralized after exposure was not significantly affected by rain pH. Similarly, nitrification was inhibited during exposure to simulated rain at pH 3.5, but was unaffected after exposure. Enrichments from an acid forest soil failed to show the presence of autotrophic nitrifiers, and the effects of temperature and selective inhibitors indicated that fungi were primarily responsible for nitrification in this soil. A fungus capable of heterotrophic nitrification at pH 4.0 was isolated and identified as Absidia cylindrospora Hagem.

  13. Fine-Scale Vertical Stratification and Guild Composition of Saproxylic Beetles in Lowland and Montane Forests: Similar Patterns despite Low Faunal Overlap

    PubMed Central

    Weiss, Matthias; Procházka, Jiří; Schlaghamerský, Jiří; Cizek, Lukas

    2016-01-01

    Objective The finer scale patterns of arthropod vertical stratification in forests are rarely studied and poorly understood. Further, there are no studies investigating whether and how altitude affects arthropod vertical stratification in temperate forests. We therefore investigated the fine-scale vertical stratification of diversity and guild structure of saproxylic beetles in temperate lowland and montane forests and compared the resulting patterns between the two habitats. Methods The beetles were sampled with flight intercept traps arranged into vertical transects (sampling heights 0.4, 1.2, 7, 14, and 21 m). A triplet of such transects was installed in each of the five sites in the lowland and in the mountains; 75 traps were used in each forest type. Results 381 species were collected in the lowlands and 236 species in the mountains. Only 105 species (21%) were found at both habitats; in the montane forest as well as in the lowlands, the species richness peaked at 1.2 m, and the change in assemblage composition was most rapid near the ground. The assemblages clearly differed between the understorey (0.4 m, 1.2 m) and the canopy (7 m, 14 m, 21 m) and between the two sampling heights within the understorey, but less within the canopy. The stratification was better pronounced in the lowland, where canopy assemblages were richer than those near the forest floor (0.4 m). In the mountains the samples from 14 and 21 m were more species poor than those from the lower heights. The guild structure was similar in both habitats. Conclusions The main patterns of vertical stratification and guild composition were strikingly similar between the montane and the lowland forest despite the low overlap of their faunas. The assemblages of saproxylic beetles were most stratified near ground. The comparisons of species richness between canopy and understorey may thus give contrasting results depending on the exact sampling height in the understorey. PMID:26978783

  14. Rainfall estimates for hydrological models: Comparing rain gauge, radar and microwave link data as input for the Wageningen Lowland Runoff Simulator (WALRUS)

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko

    2015-04-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be

  15. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree.

    PubMed

    Dick, Christopher W; Abdul-Salim, Kobinah; Bermingham, Eldredge

    2003-12-01

    The broad geographic range of many Neotropical rain forest tree species implies excellent dispersal abilities or range establishment that preceded the formation of current dispersal barriers. In order to initiate historical analyses of such widespread Neotropical trees, we sequenced the nuclear ribosomal spacer (ITS) region of Symphonia globulifera L. f. (Clusiaceae) from populations spanning the Neotropics and western Africa. This rain forest tree has left unmistakable Miocene fossils in Mesoamerica (15.5-18.2 Ma) and in South America ( approximately 15 Ma). Although marine dispersal of S. globulifera is considered improbable, our study establishes three marine dispersal events leading to the colonization of Mesoamerica, the Amazon basin, and the West Indies, thus supporting the paleontological data. Our phylogeographic analysis revealed the spatial extent of the three Neotropical S. globulifera clades, which represent trans-Andes (Mesoamerica+west Ecuador), cis-Andes (Amazonia+Guiana), and the West Indies. Strong phylogeographic structure found among trans-Andean populations of S. globulifera stands in contrast to an absence of ITS nucleotide variation across the Amazon basin and indicates profound regional differences in the demographic history of this rain forest tree. Drawing from these results, we provide a historical biogeographic hypothesis to account for differences in the patterns of beta diversity within Mesoamerican and Amazonian forests. PMID:14737707

  16. Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils

    SciTech Connect

    Strayer, R.F.; Lin, C.J.; Alexander, M.

    1981-10-01

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100 cm of simulated acid rain (pH 3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2 cm of simulated acid rain twice weekly for 19 weeks. The upper 1.0- to 1.5-cm portions of soil from treated columns were used to determine the changes in inorganic N levels in the soil. Nitrification of added ammonium (NH/sub 4//sup +/) was inhibited following continuous exposure of soil to simulated acid rain of pH 4.1-3.2. The extent of the inhibition was directly related to the acidity of the simulated rain solutions. The production of inorganic N in the absence of added NH/sub 4//sup +/ was either stimulated or unaffected following continuous treatment of soils with pH 3.2 simulated acid rain. The addition of nitrapyrin (2-chloro-6-(trichloromethyl)pyridine), an inhibitor of autotrophic nitrification, caused a decrease in nitrification in water-treated soil but had little effect on nitrification in soil treated with pH 3.2 simulated acid rain. Intermittent applications of simulated acid rain (pH 3.5-4.1) for 19 weeks partially inhibited nitrate (NO/sub 3//sup -/) production in soil amended with NH/sub 4//sup +/ following the exposure period, but NO/sub 3//sup -/ production in unamended soil was either unaffected or stimulated.

  17. Tropical rain forest conversion to pasture: Changes in vegetation and soil properties

    SciTech Connect

    Reiners, W.A. ); Bouwman, A.F. ); Parsons, W.F.J. Institute of Marine and Coastal Sciences, Rugers Univ., New Brunswick, NJ ); Keller, M. )

    1994-05-01

    The effect of converting lowland tropical rainforest to pasture, and of subsequent succession of pasture lands to secondary forest, were examined in the Atlantic Zone of Costa Rica. Three replicate sites of each of four land-use types representing this disturbance-recovery sequence were sampled for changes in vegetation, pedological properties, and potential nitrogen mineralization and nitrification. The four land-use types included primary forest, actively grazed pasture (10-36 yr old), abandoned pasture (abandoned 4-10 yr) and secondary forest (abandoned 10-20 yr). Conversion and succession had obvious and significant effects on canopy cover, canopy height, species composition, and species richness; it appeared that succession of secondary forests was proceeding toward a floristic composition like that of the primary forests. Significant changes in soil properties associated with conversion of forest to pasture included: (1) a decrease in acidity and increase in some base exchange properties, (2) and increase in bulk density and a concomitant decrease in porosity, (3) higher concentrations of NH[sub 4][sup +], (4) lower concentrations of NO[sub 3][sup [minus

  18. Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.

    PubMed

    Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R

    2013-10-01

    Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes. PMID:23949980

  19. Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia

    NASA Astrophysics Data System (ADS)

    Gosling, William D.; Mayle, Francis E.; Tate, Nicholas J.; Killeen, Timothy J.

    2005-11-01

    The paucity of modern pollen-rain data from Amazonia constitutes a significant barrier to understanding the Late Quaternary vegetation history of this globally important tropical forest region. Here, we present the first modern pollen-rain data for tall terra firme moist evergreen Amazon forest, collected between 1999 and 2001 from artificial pollen traps within a 500 × 20 m permanent study plot (14°34'50″S, 60°49'48″W) in Noel Kempff Mercado National Park (NE Bolivia). Spearman's rank correlations were performed to assess the extent of spatial and inter-annual variability in the pollen rain, whilst statistically distinctive taxa were identified using Principal Components Analysis (PCA). Comparisons with the floristic and basal area data of the plot (stems ≥10 cm d.b.h.) enabled the degree to which taxa are over/under-represented in the pollen rain to be assessed (using R-rel values). Moraceae/Urticaceae dominates the pollen rain (64% median abundance) and is also an important constituent of the vegetation, accounting for 16% of stems ≥10 cm d.b.h. and ca. 11% of the total basal area. Other important pollen taxa are Arecaceae (cf. Euterpe), Melastomataceae/Combretaceae, Cecropia, Didymopanax, Celtis, and Alchornea. However, 75% of stems and 67% of the total basal area of the plot ≥10 cm d.b.h. belong to species which are unidentified in the pollen rain, the most important of which are Phenakospermum guianensis (a banana-like herb) and the key canopy-emergent trees, Erisma uncinatum and Qualea paraensis.

  20. The biological diversity conservation district: A rain forest conservation tool for the future

    SciTech Connect

    Simons, M.

    1995-12-01

    Over the next twenty years, the Earth`s rain forests may decrease by forty percent! This paper presents a revolutionary corporate entity for the protection of those forests, the biological diversity conservation district (biodistricts). The underlying cause of rain forest destruction is unfettered competition for limited resources. The competitors are many: farmers, business, local and national governments, the biotechnology and ecotourism industries, multinational companies, public utilities, and indigenous groups. To varying degrees, all compete within the marketplace. biodistricts will bring together two forces once thought to be antithetical: conservation an development. They will be set up in corporate form, owned and controlled by groups claiming access to the forest resources. Because the various groups will fight for the same resources habitats, ecosystems, and genetic diversity-each will prevent the others from destroying them. The district members will ensure that all businesses maintain sustainable development practices because the economic success of the district depends upon the area`s natural beauty and biological diversity. This paper analyzes the effects on the culture, politics, economy and conservation there. It will conclude that the comprehensive approach taken by biodistricts is the only method for solving the problem of rain forest destruction; that it is economically feasible, culturally viable, and ethically defensible. By March 1, 1995, the paper will represent not only the culmination of eighteen months of research, writing and interviews regarding biological diversity conservation, but also the impetus to push the thinking of environmentalists and business persons in a new direction, perhaps the only direction that will allow the nations of the world to protect their forests for the next twenty years and beyond.

  1. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest.

    PubMed

    Alvarez-Clare, S; Mack, M C; Brooks, M

    2013-07-01

    Experimental evidence for limitation of net primary productivity (NPP) by nitrogen (N) or phosphorus (P) in lowland tropical forests is rare, and the results from the few existing studies have been inconclusive. To directly test if N or P limit NPP in a lowland tropical wet forest in Costa Rica, we conducted a full factorial fertilization experiment (4 treatments x 6 replicates in 30 x 30 m plots). We focused on the influence of tree size and taxa on nutrient limitation, because in these forests a wide variety of tree functional traits related to nutrient acquisition and use are likely to regulate biogeochemical processes. After 2.7 years, a higher percentage of trees per plot increased basal area (BA) with P additions (66.45% +/- 3.28% without P vs. 76.88% +/- 3.28% with P), but there were no other community-level responses to N or P additions on BA increase, litterfall productivity, or root growth. Phosphorus additions resulted in doubled stem growth rates in small trees (5-10 cm diameter at breast height (dbh); [P < or = 0.01]) but had no effect on intermediate (10-30 cm dbh) or large trees (> 30 cm dbh). Phosphorus additions also increased the percentage of seedling survival from 59% to 78% (P < 0.01), as well as the percentage of seedlings that grew (P = 0.03), and increased leaf number (P = 0.02). Trees from Pentaclethra macroloba, the most abundant species, did not increase growth rates with fertilization (P = 0.40). In contrast, the most abundant palms (Socratea exorrhiza) had more than two times higher stem growth rates with P additions (P = 0.01). Our experiment reiterates that P availability is a significant driver of plant processes in these systems, but highlights the importance of considering different aspects of the plant community when making predictions concerning nutrient limitation. We postulate that in diverse, lowland tropical forests "heterogeneous nutrient limitation" occurs, not only driven by variability in nutrient responses among taxa

  2. Ozone measurements in the troposphere of an Amazonian rain forest environment

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Browell, E. V.; Gregory, G. L.

    1988-01-01

    Ozone concentration profiles from the ground to above the stratospheric peak were obtained in an equatorial rain forest environment near Manaus in the Amazon Basin between July and August of 1985. The peak ozone concentration (4.4 x 10 to the 22 molecules/cu cm) was found at 20 mbar (26.6 km). A major pollution (biomass-burning) event which occurred near the end of the experiment was responsible for large changes in ozone concentration.

  3. Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Likens, G. E.; Driscoll, C. T.; Buso, D. C.

    1996-04-01

    Long-term data from the Hubbard Brook Experimental Forest, New Hampshire, suggest that although changes in stream pH have been relatively small, large quantities of calcium and magnesium have been lost from the soil complex and exported by drainage water because of inputs of acid rain and declines in atmospheric deposition of base cations. As a result, the recovery of soil and streamwater chemistry in response to any decreases in acid deposition will be delayed significantly.

  4. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    NASA Astrophysics Data System (ADS)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  5. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    PubMed

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  6. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    PubMed Central

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  7. Phosphorus loading to tropical rain forest streams after clear-felling and burning in Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Malmer, Anders

    1996-07-01

    Most estimates of P export from natural or disturbed humid tropical ecosystems by streams have been based only on export of dissolved P, even though P often is limiting and can be expected to be strongly associated to particles. Therefore loss of ignition (LOI) and particulate P (Ppart) analyses were made on organic and inorganic detritus resulting from surface erosion and on stream-suspended sediments in an undisturbed rain forest (control), as well as during and after conversion of rain forest into forest plantation. Control forest surface erosion and stream sediments consisted mainly of organics, and dissolved P (Pdiss) dominated over Ppart in stream water. The same relation was found after conversion, with a maximum mean Pdiss/Ppart ratio of up to 10 after burning, compared with 2-2.5 for control forests. This larger difference was assumed to depend on PO4 dissolved from ashes to larger concentrations than could be adsorbed during the short time (<1 hour) to reach peak flow during rainstorms.

  8. Brazilian rain forest security - environment - development. Study project report

    SciTech Connect

    Arruda, P.A.

    1993-03-25

    The Amazon region has been intensely discussed in the recent years. Most of these discussions have been highly influenced by interests groups. To understand the Amazon area we need to specify what the Amazon is, to describe the forest, to evaluate its mineral and biological resources, and to study the people living in the region. A security analysis reveals that there are no main threats to Brazilian Amazon. Nevertheless, narco guerrillas, acting in neighboring countries, can cross the borders and challenge regional authorities. First World interests may disturb Brazilian policies to the region. To face these threats, Brazilian armed forces maintain a well trained military sharing with other native people the security and the routes towards progress. Brazilian government is also implementing some programs to achieve a well balanced development. The new concepts of sustainable development are applied to keep the region's natural resources available for future generations. Among these programs this paper addresses the ecological economic zoning, Calha Norte Program and Amazon Protection System (SIPAM/SIVAM). In synthesis it demonstrates the Brazilian commitment to integrate, develop and preserve this rich and exotic region.

  9. Decoupled leaf and stem economics in rain forest trees.

    PubMed

    Baraloto, Christopher; Timothy Paine, C E; Poorter, Lourens; Beauchene, Jacques; Bonal, Damien; Domenach, Anne-Marie; Hérault, Bruno; Patiño, Sandra; Roggy, Jean-Christophe; Chave, Jerome

    2010-11-01

    Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change. PMID:20807232

  10. Within community patch dynamics in a tropical montane rain forest of Hainan Island, South China

    NASA Astrophysics Data System (ADS)

    Zang, Runguo; Tao, Jianping; Li, Chunyang

    2005-07-01

    According to the forest-growth-cycle theory, forest communities are dynamic, mosaic systems composed of patches in different developmental phases. Based on an investigation in a sample of tropical montane rain forest of Hainan Island in South China, four distinct growth phases or patch types were recognized and patterns of patch mosaics and changes in tree species diversity were studied. Diurnal changes in light and temperature regimes in different patch types of the forest growth cycle were measured and analysed. Our results were as follows: (1) The percentages of different patch types within the sampled forest community were for the gap phase 38.5%, building phase 28.5%, mature phase 27.0% and degenerate phase 6.0%; (2) The change of densities (number of individuals/ha) of trees in the forest growth cycle was mainly caused by the larger sized trees; (3) The changes of species diversity with the forest growth cycle showed a humpback pattern; (4) The average DBH, average height, average basal area at DBH, and average volume of each individual and stand volume all increased with the forest cycle process; (5) Tree species richness and tree density at each phase of the forest cycle were positively correlated; (6) The environmental factors changed significantly, both diurnally and with progress of the forest cycle. Light intensity and soil surface temperature changed more in the gap phase than the other three phases. A framework to explain the mechanism for maintaining biological diversity within the tropical montane forest of Hainan Island is described.

  11. Precipitation signal in pollen rain from tropical forests, South India.

    PubMed

    Barboni, D; Bonnefille, R

    2001-04-01

    We have analyzed the pollen content of 51 surface soil samples collected in tropical evergreen and deciduous forests from the Western Ghats of South India sampled along a west to east gradient of decreasing rainfall (between 11 degrees 30-13 degrees 20'N and 75 degrees 30-76 degrees 30'E). Values of mean annual precipitation (Pann, mm/yr) have been calculated at each of the 51 sampling sites from a great number of meteorological stations in South India, using a method of data interpolation based on artificial neural network. Interpolated values at the pollen sites of Pann range from 1200 to 5555mm/yr, while mean temperature of the coldest month (MTCO) remains >15 degrees C and humidity factor (AET/PET, the actual evapotranspiration to potential evapotranspiration ratio) remains also included between 65 and 72%.Results are presented in the form of percentage pollen diagrams where samples are arranged according to increasing values of annual precipitation. They indicate that the climatic signal of rainfall is clearly evidenced by distinct pollen associations. Numerical analyses show that annual precipitation is an important parameter explaining the modern distribution of pollen taxa in this region. Pollen taxa markers of high rainfall (Pann >2500mm/yr) are Mallotus type, Elaeocarpus, Syzygium type, Olea dioica, Gnetum ula, and Hopea type, associated with Ixora type and Caryota. Pollen taxa markers of low rainfall (Pann <2500mm/yr) are Melastomataceae/Combretaceae, Maytenus type, Lagerstroemia and Grewia. The proportions of evergreen taxa and of arboreal taxa vary according to rainfall values. Indeed, when rainfall is <2500mm/yr, percentage of arboreal pollen (AP) is <50% and proportion of evergreen taxa is <20%. When rainfall exceeds 2500mm/yr, AP values average 70%, and proportion of evergreen taxa increases from 60 to 90%. Moreover, a good correlation between precipitation and proportion of evergreen taxa (0.85) presumes that precipitation can be estimated from

  12. Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management

    NASA Astrophysics Data System (ADS)

    Müller, J.

    2009-04-01

    Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management Introduction At present about 28 % - i.e. 1.9 million hectares - of the Northeast German Lowlands are covered with forests. The Lowlands are among the driest and at the same time the most densely wooded regions in Germany. The low annual precipitation between 500 and 600 mm and the light sandy soils with their low water storage capacity and a high porosity lead to a limited water availability. Therefore the hydrological functions of forests play an important role in the fields of regional water budget, water supply and water distribution. Experimental sites Lysimeters are suitable measuring instruments in the fields of granular soils and loose rocks to investgate evaporation and seepage water. The usage of lysimeter of different construction has a tradition of more than 100 years in this region. To investigate the water consumption of different tree species, lysimeters were installed at Britz near Eberswalde under comparable site conditions. In the early 1970s nine large-scale lysimeters were built with an area of 100 m2 and a depth of 5 m each. In 1974 the lysimeters were planted, together with their environment, with Scots pine (Pinus sylvestris L), common beech (Fagus sylvatica L.), larch (Larix decidua L.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] FRANCO) as experimental stands of 0.5 ha each according to the usual management practices. Therefore the "Large-scale lysimeters of Britz" are unparalleled in Europe. It was the initial aim of the experiment to find out the influence of the species and age of the growing stock growing on identical sandy soil under comparable weather conditions on both natural groundwater recharge and evaporation. Future forests in the north-eastern lowlands of Germany shall be mixed stands with as large a number of different species as possible. And this is

  13. Using biodiversity methods to assess the impacts of oil and gas development in tropical rain forests

    SciTech Connect

    Reagan, D.P.; Silva del Poso, X. |

    1995-06-01

    Oil and gas development in tropical rain forests has attracted international attention because of the potentially adverse effects on the forest ecosystems. Biodiversity is a topic of particular concern, but is difficult to assess for small areas of disturbance. In July 1992 we used light traps to compare insect diversity at canopy and ground level as a means of detecting the impacts of an exploratory well site and related facilities within mature Amazonian rain forest in the Oriente Province of Ecuador. Replicate samples were collected at the well site, in a nearby area of agricultural development, and in a reference site within mature forest. Species richness was determined, and diversity indices were calculated for each set of samples. Results indicated that changes in diversity could be detected in the canopy and at ground level at the well site, but that the reduction in diversity was small. Biological diversity was substantially reduced in the area of agricultural development. Limitations and possible applications of this approach are discussed.

  14. The influence of mature oak stands and spruce plantations on soil-dwelling click beetles in lowland plantation forests.

    PubMed

    Loskotová, Tereza; Horák, Jakub

    2016-01-01

    Most European forests have been converted into forest plantations that are managed for timber production. The main goal of this paper was to determine the difference between mature native sessile oak (Quercus petraea) stands and non-indigenous Norway spruce (Picea abies) plantations, with respect to communities of Athous click beetles in approximately 6,500 ha of lowland plantation forest area in the Czech Republic. Athous subfuscus was the most abundant and widespread species, followed by A. zebei and A. haemorrhoidalis, while A. vittatus was considered rare. Spatial analysis of environmental variables inside studied patches showed that the species composition of Athous beetles best responded to a 20 m radius surrounding traps. The species' responses to the environment showed that A. vittatus and A. haemorrhoidalis preferred oak stands, while A. zebei and A. subfuscus were associated with spruce plantations. In addition, oak stands showed higher diversity of beetle communities. The studied species are important for their ecosystem services (e.g. predation on pests or bioturbation) and seem to tolerate certain degrees of human disturbances, which is especially beneficial for forest plantations managed for timber production. PMID:26793425

  15. The influence of mature oak stands and spruce plantations on soil-dwelling click beetles in lowland plantation forests

    PubMed Central

    Loskotová, Tereza

    2016-01-01

    Most European forests have been converted into forest plantations that are managed for timber production. The main goal of this paper was to determine the difference between mature native sessile oak (Quercus petraea) stands and non-indigenous Norway spruce (Picea abies) plantations, with respect to communities of Athous click beetles in approximately 6,500 ha of lowland plantation forest area in the Czech Republic. Athous subfuscus was the most abundant and widespread species, followed by A. zebei and A. haemorrhoidalis, while A. vittatus was considered rare. Spatial analysis of environmental variables inside studied patches showed that the species composition of Athous beetles best responded to a 20 m radius surrounding traps. The species’ responses to the environment showed that A. vittatus and A. haemorrhoidalis preferred oak stands, while A. zebei and A. subfuscus were associated with spruce plantations. In addition, oak stands showed higher diversity of beetle communities. The studied species are important for their ecosystem services (e.g. predation on pests or bioturbation) and seem to tolerate certain degrees of human disturbances, which is especially beneficial for forest plantations managed for timber production. PMID:26793425

  16. Pollen-rain-vegetation relationships along a forest-savanna transect in southeastern Cameroon.

    PubMed

    Vincens; Dubois; Guillet; Achoundong; Buchet; Kamgang Kabeyene Beyala V; de Namur C; Riera

    2000-07-01

    Modern soil and litter samples from southeastern Cameroon, collected along a continuous forest-savanna transect were analysed for pollen content to define modern pollen-vegetation relationships. The pollen results, completed and compared with botanical inventories, leaf area index and basal area measurements performed in the same area, clearly registered the physiognomy, the main floristic composition and floral richness of the two sampled ecosystems. Distortions were observed between sampled vegetations and their pollen rain, related to important differences in pollen production and dispersal of plant species: this is a general feature in many tropical regions. The pollen data in the area studied reflected well the recent transgression of forest versus savanna. This permitted us to define inside the forest ecosystem more successional vegetation communities than the botanical surveys allowed. PMID:10930605

  17. Photosynthesis and sup 13 C/ sup 12 C ratios in Amazonian rain forests

    SciTech Connect

    Van Der Merwe, N.J. ); Medina, E. )

    1989-05-01

    Measurements are reported of {sup 13}C/{sup 12}C ratios for air CO{sub 2} at different heights in two Amazonian rain forests. CO{sub 2} emitted from the forest floor is severely depleted in {sup 13}C which produces isotopically light source air throughout the forest. Air {delta}{sup 13}C values vary very little with height above ground, but are about 5 to 6{per thousand} more negative than the open atmosphere. CO{sub 2} recycling under the canopy depletes all leaf {delta}{sup 13}C values by a like amount. Additional factors further deplete leaf {delta}{sup 13}C values by 4 to 5{per thousand} at ground level; this effect decreases with height to zero in the upper canopy, yielding a gradient in {delta}{sup 13}C values.

  18. Dual-Frequency Interferometric SAR Observations of a Tropical Rain-Forest

    NASA Technical Reports Server (NTRS)

    Rigot, E.

    1996-01-01

    Repeat-pass, interferometric, radar observations of tropical rain-forest collected by the Shuttle Imaging Radar C (SIR-C) in the state of Rondonia, Brazil, reveal signal coherence is destroyed at C-band (5.6-cm) in the forest, whereas L-band (24-cm) radar signals remain strongly coherent over the entire landscape. At L-band, the rms difference in inferred topographic height between the forest and adjacent clearings is 5 m, equivalent to the height noise. Atmospheric delays are large, however, forming kilometer-sized anomalies with a 1.2-cm rms one way. Radar interferometric studies of the humid tropics must therefore be conducted at long radar wavelengths, with kilometric base-lines or with two antennas operating simultaneously.

  19. Dual-Frequency Interferometric SAR Observations of a Tropical Rain-Forest

    NASA Technical Reports Server (NTRS)

    Rignot, E.

    1996-01-01

    Repeat-pass, interferometric, radar observations of tropical rain-forest collected by the Shuttle Imaging Radar C (SIR-C) in the state of Rondonia, Brazil, reveal signal coherence is destroyed at C-band (5.6-cm) in the forest, whereas L-band (24-cm) radar signals remain strongly coherent over the entire landscape. At L-band, the rms difference in inferred topographic height between the forest and adjacent clearings is 5 m, equivalent to the height noise. Atmospheric delays are large, however, forming kilometer-sized anomalies with a 1.2-cm rms one way. Radar interferometric studies of the humid tropics must therefore be conducted at long radar wavelengths, with kilometric baselines or with two antennas operating simultaneously.

  20. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees. PMID:25362582

  1. Effects of Bromelia pinguin (Bromeliaceae) on soil ecosystem function and fungal diversity in the lowland forests of Costa Rica

    PubMed Central

    2014-01-01

    Background Bromelia pinguin (Bromeliaceae) is a terrestrial bromeliad commonly found under forest stands throughout the Neotropics that has been shown to have antifungal activity in vitro. We have hypothesized that this bromeliad would also have an effect on the fungal populations in nearby soil by decreasing fungaldiversity and negatively impacting C and N cycle-related activities. A previous study in the lowland forest of Costa Rica showed the soil beneath these bromeliads had decreased fungal ITS DNA and differences in C and N levels compared to adjacent primary forest soils. Results In this follow-up study, we found that the bromeliad soils had lower rates of C and N biomass development and lower phenol oxidase activity (suggesting less decreased fungal decomposition activity). The results of T-RFLP and cloning-based taxonomic analyses showed the community level diversity and abundance of fungal ITS DNA was less in bromeliad soils. Sequence analysis of fungal ITS DNA clones showed marked differences in fungal community structure between habitats of Basidiomycota (Tremellales, Agricales, Thelephorales), Ascomycota (Helotiales), and Zycomycota populations. Conclusions The data show there to be differences in the soil nutrient dynamics and fungal community structure and activity associated with these bromeliads, as compared to the adjacent primary forest. This suggests the possibility that the anti-fungal activity of the bromeliad extends into the soil. The bromeliad-dense regions of these primary forest habitats provide a unique natural micro-habitat within the forests and the opportunity to better identify the role of fungal communities in the C and N cycles in tropical soils. PMID:24885984

  2. Atmospheric salt deposition in a tropical mountain rain forest at the eastern Andean slopes of South Ecuador - Pacific or Atlantic origin?

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Trachte, K.; Rollenbeck, R.; Lehnert, L.; Fuchs, J.; Bendix, J.

    2015-10-01

    Salt (NaCl) is recently proven to be of highest importance for ecosystem functioning of the Amazon lowland forests because of its importance for herbivory, litter decomposition and thus, carbon cycling. Salt deposition should generally decline with distance from its marine sources. For tropical South America, a negative east-west salt availability gradient is assumed in the Amazon as a consequence of the barrier effect of the Andes for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rain forest in the Andes of southern Ecuador. To analyze salt availability, we investigate the deposition of Na+ and Cl- which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, salt deposition was analyzed from both, rain and occult precipitation (OP) water along an altitudinal gradient over a period from 2004 to 2009. To assess the influence of Atlantic and Pacific air masses on the locally observed deposition of sodium and chloride, sea-salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis dataset and back-trajectory statistical methods were combined. Our results based on deposition time series and 2192 generated trajectories show a clear difference in the temporal variation of sodium and chloride concentration due to height and exposure to winds. The sea-salt transport was highly seasonal where higher locations revealed a stronger seasonality. Although the influence of the easterlies were predominant regarding atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the Pacific sea-salt sources on the deposition at the study area. The highest concentration in rain and cloud water was found between September and February originating from both, the equatorial Pacific and Atlantic. However, the Pacific sources contributed with up to 25 % to the

  3. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    NASA Astrophysics Data System (ADS)

    Rummel, U.; Ammann, C.; Kirkman, G. A.; Moura, M. A. L.; Foken, T.; Andreae, M. O.; Meixner, F. X.

    2007-10-01

    Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday) maximum deposition velocity of 2.3 cm s-1, and a corresponding O3 flux of -11 nmol m-2 s-1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb) than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s-1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO) was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified. Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3 dry deposition values from this site with typical vegetation cover of deforested land in southwest Amazonia to the results from the primary rain

  4. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    NASA Astrophysics Data System (ADS)

    Rummel, U.; Ammann, C.; Kirkman, G. A.; Moura, M. A. L.; Foken, T.; Andreae, M. O.; Meixner, F. X.

    2007-05-01

    Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry seasons. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday) maximum deposition velocity of 2.3 cm s-1, and a corresponding O3 flux of -11 nmol m-2 s-1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb) than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s-1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO) was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified. Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3 dry deposition values from this site with typical vegetation cover of deforested land in southwest Amazonia to the results from the primary rain

  5. Millennial-Scale ITCZ Variability in the Tropical Atlantic and Dynamics of Amazonian Rain Forest

    NASA Astrophysics Data System (ADS)

    Wang, X.; Auler, A. S.; Edwards, R. L.; Cheng, H.; Shen, C.; Smart, P. L.; Richards, D. A.

    2003-12-01

    Precipitation in the Amazon Basin is largely related to the intertropical convergence zone (ITCZ) in the tropical Atlantic which undergoes a regular seasonal migration. We chose a site south of the present day rainforest in semiarid northeastern Brazil, in order to study the timing of pluvial periods when the southern extend of the ITCZ would have been much further south than today. Shifts in the ITCZ position may have influenced the dynamics of rain forest and species diversity. We collected speleothems from northern Bahia state, located southeast of Amazonia. Age determinations with U-series dating methods show that samples grew rapidly during relatively short intervals (several hundreds of years) of glacial periods in the last 210 kyr. In addition, paleopluvial phases delineated by speleothem growth intervals show millennial-scale variations. Pluvial phases coincide with the timing of weak East Asian summer monsoon intensities (Wang et al., 2001, Science 294: 2345-2348), which have been correlated to the timing of stadials in Greenland ice core records and Heinrich events (Bond and Lotti, 1995, Science 267: 1005-1010). Furthermore, these intervals correspond to the periods of light color reflectance of Cariaco Basin sediments from ODP Hole 1002C (Peterson et al., 2000, Science, 290: 1947-1951), which was suggested to be caused by a southward shift of the northernmost position of the ITCZ and decreased rainfall in this region. Abrupt precipitation changes in northeastern Brazil may be due to the southward displacement of the southernmost position of the ITCZ associated with atmosphere-ocean circulation changes caused by (1) an increase in northern high latitude-tropical temperature gradient (Chiang et al., 2003, Paleoceanography, in press), and/or (2) the bipolar seesaw mechanism (Broecker et al., 1998, Paleoceanography 13: 119-121) during these Heinrich events. Pluvial phases are also coincident with higher insolation at 10° S during austral autumn. This

  6. The impact of rain on ice nuclei populations at a forested site in Colorado

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Tobo, Y.; Garcia, E.; Demott, P. J.; Huffman, J. A.; McCluskey, C. S.; Kreidenweis, S. M.; Prenni, J. E.; PöHlker, C.; PöSchl, U.

    2013-01-01

    It has long been known that precipitation can impact atmospheric aerosol, altering number concentrations and size-dependent composition. Such effects result from competing mechanisms: precipitation can remove particles through wet deposition, or precipitation can lead to the emission of particles through mechanical ejection, biological processes, or re-suspension from associated wind gusts. These particles can feed back into the hydrologic cycle by serving as cloud nuclei. In this study, we investigated how precipitation at a forested site impacted the concentration and composition of ice nuclei (IN). We show that ground level IN concentrations were enhanced during rain events, with concentrations increasing by up to a factor of 40 during rain. We also show that a fraction of these IN were biological, with some of the IN identified using DNA sequencing. As these particles get entrained into the outflow of the storm, they may ultimately reach cloud levels, impacting precipitation of subsequent storms.

  7. Replacing rubber plantations by rain forest in Southwest China--who would gain and how much?

    PubMed

    Ahlheim, Michael; Börger, Tobias; Frör, Oliver

    2015-02-01

    The cultivation of rubber trees in Xishuangbanna Prefecture in China's Yunnan Province has triggered an unprecedented economic development but it is also associated with severe environmental problems. Rubber plantations are encroaching the indigenous rain forests at a large scale and a high speed in Xishuangbanna. Many rare plant and animal species are endangered by this development, the natural water management is disturbed, and even the microclimate in this region has changed over the past years. The present study aims at an assessment of the environmental benefits accruing from a reforestation project partly reversing the deforestation that has taken place over the past years. To this end, a Contingent Valuation survey has been conducted in Xishuangbanna to elicit local residents' willingness to pay for this reforestation program that converts existing rubber plantations back into forest. It is shown that local people's awareness of the environmental problems caused by increasing rubber plantation is quite high and that in spite of the economic advantages of rubber plantation there is a positive willingness among the local population to contribute financially to a reduction of existing rubber plantations for the sake of a partial restoration of the local rain forest. These results could be used for the practical implementation of a Payments for Eco-System Services system for reforestation in Xishuangbanna. PMID:25604061

  8. Variability within the 10-Year Pollen Rain of a Seasonal Neotropical Forest and Its Implications for Paleoenvironmental and Phenological Research

    PubMed Central

    Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen

  9. Diaspore bank of bryophytes in tropical rain forests: the importance of breeding system, phylum and microhabitat.

    PubMed

    Maciel-Silva, Adaíses S; Válio, Ivany Ferraz Marques; Rydin, Håkan

    2012-02-01

    Diaspore banks are crucial for the maintenance and resilience of plant communities, but diaspore banks of bryophytes remain poorly known, especially from tropical ecosystems. This is the first study to focus on the role of diaspore banks of bryophytes in tropical rain forests. Our aim was to test whether microhabitat (substrate type) and species traits (breeding system, phylum) are important in explaining the diaspore bank composition. Using samples cultivated in the laboratory, we assessed the number of species and shoots emerging from bark, decaying wood and soil from two sites of the Atlantic rain forest (montane and sea level) in Brazil by comparing the contribution of species by phylum (mosses, liverworts) and breeding system (monoicous, dioicous). More species emerged from bark (68) and decaying wood (55) than from soil (22). Similar numbers of species were found at both sites. Mosses were more numerous in terms of number of species and shoots, and monoicous species dominated over dioicous species. Substrate pH had only weak effects on shoot emergence. Species commonly producing sporophytes and gemmae had a high contribution to the diaspore banks. These superficial diaspore banks represented the extant vegetation rather well, but held more monoicous species (probably short-lived species) compared to dioicous ones. We propose that diaspore bank dynamics are driven by species traits and microhabitat characteristics, and that short-term diaspore banks of bryophytes in tropical rain forests contribute to fast (re)establishment of species after disturbances and during succession, particularly dioicous mosses investing in asexual reproduction and monoicous mosses investing in sexual reproduction. PMID:21842162

  10. Three new cecidogenous species of Palaeomystella Fletcher (Lepidoptera, Momphidae) from the Brazilian Atlantic Rain Forest.

    PubMed

    Luz, Fernando A; Gonçalves, Gislene L; Moreira, Gilson R P; Becker, Vitor O

    2014-01-01

    Three new cecidogenous species of Palaeomystella Fletcher (Lepidoptera, Momphidae) from the Brazilian Atlantic Rain Forest are described. Larvae of P. fernandesi Moreira & Becker, sp. n., P. rosaemariae Moreira & Becker, sp. n. and P. tavaresi Becker & Moreira, sp. n. induce galls, respectively, on Tibouchina sellowiana (Cham.) Cogn., T. asperior (Cham.) Cogn. and T. fissinervia (Schrank & Mart. ex DC.) Cogn. (Melastomataceae). Adults, immature stages and galls are illustrated, and data on life history and a preliminary analysis of mitochondrial DNA sequences, including related species, are also provided. PMID:25152676

  11. Candida materiae sp. nov., a yeast species isolated from rotting wood in the Atlantic Rain Forest.

    PubMed

    Barbosa, Anne C; Cadete, Raquel M; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2009-08-01

    Three strains of a novel yeast species, Candida materiae sp. nov., were isolated from rotting wood in an Atlantic rain forest site in Brazil. Analysis of the sequences of the D1/D2 domains of the large-subunit rDNA showed that this species belonged to the Spathaspora clade and was related to Candida jeffriesii and Spathaspora passalidarum. Unlike C. jeffriesii and S. passalidarum, C. materiae sp. nov. did not ferment xylose. The type strain of C. materiae sp. nov. is UFMG-07-C15.1BT (=CBS 10975T=CBMAI 956T). PMID:19605715

  12. Three new cecidogenous species of Palaeomystella Fletcher (Lepidoptera, Momphidae) from the Brazilian Atlantic Rain Forest

    PubMed Central

    Luz, Fernando A.; Gonçalves, Gislene L.; Moreira, Gilson R. P.; Becker, Vitor O.

    2014-01-01

    Abstract Three new cecidogenous species of Palaeomystella Fletcher (Lepidoptera, Momphidae) from the Brazilian Atlantic Rain Forest are described. Larvae of P. fernandesi Moreira & Becker, sp. n., P. rosaemariae Moreira & Becker, sp. n. and P. tavaresi Becker & Moreira, sp. n. induce galls, respectively, on Tibouchina sellowiana (Cham.) Cogn., T. asperior (Cham.) Cogn. and T. fissinervia (Schrank & Mart. ex DC.) Cogn. (Melastomataceae). Adults, immature stages and galls are illustrated, and data on life history and a preliminary analysis of mitochondrial DNA sequences, including related species, are also provided. PMID:25152676

  13. Applications of a hand-held GPS receiver in South American rain forests

    NASA Technical Reports Server (NTRS)

    Baksh, Michael

    1991-01-01

    A hand-held Global Positioning System receiver was used to determine the precise locations of villages, houses, gardens, and other cultural and environmental features in poorly mapped South American rain forests. The Magellan NAV 1000 unit profides extremely accurate latitude and longitude information, but determination of altitude is problematical. Overall, the receiver effectively allows anthropologists to obtain essential locational data useful for categorizing land uses, mapping tribal boundaries, and other applications in regions where environmental conditions are harsh and/or accessibility is difficult.

  14. Seasonal trends of dry and bulk concentration of nitrogen compounds over a rain forest in Ghana

    NASA Astrophysics Data System (ADS)

    Fattore, F.; Bertolini, T.; Materia, S.; Gualdi, S.; Thongo M'Bou, A.; Nicolini, G.; Valentini, R.; De Grandcourt, A.; Tedesco, D.; Castaldi, S.

    2013-09-01

    African tropical forests of the equatorial belt might receive significant input of extra nitrogen derived from biomass burning occurring in the north savanna belt and transported equator wards by NE winds. In order to test this hypothesis an experiment was set up in a tropical rain forest in the National park of Ankasa (Ghana) aiming at: quantifying magnitude and seasonal variability of concentrations of N compounds, present as gas and aerosol (dry nitrogen) or in the rainfall (bulk nitrogen), over the studied forest; relating their seasonal variability to trends of local and regional winds and rainfall and to variations of fire events in the region. Three Delta systems, implemented for monthly measurements of NO2, were mounted over a tower at 45 m height, 20 m above forest canopy to sample gas (NH3, NO2, HNO3, HCl, SO2) and aerosol (NH4+, NO3-, and several ions), together with three tanks for bulk rainfall collection (to analyze NH4+, NO3- and ion concentration). The tower was provided with a sonic anemometer to estimate local wind data. The experiment started in October 2011 and data up to October 2012 are presented. To interpret the observed seasonal trends of measured compounds, local and regional meteo data and regional satellite fire data were analyzed. The concentration of N compounds significantly increased from December to April, during the drier period, peaking in December-February when North Eastern winds (Harmattan) were moving dry air masses over the West central African region and the inter tropical convergence zone (ITCZ) was at its minimum latitude over the equator. This period also coincided with peaks of fire in the whole region. On the contrary, N concentration in gas, aerosol and rain decreased from May to October when prevalent winds arrived from the sea (South-East), during the Monsoon period. Both ionic compositions of rain and analysis of local wind direction showed a significant and continuous presence of see-breeze at site. The ionic

  15. Isolation of fecal coliforms from pristine sites in a tropical rain forest.

    PubMed

    Rivera, S C; Hazen, T C; Toranzos, G A

    1988-02-01

    Samples collected from water accumulated in leaf axilae of bromeliads (epiphytic flora) in a tropical rain forest were found to harbor fecal coliforms. Random identification of fecal coliform-positive isolates demonstrated the presence of Escherichia coli. This bacterium was also isolated from bromeliad leaf surfaces. These data indicate that E. coli may be part of the phyllosphere microflora and not simply a transient bacterium of this habitat. The isolation of fecal coliforms from these sites was unexpected and raises questions as to the validity of using fecal coliforms as indicators of biological water quality in the tropics. PMID:3281583

  16. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    PubMed

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  17. Physiological characteristics of tropical rain forest tree species: A basis for the development of silvicultural technology

    PubMed Central

    SASAKI, Satohiko

    2008-01-01

    The physiological characteristics of the dominant tree species in the tropical rain forest mainly belonging to dipterocarps as well as the environmental conditions especially for the light in the forest were studied to establish the silvicultural system for the forest regeneration in the tropical South Asia. The flowering patterns of the dipterocarp trees are usually irregular and unpredictable, which make difficult to collect sufficient seeds for raising the seedlings. The field survey revealed the diverged features of the so-called gregarious or simultaneous flowering of various species of this group. Appropriate conditions and methods for the storage of the seeds were established according to the detailed analyses of the morphological and physiological characteristics of the seeds such as the low temperature tolerance and the moisture contents. The intensity and spectra of the light in the forest primarily determine the growth and the morphological development of the seedlings under the canopy. Based on the measurements of the diffused light at the sites in the tropical forest in the varying sunlight, the parameters such as “the steady state of the diffuse light” and “the turning point” were defined, which were useful to evaluate the light conditions in the forest. To improve the survival of the transplanted seedlings, a planting method of “the bare-root seedlings”, the seedlings easy to be handled by removal of all leaves, soil and pots, was developed. Its marked efficiency was proved with various dipterocarps and other tropical trees by the field trial in the practical scale. Tolerance of the various species to the extreme environmental conditions such as fires, acid soils and drought were examined by the experiments and the field survey, which revealed marked adaptability of Shorea roxburghii as a potential species for regeneration of the tropical forests. PMID:18941286

  18. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.

    PubMed

    Cespedes, Ann; Penz, Carla M; DeVries, Philip J

    2015-05-01

    Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology

  19. Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments

    PubMed Central

    Meir, Patrick; Wood, Tana E.; Galbraith, David R.; Brando, Paulo M.; Da Costa, Antonio C. L.; Rowland, Lucy; Ferreira, Leandro V.

    2015-01-01

    Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE) experiments can offer mechanistic insight into the response to extended or severe drought and can be used to help improve model-based simulations, which are currently inadequate. Only eight TFE experiments have been reported for tropical rain forests. We examine them, synthesizing key results and focusing on two processes that have shown threshold behavior in response to drought: (1) tree mortality and (2) the efflux of carbon dioxdie from soil, soil respiration. We show that: (a) where tested using large-scale field experiments, tropical rain forest tree mortality is resistant to long-term soil moisture deficit up to a threshold of 50% of the water that is extractable by vegetation from the soil, but high mortality occurs beyond this value, with evidence from one site of increased autotrophic respiration, and (b) soil respiration reaches its peak value in response to soil moisture at significantly higher soil moisture content for clay-rich soils than for clay-poor soils. This first synthesis of tropical TFE experiments offers the hypothesis that low soil moisture–related thresholds for key stress responses in soil and vegetation may prove to be widely applicable across tropical rain forests despite the diversity of these forests. PMID:26955085

  20. Seasonal changes in dominant bacterial taxa from acidic peatlands of the Atlantic Rain Forest.

    PubMed

    Etto, Rafael Mazer; Cruz, Leonardo Magalhães; da Conceição Jesus, Ederson; Galvão, Carolina Weigert; Galvão, Franklin; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Reynaud Steffens, Maria Berenice

    2014-09-01

    The acidic peatlands of southern Brazil are essential for maintenance of the Atlantic Rain Forest, one of the 25 hot-spots of biodiversity in the world. While these ecosystems are closely linked to conservation issues, their microbial community ecology and composition remain unknown. In this work, histosol samples were collected from three acidic peatland regions during dry and rainy seasons and their chemical and microbial characteristics were evaluated. Culturing and culture-independent approaches based on SSU rRNA gene pyrosequencing were used to survey the bacterial community and to identify environmental factors affecting the biodiversity and microbial metabolic potential of the Brazilian peatlands. All acidic peatlands were dominated by the Acidobacteria phylum (56-22%) followed by Proteobacteria (28-12%). The OTU richness of these phyla and the abundance of their Gp1, Gp2, Gp3, Gp13, Rhodospirillales and Caulobacteriales members varied according to the period of collection and significantly correlated with the rainy season. However, despite changes in acidobacterial and proteobacterial communities, rainfall did not affect the microbial metabolic potential of the southern Brazilian Atlantic Rain Forest peatlands, as judged by the metabolic capabilities of the microbial community. PMID:24893336

  1. Off-nadir antenna bias correction using Amazon rain forest sigma deg data. [Brazil

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Bracalente, E. M.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K. (Principal Investigator)

    1981-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  2. Foreign petroleum companies developing new paradigm for operating in rain forest region

    SciTech Connect

    Williams, B.

    1997-04-21

    Multinational petroleum companies working in South America are gradually sculpting a new paradigm of how to operate in a rain forest with utmost regard for its indigenous people and environmental resources. This new paradigm can serve as a litmus test for the future of oil and gas operations in the rain forest--not only for South America, but for other such jungle settings around the world. And the lessons learned here can readily be adopted as standard operating procedures for projects involving other environments and communities, from the natives of arctic deserts to the mean streets of the urban poor. This is more than a new wrinkle in public relations for an oil and gas company. What`s involved is a need for a company to recognize that it must move beyond compliance on laws and permits and regulations into the next stage: a top-to-bottom commitment to partnership with all the stakeholders in a project, not just the companies themselves and the respective government with ownership of hydrocarbon resources. The paper discusses the changing focus, industry`s traditional responses, new strategy, ARCO`s plan, self-sufficient, and what`s at stake.

  3. Oxy`s strategy on environment, community issues key to success of project in Ecuador`s rain forest

    SciTech Connect

    Williams, B.

    1997-04-21

    Occidental Exploration and Production Co. has implemented a comprehensive strategy of strict environmental protection measures and aggressive community relations initiatives in its oil operations in the rain forests of eastern Ecuador. While such measures may not be unique by themselves, Oxy`s efforts to incorporate these measures as a cornerstone of its exploration and development campaign--at the earliest possible stage--can serve as something of a paradigm for oil and gas industry operations in the rain forest. The upshot is that Oxy has a world-class (at least from an environmental standpoint) oil drilling-production operation at the heart of a world-class biological reserve in a pristine rain forest. Even against a backdrop of politically charged concern over industry work in the Amazon region, the project is an unqualified success to Oxy, the government of Ecuador, and most importantly, the native inhabitants there. The paper describes the environmental management plan.

  4. Cockroach pollination and breeding system of Uvaria elmeri (Annonaceae) in a lowland mixed-dipterocarp forest in Sarawak.

    PubMed

    Nagamitsu, T; Inoue, T

    1997-02-01

    Tropical forest plants are known to be pollinated by a diverse array of animals. Here we report on the pollination of a woody climber species, Uvaria elmeri (Annonaceae), by cockroaches in a lowland mixed-dipterocarp forest in Sarawak, Malaysia. To the best of our knowledge, this is the first report of pollination by cockroaches. The cauliflorous flowers in the understory are protogynous and bloomed for 50 h. An odor similar to decayed wood or a mushroom was secreted by flowers and was stronger during the male stage. Pollinators were cockroaches (Blattellidae) and drosophilid flies (Drosophilidae). Cockroaches, the main pollinators, visited flowers during both female and male stages at night, feeding on stigmatic exudate and pollen. Drosophilids, the secondary pollinators. mainly visited female-stage flowers during daytime, fed on stigmatic exudate. and laid eggs on stigmas. Neither autogamy nor self-compatibility was observed. Fruit production appeared to be pollen-limited. The fruit set, which was 2% of flowers in natural condition, was significantly lower than the 30% fruit set obtained by artificial cross-pollination. We discuss the traits of cockroaches as pollinators and the breeding system of U. elmeri. PMID:21712200

  5. Effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    USGS Publications Warehouse

    Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  6. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    NASA Astrophysics Data System (ADS)

    Jafarov, E. E.; Romanovsky, V. E.; Genet, H.; McGuire, A. D.; Marchenko, S. S.

    2013-09-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling-sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ˜80 cm) and upland (with thin organic layers, ˜30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  7. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    PubMed

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption. PMID:17354446

  8. Seasonal trends of dry and bulk concentration of nitrogen compounds over a rain forest in Ghana

    NASA Astrophysics Data System (ADS)

    Fattore, F.; Bertolini, T.; Materia, S.; Gualdi, S.; Thongo M'Bou, A.; Nicolini, G.; Valentini, R.; De Grandcourt, A.; Tedesco, D.; Castaldi, S.

    2014-06-01

    African tropical forests of the equatorial belt might receive significant input of extra nitrogen derived from biomass burning occurring in the north savanna belt and transported equatorward by northeastern winds. In order to test this hypothesis an experiment was set up in a tropical rain forest in the Ankasa Game Reserve and Nini-Suhien National Park (Ghana) aimed at quantifying magnitude and seasonal variability of concentrations of N compounds, present as gas and aerosol (dry nitrogen) or in the rainfall (bulk nitrogen), over the studied forest; and relating their seasonal variability to trends of local and regional winds and rainfall and to variations of fire events in the region. Three DELTA systems, implemented for monthly measurements of NO2, were mounted over a tower at 45 m height, 20 m above forest canopy to sample gas (NH3, NO2, HNO3, HCl, SO2) and aerosol (NH4+, NO3-, and several ions), together with three tanks for bulk rainfall collection (to analyze NH4+, NO3- and ion concentration). The tower was provided with a sonic anemometer to estimate local wind data. The experiment started in October 2011 and data up to October 2012 are presented. To interpret the observed seasonal trends of measured compounds, local and regional meteo data and regional satellite fire data were analyzed. The concentration of N compounds significantly increased from December to April, during the drier period, peaking from December to February when NE winds (the Harmattan) were moving dry air masses over the west-central African region, and the Intertropical Convergence Zone (ITCZ) was at its minimum latitude over the Equator. This period also coincided with fire peaks in the whole region. On the contrary, N concentration in gas, aerosol and rain decreased from May to October when prevalent winds arrived from the sea (southeast), during the monsoon period. Both ionic compositions of rain and analysis of local wind direction showed a significant and continuous presence of see

  9. Variation in forest structure and carbon dynamics in tropical rain forests of Amazonia

    NASA Astrophysics Data System (ADS)

    Vieira, S.; Selhorst, D.; Hutyra, L.; da Silva, R.; Camargo, P.; Chambers, J. Q.; Brown, I. F.; Higuchi, N.; Dos Santos, J.; Martinelli, L. A.; Trumbore, S.

    2002-12-01

    A better understanding of the variations in the dynamics and structure of trees in tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon. Data from forest inventory plotsshow large differences in forest structure, biomass, and tree growth rates among plots in three location. The number of stems (g.t. 10cm diameter)per hectare is higher in the Manaus site (626 ha-1) than in the Rio Branco (466 ha-1) or Santrem (460 ha-1) sites. Stocks of C in above-ground biomass in the three areas were 180.1 (Manaus), 122.1 (Rio Branco), and 140.6 (Santarem) MgC ha-1. Estimates of mean annual accumulation of C in living trees based on monthly dendrometer band measurements ranged from 1.6 (Manaus), 2.5 (Rio Branco), to 2.8 (Santarem) MgC ha-1 yr-1. Our results showed marked seasonality to growth, with highest growth rates in the wet and lowest rates in the dry season. This effect was most pronounced for trees with diameter g. t. 50cm. Comparing the three areas investigated suggests that forests experiencing a longer dry season have larger annual diameter growth increments for individual trees, and more of the forest biomass in the largest trees.

  10. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    NASA Astrophysics Data System (ADS)

    Koehler, B.; Corre, M. D.; Veldkamp, E.; Sueta, J. P.

    2009-12-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2) efflux to long-term experimental N addition (125 kg N ha-1 yr-1) in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1) explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2) determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger in the lowland (15.44 ± 1.02 Mg C ha-1) than in the montane forest (9.37 ± 0.28 Mg C ha-1). In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9-11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance on a decadal time scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2nd and 3rd year N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots in which stem diameter growth was promoted.

  11. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    NASA Astrophysics Data System (ADS)

    Koehler, B.; Corre, M. D.; Veldkamp, E.; Sueta, J. P.

    2009-09-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha-1 yr-1) in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1) explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2) determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger from the lowland (15.20±1.25 Mg C ha-1) than the montane forest (9.36±0.29 Mg C ha-1). In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9-11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance in decadal scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2- and 3 yr N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots where stem diameter growth was promoted.

  12. Variations of ice nuclei concentration induced by rain and snowfall within a local forested site in Japan

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kobayashi, Fumihisa; Kakikawa, Makiko; Wada, Masashi; Matsuki, Atsushi

    2016-02-01

    Biological ice nuclei (IN) such as certain species of bacteria and fungi are believed to have impacts on ice nucleation in mixed-phase clouds at temperatures warmer than -15 °C. Recent studies have indicated that rain is closely related to increases of biological IN in the near-surface atmosphere. However, variations of IN concentrations during rain and snowfall have not been compared. In the present study, field measurements of atmospheric IN were carried out under fine, cloudy, rain and snow at a local forested site in Japan. IN concentrations at -7 °C in spring were dramatically increased by rain, and concentrations associated with rain (0.86-2.2 m-3) were greater than 2.6 times higher than the mean concentration during fine weather (0.33 m-3). In winter, concentrations associated with rain (1.6 to >5.7 m-3) were also higher than those under cloudy sky (1.1 m-3), but increases were not observed during snowfall (0.21-0.4 m-3). Detectable IN concentrations associated with rain considerably decreased after heat treatment at 90 °C, indicating that IN increased during rain were likely biological substances such as heat-sensitive ice nucleation active proteins. Consequently, different types of precipitation may have varying effects on IN concentration associated with biological substances.

  13. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  14. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    PubMed

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration. PMID:16995630

  15. Neither Host-specific nor Random: Vascular Epiphytes on Three Tree Species in a Panamanian Lowland Forest

    PubMed Central

    LAUBE, STEFAN; ZOTZ, GERHARD

    2006-01-01

    • Background and Aims A possible role of host tree identity in the structuring of vascular epiphyte communities has attracted scientific attention for decades. Specifically, it has been suggested that each host tree species has a specific subset of the local species pool according to its own set of properties, e.g. physicochemical characteristics of the bark, tree architecture, or leaf phenology patterns. • Methods A novel, quantitative approach to this question is presented, taking advantage of a complete census of the vascular epiphyte community in 0·4 ha of undisturbed lowland forest in Panama. For three locally common host-tree species (Socratea exorrhiza, Marila laxiflora, Perebea xanthochyma) null models were created of the expected epiphyte assemblages assuming that epiphyte colonization reflected random distribution of epiphytes in the forest. • Key Results In all three tree species, abundances of the majority of epiphyte species (69–81 %) were indistinguishable from random, while the remaining species were about equally over- or under-represented compared with their occurrence in the entire forest plot. Permutations based on the number of colonized trees (reflecting observed spatial patchiness) yielded similar results. Finally, a third analysis (canonical correspondence analysis) also confirmed host-specific differences in epiphyte assemblages. In spite of pronounced preferences of some epiphytes for particular host trees, no epiphyte species was restricted to a single host. • Conclusions The epiphytes on a given tree species are not simply a random sample of the local species pool, but there are no indications of host specificity either. PMID:16574691

  16. Strategies for reducing carbon emissions on the tropical rain forest: The case of the Brazilian Amazon

    SciTech Connect

    Freitas, M.A.V. de; Rosa, L.P.

    1995-11-01

    Forests systems are renewable resources that can be used by present generations and that should be available to future generations if they are exploited on a sustainable basis. The tropical forest is still an immense and unknown field. The issues are: What means a sustainable basis in the tropical rain forests? What are the means of harmonising an economic development with an environmental equilibrium in tropical regions? One way to meet this requirement is to analyse the potentially {open_quotes}no regrets{close_quotes} options on which it is possible to agree upon despite controversies about what will be the true long run costs and benefits of various courses of actions. In the case of the Brazilian Amazon, in the last thirty years, the use of biomass and land has increased rapidly. Therefore, environmental and social problems have emerged with some intensity and have had repercussions on local and global scales. In relation to the recent global environmental changes, the Brazilian Amazon is considered as a key region for biodiversity conservation and preserving a carbon sink. In this paper, the main methodological option is to conceive a set of {open_quotes}no-regret{close_quotes} options, related with the land uses and biomass valorisation, which are analysed through the same framework. The options considered here are: decrease of the great cattle ranching and of the predatory timber extraction; the increase of forest management (harvest of timber and nontimber extractive products) and forest plantations in the degraded lands. The aims to focus on three elements: job creation, technico-economic adequation and environmental impacts, with special regards concerning the limitation of the atmospheric emissions of greenhouse gases (carbon flow).

  17. Effects of termite activities on coarse woody debris decomposition in an intact lowland mixed dipterocarp forest of Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Lee, Sohye; Kim, Seungjun; Roh, Yujin; Abu Salim, Kamariah; Lee, Woo-Kyun; Davies, Stuart; Son, Yowhan

    2016-04-01

    Tropical forests have been considered important ecosystems in terms of carbon cycle and climate change, because they sequester carbon more than any other terrestrial ecosystems. In addition, coarse woody debris is one of the main carbon storages, accounting for 10 ‑ 40% of the tropical forest carbon. Carbon in coarse woody debris is released by various activities of organisms, and particularly termite's feeding activities are known to be main process in tropical forests. Therefore, investigating the effects of termite activities on coarse woody debris decomposition is important to understanding carbon cycles of tropical forests. This study was conducted in an intact lowland mixed dipterocarp forest (MDF) of Brunei Darussalam, and three main MDF tree species (Dillenia beccariana, Macaranga bancana, and Elateriospermum tapos) were selected. Coarse woody debris samples of both 10 cm diameter and length were prepared, and half of samples were covered twice with nylon net (mesh size 1.5 mm × 1.5 mm) to prevent termite's approach. Three 2 m × 11 m permanent plots were installed in January, 2015 and eighteen samples per plot (3 species × 2 treatments × 3 repetitions) were placed at the soil surface. Weights of each sample were recorded at initial time, and weighed again in August, 2015. On average, uncovered and covered samples lost 18.9 % and 3.3 % of their initial weights, respectively. Weight loss percentage was highest in uncovered samples of M. bancana (23.9 %), and lowest in covered samples of E. tapos (7.8 %). Two-way ANOVA showed that tree species and termite exclusion treatment had statistically significant effects on coarse woody debris decomposition (P = 0.0001). The effect of species and termite exclusion treatment interaction was also statistically significant (P = 0.0001). The result reveals that termite activities promote the coarse woody debris decomposition and they influence differently along the wood species. However, many samples of D. beccariana

  18. Temperate Pine Barrens and Tropical Rain Forests Are Both Rich in Undescribed Fungi

    PubMed Central

    Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning

    2014-01-01

    Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species. PMID:25072783

  19. Temperate pine barrens and tropical rain forests are both rich in undescribed fungi.

    PubMed

    Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning

    2014-01-01

    Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species. PMID:25072783

  20. Rainwater and throughfall chemistry in a terra firme rain forest: Central Amazonia

    SciTech Connect

    Forti, M.C.; Moreira-Nordemann, L.M. )

    1991-04-20

    During the Global Tropospheric Experiment (GTE)-Amazon Boundary Layer Experiment (ABLE) 2B campaign in the Amazon basin, samples of rainwater and throughfall were obtained in a terra firme (nonflooded forest) rain forest at the Ducke Reserve (2{degree}57{prime}S, 59{degree}58{prime}W). The samples were collected during one wet period (April 1 to May 13, 1987) and one dry period (August 1 to October 1, 1987). All samples were analyzed for Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, NH{sub 4}{sup +}, Cl{sup {minus}} and SO{sub 4}{sup 2{minus}}, and pH. The rainwater was acidic, with a volume-weighted mean pH of 4.6 for two periods. Rainwater input from the dry period was 2 times greater for Na{sup +}, Mg{sup 2+}, NH{sub 4}{sup +}and SO{sub 4}{sup 2{minus}} and about 4 times greater for K{sup +} than from the wet period. The ionic concentrations in throughfall were higher than those in rainwater, except for NH{sub 4}{sup +} during the dry period. This enrichment of throughfall is attributed to the interaction of precipitation with the forest canopy.

  1. Managing nontechnical risks associated with seismic operations in the tropical rain forests of Ecuador

    SciTech Connect

    Barker, G.; Smith, G.R.; Vacas, F.J.; Swingholm, E.K.; Yuill, R.M.; Aleman, M.A.

    1997-04-21

    Companies operating in sensitive areas are being challenged to address the environmental and social issues while preserving these areas for future generations. This increased international attention on environmental and sociocultural issues has led Amoco to focus efforts on developing new ideas and strategies to facilitate environmental and cultural management. In Ecuador, the major oil producing region is the Ecuadorian portion of the Amazon Basin, referred to locally as the Oriente. Amoco Ecuador BV recently completed a seismic acquisition program in the Oriente with minimum impact to the environment and the communities within the project area. The goal of this article is to describe Amoco`s experience in managing environmental, social, and public perception issues associated with seismic operations in the rain forests of Ecuador.

  2. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    SciTech Connect

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C.; Hazen, T.C.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  3. Yeast communities in two Atlantic rain Forest fragments in Southeast Brazil.

    PubMed

    Pimenta, Raphael S; Alves, Priscila D D; Almeida, Gabriel M F; Silva, Juliana F M; Morais, Paula B; Corrêa, Ary; Rosa, Carlos A

    2009-01-01

    We studied the yeast communities associated with fruits, mushrooms, tree exudates, and flies of the genus Drosophila, in two Atlantic Rain Forest fragments in state of Minas Gerais, Brazil. A total of 456 samples were collected from Rio Doce State Park and 142 from Ecological Station of Universidade Federal de Minas Gerais. From these samples, 608 yeast isolates were obtained, belonging to 71 different species. Among the yeasts isolated from Rio Doce State Park, 17 isolates were recovered from fruits, 12 from mushrooms, 13 from tree exudates, and 299 from Drosophila spp. In the Ecological Station of Universidade Federal de Minas Gerais, 24 isolates were recovered from fruits and 243 from Drosophila spp. Distinct communities of yeast were observed in Drosophila flies, fruits, mushrooms and tree exudates. The highest number of yeast species was recovered from Drosophila flies suggesting that flies are the natural vectors of these microorganisms. PMID:24031324

  4. Assessment of organochlorine pesticide residues in Atlantic Rain Forest fragments, Rio de Janeiro, Brazil.

    PubMed

    Quinete, Natalia Soares; de Oliveira, Elba dos Santos; Fernandes, Daniella R; Avelar, Andre de Souza; Santelli, Ricardo Erthal

    2011-12-01

    A superficial water quality survey in a watershed of the Paraíba do Sul River, the main water supply for the most populated cities of southeastern Brazil, was held in order to assess the impact of the expansion of agricultural activity in the near border of the Atlantic Rain Forest. The aim of this study was to investigate the presence of priority organochlorine pollutants in soils and superficial waters of Atlantic rainforest fragments in Teresópolis, Rio de Janeiro State. Soil sample preparations were compared by using ultrasound, microwave assisted extraction and Soxhlet extraction. Recoveries of matrix spiked samples ranged from 70 to 130%. Analysis of a certified soil material showed recoveries ranging from 71 to 234%. Although low concentrations of organochlorine residues were found in water and soil samples, this area is of environmental importance and concern, thus demanding a monitoring program of its compartments. PMID:21864959

  5. Yeast communities in two Atlantic rain Forest fragments in Southeast Brazil

    PubMed Central

    Pimenta, Raphael S.; Alves, Priscila D. D.; Almeida, Gabriel M. F.; Silva, Juliana F.M; Morais, Paula B.; Corrêa Jr., Ary; Rosa, Carlos A.

    2009-01-01

    We studied the yeast communities associated with fruits, mushrooms, tree exudates, and flies of the genus Drosophila, in two Atlantic Rain Forest fragments in state of Minas Gerais, Brazil. A total of 456 samples were collected from Rio Doce State Park and 142 from Ecological Station of Universidade Federal de Minas Gerais. From these samples, 608 yeast isolates were obtained, belonging to 71 different species. Among the yeasts isolated from Rio Doce State Park, 17 isolates were recovered from fruits, 12 from mushrooms, 13 from tree exudates, and 299 from Drosophila spp. In the Ecological Station of Universidade Federal de Minas Gerais, 24 isolates were recovered from fruits and 243 from Drosophila spp. Distinct communities of yeast were observed in Drosophila flies, fruits, mushrooms and tree exudates. The highest number of yeast species was recovered from Drosophila flies suggesting that flies are the natural vectors of these microorganisms. PMID:24031324

  6. Los Arboles Hablan: A Spanish Language Curriculum Unit Based on the Study of Latin American Rain Forests.

    ERIC Educational Resources Information Center

    Zuman, John P.

    "Los Arboles Hablan," a video-based curriculum that promotes the learning of Spanish as a second language through study of the Latin American rain forests is described. The 12-session unit was designed for use at the middle school level and integrates science, social science, and environmental education with content focusing on the Amazon rain…

  7. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  8. Preserve the Rain Forests: Integrating the Social Studies and a Foreign Language into Thematic Instruction for Young Students.

    ERIC Educational Resources Information Center

    Rosenbusch, Marcia H.

    1994-01-01

    Maintains that the movement toward an integrated elementary school curriculum is growing. Describes the planning, implementation, and evaluation of an instructional unit about the Costa Rican rain forests that integrates foreign language and social studies content. Uses the four goal areas from a National Council for the Social Studies model. (CFR)

  9. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change

    PubMed Central

    Loiselle, Bette A.

    2015-01-01

    Bird populations have declined in many parts of the world but most of those declines can be attributed to effects of human activities (e.g., habitat fragmentation); declines in areas unaffected by human activities are not common. We have been sampling bird populations at an undisturbed site in lowland forest of eastern Ecuador annually since 2001 using a combination of mist nets and direct observations on two 100-ha plots. Bird numbers fluctuated on both plots during the first 8 years but did not show a consistent pattern of change. Since about 2008, numbers of birds on both plots have declined; capture rates in 2014 were ∼40% less than at the start of the study and observation rates were ∼50% less. Both understory and canopy species declined in abundance. Overall, insectivores showed the most pronounced declines but declines varied among trophic groups. The period from 2008 onward also was a period of stronger La Niña events which, at this study site, are associated with increased rainfall. The mechanism for the declines is not known but likely reflects a combination of reduced reproductive success coupled with reduced survival associated with changing climate. PMID:26339554

  10. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change.

    PubMed

    Blake, John G; Loiselle, Bette A

    2015-01-01

    Bird populations have declined in many parts of the world but most of those declines can be attributed to effects of human activities (e.g., habitat fragmentation); declines in areas unaffected by human activities are not common. We have been sampling bird populations at an undisturbed site in lowland forest of eastern Ecuador annually since 2001 using a combination of mist nets and direct observations on two 100-ha plots. Bird numbers fluctuated on both plots during the first 8 years but did not show a consistent pattern of change. Since about 2008, numbers of birds on both plots have declined; capture rates in 2014 were ∼40% less than at the start of the study and observation rates were ∼50% less. Both understory and canopy species declined in abundance. Overall, insectivores showed the most pronounced declines but declines varied among trophic groups. The period from 2008 onward also was a period of stronger La Niña events which, at this study site, are associated with increased rainfall. The mechanism for the declines is not known but likely reflects a combination of reduced reproductive success coupled with reduced survival associated with changing climate. PMID:26339554

  11. Does proximity to a mature forest contribute to the seed rain and recovery of an abandoned agriculture area in a semiarid climate?

    PubMed

    Souza, J T; Ferraz, E M N; Albuquerque, U P; Araújo, E L

    2014-07-01

    Proximity to forests contributes to the recolonisation of anthropogenic-disturbed areas through seed input. We evaluated the role of proximity to a mature forest in the recolonisation of an agricultural area that has been abandoned for 18 years and is currently a young forest. Seed rain was monitored at fixed distances from the mature forest. The type of surface recolonisation (germination versus resprouting) and the reproductive season were measured in both forests. The majority of plants recolonising the young forest originated from seed germination. Proximity to the mature forest contributed to the seed rain in the young forest; however, 18 years has not provided sufficient time for the recolonisation of 80 species present in the mature forest. Some species shared between forests differed in their fruiting season and seed dispersal. The seed rain had a total species richness of 56, a total density of 2270 seeds·m(-2)·year(−1) and predominance of self- and wind dispersal. A significant reduction in seed rain with increasing distance from the mature forest was observed. The young forest contained 35 species not observed in the mature forest, and the floristic similarity between the two forests was 0.5, indicating that the two forests are floristically distinct. PMID:25068159

  12. Do Foliar, Litter, and Root Nitrogen and Phosphorus Concentrations Reflect Nutrient Limitation in a Lowland Tropical Wet Forest?

    PubMed Central

    Alvarez-Clare, Silvia; Mack, Michelle C.

    2015-01-01

    Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation —as defined mechanistically by NPP responses to fertilization— based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9 % higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community. PMID:25901750

  13. Soil Nitrogen-Cycling Responses to Conversion of Lowland Forests to Oil Palm and Rubber Plantations in Sumatra, Indonesia.

    PubMed

    Allen, Kara; Corre, Marife D; Tjoa, Aiyen; Veldkamp, Edzo

    2015-01-01

    Rapid deforestation in Sumatra, Indonesia is presently occurring due to the expansion of palm oil and rubber production, fueled by an increasing global demand. Our study aimed to assess changes in soil-N cycling rates with conversion of forest to oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations. In Jambi Province, Sumatra, Indonesia, we selected two soil landscapes - loam and clay Acrisol soils - each with four land-use types: lowland forest and forest with regenerating rubber (hereafter, "jungle rubber") as reference land uses, and rubber and oil palm as converted land uses. Gross soil-N cycling rates were measured using the 15N pool dilution technique with in-situ incubation of soil cores. In the loam Acrisol soil, where fertility was low, microbial biomass, gross N mineralization and NH4+ immobilization were also low and no significant changes were detected with land-use conversion. The clay Acrisol soil which had higher initial fertility based on the reference land uses (i.e. higher pH, organic C, total N, effective cation exchange capacity (ECEC) and base saturation) (P≤0.05-0.09) had larger microbial biomass and NH4+ transformation rates (P≤0.05) compared to the loam Acrisol soil. Conversion of forest and jungle rubber to rubber and oil palm in the clay Acrisol soil decreased soil fertility which, in turn, reduced microbial biomass and consequently decreased NH4+ transformation rates (P≤0.05-0.09). This was further attested by the correlation of gross N mineralization and microbial biomass N with ECEC, organic C, total N (R=0.51-0. 76; P≤0.05) and C:N ratio (R=-0.71 - -0.75, P≤0.05). Our findings suggest that the larger the initial soil fertility and N availability, the larger the reductions upon land-use conversion. Because soil N availability was dependent on microbial biomass, management practices in converted oil palm and rubber plantations should focus on enriching microbial biomass. PMID:26222690

  14. A framework for assessment and monitoring of small mammals in a lowland tropical forest.

    PubMed

    Solari, Sergio; Rodriguez, Juan José; Vivar, Elena; Velazco, Paul M

    2002-05-01

    Development projects in tropical forests can impact biodiversity. Assessment and monitoring programs based on the principles of adaptive management assist managers to identify and reduce such impacts. The small mammal community is one important component of a forest ecosystem that may be impacted by development projects. In 1996, a natural gas exploration project was initiated in a Peruvian rainforest. The Smithsonian Institution's Monitoring and Assessment of Biodiversity program cooperated with Shell Prospecting and Development Peru to establish an adaptive management program to protect the region's biodiversity. In this article, we discuss the role of assessing and monitoring small mammals in relation to the natural gas project. We outline the conceptual issues involved in establishing an assessment and monitoring program, including setting objectives, evaluating the results and making appropriate decisions. We also summarize the steps taken to implement the small mammal assessment, provide results from the assessment and discuss protocols to identify appropriate species for monitoring. PMID:12125752

  15. Tiger density in a tropical lowland forest in the Eastern Himalayan Mountains.

    PubMed

    Singh, Randeep; Chauhan, Devendra Singh; Mishra, Sudhanshu; Krausman, Paul R; Goyal, Surendra Prakash

    2014-01-01

    Tropical evergreen forests in northeast India are a biological hot spot for conservation of flora and fauna. Little is known, however, about tiger abundance, which is a flagship species for tropical evergreen forests. Our objective was to document the capture rate and population density of tigers based on spatial explicit capture-recapture (SECR) approaches using camera trap data in an intensive study area (ISA) of 158 km(2) in Pakke Tiger Reserve (PTR) during March to May 2006. The Reserve lies in the foothills of the Eastern Himalayan Mountains, northeast India. We monitored 38 camera traps in ISA for 70 days and documented 10 photo-captures of tigers (5 left and 5 right flanks) with an average trap success rate of 1.3 captures/100 trap days. The overall capture probability was 0.05. The tiger density estimated using a SECR model was 0.97 ± 0.23 individuals/100 km(2). This is the first systematic sampling study in tropical semi evergreen forests of India, and information on capture rate and population density of tigers provides baseline data from which to determining changes in the future to assist conservation. PMID:25187884

  16. Nitrogen cycling in a northern forest: Gases to clouds to rain

    NASA Astrophysics Data System (ADS)

    Hill, Kimberly Ann

    In a forest environment, many processes alter the amount and type of nitrogen that deposits by wet and dry deposition to the forest floor. Gas-phase chemistry changes what compounds are available to be scavenged by cloud and rain droplets as well as to dry-deposit to the leaves. Cloud chemistry and microbes in the cloud water alter which compounds may go back into the gas-phase or wet deposit to the surface. Processing of dry-deposited nitrogen species on leaf surfaces changes the nitrogen washed off by rainwater as it passes through the forest canopy. In this thesis, measurements of the inorganic and organic nitrogen composition of precipitation both under the forest canopy and in an open field at the University of Michigan Biological Station are described. The data collected showed that the nitrate and organic nitrogen concentrations were substantially enhanced by interaction with the forest canopy, while ammonium concentrations were slightly decreased. Wash off of dry-deposited nitric acid and particulate nitrate was determined to be the likely source of the enhanced nitrate concentration, although some of the deposited nitric acid was either taken up by the canopy or revolatilized back into the atmosphere. Cloud water collected over the forested area of the northern section of the lower peninsula of Michigan and analyzed for inorganic and organic nitrogen content showed a significant fraction of the nitrogen was organic. Although relatively large concentrations of bacteria existed in the clouds, they contributed insignificant amounts of nitrogen to the cloud water. However, the bacteria have the potential to alter the nitrogen composition, as nitrifiers were identified in the samples. Finally, the development of an NO chemiluminescence analyzer with NO2 and NOy inlets and thermal dissociation inlets to study total reactive odd-nitrogen (NO y) and the individual species that compose NOy(NOx, organic nitrates, peroxyacyl nitrates, and nitric acid) are described

  17. Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Germer, Sonja; Neill, Christopher; Krusche, Alex V.; Elsenbeer, Helmut

    2008-10-01

    SummaryThe brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondônia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season ( n = 14) and peak of the wet season ( n = 14) and analyzed the samples for pH and concentrations of NH4+, Na +, K +, Ca 2+, Mg 2+, Cl -, NO3-, SO42- and DOC. The coefficient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly low compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall patterns was low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of "hot" and "cold" spots of throughfall quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor

  18. [Relationships between soil moisture and needle-fall in Masson pine forests in acid rain region of Chongqing, Southwest China].

    PubMed

    Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian

    2012-10-01

    From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest. PMID:23359920

  19. Seedling mortality in Hawaiian rain forest: The role of small-scale physical disturbance

    USGS Publications Warehouse

    Drake, D.R.; Pratt, L.W.

    2001-01-01

    Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N = 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half-life of a seedling cohort to less than two years.

  20. Ticks (Acari: Ixodidae) infesting birds in an Atlantic rain forest region of Brazil.

    PubMed

    Ogrzewalska, Maria; Pacheco, Richard C; Uezu, Alexandre; Richtzenhain, Leonardo J; Ferreira, Fernando; Labruna, Marcelo B

    2009-09-01

    Brazil has the third richest bird diversity of the world; however, there are few data concerning ticks (Acari: Ixodidae) parazitizing birds. The aim of the study was to report tick infestations on wild birds from an Atlantic rain forest region of Brazil. During 2 yr, ticks were collected from birds and from the environment in 12 forest sites. A total of 1,725 birds were captured representing 80 species from 24 families. In total, 223 (13%) birds were found infested by immature stages of Amblyomma ticks: 1,800 larvae and 539 nymphs. The prevalence of ticks was higher among birds from the families Thamnophilidae, Conopophagidae, and Momotidae. The most common tick parasitizing birds was Amblyomma nodosum Koch. Other tick species, Amblyomma coelebs Neumann, Amblyomma cajennense (F.), Amblyomma ovale Koch, Amblyomma longirostre (Koch), Amblyomma calcaratum Neumann, and Amblyomma naponense (Packard), were found sporadically. Among free-living ticks collected in the environment, A. cajennense was the most common, followed by A. coelebs, A. naponense, Amblyomma brasilense Aragão, and Hemaphysalis juxtakochi Cooley. PMID:19769058

  1. Connectivity of overland flow by drainage network expansion in a rain forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Zimmermann, Alexander; Turner, Benjamin L.; Francke, Till; Elsenbeer, Helmut

    2014-02-01

    Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (Ks) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.

  2. Patch network criteria for dispersal-limited endemic birds of South American temperate rain forest.

    PubMed

    Castellón, Traci D; Sieving, Kathryn E

    2007-12-01

    We developed a set of simple empirically based criteria for distinguishing forest patch configurations that we expected to support persistent populations of two endemic Tapaculo species with limited dispersal ability (Chucao Tapaculos [Scelorchilus rubecula] and Black-throated Huet-huets [Pteroptochos tarnii]) in South American temperate rain forest. The criteria address sustainable population sizes (tested using population viability analysis), habitat area needed to support sustainable populations, and measures of functional connectivity derived from radiotelemetry data and patch occupancy models. We then applied the criteria in three real-world demonstration landscapes, first, to predict numbers of breeding territories potentially accommodated within patch configurations and, second, to evaluate increases that might be achieved if landscape connections among isolated patches were restored (e.g., using corridors). The best connected of the three demonstration landscapes was predicted to support large sustainable populations without intervention to restore connectivity, whereas none of the patch configurations was sustainable in the most fragmented landscape, with or without corridor restoration. Notably, however, corridor restoration in the landscape with an intermediate fragmentation level was expected to quadruple the sustainable Chucao population and potentially prevent regional Huet-huet extinction. Thus, our network criteria provide a simple approach for developing and evaluating spatially explicit prescriptions for conservation planning in this highly endangered biome. The criteria may be especially useful for discriminating among landscapes where restoration of connectivity is, or is not, an appropriate course of action. PMID:18213959

  3. Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest

    NASA Astrophysics Data System (ADS)

    Rummel, , U.; Ammann, , C.; Gut, , A.; Meixner, , F. X.; Andreae, M. O.

    2002-10-01

    NO flux measurements by the eddy covariance technique were performed within a tropical rain forest 1 m and 11 m above the forest floor. A fast-response chemiluminescence NO analyzer with a sampling tube of 25 m length was used for the gas measurements. Nighttime similarity between the cospectra of sensible heat and the NO flux offered the possibility to quantify the high-frequency attenuation of the NO eddy covariance by spectral analysis. Integrated flux correction factors of about 21% for the system at 1 m and 5% for the one at 11 m above ground were calculated by transfer functions adopted from the literature and confirmed experimentally. For an independent validation the results of the eddy covariance system were compared with the NO soil emissions obtained by dynamic chambers. For nighttime averages, good agreement within 10% was found. The obtained NO fluxes were 3.5 ± 0.14 and 4.8 ± 0.39 ng N m-2 s-1 for the two investigated periods at 1 and 11 m heights, respectively. During the day, chemical reaction with ozone entrained from aloft reduced the fraction of the soil-emitted NO that reached the measuring height of the eddy covariance system. The average flux showed a reduction of 48% at 1 m and 92% at 11 m height compared to the corresponding soil emission measured by the chamber system.

  4. Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia.

    PubMed

    Ibrom, Andreas; Oltchev, Alexander; June, Tania; Kreilein, Heiner; Rakkibu, Golam; Ross, Thomas; Panferov, Oleg; Gravenhorst, Gode

    2008-04-01

    Photosynthetically active radiation (Q)-use efficiency (epsilon) is an important parameter for deriving carbon fluxes between forest canopies and the atmosphere from meteorological ground and remote sensing data. A common approach is to assume gross primary production (P(g)) and net primary production (P(n)) are proportional to Q absorbed by vegetation (Q(abs)) by defining the proportionality constants epsilon(Pg) and epsilon(Pn) (for P(g) and P(n), respectively). Although remote sensing and climate monitoring provide Q(abs) and other meteorological data at the global scale, information on epsilon is particularly scarce in remote tropical areas. We used a 16-month continuous CO(2) flux and meteorological dataset from a mountainous tropical rain forest in central Sulawesi, Indonesia to derive values of epsilon(Pg) and to investigate the relationship between P(g) and Q(abs). Absorption was estimated with a 1D SVAT model from measured canopy structure and short wave radiation. The half-hourly P(g) data showed a saturation response to Q(abs). The amount of Q(abs) required to saturate P(g) was reduced when water vapor saturation deficit (D) was high. Light saturation of P(g) was still evident when shifting from half-hourly to daily and monthly time scales. Thus, for a majority of observations, P(g) was insensitive to changes in Q(abs). A large proportion of the observed seasonal variability in P(g) could not be attributed to changes in Q(abs) or D. Values of epsilon(Pg) varied little around the long-term mean of 0.0179 mol CO(2) (mol photon)(-1) or 0.99 g C MJ(-1) (the standard deviations were +/- 0.006 and +/- 0.0018 mol CO(2) (mol photon)(-1) for daily and monthly means, respectively). In both cases, epsilon(Pg) values were more sensitive to Q(abs) than to daytime D. These findings show that the current epsilon-approaches fail to predict P(g) at our tropical rain forest site for two reasons: (1) they neglect saturation of P(g) when Q(abs) is high; and (2) they do not

  5. Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas

    PubMed Central

    Tóth, Tibor; Balog, Kitti; Szabó, András; Pásztor, László; Jobbágy, Esteban G.; Nosetto, Marcelo D.; Gribovszki, Zoltán

    2013-01-01

    In flat sedimentary plains in areas with a sub-humid climate, tree planting on grasslands and arable lands creates strong hydrological shifts. As a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases. Tree planting has expanded globally and in Hungary it reached rates of 15 000 ha year−1, being focused mainly in the Great Hungarian Plain where forests replace grasslands and crops in a region with widespread shallow groundwater. We performed soil and groundwater observations in 31 pairs of forest and control plots in the region, including gradients of initial water table depth and salinity, soil layering, and tree species and age. Accumulated tree biomass was positively correlated with soil salinization rates following tree planting, being also affected by species (poplar > common oak > black locust) and stand age. Differences among tree species effects appeared to be related to their growth rates. Due to downward deep percolation and salt leaching episodes during the Hungarian winters, the observed salt accumulation rates were lower than those described under similar settings in the warmer Argentine Pampas. PMID:25228311

  6. Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas.

    PubMed

    Tóth, Tibor; Balog, Kitti; Szabó, András; Pásztor, László; Jobbágy, Esteban G; Nosetto, Marcelo D; Gribovszki, Zoltán

    2014-01-01

    In flat sedimentary plains in areas with a sub-humid climate, tree planting on grasslands and arable lands creates strong hydrological shifts. As a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases. Tree planting has expanded globally and in Hungary it reached rates of 15 000 ha year(-1), being focused mainly in the Great Hungarian Plain where forests replace grasslands and crops in a region with widespread shallow groundwater. We performed soil and groundwater observations in 31 pairs of forest and control plots in the region, including gradients of initial water table depth and salinity, soil layering, and tree species and age. Accumulated tree biomass was positively correlated with soil salinization rates following tree planting, being also affected by species (poplar > common oak > black locust) and stand age. Differences among tree species effects appeared to be related to their growth rates. Due to downward deep percolation and salt leaching episodes during the Hungarian winters, the observed salt accumulation rates were lower than those described under similar settings in the warmer Argentine Pampas. PMID:25228311

  7. Effect of Forest Age on Rainwater Infiltration in the Lowland Humid Tropics

    NASA Astrophysics Data System (ADS)

    Kempema, E. W.; Mojica, A.; Litt, G.; Carey, A. M.; Ogden, F. L.

    2015-12-01

    We are working in the headwaters of the Rio Agua Salud catchment in central Panama to test the hypothesis that varying land uses, including time since afforestation, have significant impacts on rainfall infiltration, runoff generation and groundwater recharge. Increased infiltration and groundwater recharge during the wet season may result in increased groundwater flow during the dry season, the "sponge effect hypothesis". We irrigate a 6m by 2m test plot with slightly saline water at varying applied rainfall intensities using an ARS-type rainfall simulator, which has an oscillating boom mounted 2m above the forest floor, and four spray nozzles. We install 10cm tall lawn edging at the bottom of the test plot to direct surface water runoff to a small flume where runoff rates are recorded over time. In addition, we use time lapse ERI (electrical resistivity imaging) to map the vertical and downslope flow paths. We add NaCl to the applied water at a concentration of 200 mg/l, tagged with 10 mg/l LiBr as a salinity/conductivity contrast. Because ERI is highly sensitivity to changes in the electrical conductivity of soils and solute, we obtain a clear time-lapse image of flow path and bulk flow velocities. In this presentation we compare and contrast results of observations collected in an actively grazed cattle pasture adjacent ~10-12 year and >25 year old secondary forest plots using data collected during the 2015 wet season.

  8. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil

    NASA Astrophysics Data System (ADS)

    Amorim, Felipe W.; Wyatt, Graham E.; Sazima, Marlies

    2014-09-01

    Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15-20 km away from the study site. Specialization index (H 2 ' = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.

  9. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil

    NASA Astrophysics Data System (ADS)

    Amorim, Felipe W.; Wyatt, Graham E.; Sazima, Marlies

    2014-11-01

    Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15-20 km away from the study site. Specialization index ( H 2 ' = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.

  10. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil.

    PubMed

    Amorim, Felipe W; Wyatt, Graham E; Sazima, Marlies

    2014-11-01

    Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15-20 km away from the study site. Specialization index (H 2 ' = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators. PMID:25204723

  11. Optimal Wavelength Selection on Hyperspectral Data with Fused Lasso for Biomass Estimation of Tropical Rain Forest

    NASA Astrophysics Data System (ADS)

    Takayama, T.; Iwasaki, A.

    2016-06-01

    Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.

  12. Aboveground and belowground effects of single-tree removals in New Zealand rain forest.

    PubMed

    Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M

    2008-05-01

    There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches

  13. Immediate Impact of Elevated Nitrogen Input on Trace Gases Emissions in an old-Growth Lowland Forest in Panama

    NASA Astrophysics Data System (ADS)

    Wullaert, H.; Veldkamp, E.; Corre, M. D.

    2007-05-01

    In tropical areas, nitrogen (N) emission, transport and deposition are projected to increase rapidly in the next decades. In this study, the consequences of elevated N input on trace gases emissions from a tropical lowland forest soil were evaluated. The study site is located in Gigante Peninsula, Panama, which included control and N addition treatments each with four replicate plots. Urea-N was applied twice in 2006 (April 28 and June 6) at a rate of 31.25 kg N ha-1 each application. Nitrous oxide (N2O), nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) fluxes were intensively measured prior to and until one month after the second N application; this measurement period was within the beginning of the rainy season. We observed significantly higher NO emissions from the N-fertilized than the control plots, but N2O, CO2 and CH4 fluxes did not differ. The increased NO fluxes were largely observed during the first week after the second fertilization, when water-filled pore space (WFPS) has increased as the rainy season progressed. N2O emissions could possibly increase with N addition when soil moisture further increase into the rainy season. The significant correlation between N2O + NO fluxes and NH4+ levels and the range of WFPS (40-60%) indicated that N trace gases were possibly predominantly produced by nitrification. The fertilizer- induced N oxide emission was 3% of the applied N. The CO2 and CH4 fluxes indicated that initial N addition did not bring detectable change in microbial decomposition and root respiration for CO2 emissions and in CH4 consumption and production for CH4 fluxes, at least during the early rainy season covered in our measurement.

  14. Health assessment of wild lowland tapir (Tapirus terrestris) populations in the Atlantic Forest and Pantanal biomes, Brazil (1996-2012).

    PubMed

    Medici, Emília Patrícia; Mangini, Paulo Rogerio; Fernandes-Santos, Renata Carolina

    2014-10-01

    Abstract The lowland tapir (Tapirus terrestris) is found in South America and is listed as Vulnerable to Extinction by the International Union for Conservation of Nature, Red List of Threatened Species. Health issues, particularly infectious diseases, are potential threats for the species. Health information from 65 wild tapirs from two Brazilian biomes, Atlantic Forest (AF) and Pantanal (PA), were collected during a long-term study (1996-2012). The study included physic, hematologic and biochemical evaluations, microbiologic cultures, urinalysis, and serologic analyses for antibodies against 13 infectious agents (viral and bacterial). The AF and PA tapirs were significantly different for several hematologic and biochemical parameters. Ten bacteria taxa were identified in the AF and 26 in the PA. Antibodies against five viruses were detected: Bluetongue virus, eastern equine encephalitis virus, western equine encephalitis virus, infectious bovine rhinotracheitis virus, and porcine parvovirus. A high prevalence of exposure to Leptospira interrogans (10 serovars: Autumnalis, Bratislava, Canicola, Copenhageni, Grippotyphosa, Hardjo, Hebdomadis, Icterohaemorrhagiae, Pomona, and Pyrogenes) was detected in both the AF and PA sites. A greater diversity of serovars and higher antibody titers were found in the PA. Statistically significant differences between sites were found for L. interrogans, equine encephalitis virus, and porcine parvovirus. Based on physical evaluations, both AF and PA populations were healthy. The differences in the overall health profile of the AF and PA tapir populations appear to be associated with environmental factors and infectious diseases ecology. The extensive datasets on hematology, biochemistry, urinalysis, and microbiology results from this paper can be used as reference values for wild tapirs. PMID:25105810

  15. The geography of diversification in mutualistic ants: a gene's-eye view into the Neogene history of Sundaland rain forests.

    PubMed

    Quek, S-P; Davies, S J; Ashton, P S; Itino, T; Pierce, N E

    2007-05-01

    We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests. PMID:17498231

  16. Aerosol Fluxes over Amazon Rain Forest Measured with the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Nilsson, E. D.; Krejci, R.; Mårtensson, E. M.; Vogt, M.; Artaxo, P.

    2008-12-01

    We present measurements of vertical aerosol fluxes over the Amazon carried out on top of K34, a 50 meter high tower in the Cuieiras Reserve about 50 km north of Manaus in northern Brazil. The turbulent fluxes were measured with the eddy covariance method. The covariance of vertical wind speed from a sonic anemometer Gill Windmaster and total aerosol number concentration from a condensation particle counter (CPC) TSI 3010 provided the total number flux (diameter >0.01 μm). The covariance of vertical wind speed and size resolved number concentrations from an optical particle counter (OPC) Grimm 1.109 provided size resolved number fluxes in 15 bins from 0.25 μm to 2.5 μm diameter. Additionally fluxes of CO2 and H2O were derived from Li-7500 observations. The observational period, from early March to early August, includes both wet and dry season. OPC fluxes generally show net aerosol deposition both during wet and dry season with the largest downward fluxes during midday. CPC fluxes show different patterns in wet and dry season. During dry season, when number concentrations are higher, downward fluxes clearly dominate. In the wet season however, when number concentrations are lower, our data indicates that upward and downward fluxes are quite evenly distributed during course of a day. On average there is a peak in upward flux during late morning and another peak during the afternoon. Since the OPC fluxes in the same time show net deposition, there is an indication of net source of primary aerosol particles with diameters between 10 and 250 nm emitted from the rain forest. Future data analysis will hopefully shed light on origin and formation mechanism of these particles and thus provide a deeper insight in the rain forest - atmosphere interactions. The aerosol flux measurements were carried out as a part of the AMAZE project in collaboration with University of Sao Paulo, Brazil, and financial support was provided by Swedish International Development Cooperation

  17. The impact of rise of the Andes and Amazon landscape evolution on diversification of lowland terra-firme forest birds

    NASA Astrophysics Data System (ADS)

    Aleixo, A.; Wilkinson, M. J.

    2011-12-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction (the easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting ~10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, which apparently extended in series progressively eastward from Andean sources. The effects on drainage patterns are apparent from the location of axial rivers such as the Negro / Orinoco and Madeira which lie at the distal ends of major megafan ramparts at cratonic margins furthest from the Andes. Megafan extension plausibly explains the progressive extinction of the original Pebas wetland of west-central Amazonia by the present fluvial landsurfaces where

  18. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  19. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  20. Dispersal of Culex quinquefasciatus (Diptera: Culicidae) in a Hawaiian rain forest

    USGS Publications Warehouse

    Lapointe, D.A.

    2008-01-01

    Introduced mosquito-borne pathogens avian malaria (Plasmodium relictum Grassi and Feletti) and avian pox virus (Avipoxvirus) have been implicated in the past extinctions and declines of Hawaiian avifauna and remain significant obstacles to the recovery and restoration of endemic Hawaiian birds. Effective management of avian disease will require extensive mosquito control efforts that are guided by the local ecology of the vector Culex quinquefasciatus Say (Diptera: Culicidae). During October and November 1997 and September through November 1998 five mark-release-recapture experiments with laboratory-reared Cx. quinquefasciatus were conducted in a native rain forest on Hawaii Island. Of the overall 66,047 fluorescent dye-marked and released females, 1,192 (1.8%) were recaptured in 43-52 CO2-baited traps operated for 10-12-d trapping periods. Recaptured mosquitoes were trapped in all directions and at distances up to 3 km from the release site. The cumulative mean distance traveled (MDTs) over the trapping period ranged from a high of 1.89 km after 11 d (September 1998) to a low of 0.81 km after 11 d (November 1998). Released mosquitoes moved predominately in a downwind direction and they seemed to use forestry roads as dispersal corridors. Applying an estimated MDT of 1.6 km to a geographical information system-generated map of the Hakalau Forest National Wildlife Refuge clearly demonstrated that the effective refuge area could be reduced 60% by mosquitoes infiltrating into managed refuge lands. These findings should have significant implications for the design of future refuges and development of effective mosquito-borne avian disease control strategies.

  1. Dispersal of Culex quinquefasciatus (Diptera: Culicidae) in a Hawaiian rain forest.

    PubMed

    Lapointe, D A

    2008-07-01

    Introduced mosquito-borne pathogens avian malaria (Plasmodium relictum Grassi and Feletti) and avian pox virus (Avipoxvirus) have been implicated in the past extinctions and declines of Hawaiian avifauna and remain significant obstacles to the recovery and restoration of endemic Hawaiian birds. Effective management of avian disease will require extensive mosquito control efforts that are guided by the local ecology of the vector Culex quinquefasciatus Say (Diptera: Culicidae). During October and November 1997 and September through November 1998 five mark-release-recapture experiments with laboratory-reared Cx. quinquefasciatus were conducted in a native rain forest on Hawaii Island. Of the overall 66,047 fluorescent dye-marked and released females, 1,192 (1.8%) were recaptured in 43-52 CO2-baited traps operated for 10-12-d trapping periods. Recaptured mosquitoes were trapped in all directions and at distances up to 3 km from the release site. The cumulative mean distance traveled (MDTs) over the trapping period ranged from a high of 1.89 km after 11 d (September 1998) to a low of 0.81 km after 11 d (November 1998). Released mosquitoes moved predominately in a downwind direction and they seemed to use forestry roads as dispersal corridors. Applying an estimated MDT of 1.6 km to a geographical information system-generated map of the Hakalau Forest National Wildlife Refuge clearly demonstrated that the effective refuge area could be reduced 60% by mosquitoes infiltrating into managed refuge lands. These findings should have significant implications for the design of future refuges and development of effective mosquito-borne avian disease control strategies. PMID:18714858

  2. Soil carbon dioxide and methane fluxes from lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Preuss, Evelyn; Corre, Marife D.; Damris, Muhammad; Tjoa, Aiyen; Rahayu Utami, Sri; Veldkamp, Edzo

    2015-04-01

    Demand for palm oil has increased strongly in recent decades. Global palm oil production quadrupled between 1990 and 2009, and although almost half of the global supply is already produced in Indonesia, a doubling of current production is planned for the next ten years. This agricultural expansion is achieved by conversion of rainforest. Land-use conversion affects soil carbon dioxide (CO2) and methane (CH4) fluxes through changes in nutrient availability and soil properties which, in turn, influence plant productivity, microbial activity and gas diffusivity. Our study was aimed to assess changes in soil CO2 and CH4 fluxes with forest conversion to oil palm and rubber plantations. Our study area was Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured soil-atmosphere CH4 and CO2 fluxes using vented static chamber method with monthly sampling from November 2012 to December 2013. There were no differences in soil CO2 and CH4 fluxes (all P > 0.05) between soil landscapes for each land-use type. For soil CO2 fluxes, in both clay and loam Acrisol soil landscapes oil palm were lower compared to the other land uses (P < 0.007). In the clay Acrisol, soil CO2 fluxes were 107.2 ± 7.2 mg C m-2 h-1 for oil palm, and 195.9 ± 13.5 mg C m-2 h-1for forest, 185.3 ± 9.4 mg C m-2 h-1for jungle rubber and 182.8 ± 16.2 mg C m2 h-1for rubber. In the loam Acrisol, soil CO2 fluxes were 115.7 ± 11.0 mg CO2-C m2 h-1 for oil palm, and 186.6 ± 13.7, 178.7 ± 11.2, 182.9 ± 14.5 mg CO2-C m-2 h-1 for forest, jungle rubber and rubber, respectively. The seasonal patterns of soil CO2 fluxes

  3. Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest

    PubMed Central

    Schreeg, Laura A.; Kress, W. John; Erickson, David L.; Swenson, Nathan G.

    2010-01-01

    Background Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. Methodology/Principal Findings Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. Conclusions Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-wide signal. Trends

  4. Structure and dynamics of mixed-species flocks in a Hawaiian rain forest

    USGS Publications Warehouse

    Hart, P.J.; Freed, L.A.

    2003-01-01

    Mixed-species flocks of native and introduced birds were studied for four years in an upper elevation Hawaiian rain forest. Those flocks were characterized by strong seasonality, large size, low species richness, high intraspecific abundance, a lack of migrants, and a general lack of territoriality or any sort of dominance hierarchy. There was high variability among years in patterns of occurrence at the species level, and high variability within years at the individual level. These flocks are loosely structured social groupings with apparently open membership. The fluid, unstable movement patterns, high degree of variability in size and composition, and lack of positive interspecific associations are not consistent with the "foraging enhancement" hypothesis for flocking. Two resident, endangered insectivores, the Akepa (Loxops coccineus) and Hawaii Creeper (Oreomystis mana) served as "nuclear" species. Flock composition was compared between two study sites that differed significantly in density of these two nuclear species. Flock size was similar at the two sites, primarily because the nuclear species were over-represented relative to their density. This observation suggests that birds are attempting to achieve a more optimal flock size at the lower density site.

  5. Dynamics above a dense equatorial rain forest from the surface boundary layer to the free atmosphere

    NASA Astrophysics Data System (ADS)

    Lyra, R.; Druilhet, A.; Benech, B.; Biona, C. Bouka

    1992-08-01

    During the Dynamique et Chimie de l'Atmosphère en Forêt Equatoriale (DECAFE) campaign, dynamical and thermodynamical measurements were made at Impfondo (1°37'N, 18°04'W), over the dense rain forest of northern Congo during the dry season (February 1988). During the measurement period the experimental site was located south of the intertropical convergence zone ground track which manages the dynamics of the large scale. Above the experimental site, the atmospheric low layers are supplied by monsoon air coming from the Guinean gulf; the upper layers (>1500 m) are supplied by warm and dry air (trade winds) coming from the northern desert region and the savanna. Our experimental approach consists of analyzing the heat and moisture content in the low troposphere from vertical soundings made by a tethered balloon (0-400 m) and an aircraft (0-4000 m). The analysis of the evolution of the observed planetary boundary layer (PBL) is made with a mixed layer one-dimensional model which is forced to represent correctly the observed PBL height growth. The simulated and observed budgets of the heat and moisture in the PBL are balanced by adding dry air to the simulated PBL in the afternoon. This drying out can be maintained only by high levels of entrainment flux at the PBL top. An entrainment velocity of 3 cm s-1 enables the balancing of the moisture budget. This entrainment velocity seems compatible with physicochemical transfers as those of methane and ozone.

  6. The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest

    PubMed Central

    Sudhadham, M.; Prakitsin, S.; Sivichai, S.; Chaiyarat, R.; Dorrestein, G. M.; Menken, S.B.J.; de Hoog, G.S.

    2008-01-01

    The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were selected on the basis of the origins of previously isolated strains, and on the basis of physiological properties of the species, which also determined a selective isolation protocol. The species was absent from outdoor environments in the temperate climate, but present at low abundance in comparable habitats in the tropics. Positive outdoor sites particularly included faeces of frugivorous birds and bats, in urban as well as in natural areas. Tropical fruits were found E. dermatitidis positive at low incidence. Of the human-made environments sampled, railway ties contaminated by human faeces and oily debris in the tropics were massively positive, while the known abundance of the fungus in steam baths was confirmed. On the basis of the species' oligotrophy, thermotolerance, acidotolerance, moderate osmotolerance, melanization and capsular yeast cells a natural life cycle in association with frugivorous animals in foci in the tropical rain forest, involving passage of living cells through the intestinal tract was hypothesized. The human-dominated environment may have become contaminated by ingestion of wild berries carrying fungal propagules PMID:19287537

  7. Measurement of heat and moisture fluxes at the top of the rain forest during ABLE

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.

    1987-01-01

    Observations are presented of turbulent heat, moisture, and momentum transport made at two levels, approximately 5 and 10 m above the Amazon rain forest canopy. Data acquired at 10 Hz included variances and some mixed third moments of vertical velocity, temperature, and humidity. Two features of the data appear to question the displacement height hypothesis: (1) The characteristic dissipation length scale in the near-canopy layer varied between 20 m in stable conditions to approximately 150 m during afternoon convective conditions, generally larger scales than would be expected; and (2) No appreciable difference in dissipation scales was seen at the two observed levels. Observed peaks in vertical velocity-temperature cospectra lead to similar length scale estimates for dominant eddies. Heat budgets on selected days show that frequent periods with negative heat flux concurrent with continuing positive moisture flux occur in early afternoon, and this is believed to indicate the patchy nature of canopy-atmosphere coupling. Vertical velocity skewness was observed to be negative on three successive days and exhibited a sharp positive gradient.

  8. Genetic structure and conservation of Mountain Lions in the South-Brazilian Atlantic Rain Forest.

    PubMed

    Castilho, Camila S; Marins-Sá, Luiz G; Benedet, Rodrigo C; Freitas, Thales R O

    2012-01-01

    The Brazilian Atlantic Rain Forest, one of the most endangered ecosystems worldwide, is also among the most important hotspots as regards biodiversity. Through intensive logging, the initial area has been reduced to around 12% of its original size. In this study we investigated the genetic variability and structure of the mountain lion, Puma concolor. Using 18 microsatellite loci we analyzed evidence of allele dropout, null alleles and stuttering, calculated the number of allele/locus, PIC, observed and expected heterozygosity, linkage disequilibrium, Hardy-Weinberg equilibrium, F(IS), effective population size and genetic structure (MICROCHECKER, CERVUS, GENEPOP, FSTAT, ARLEQUIN, ONESAMP, LDNe, PCAGEN, GENECLASS software), we also determine whether there was evidence of a bottleneck (HYBRIDLAB, BOTTLENECK software) that might influence the future viability of the population in south Brazil. 106 alleles were identified, with the number of alleles/locus ranging from 2 to 11. Mean observed heterozygosity, mean number of alleles and polymorphism information content were 0.609, 5.89, and 0.6255, respectively. This population presented evidence of a recent bottleneck and loss of genetic variation. Persistent regional poaching constitutes an increasing in the extinction risk. PMID:22481876

  9. Characteristics and formation of rain forest soils derived from late Quaternary basaltic rocks in Leyte, Philippines

    NASA Astrophysics Data System (ADS)

    Navarrete, Ian A.; Tsutsuki, Kiyoshi; Asio, Victor B.; Kondo, Renzo

    2009-09-01

    This study was conducted to evaluate the physical, chemical, and mineralogical characteristics of rain forest soils derived from late Quaternary basaltic rocks in Leyte, Philippines. Four sites along a catena were selected at an elevation of 75-112 m above sea level with an average annual rainfall of 3,000 mm and an average temperature of 28°C. Results indicate that the soils are deep, clayey, and reddish in color, which is indicative of the advanced stage of soil development. They also posses excellent physical condition (friable and highly porous) although they are plastic and sticky when wet as is usual for clayey soils. In terms of chemical characteristics, the soils are acidic with low CEC values and generally low in organic matter and nutrient contents. The clay mineralogy of the soils is dominated by halloysite and kaolinite with minor amounts of goethite and hematite, and they also have generally high dithionite-extractable Fe contents confirming the advanced stage of their development. The soils in the more stable slope positions (PL-1, PL-2, and PL-4) have generally similar characteristics and appeared more developed than the one in the less stable position (PL-3). The most important pedogenic processes that formed the soils appear to be weathering, loss of bases and acidification, desilification, ferrugination, clay formation and translocation, and structure formation. The nature of the parent rock and climatic conditions prevailing in the area as well as slope position appear to have dominant effects on the development of the soils.

  10. Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus.

    PubMed

    Khudyakov, Jane I; D'haeseleer, Patrik; Borglin, Sharon E; Deangelis, Kristen M; Woo, Hannah; Lindquist, Erika A; Hazen, Terry C; Simmons, Blake A; Thelen, Michael P

    2012-08-01

    To process plant-based renewable biofuels, pretreatment of plant feedstock with ionic liquids has significant advantages over current methods for deconstruction of lignocellulosic feedstocks. However, ionic liquids are often toxic to the microorganisms used subsequently for biomass saccharification and fermentation. We previously isolated Enterobacter lignolyticus strain SCF1, a lignocellulolytic bacterium from tropical rain forest soil, and report here that it can grow in the presence of 0.5 M 1-ethyl-3-methylimidazolium chloride, a commonly used ionic liquid. We investigated molecular mechanisms of SCF1 ionic liquid tolerance using a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies. Potential modes of resistance to 1-ethyl-3-methylimidazolium chloride include an increase in cyclopropane fatty acids in the cell membrane, scavenging of compatible solutes, up-regulation of osmoprotectant transporters and drug efflux pumps, and down-regulation of membrane porins. These findings represent an important first step in understanding mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering microbial tolerance. PMID:22586090

  11. A survey of pig production systems in the rain forest of the Pacific coast Colombia.

    PubMed

    Ocampo, L M; Leterme, P; Buldgen, A

    2005-05-01

    A questionnaire-based survey was conducted in small-scale pig farms in the rain forest of the Colombian Pacific coast in order to study aspects of reproduction, nutrition and productivity. A total of 124 farmers was interviewed. They owned, on average, 13.6 pigs, including 2.3 sows, mainly of the Zungo breed. Pigs are reared in extensive systems and are allowed to wander freely in search of food. The sows produce, on average, 9.6 piglets/litter but, owing to poor sanitary conditions, 1.5 are born dead and only 6.3 are weaned alive. Two-thirds of the sows have five litters or more and the boars are also kept for a long time. This leads to high consanguinity rates within the herd and low productivity. Diets are based on maize, banana, tubers (taro, cassava) and fruits (peach palm, among others), and are rich in energy but poor in protein and minerals. The lack of protein and mineral sources appears to be the main limiting factor of these extensive production systems. Tree forages could partially solve the problem but are used by only 2% of the farmers. It is concluded that decreasing inbreeding, better piglet management and provision of balanced diets are areas that require immediate improvement. PMID:15934639

  12. Survival and distribution of Vibrio cholerae in a tropical rain forest stream

    SciTech Connect

    Perez-Rosas, N.; Hazen, T.C.

    1988-12-31

    For 12 months Vibrio cholerae and fecal coliforms were monitored along with 9 other water quality parameters at 12 sites in a rain forest watershed in Puerto Rico. Densities of V. cholerae and fecal coliforms were not significantly correlated even though the highest densities of both bacteria were found at a sewage outfall. High densities of V. cholerae were also found at pristine sites high in the watershed. V. cholerae and Escherichia coli were inoculated into membrane diffusion chambers, placed at two sites and monitored for 5 days on two different occasions. Two different direct count methods indicated that the density of E. coli and V. cholerae did not change significantly during the course of either study. Physiological activity, as measured by INT-reduction and relative nucleic acid composition declined for E. coli during the first 12 h then increased and remained variable during the remainder of the study. V. cholerae activity, as measured by relative nucleic acid concentrations, remained high and unchanged for the entire study. INT-reduction in V. cholerae declined initially but regained nearly all of it`s original activity within 48 h. This study suggests that V. cholerae is an indigenous organism in tropical freshwaters and that assays other than fecal coliforms or E. coli must be used for assessing public health risk in tropical waters.

  13. Genetic structure of sigmodontine rodents (Cricetidae) along an altitudinal gradient of the Atlantic Rain Forest in southern Brazil.

    PubMed

    Gonçalves, Gislene L; Marinho, Jorge R; Freitas, Thales R O

    2009-10-01

    The population genetic structure of two sympatric species of sigmodontine rodents (Oligoryzomys nigripes and Euryoryzomys russatus) was examined for mitochondrial DNA (mtDNA) sequence haplotypes of the control region. Samples were taken from three localities in the Atlantic Rain Forest in southern Brazil, along an altitudinal gradient with different types of habitat. In both species there was no genetic structure throughout their distribution, although levels of genetic variability and gene flow were high. PMID:21637469

  14. Nutrient cycling in a tropical seasonal rain forest of Xishuangbanna, Southwest China. Part 1: tree species: nutrient distribution and uptake.

    PubMed

    Shanmughavel, P; Sha, L; Zheng, Z; Cao, M

    2001-12-01

    Tropical rain forests are characterized by large numbers of the species with diverse growth habits. The objective of the present study was to determine the distribution of nutrient content in the major trees of the tropical rain forests in Xishuangbanna. This will improve the understanding of the nutrient losses from such sites that result from harvesting and flow of nutrients within the ecosystem and lead to the development of effective and rational forest management strategies. Based on the results in this study, the distribution of nutrients among biomass components of trees varied: The ordering of major elements concentrations was K > N > Mg > Ca > P in branch, stem and root tissues but was N > K > Mg > Ca > P in leaves. The maximum amount of all nutrients per ha occurred in the stems followed by branches, roots and leaves. Of the total uptake of 6167.7 kg ha(-1) of all nutrients, the contribution of various nutrients was found to be N (2010.6 t ha(-1)), P (196.3 t ha(-1)), K (2123.8 kg ha(-1)), Ca (832 kg ha(-1)) and Mg (1005 kg ha(-1)). However, comparing the nutrient uptake of other tropical and sub tropical forests, the results indicated that rates for the Xishuangbanna forests were 20-35% lower than previously reported values. PMID:11601539

  15. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama.

    PubMed

    Corre, Marife D; Veldkamp, Edzo; Arnold, Julia; Wright, S Joseph

    2010-06-01

    Nitrogen deposition is projected to increase rapidly in tropical ecosystems, but changes in soil-N-cycling processes in tropical ecosystems under elevated N input are less well understood. We used N-addition experiments to achieve N-enriched conditions in mixed-species, lowland and montane forests in Panama. Our objectives were to (1) assess changes in soil mineral N production (gross rates of N mineralization and nitrification) and retention (microbial immobilization and rapid reactions to organic N) during 1- and 9-yr N additions in the lowland forest and during 1-yr N addition in the montane forest and (2) relate these changes to N leaching and N-oxide emissions. In the old-growth lowland forest located on an Inceptisol, with high base saturation and net primary production not limited by N, there was no immediate effect of first-year N addition on gross rates of mineral-N production and N-oxide emissions. Changes in soil-N processes were only apparent in chronic (9 yr) N-addition plots: gross N mineralization and nitrification rates, NO3- leaching, and N-oxide emissions increased, while microbial biomass and NH4+ immobilization rates decreased compared to the control. Increased mineral-N production under chronic N addition was paralleled by increased substrate quality (e.g., reduced C:N ratios of litterfall), while the decrease in microbial biomass was possibly due to an increase in soil acidity. An increase in N losses was reflected in the increase in 15N signatures of litterfall under chronic N addition. In contrast, the old-growth montane forest located on an Andisol, with low base saturation and aboveground net primary production limited by N, reacted to first-year N addition with increases in gross rates of mineral-N production, microbial biomass, NO3- leaching, and N-oxide emissions compared to the control. The increased N-oxide emissions were attributed to increased nitrification activity in the organic layer, and the high NO3- availability combined with

  16. Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panamá.

    PubMed

    Cottontail, V M; Wellinghausen, N; Kalko, E K V

    2009-09-01

    Anthropogenic influence on ecosystems, such as habitat fragmentation, impacts species diversity and interactions. There is growing evidence that degradation of habitats favours disease and hence affects ecosystem health. The prevalence of haemoparasites in the Common Fruit Bat (Artibeus jamaicensis) in a tropical lowland forest in Panamá was studied. We assessed the relation of haemoparasite to the general condition of the animals and tested for possible association of haemoparasite prevalence to habitat fragmentation, with special focus on trypanosomes. Overall, a total of 250 A. jamaicensis sampled from fragmented sites, here man-made, forested islands in Lake Gatùn, and sites in the adjacent, continuous forest in and around the Barro Colorado Nature Monument were examined. Using microscopy and DNA-sequencing 2 dominant types of haemoparasite infections, trypanosomes and Litomosoides (Nematoda) were identified. Trypanosome prevalence was significantly higher in bats from forest fragments, than in bats captured in continuous forest. We attribute this to the loss of species richness in forest fragments and specific characteristics of the fragments favouring trypanosome transmission, in particular changes in vegetation cover. Interestingly, the effect of habitat fragmentation on the prevalence of trypanosomes as multi-host parasites could not be observed in Litomosoides which probably has a higher host specificity and might be affected less by overall diversity loss. PMID:19627629

  17. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest

    NASA Astrophysics Data System (ADS)

    Bendix, J.; Homeier, J.; Cueva Ortiz, E.; Emck, P.; Breckle, S.-W.; Richter, M.; Beck, E.

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the

  18. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands.

    PubMed

    Balestrieri, Alessandro; Bogliani, Giuseppe; Boano, Giovanni; Ruiz-González, Aritz; Saino, Nicola; Costa, Stefano; Milanesi, Pietro

    2016-01-01

    In recent years, the "forest-specialist" pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors. PMID:27368056

  19. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands

    PubMed Central

    Balestrieri, Alessandro; Bogliani, Giuseppe; Boano, Giovanni; Ruiz-González, Aritz; Saino, Nicola; Costa, Stefano; Milanesi, Pietro

    2016-01-01

    In recent years, the “forest-specialist” pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors. PMID:27368056

  20. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities. PMID:27056098

  1. Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China

    PubMed Central

    Lan, Guoyu; Getzin, Stephan; Wiegand, Thorsten; Hu, Yuehua; Xie, Guishui; Zhu, Hua; Cao, Min

    2012-01-01

    Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1) fourteen of the twenty tree species were negatively (or positively) associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2) Most saplings of the study species showed a significantly clumped distribution at small scales (0–10 m) which was lost at larger scales (10–30 m). (3) The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4) It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely) contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China. PMID:23029394

  2. Structure of the herb stratum under different light regimes in the Submontane Atlantic Rain Forest.

    PubMed

    Lima, R A F; Gandolfi, S

    2009-05-01

    This study aimed to characterize the structure of the herb stratum in relation to light availability in the Submontane Atlantic Rain Forest at the Carlos Botelho State Park, SP, Brazil. Fortyone 10 x10 m plots were established under the closed canopy (18 plots), small and medium canopy gaps (11) and large canopy gaps dominated by Guadua tagoara (Ness) Kunth (12). Inside each plot, the line intercept method was applied to assess soil coverage as an estimate of density of herb stratum vegetation. Hemispherical photographs were taken at the centre of the plots to evaluate the annual light regime. Overall, Calathea communis Wanderley and S. Vieira had the greater mean coverage, followed by woody seedlings, ground ferns and other herbs (mainly, Araceae, Acanthaceae, Amaranthaceae and Cyperaceae). There were strong correlations among several groups of the herb stratum, such as the negative correlations between woody seedlings with the coverage of C. communis and with rocks. The analysis of the hemispherical photographs confirmed the difference among environments that led to significant differences in the soil coverage of the herb stratum vegetation but woody seedlings. For instance, C. communis showed great coverage in large gaps while ferns were more abundant in small and medium gaps and in the understorey. Other herbs, in turn, demonstrated bigger soil coverage in small and medium gaps. Although this study represents a rough assessment of the structure and composition of the herb stratum, the results found here illustrated the evident relation between herb species density and the environmental variation promoted by changes on canopy structure and topography. PMID:19675929

  3. Carbon delivery to deep mineral horizons in Hawaiian rain forest soils

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, Erika; Chadwick, Oliver A.; Kramer, Marc; Carbone, Mariah S.

    2011-09-01

    This study aimed to better understand the mechanisms for soil organic matter delivery to and accumulation in mineral horizons of tropical rain forest, volcanic soils. We used soil morphology, lysimetry, isotopes, and spectroscopy to investigate the role of preferential flow paths in the delivery of carbon (C) to the subsoil. High rainfall, high primary productivity, and the dominance of highly reactive, short-range-order minerals combine to sequester substantial stocks of soil C with long mean residence times. The soils have large peds, separated by wide cracks, which form a network of channels propagating downward through the top 40 to 60 cm, facilitating macropore flow. The channel infillings and crack surfaces were enriched in organic material (OM) with lower C:N ratios, and had higher ammonium oxalate-extractable Al, and lower ammonium oxalate-extractable Fe than the adjacent mineral bulk soil. CP MAS 13C-NMR spectra of OM accumulating at depth showed strong signal intensities in the carboxyl and carbonyl C regions, indicative of organic acids, while decaying roots showed greater contributions of aromatic and O-alkyl C. The ratios of alkyl-to-O-alkyl C in the organic infillings were more similar to those of the bulk Bh and to dissolved organic matter than to those of decaying roots. Radiocarbon-based ages of OM infillings at >50 cm depth were significantly younger than the mineral soil (2000 years versus 7000 years). Respired CO2 from incubated soils showed that OM accumulating at depth is a mixture of modern and much older C, providing further evidence for the downward movement of fresh C.

  4. Coexistence and community structure of tropical trees in a Hawaiian montane rain forest

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1996-01-01

    We measured the diameter at breast height of all trees and shrubs > 5 meters in height, including standing dead trees, on 68 0.04-hectare study plots in a montane, subtropical rain forest on Mauna Loa, Hawai`i. The canopy species consisted of 88 percent Metrosideros polymorpha (ohia) and 12 percent Acacia koa (koa). Negative associations were found between the densities of koa and ohia, the density of koa and the total basal area of ohia, and the total basal areas of koa and ohia. The two-species lottery competition model, a stochastic model in which the coexistence of two species in a space-limited community results from temporal variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by each species. A discrete version of the quadratic-beta distribution, the quadratic-beta binomial distribution, was fit to the live koa and ohia densities and assessed with goodness-of-fit tests. Likelihood ratio tests provided evidence that the mean adult death rates of the two species were equal but that the relative competitive abilities of the two species favored ohia. These tests were corroborated by a contingency table analysis of death rates based on standing dead trees and growth rate studies which report that koa grows much faster than ohia. The lottery model predicts a positive covariance between death rates and ohia recruitment when mean death rates are equal and koa has a higher growth rate than ohia. We argue that the competitive advantage of ohia is due to its superior dispersal ability into large gaps, which would yield the positive covariance described above, and it is this positive covariance term that skews the occupation of space in favor of ohia.

  5. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere

    USGS Publications Warehouse

    Cleveland, Cory C.; Wieder, William R.; Reed, Sasha C.; Townsend, Alan R.

    2010-01-01

    Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the -25% and -50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ± 0.8, 11.2 ± 0.9, and 15.8 ± 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes

  6. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere

    USGS Publications Warehouse

    Cleveland, C.C.; Wieder, W.R.; Reed, S.C.; Townsend, A.R.

    2010-01-01

    Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the-25% and-50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ?? 0.8, 11.2 ?? 0.9, and 15.8 ?? 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to

  7. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    PubMed

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change. PMID:26546083

  8. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica

    SciTech Connect

    Keller, M.; Reiners, W.A.

    1994-12-01

    We investigated changes in soil-atmosphere flux of CH{sub 4}, N{sub 2}O, and NO resulting from the succession of pasture to forest in the Atlantic lowlands of Costa Rica. We studied a dozen sites intensively for over one year in order to measure rates and to understand controlling mechanisms for gas exchange. CH{sub 4} flux was controlled primarily by soil moisture content. Soil consumption of atmospheric CH{sub 4} was greatest when soils were relatively dry. Forest soils consumed CH{sub 4} while pasture soils which had poor drainage generally produced CH{sub 4}. The seasonal pattern of N{sub 2}O emissions from forest soils was related exponentially to soil water-filled pore space. Annual average N{sub 2}O emissions correlated with soil exchangeable NO{sub 3}{sup -} concentrations. Soil-atmosphere NO flux was greatest when soils were relatively dry. We found the largest NO emissions from abandoned pasture sites. Combining these data with those from another study in the Atlantic lowlands of Costa Rica that focused on deforestation, we present a 50-year chronosequence of trace gas emissions that extends from natural conditions, through disturbance and natural recovery. The soil-atmosphere fluxes of CH{sub 4} and N{sub 2}O and NO may be restored to predisturbance rates during secondary succession. The changes in trace gas emissions following deforestation, through pasture use and secondary succession, may be explained conceptually through reference to two major controlling factors, nitrogen availability and soil-atmosphere diffusive exchange of gases as it is influenced by soil moisture content and soil compaction. 59 refs., 6 figs., 3 tabs.

  9. Effects of seasonality and girdling on the age of stem CO2 in mature tropical lowland forest trees (Scleronema micranthum)

    NASA Astrophysics Data System (ADS)

    Muhr, Jan; Kunert, Norbert; Angert, Alon; Higuchi, Niro; Trumbore, Susan E.

    2014-05-01

    Little is known about the use of carbon (C) that was assimilated more than 1 year previously in trees. As a tree's lifetime is measured in decades to centuries, and trees are known to be able to build up essential nonstructural C reserves, it is possible that years elapse between fixation and later metabolic return of C to the atmosphere. We will refer to this elapsed time here as the 'age' of CO2, and we measure it by comparing the radiocarbon (14C) signature of CO2 emitted by trees with the observed rate of decline in atmospheric 14C-CO2. Here, we report data from Scleronema micranthum trees from a tropical lowland forest near Manaus, Brazil. Starting with 7 trees in 2012, we looked for seasonal changes in the age of CO2 emitted from the tree stem surface into the surrounding atmosphere as well as CO2 extracted from several depths (4, 8, and 12 cm) within the tree stem. We found no clear seasonality, but instead found that almost all samples were influenced by CO2 originating from sources fixed up to several years previously, suggesting that trees make use of storage C pools on a regular basis. There was a clear pattern of CO2 samples getting older the deeper from the stem they were extracted. The oldest samples, extracted from 12 cm depth, were made up of C fixed up to 30 years previously in some cases. The CO2 that is emitted into the atmosphere at the stem surface presumably represents a mixture of CO2 produced at various depths within the stem, and hence on average was substantially younger than these old samples, but still had an average age between 0-6 years. These findings of trees regularly using previously fixed C contradict the widespread assumption that trees mainly rely on recent assimilates for respiration unless forced to mobilize C from older pools due to environmental conditions limiting assimilation rates. In April 2013, we increased the number of investigated trees from 7 to 12. Initially, we kept the original sampling design, measuring seasonal

  10. The Impact of Rise of the Andes and Amazon Landscape Evolution on Diversification of Lowland terra-firme Forest Birds

    NASA Technical Reports Server (NTRS)

    Aleixo, Alexandre; Wilkinson, M. Justin

    2011-01-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction. (The easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). For the suboscine passerines, maximum-likelihood estimates of rates of diversification point to an overall constant rate over the past 5 my (up to a significant downturn at 300,000 y ago). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting approximately 10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, that may have extended progressively and in series eastward from Andean sources. This process plausibly explains the progressive extinction of original Pebas wetland of western-central Amazonia by the present fluvial landsurfaces of a more terra-firme type

  11. Retrieval of Vertical LAI Profiles Over Tropical Rain Forests using Waveform Lidar at La Selva, Costa Rica

    NASA Technical Reports Server (NTRS)

    Tang, Hao; Dubayah, Ralph; Swatantra, Anu; Hofton, Michelle; Sheldon, Sage; Clark, David B.; Blair, Bryan

    2012-01-01

    This study explores the potential of waveform lidar in mapping the vertical and spatial distributions of leaf area index (LAI) over the tropical rain forest of La Selva Biological Station in Costa Rica. Vertical profiles of LAI were derived at 0.3 m height intervals from the Laser Vegetation Imaging Sensor (LVIS) data using the Geometric Optical and Radiative Transfer (GORT) model. Cumulative LAI profiles obtained from LVIS were validated with data from 55 ground to canopy vertical transects using a modular field tower to destructively sample all vegetation. Our results showed moderate agreement between lidar and field derived LAI (r2=0.42, RMSE=1.91, bias=-0.32), which further improved when differences between lidar and tower footprint scales (r2=0.50, RMSE=1.79, bias=0.27) and distance of field tower from lidar footprint center (r2=0.63, RMSE=1.36, bias=0.0) were accounted for. Next, we mapped the spatial distribution of total LAI across the landscape and analyzed LAI variations over different land cover types. Mean values of total LAI were 1.74, 5.20, 5.41 and 5.62 over open pasture, secondary forests, regeneration forests after selective-logging and old-growth forests respectively. Lastly, we evaluated the sensitivities of our LAI retrieval model to variations in canopy/ground reflectance ratio and to waveform noise such as induced by topographic slopes. We found for both, that the effects were not significant for moderate LAI values (about 4). However model derivations of LAI might be inaccurate in areas of high-slope and high LAI (about 8) if ground return energies are low. This research suggests that large footprint waveform lidar can provide accurate vertical LAI profile estimates that do not saturate even at the high LAI levels in tropical rain forests and may be a useful tool for understanding the light transmittance within these canopies.

  12. The process-based stand growth model Formix 3-Q applied in a GIS environment for growth and yield analysis in a tropical rain forest.

    PubMed

    Ditzer, T.; Glauner, R.; Förster, M.; Köhler, P.; Huth, A.

    2000-03-01

    Managing tropical rain forests is difficult because few long-term field data on forest growth and the impact of harvesting disturbance are available. Growth models may provide a valuable tool for managers of tropical forests, particularly if applied to the extended forest areas of up to 100,000 ha that typically constitute the so-called forest management units (FMUs). We used a stand growth model in a geographic information system (GIS) environment to simulate tropical rain forest growth at the FMU level. We applied the process-based rain forest growth model Formix 3-Q to the 55,000 ha Deramakot Forest Reserve (DFR) in Sabah, Malaysia. The FMU was considered to be composed of single and independent small-scale stands differing in site conditions and forest structure. Field data, which were analyzed with a GIS, comprised a terrestrial forest inventory, site and soil analyses (water, nutrients, slope), the interpretation of aerial photographs of the present vegetation and topographic maps. Different stand types were determined based on a classification of site quality (three classes), slopes (four classes), and present forest structure (four strata). The effects of site quality on tree allometry (height-diameter curve, biomass allometry, leaf area) and growth (increment size) are incorporated into Formix 3-Q. We derived allometric relations and growth factors for different site conditions from the field data. Climax forest structure at the stand level was shown to depend strongly on site conditions. Simulated successional pattern and climax structure were compared with field observations. Based on the current management plan for the DFR, harvesting scenarios were simulated for stands on different sites. The effects of harvesting guidelines on forest structure and the implications for sustainable forest management at Deramakot were analyzed. Based on the stand types and GIS analysis, we also simulated undisturbed regeneration of the logged-over forest in the DFR at

  13. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest

    SciTech Connect

    Riley, R.H.; Vitousek, P.M.

    1995-01-01

    Patterns of nitrogen trace gas emissions, soil nitrogen flux, and nutrient availability were evaluated at five sites that form a chronosequence in Hawaiian montane rain forest. The estimated age of basaltic parent material from which soils developed at the Kilauea site was 200 yr, 6000 yr at the Puu Makaala site, 185000 yr at the Kohala site, 1.65 x 10{sup 6} yr at the Molokai site, and 4.5 x 10{sup 6} yr at the Kauai site. Peak net N mineralization and nitrification values were found in soils from the 185000-yr-old Kohala site. Nitrogen content of foliage and leaf litter was highest in the intermediate age sites (Puu Makaala and Kohala) and N and P retranslocation was lowest at the Puu Makaala site. Soil cores fertilized with nitrogen had significantly higher rates of root ingrowth than control cores at the two youngest sites (200 and 6000 yr old) but not in older sites (185000 and 4.5 x 10{sup 6}-yr-old sites) and total fine root growth into control cores was greatest at the Kohala site. The highest N{sub 2}O emissions were found at the 185000-yr-old Kohala site, while the highest combined flux of N{sub 2}O + NO was observed at the 4.5 x 10{sup 6}-yr-old Kauai site. While overall N{sub 2}O emission rates were correlated with rates of N transformations, soil water content appeared to influence the magnitude of emissions of N{sub 2}O and the ratios of emissions of NO vs. N{sub 2}O. N{sub 2}O emissions occurred when water-filled pore space (WFPS) values were >40%, with highest emissions in at least two sites observed at WFPS values of 75%. Among sites, high N{sub 2}O emissions were associated with high soil N transformation rates. Large NO fluxes were observed only at the Kauai site when WFPS values were <60%. 50 refs., 8 figs., 4 tabs.

  14. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  15. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America

    PubMed Central

    Berger, Lee; Speare, Rick; Daszak, Peter; Green, D. Earl; Cunningham, Andrew A.; Goggin, C. Louise; Slocombe, Ron; Ragan, Mark A.; Hyatt, Alex D.; McDonald, Keith R.; Hines, Harry B.; Lips, Karen R.; Marantelli, Gerry; Parkes, Helen

    1998-01-01

    Epidermal changes caused by a chytridiomycete fungus (Chytridiomycota; Chytridiales) were found in sick and dead adult anurans collected from montane rain forests in Queensland (Australia) and Panama during mass mortality events associated with significant population declines. We also have found this new disease associated with morbidity and mortality in wild and captive anurans from additional locations in Australia and Central America. This is the first report of parasitism of a vertebrate by a member of the phylum Chytridiomycota. Experimental data support the conclusion that cutaneous chytridiomycosis is a fatal disease of anurans, and we hypothesize that it is the proximate cause of these recent amphibian declines. PMID:9671799

  16. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. PMID:20382410

  17. Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen.

    PubMed

    Rosi-Marshall, Emma J; Bernhardt, Emily S; Buso, Donald C; Driscoll, Charles T; Likens, Gene E

    2016-07-01

    Decades of acid rain have acidified forest soils and freshwaters throughout montane forests of the northeastern United States; the resulting loss of soil base cations is hypothesized to be responsible for limiting rates of forest growth throughout the region. In 1999, an experiment was conducted that reversed the long-term trend of soil base cation depletion and tested the hypothesis that calcium limits forest growth in acidified soils. Researchers added 1,189 kg Ca(2+) ha(-1) as the pelletized mineral wollastonite (CaSiO3) to a 12-ha forested watershed within the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. Significant increases in the pH and acid-neutralizing capacity of soils and streamwater resulted, and the predicted increase in forest growth occurred. An unanticipated consequence of this acidification mitigation experiment began to emerge a decade later, with marked increases in dissolved inorganic nitrogen (DIN) exports in streamwater from the treated watershed. By 2013, 30-times greater DIN was exported from this base-treated watershed than from adjacent reference watersheds, and DIN exports resulting from this experiment match or exceed earlier reports of inorganic N losses after severe ice-storm damage within the study watershed. The discovery that CaSiO3 enrichment can convert a watershed from a sink to a source of N suggests that numerous potential mechanisms drive watershed N dynamics and provides new insights into the influence of acid deposition mitigation strategies for both carbon cycling and watershed N export. PMID:27335456

  18. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    NASA Astrophysics Data System (ADS)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value <5.6. The volume-weighted mean (vwm) pH was 4.62 and higher in the dry (Oct.-Mar.) than in the wet (Apr.-Sep.) seasons. The major acidic anion was sulfate with vwm concentration of 140 μeq l-1 and annual deposition flux of 110.3 kg ha-1 yr-1. The major neutralizing cations were calcium (94.8 μeq l-1 and 28 kg ha-1 yr-1) and ammonium (41.2 μeq l-1 and 11.7 kg ha-1 yr-1). Over 95% of these major acidic anions and neutralizing cations were derived from anthropogenic and terrestrial sources as a result of industrial, agricultural and forestry activities. Plantation canopy had marked impacts on rainwater chemistry, with the measured anion and cation concentrations being significantly enriched in throughfall (TF) and stemflow (SF) rainwater by 1.4 (for NO) to 20-fold (for K+) compared to those in bulk precipitation (BP). Dry deposition generally contributed about 13-22% of the total deposition while canopy leaching mainly occurred for K+ (>88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  19. [The genera of Bethylidae (Hymenoptera: Chrysidoidea) in four areas of Atlantic Rain Forest from Espírito Santo, Brazil].

    PubMed

    Mugrabi, Daniele F; Alencar, Isabel D C C; Barreto, Francisco C C; Azevedo, Celso O

    2008-01-01

    The generic richness and abundance of Bethylidae collected in four different hillside areas of Atlantic rain forest from Espírito Santo, Brazil were studied. The sites are Santa Maria de Jetibá (SMJ), Domingos Martins (DM), Pancas (P) and Atílio Vivacqua (AV). A total of 2,840 specimens of 12 genera were collected. Lepidosternopsis Ogloblin and Bakeriella Kieffer are first recorded from the State. Richness of taxa was calculated using first-order Jackknife richness with EstimateS program. Genera accumulation curves were ran to evaluate the samples. Abundance data were adjusted to the geometric distribution. Parameter k was used to compare areas. The generic profile was not equal for the sites we studied. The areas were considered disturbed. SMJ and DM presented genera richness bigger than in P and AV. The differences in the sites reflect the different preservation of each environment. Pseudisobrachium Kieffer and Dissomphalus Ashmead are most dominant genera in SMJ, DM and P, and Anisepyris Kieffer in AV. This study emphasizes the fact of Dissomphalus as the most abundant genus in rain forests. The generic profile found in AV is similar to that of some areas of Brazilian savannah. PMID:18506293

  20. Isolation, Diversity, and Antimicrobial Activity of Rare Actinobacteria from Medicinal Plants of Tropical Rain Forests in Xishuangbanna, China▿ †

    PubMed Central

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-01-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds. PMID:19648362

  1. A network analysis of plant-pollinator interactions in temperate rain forests of Chiloé Island, Chile.

    PubMed

    Ramos-Jiliberto, Rodrigo; Albornoz, Abraham A; Valdovinos, Fernanda S; Smith-Ramírez, Cecilia; Arim, Matías; Armesto, Juan J; Marquet, Pablo A

    2009-07-01

    This study characterizes the structure of a plant-pollinator network in a temperate rain forest of Chiloé Island, southern Chile, where woody species are strongly dependent on biotic pollinators, and analyzes its robustness to the loss of participating species. Degree distribution, nestedness, and expected species persistence were evaluated. In addition, we assessed the roles of predefined subsets of plants (classified by life forms) and pollinators (grouped by taxonomic orders) in the network's structure and dynamics. For this, we simulated the complete removal of each plant and pollinator subset and analyzed the resultant connectivity patterns, as well as the expected long-term species losses by running a stochastic model. Finally, we evaluated the sensitivity of the network structure to the loss of single species in order to identify potential targets for conservation. Our results show that the plant-pollinator network of this Chilean temperate rain forest exhibits a nested structure of interactions, with a degree distribution best described by a power law model. Model simulations revealed the importance of trees and hymenopterans as pivotal groups that maintain the core structure of the pollination network and guarantee overall species persistence. The hymenopterans Bombus dahlbomii and Diphaglossa gayi, the shrubs Tepualia stipularis and Ugni molinae, the vines Mitraria coccinea and Asteranthera ovata, and the entire set of tree species exerted a disproportionately large influence on the preservation of network structure and should be considered as focal species for conservation programs given current threats from selective logging and habitat loss. PMID:19390866

  2. Variations in dung beetles assemblages (Coleoptera: Scarabaeidae) within two rain forest habitats in French Guiana.

    PubMed

    Feer, François

    2013-06-01

    The structure of dung beetle communities inhabiting tropical forests are known to be sensitive to many kinds of environmental changes such as microclimate related to vegetation structure. I examined Scarabaeinae assemblages in two sites of undisturbed high forest and two sites of low forest forming a transitional zone with the open habitat of an inselberg in French Guiana. Sampling was made with pitfall and flight interception traps during 2003 and 2004. The driest and warmest conditions characterized the low forest sites. Across two years we obtained 2 927 individuals from 61 species with pitfall traps and 1 431 individuals from 85 species with flight interception traps. Greater species richness and abundance characterized all sites sampled with pitfall traps during 2003 more than 2004. In 2003 no differences were detected among sites by rarefaction analyses. In 2004 the species richest high forest site was significantly different from one of the low forest sites. For both years Clench model asymptotes for species richness were greater in high forest than in low forest sites. For both years, mean per-trap species richness, abundance and biomass among high forest sites were similar and higher than in low forest sites, especially where the lowest humidity and the highest temperature were recorded. Within the two low forest sites, species richness and abundance recorded during the second year, decreased with distance to edge. Different dominant roller species characterized the pitfall samples in one site of low forest and in other sites. Small variations in microclimatic conditions correlated to canopy height and openness likely affected dung beetle assemblages but soil depth and the presence of large mammals providing dung resource may also play a significant role. PMID:23885587

  3. The sensitivity of snowmelt processes to meterological conditions and forest cover during rain-on-snow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Devastating floods in the intermountain western US can result from rapid snowmelt during mid-winter rain-on-snow (ROS) events. Key components of snowmelt flooding during ROS are conditions prior to the storm, the combination of temperature, humidity and wind during the event, and the extent to which...

  4. Alternatives to deforestation: Steps toward sustainable use of the Amazon Rain Forest

    SciTech Connect

    Anderson, A.B.

    1990-01-01

    The high rate of deforestation of the Brazilian Amazon over the past two decades has jeopardized genetic diversity, contributed to regional and global climate change, caused erosion and flooding, destroyed forest resources, spread disease, and increased poverty. This book presents a selection of papers from an international conference that explored alternatives to deforestation of tropical forests. The alternatives described include natural forest management, agroforestry systems, and forest reestablishment on degraded pastures. The book should be useful to scientists, regional planners, and the broad scientific audience.

  5. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica

    NASA Astrophysics Data System (ADS)

    Hölscher, Dirk; Köhler, Lars; van Dijk, Albert I. J. M.; Bruijnzeel, L. A.(Sampurno)

    2004-06-01

    The abundant epiphyte vegetation of upper montane tropical rain forests, which in terms of biomass is mainly composed of non-vascular plants (mosses, liverworts and lichens), can be expected to influence the magnitude of canopy water fluxes such as rainfall interception. The objects of this study were to: (i) estimate stand canopy water storage characteristics, (ii) determine rainfall interception by the canopy as a whole, and (iii) adapt an analytical model of rainfall interception, to enable the quantification of the contribution by non-vascular epiphytes to total interception. The studied old-growth forest in the Cordillera de Talamanca, Costa Rica, was 35 m tall, dominated by oaks, and little affected by fog. The estimated leaf area index of the trees was 7.7 m 2 m -2, which combined with results from a leaf wetting experiment gave a tree leaf water storage capacity of 1.08 mm at the stand level. The biomass of non-vascular epiphytes amounted to 1.9 t ha -1 dry weight. Monthly moss water contents measured in situ ranged between 24 and 406% of moss dry weight, corresponding to a maximum moss water storage of 0.81 mm at stand level. Seasonal variation in moss water contents was reproduced satisfactorily by a running water balance model. A modified analytical interception model, which incorporated the moss water balance model, was applied. Weekly sums of observed throughfall, stemflow and interception measurements were available for comparison and amounted to 70, 2 and 28% of the associated 2150 mm of rain. The model predicted the observed values quite well and suggested that mosses contributed about 6% to the modelled interception total. Hence, the hydrological importance of epiphytes in the studied forest was rather limited despite their considerable maximum water storage capacity. This is thought to reflect the fact that under the prevailing rainfall conditions only a fraction of the potential storage is actually available.

  6. Air Pollution, Acid Rain, and the Future of Forests. Worldwatch Paper 58.

    ERIC Educational Resources Information Center

    Postel, Sandra

    This book traces centuries of human use and abuse of forest ecosystems by discussing past decades of intense burning, grazing, and timber cutting that added to the natural acidification of the soil. Air pollutants and acids generated by industrial activities worldwide are also considered. Many forests in Europe and North America now receive as…

  7. Come Rain or Shine: A Whole School Approach to Forest School

    ERIC Educational Resources Information Center

    Vandewalle, Martyn

    2010-01-01

    This article begins by describing a typical Forest School session that takes place in every class every week at The Wroxham School in Potters Bar. It goes on to outline a brief history of Forest School from its inception, its aims and ethos, and how it has been adapted for the ethos and needs of the children at Wroxham. The article also looks at…

  8. Seasonal and diurnal cycling of aerosol particles in and above the canopy in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Ditas, Florian; Pöhlker, Christopher; Barbosa, Henrique; Brito, Joel; Chi, Xuguang; Krüger, Mira L.; Moran, Daniel; Saturno, Jorge; Su, Hang; Ocimar Manzi, Antonio; Artaxo, Paulo; Pöschl, Ulrich; Andreae, Meinrat O.

    2015-04-01

    The Amazonian rain forest is one of the few continental regions, providing the opportunity to study pristine aerosols approximating a pre-industrial atmosphere. During the wet season, the ambient aerosol is usually unaffected by anthropogenic emission and dominated by a biosphere-atmosphere exchange. In contrast, during the dry season, anthropogenic pollution events (e.g., biomass burning) of regional and/or global character are observed. We will present measurements carried out at a remote research facility in the Amazonian rain forest (ATTO site, S 2° 08' 45'' W 59° 00' 20") approximately 150 km northeast of Manaus. The ATTO site is equipped with a variety of instruments to characterize microphysical and optical particle properties (i.e., particle number size distribution, total particle number concentration, BC mass, scattering coefficients, and chemical composition), which can be operated at two different inlet lines to investigate particles below (5 m) and above canopy (60 m). Since June 2014 a continuous data set of simultaneous particle number size distribution measurements below and above canopy is being collected covering nucleation to coarse mode sizes. The observed particle number size distributions show a pronounced diurnal cycle throughout all size ranges. The number concentration of Aitken and accumulation mode particles exhibits distinct minima before sunrise and a 'growth-like' behavior during daytime, while coarse mode particles show a rather broad minimum and gradual increase during daytime with maximum concentration during nighttime. As already reported by earlier studies, textbook-like new particle formation and growth is not observed in the Amazonian rain forest. Nevertheless, short particle bursts in the nucleation mode size range are regularly observed and show highest abundance in the first half of the night as well as a minimum during daytime. Simultaneous measurements below and above canopy show generally similar results indicating well

  9. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000.

    PubMed

    Clark, D A; Piper, S C; Keeling, C D; Clark, D B

    2003-05-13

    During 1984-2000, canopy tree growth in old-growth tropical rain forest at La Selva, Costa Rica, varied >2-fold among years. The trees' annual diameter increments in this 16-yr period were negatively correlated with annual means of daily minimum temperatures. The tree growth variations also negatively covaried with the net carbon exchange of the terrestrial tropics as a whole, as inferred from nearly pole-to-pole measurements of atmospheric carbon dioxide (CO(2)) interpreted by an inverse tracer-transport model. Strong reductions in tree growth and large inferred tropical releases of CO(2) to the atmosphere occurred during the record-hot 1997-1998 El Niño. These and other recent findings are consistent with decreased net primary production in tropical forests in the warmer years of the last two decades. As has been projected by recent process model studies, such a sensitivity of tropical forest productivity to on-going climate change would accelerate the rate of atmospheric CO(2) accumulation. PMID:12719545

  10. Emissions of nitrogen oxides from equatorial rain forest in central Africa:. origin and regulation of NO emission from soils

    NASA Astrophysics Data System (ADS)

    Serca, D.; Delmas, R.; Jambert, C.; Labroue, L.

    1994-09-01

    Emissions of nitric oxide from soils of equatorial rain forest were measured in the Dimonika Natural Park (4°30'S, 12°30'E) in the Mayombe Forest in Congo. Three research campaigns were carried out in June and July 1991 and in February 1992. Fluxes were measured by dynamic chamber techniques using a chemiluminescence instrument Scintrex LMA3. NO fluxes measured on natural soils are in between 5 and 17×109 molecules cm-2 s-1; they are of the same order of magnitude as those observed in similar tropical forest media. Soil treatment experiments show that the auto-decomposition of HNO2 in these acid soils (pH# 4) (chemodenitrification) is a potentially important cause of nitric oxide production in this type of ecosystem. Nitrous acid comes from autotrophic nitrification all the year round, and also from biological denitrification, shown by N20 emissions, during the rainy season. The regulation of NO release from soils is linked to ammonia production from litter mineralisation and to direct NH4 input by throughfall.

  11. The rain-runoff response of tropical humid forest ecosystems to use and reforestation in the Western Ghats of India

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Jagdish; Bonell, Michael; Venkatesh, Basappa; Purandara, Bekal K.; Lele, Sharachchandra; Kiran, M. C.; Reddy, Veerabasawant; Badiger, Shrinivas; Rakesh, K. N.

    2012-11-01

    SummaryThe effects of forest degradation and use and establishment of tree-plantations on degraded or modified forest ecosystems at multi-decadal time-scales using tree-plantations on the streamflow response are less studied in the humid tropics when compared to deforestation and forest conversion to agriculture. In the Western Ghats of India (Uttar Kannada, Karnataka State), a previous soil hydraulic conductivity survey linked with rain IDF (intensity-duration-frequency) had suggested a greater occurrence of infiltration-excess overland within the degraded forest and reforested areas and thus potentially higher streamflow (Bonell et al., 2010). We further tested these predictions in Uttar Kannada by establishing experimental basins ranging from 7 to 23 ha across three ecosystems, (1) remnant tropical evergreen Forest (NF), (2) heavily-used former evergreen forest which now has been converted to tree savanna, known as degraded forest (DF) and (3) exotic Acacia plantations (AC, Acacia auriculiformis) on degraded former forest land. In total, 11 basins were instrumented (3 NF, 4 AC and 4 DF) in two geomorphological zones, i.e., Coastal and Up-Ghat (Malnaad) and at three sites (one Coastal, two Up-Ghat). The rainfall-streamflow observations collected (at daily and also at a 36 min time resolutions in the Coastal basins) over a 2-3 year period (2003-2005) were analysed. In both the Coastal and Up-Ghat basins, the double mass curves showed during the rainy season a consistent trend in favour of more proportion of streamflow in the rank order DF > AC > NF. These double mass curves provide strong evidence that overland flow is progressively becomes a more dominant stormflow pathway. Across all sites, NF converted 28.4 ± 6.41stdev% of rainfall into total streamflow in comparison to 32.7 ± 6.97stdev% in AC and 45.3 ± 9.61stdev% in DF. Further support for the above trends emerges from the quickflow ratio QF/Q for the Coastal basins. There are much higher values for both

  12. The Influence of Increasing Rain and Earthquake Activities on Landslide Slope Stability in Forest Areas

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Aditian, A.

    2014-12-01

    Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.

  13. Logging impacts on forest structure and seedling dynamics in a Prioria copaifera (Fabaceae) dominated tropical rain forest (Talamanca, Costa Rica).

    PubMed

    Valverde-Barrantes, Oscar J; Rocha, Oscar J

    2014-03-01

    The factors that determine the existence of tropical forests dominated by a single species (monodominated forests) have been the subject of debate for a long time. It has been hypothesized that the low frequency of disturbances in monodominated forests and the tolerance to shade of the monodominant species are two important factors explaining the prolonged dominance of a single species. We determined the role of these two factors by examining the effects of logging activities on the floristic composition and seedling dynamics in a Prioria copaifera dominated forest in Southeastern Costa Rica. We determined the floristic composition for trees > or = 2.5cm DBH and the associated recruitment, survival and mortality of tree canopy seedlings in two sites logged two (L-02) and 12 years (L-12) prior to sampling and an unlogged forest (ULF). Our results showed that L-02 stands had lower species richness (25 species) than the L-12 and ULF stands (49 and 46 species, respectively). As expected, we found significant logging effects on the canopy structure of the altered forests, particularly when comparing the L-02 and the ULF stands. Seedling density was higher in ULF (0.96 seedlings/ m2) than in the L-02 and L-12 stands (0.322 and 0.466 seedlings/m2, respectively). However, seedling mortality was higher in the ULF stands (54%) than in the L-02 (26%) and L-12 (15%) stands. P. macroloba in L-02 was the only species with abundant regeneration under P. copaifera in L-02 stand, where it accounted for 35% of the seedlings. Despite the reduction in seedling abundance observed after logging, P. copaifera seems to maintain large seedling populations in these forests, suggesting that this species maintains its dominance after logging disturbances. Our findings challenge the hypothesis that the regeneration of monodominant species is not likely to occur under heavily disturbed canopy conditions. PMID:24912364

  14. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  15. Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region

    NASA Astrophysics Data System (ADS)

    Hardy, Olivier J.; Born, Céline; Budde, Katarina; Daïnou, Kasso; Dauby, Gilles; Duminil, Jérôme; Ewédjé, Eben-Ezer B. K.; Gomez, Céline; Heuertz, Myriam; Koffi, Guillaume K.; Lowe, Andrew J.; Micheneau, Claire; Ndiade-Bourobou, Dyana; Piñeiro, Rosalía; Poncet, Valérie

    2013-07-01

    The biogeographic history of the African rain forests has been contentious. Phylogeography, the study of the geographic distribution of genetic lineages within species, can highlight the signatures of historical events affecting the demography and distribution of species (i.e. population fragmentation or size changes, range expansion/contraction) and, thereby, the ecosystems they belong to. The accumulation of recent data for African rain forests now enables a first biogeographic synthesis for the region. In this review, we explain which phylogeographic patterns are expected under different scenarios of past demographic change, and we give an overview of the patterns detected in African rain forest trees to discuss whether they support alternative hypotheses regarding the history of the African rain forest cover. The major genetic discontinuities in the region support the role of refugia during climatic oscillations, though not necessarily following the classically proposed scenarios. We identify in particular a genetic split between the North and the South of the Lower Guinean region. Finally we provide some perspectives for future study.

  16. The Study Commission on the Rain Forest. 9th Grade Lesson. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Erickson, Toby

    In this interdisciplinary curriculum unit intended for ninth grade students, students explore in groups in a role playing format public policy questions related to rain forests. Examined in the lessons are political, economic, and ecological issues from which students are expected to make recommendations on what policy course should be followed.…

  17. Biodiversity Assessment in Incomplete Inventories: Leaf Litter Ant Communities in Several Types of Bornean Rain Forest

    PubMed Central

    Pfeiffer, Martin; Mezger, Dirk

    2012-01-01

    Biodiversity assessment of tropical taxa is hampered by their tremendous richness, which leads to large numbers of singletons and incomplete inventories in survey studies. Species estimators can be used for assessment of alpha diversity, but calculation of beta diversity is hampered by pseudo-turnover of species in undersampled plots. To assess the impact of unseen species, we investigated different methods, including an unbiased estimator of Shannon beta diversity that was compared to biased calculations. We studied alpha and beta diversity of a diverse ground ant assemblage from the Southeast Asian island of Borneo in different types of tropical forest: diperocarp forest, alluvial forest, limestone forest and heath forests. Forests varied in plant composition, geology, flooding regimes and other environmental parameters. We tested whether forest types differed in species composition and if species turnover was a function of the distance between plots at different spatial scales. As pseudo-turnover may bias beta diversity we hypothesized a large effect of unseen species reducing beta diversity. We sampled 206 ant species (25% singletons) from ten subfamilies and 55 genera. Diversity partitioning among the four forest types revealed that whereas alpha species richness and alpha Shannon diversity were significantly smaller than expected, beta-diversity for both measurements was significantly higher than expected by chance. This result was confirmed when we used the unbiased estimation of Shannon diversity: while alpha diversity was much higher, beta diversity differed only slightly from biased calculations. Beta diversity as measured with the Chao-Sørensen or Morisita-Horn Index correlated with distance between transects and between sample points, indicating a distance decay of similarity between communities. We conclude that habitat heterogeneity has a high influence on ant diversity and species turnover in tropical sites and that unseen species may have only

  18. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests.

    PubMed

    Slik, J W F

    2004-09-01

    In this study I investigated the effects of the extreme, 1997/98 El Niño related drought on tree mortality and understorey light conditions of logged and unlogged tropical rain forest in the Indonesian province of East Kalimantan (Borneo). My objectives were to test (1) whether drought had a significant effect on tree mortality and understorey light conditions, (2) whether this effect was greater in logged than in undisturbed forest, (3) if the expected change in tree mortality and light conditions had an effect on Macaranga pioneer seedling and sapling densities, and (4) which (a)biotic factors influenced tree mortality during the drought. The 1997/1998 drought led to an additional tree mortality of 11.2, 18.1, and 22.7% in undisturbed, old logged and recently logged forest, respectively. Mortality was highest in logged forests, due to extremely high mortality of pioneer Macaranga trees (65.4%). Canopy openness was significantly higher during the drought than during the non-drought year (6.0, 8.6 and 10.4 vs 3.7, 3.8 and 3.7 in undisturbed, old logged and recently logged forest, respectively) and was positively correlated with the number of dead standing trees. The increase in light in the understorey was accompanied by a 30 to 300-fold increase in pioneer Macaranga seedling densities. Factors affecting tree mortality during drought were (1) tree species successional status, (2) tree size, and (3) tree location with respect to soil moisture. Tree density and basal area per surface unit had no influence on tree mortality during drought. The results of this study show that extreme droughts, such as those associated with El Niño events, can affect the tree species composition and diversity of tropical forests in two ways: (1) by disproportionate mortality of certain tree species groups and tree size classes, and (2) by changing the light environment in the forest understorey, thereby affecting the recruitment and growth conditions of small and immature trees. PMID

  19. Exchange fluxes of NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest

    NASA Astrophysics Data System (ADS)

    Gut, A.; Scheibe, M.; Rottenberger, S.; Rummel, U.; Welling, M.; Ammann, C.; Kirkman, G. A.; Kuhn, U.; Meixner, F. X.; Kesselmeier, J.; Lehmann, B. E.; Schmidt, W.; Müller, E.; Piedade, M. T. F.

    2002-10-01

    Trace gas exchange of NO2 and O3 at the soil surface of the primary rain forest in Reserva Biológica Jarú (Rondônia, Brazil) was investigated by chamber and gradient methods. The ground resistance to NO2 and O3 deposition to soil was quantified for dry and wet surface conditions using dynamic chambers and was found to be fairly constant at 340 ± 110 and 190 ± 70 s m-1, respectively. For clear-sky conditions, the thermal stratification of the air in the first meter from the forest floor was stable during daytime and unstable during nighttime. The aerodynamic resistance to NO2 and O3 deposition to the ground in the first meter above the forest floor was determined by measurements of 220Rn and CO2 concentration gradients and CO2 surface fluxes. The aerodynamic resistance of the 1-m layer above the ground was 1700 s m-1 during daytime and 600 s m-1 during nighttime. The deposition flux of O3 and NO2 was quantified for clear-sky conditions from the measured concentrations and the quantified resistances. For both trace gases, deposition to the soil was generally observed. The O3 deposition flux to the soil was only significantly different from zero during daytime. The maximum of -1.2 nmol m-2 s-1 was observed at about 1800 and the mean daytime flux was -0.5 nmol m-2 s-1. The mean NO2 deposition flux during daytime was -1.6 ng N m-2 s-1 and during nighttime -2.2 ng N m-2 s-1. The NOx budget at the soil surface yielded net emission day and night. The NO2 deposition flux was 74% of the soil NO emission flux during nighttime and 34% during daytime. The plant uptake of NO2 and O3 by the leaves of Laetia corymbulosa and Pouteria glomerata, two typical plant species for the Amazon rain forest, was investigated in a greenhouse in Oldenburg (Germany) using branch cuvettes. The uptake of O3 was found to be completely under stomatal control. The uptake of NO2 was also controlled by the stomatal resistance but an additional mesophyll resistance of the same order of magnitude as

  20. Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica.

    PubMed

    Clark, David B; Hurtado, Johanna; Saatchi, Sassan S

    2015-01-01

    Rapid biological changes are expected to occur on tropical elevational gradients as species migrate upslope or go extinct in the face of global warming. We established a series of 9 1-ha plots in old-growth tropical rainforest in Costa Rica along a 2700 m relief elevational gradient to carry out long-term monitoring of tropical rain forest structure, dynamics and tree growth. Within each plot we mapped, identified, and annually measured diameter for all woody individuals with stem diameters >10 cm for periods of 3-10 years. Wood species diversity peaked at 400-600 m and decreased substantially at higher elevations. Basal area and stem number varied by less than two-fold, with the exception of the 2800 m cloud forest summit, where basal area and stem number were approximately double that of lower sites. Canopy gaps extending to the forest floor accounted for <3% of microsites at all elevations. Height of highest crowns and the coefficient of variation of crown height both decreased with increasing elevation. Rates of turnover of individuals and of stand basal area decreased with elevation, but rates of diameter growth and stand basal area showed no simple relation to elevation. We discuss issues encountered in the design and implementation of this network of plots, including biased sampling, missing key meteorological and biomass data, and strategies for improving species-level research. Taking full advantage of the major research potential of tropical forest elevational transects will require sustaining and extending ground based studies, incorporation of new remotely-sensed data and data-acquisition platforms, and new funding models to support decadal research on these rapidly-changing systems. PMID:25856163

  1. Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica

    PubMed Central

    Clark, David B.; Hurtado, Johanna; Saatchi, Sassan S.

    2015-01-01

    Rapid biological changes are expected to occur on tropical elevational gradients as species migrate upslope or go extinct in the face of global warming. We established a series of 9 1-ha plots in old-growth tropical rainforest in Costa Rica along a 2700 m relief elevational gradient to carry out long-term monitoring of tropical rain forest structure, dynamics and tree growth. Within each plot we mapped, identified, and annually measured diameter for all woody individuals with stem diameters >10 cm for periods of 3-10 years. Wood species diversity peaked at 400-600 m and decreased substantially at higher elevations. Basal area and stem number varied by less than two-fold, with the exception of the 2800 m cloud forest summit, where basal area and stem number were approximately double that of lower sites. Canopy gaps extending to the forest floor accounted for <3% of microsites at all elevations. Height of highest crowns and the coefficient of variation of crown height both decreased with increasing elevation. Rates of turnover of individuals and of stand basal area decreased with elevation, but rates of diameter growth and stand basal area showed no simple relation to elevation. We discuss issues encountered in the design and implementation of this network of plots, including biased sampling, missing key meteorological and biomass data, and strategies for improving species-level research. Taking full advantage of the major research potential of tropical forest elevational transects will require sustaining and extending ground based studies, incorporation of new remotely-sensed data and data-acquisition platforms, and new funding models to support decadal research on these rapidly-changing systems. PMID:25856163

  2. Complex Spatial Structure in a Population of Didymopanax pittieri, A Tree of Wind-Exposed Lower Montane Rain Forest

    NASA Technical Reports Server (NTRS)

    Lawton, Robert M.; Lawton, Robert O.

    2010-01-01

    Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri (<5 cm dbh, 5-10 cm dbh, 10-20 cm dbh, and> 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.

  3. Changes in seed rain across Atlantic Forest fragments in Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Freitas, Cíntia Gomes; Dambros, Cristian; Camargo, José Luís Campana

    2013-11-01

    The objectives of this study were to characterize the distribution of seeds in remnant fragments of the Atlantic Coastal Forest and to determine whether the species diversity, seed weight, and species composition of plant communities are altered by forest fragmentation. A transect of 100 m was established in the core of each of nine fragments of Atlantic Coastal Forest in a private sugarcane plantation in the state of Alagoas, NE Brazil, and ten seed-traps were distributed at intervals of 10 m each along the transects. For 12 consecutive months seeds were collected, dried, counted, weighed, and identified to species. Seeds were assigned to categories according to their size, dispersal mode, and shade tolerance. Multiple regression models and Mantel correlation tests were used to detect the effects of fragment size, percent forest cover nearby, distance from the source area, and distance from the nearest fragment on species diversity, mean seed weight, and species similarity. Analyses were carried out for all species and for subsets corresponding to each seed category. A total of 21,985 diaspores of 190 species were collected. Most seeds were small, shade-intolerant, and zoochoric, which corroborates other studies of fragmented forest landscapes and reflects the high disturbance levels in isolated forest remnants. Our data indicate that fragmentation processes such as habitat loss can alter species diversity and species composition by reducing habitat availability and increasing fragment isolation. We also found that large-seeded species are more affected by fragment isolation, possibly because their seed dispersers rarely cross non-forested areas between fragments, while zoochoric species are more strongly affected by fragment size and apparently more strongly associated with local edaphic conditions than with distance from seed sources.

  4. Anurans in a forest remnant in the transition zone between cerrado and Atlantic Rain Forest domains in Southeastern Brazil.

    PubMed

    Pirani, Renata M; Nascimento, Luciana B; Feio, Renato N

    2013-09-01

    This study presents the species richness, temporal distribution and reproductive activity of anurans from the Uaimií State Forest (Floresta Estadual do Uaimií - FLOE Uaimií), situated in the Quadrilátero Ferrífero region, municipality of Ouro Preto, Minas Gerais state, Brazil. Field activities were performed monthly from September 2009 to August 2010. We recorded 36 anurans species, distributed in 10 families. The greatest richness of the sampled sites corresponds to a permanent rivulet in a secondary forest. The majority of anuran species presented seasonal vocalization activity pattern, mainly in the rainy season. The anuran species composition of FLOE Uaimií is similar to others studied areas from the Quadrilátero Ferrífero region. PMID:24068093

  5. EFFECTS OF ACID RAIN AND GASEOUS POLLUTANTS ON FOREST PRODUCTIVITY: A REGIONAL SCALE APPROACH

    EPA Science Inventory

    Increased industrialization of the eastern U.S. over the past several decades has led to regional scale buildup of atmospheric pollutants and concern over possible losses in forest productivity within this region. This paper describes the rationale, methodology, and some prelimin...

  6. Effects of Liming on Forage Availability and Nutrient Content in a Forest Impacted by Acid Rain

    PubMed Central

    Pabian, Sarah E.; Ermer, Nathan M.; Tzilkowski, Walter M.; Brittingham, Margaret C.

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  7. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    PubMed

    Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  8. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    NASA Astrophysics Data System (ADS)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio < 0.12, the mineralization rates from DOM and mineral soils were unaffected. Consequently, there would be a considerable reduction in the biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  9. Carbon budget of Nyungwe Tropical Montane Rain Forest in Central Africa

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, B.; Zibera, E.; Uwizeye, F. K.; Hansson, L.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2015-12-01

    African tropical rainforests host rich biodiversity and play many roles at different scales such as local, regional and global, in the functioning of the earth system. Despite that the African tropical forests are the world's second largest, it has been neglected in terms of understanding the storage and fluxes of carbon and other nutrients. The question of whether this biome is a net sink or source of atmospheric CO2 is still not answered, and little is known concerning the climate change response. Tropical montane forests are even more poorly sampled compared with their importance. Deeper understanding of these ecosystems is required to provide insights on how they might react under global change. To answer questions related to these issues for African tropical montane forests, 15 permanent 0.5 ha plots were established in 2011 in Nyungwe tropical montane rainforest gazetted as a National Park to protect its extensive floral and faunal diversity. The plots are arranged along an east-westerly transect and includes both primary and secondary forest communities. The study is connected to the global ecosystem monitoring network (GEM, http://gem.tropicalforests.ox.ac.uk/). The aim is to characterize spatial and temporal heterogeneity of carbon and nutrient dynamics processes. The role of microclimate, topography, human disturbances, and plant species to the variability of these pools and processes will be explored. We compare stocks and fluxes of carbon and nutrients of the secondary and primary forest communities. The carbon stock are determined by an inventory of height and diameter at breast height (dbh) of all trees with a dbh above 5 cm, wood density, biomass of understory vegetation, leaf area index, standing and fallen dead wood, fine root biomass and organic content of various soil layers (litter, organic and mineral soil down to 45 cm depth). The carbon fluxes are determined by measurements of photosynthesis and respiration of leaves, above and below ground

  10. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  11. Concentrations and behaviour of atmospheric ammonia above the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Detournay, Anais; Langford, Ben; Tang, Sim; Sörgel, Matthias; Wolff, Stefan; Pöhlker, Christopher; Cirino de Silva, Glauber; Brito, Joel; Artaxo, Paulo

    2015-04-01

    This poster reports, to our knowledge, the first ammonia measurements over the Amazon made with a real-time analyser (AiRRmonia wet chemistry analyser), providing an effective time resolution of 15 minutes. Campaign based measurements were made in above the forest canopy at two sites in the Brazilian state of Amazonia, in July 2013 at the ZF2/K34 tower, 55 km NNW of Manaus, and during September to November 2014 at the more remote ATTO site some 160 km NE of Manaus. These were complemented with weekly in-canopy gradient measurements by passive sampler at ATTO and a few days of AiRRmonia measurements at the forest floor. The measurements are used to investigate sources, to quantify the canopy compensation points for ammonia and to estimate the surface / atmosphere exchange with the forest. The data are combined with information on aerosol size spectra as well as measurements of aerosol ammonium to investigate the thermodynamic equilibrium between gas and aerosol phase and to the potential role of ammonia in nucleation.

  12. Methyl chloride and isoprene emissions from tropical rain forest in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Saito, Takuya; Yokouchi, Yoko; Kosugi, Yoshiko; Tani, Makoto; Philip, Elizabeth; Okuda, Toshinori

    2008-10-01

    Methyl chloride (CH3Cl) fluxes were investigated at leaf and forest-canopy scales in tropical forests in Malaysia. Screening of CH3Cl-emitting species showed that 21% of 117 tree species were CH3Cl emitters; the percentage was markedly higher for dipterocarps (66%) than non-dipterocarps (6%). The dipterocarp-derived CH3Cl was characterized by high emissions (median: 0.03 μg g-1 h-1) and low stable carbon isotope ratios (mean: -88.9 +/- 11.0‰). Measurements of CH3Cl above the canopy showed a slight decrease in the mixing ratios with increasing height. These values were used to estimate the canopy-scale flux of about 14 μg m-2 h-1, comparable to that extrapolated from the leaf-scale emissions. Using the canopy-scale flux, global CH3Cl emission by tropical forests was estimated to be 1.3 Tg yr-1, representing approximately 30% of the global emissions. Above-canopy measurements were also made for isoprene, with a mean flux of 1.2 mg m-2 h-1.

  13. Rain-driven Biophysical Disturbance and Recovery Response of a Forested Reference Stream Presents an Analog for Watershed Urbanization

    NASA Astrophysics Data System (ADS)

    Hawley, R. J.; Wooten, M. S.; Macmannis, K. R.; Fet, E.

    2013-12-01

    Time series biophysical surveys of a small, forested reference stream document a pulsed disturbance-recovery trajectory that coincided with a record rainfall year. Physical dynamics of the channel cross section, profile and bed material composition were moderate from November 2008 through May 2010, coinciding with one 10-year recurrence interval rain event in June 2009; however, substantial variability was captured with the July 2011 survey--a period that included a 1.5-, 4-, and 42-year event. This was followed by a period of lower rainfall intensity (one 1.7-year event) and nominal channel change through August 2012. Across all dimensions, the absolute value of rates of inter-annual variability (as measured by a Mean Stream Channel Dynamics metric (mSCD)) averaged 17 %/yr, 46 %/yr, and 5 %/yr during the 2010, 2011, and 2012 surveys, respectively. Concomitant with the rainfall pulses and physical dynamics, annually-repeated macroinvertebrate samples documented that the Kentucky macroinvertebrate bioassessment index (MBI) dropped from 61 (excellent) to 53 (good), 30 (poor), and 43 (fair) from 2009 through 2012 and was positively correlated to the number of days since disturbance by large storm events. Community richness was highest in the year immediately following the large disturbance pulse implying that a naturally-dynamic balance of disturbance may be necessary to maintain biotic diversity in flashy, rain-driven systems. Because watershed urbanization tends to increase the erosivity of the flow regime, the amplified flows in this record rainfall year could be seen as an experimental study analogous to urbanization. The analog departs in 2012, however, when the rainfall and disturbance rates returned to more typical levels and biotic integrity exhibits a recovery trajectory, whereas, in an urbanized watershed, streams have little time before incurring additional disturbance. These results imply that managing elements of the flow regime that cause physical

  14. Oxidant and particle photochemical processes above a south-east Asian tropical rain forest (the OP3 project): introduction, rationale, location characteristics and tools

    NASA Astrophysics Data System (ADS)

    Hewitt, C. N.; Lee, J.; Barkley, M. P.; Carslaw, N.; Chappell, N. A.; Coe, H.; Collier, C.; Commane, R.; Davies, F.; Dicarlo, P.; di Marco, C. F.; Edwards, P. M.; Evans, M. J.; Fowler, D.; Furneaux, K. L.; Gallagher, M.; Guenther, A.; Heard, D. E.; Helfter, C.; Hopkins, J.; Ingham, T.; Irwin, M.; Jones, C.; Karunaharan, A.; Langford, B.; Lewis, A. C.; Lim, S. F.; MacDonald, S. M.; MacKenzie, A. R.; Mahajan, A. S.; Malpass, S.; McFiggans, G.; Mills, G.; Misztal, P.; Moller, S.; Monks, P. S.; Nemitz, E.; Nicolas-Perea, V.; Oetjen, H.; Oram, D.; Palmer, P. I.; Phillips, G. J.; Plane, J. M. C.; Pugh, T.; Pyle, J. A.; Reeves, C. E.; Robinson, N. H.; Stewart, D.; Stone, D.; Whalley, L. K.

    2009-09-01

    In April-July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rain forest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rain forest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not impacted by significant sources of anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rain forest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~104 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm-3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements which suggest that an unexplained source of OH must exist above tropical forests and continue to interrogate the data to find explanations for this.

  15. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    PubMed

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is

  16. Photosynthesis and growth of two rain forest species in simulated gaps under elevated CO{sub 2}

    SciTech Connect

    Roden, J.S.; Wiggins, D.J.; Ball, M.C.

    1997-03-01

    Two species common to the temperate rain forests of New South Wales, Australia (Doryphora sassafras and Acmena smithii) were grown for 2 wk in either ambient (350 {mu}L/L) or elevated (700 {mu}L/L) CO{sub 2} concentrations and low light (30 {mu}mol photons{center_dot}m{sup {minus}2}{center_dot}s{sup {minus}1}) after which the seedlings were exposed for over 9 wk to a midday 2-h highlight period (1250 {mu}mol photons{center_dot}m{sup {minus}2}{center_dot}s{sup {minus}1}, maximum) to simulate a tree fall gap. For both species, plants grown in elevated CO{sub 2} had greater biomass than plants grown in ambient CO{sub 2}. However, relative increases in biomass were greater in Acmena, an early-successional species, than Doryphora, a late-successional species. Recovery in quantum efficiencies over time was observed for Doryphora, implying physiological acclimation to the new light environment. Doryphora plants grown in elevated CO{sub 2} had lower values of F{sub v}/F{sub m} than plants grown in ambient CO{sub 2}. Although exposure to the simulated tree fall gap dramatically increased the conversion of pigments of the xanthophyll cycle, as well as increased the total pool size of xanthophyll cycle pigments relative to total chlorophyll concentration, there were no differences in either parameter between co{sub 2} treatments. Leaves of Doryphora and those seedlings grown in elevated CO{sub 2} had greater starch concentrations than Acmena and those seedlings grown in elevated CO{sub 2} had greater starch concentrations than Acmena and those seedlings grown in ambient CO{sub 2}, respectively. The reduction in quantum efficiencies for plants grown in elevated CO{sub 2} and exposed to a simulated tree fall gap is discussed in the context of the importance of gap phase regeneration for species in rain forest ecosystems and the potential effects of global change on those processes. 37 refs., 4 figs., 2 tabs.

  17. Measurements of soil and canopy exchange rates in the Amazon rain forest using 222Rn

    NASA Astrophysics Data System (ADS)

    Trumbore, S. E.; Keller, M.; Wofsy, S. C.; da Costa, J. M.

    1990-09-01

    Measurements of the emission of 222Rn from Amazon forest soils, and profiles of 222Rn in air were used to study the ventilation of the soil atmosphere and the nocturnal forest canopy. The emission of 222Rn from the yellow clay soils dominant in the study area averaged 0.38±0.07 atom cm-2 s-1. Nearby sand soils had similar fluxes, averaging 0.30 ± 0.07 atom cm-2 s-1. The effective diffusivity in the clay soil (0.008±0.004 cm2 s-1), was lower than that for the sand soil (0.033±0.030 cm2 s-1). Profiles of 222Rn and CO2 in air showed steepest concentration gradients in the layer between 0 and 3 m above the soil surface. Aerodynamic resistances calculated for this layer from 222Rn and CO2 varied from 1.6 to 18 s cm-1, with greater resistance during the afternoon than at night. Time averaged profiles of 222Rn in the forest canopy measured during the evening and night were combined with the soil flux measurements to compute the resistance of the subcanopy to exchange with overlying air. The integrated nocturnal rate of gas exchange between the canopy layer (0 to 41 m) and overlying atmosphere based on 222Rn averaged 0.33±0.15 cm s-1. An independent estimate of gas exchange, based on 13 nights of CO2 profiles, averaged 0.21±0.40 cm s-1. These exchange rates correspond to flushing times for the 41 m canopy layer of 3.4 and 5.5 hours, respectively. Comparison of 222Rn and CO2 profiles show that the nocturnal production of CO2 by above-ground vegetation was about 20% of the soil emission source, consistent with data from eddy-correlation experiments (Fan et al., this issue).

  18. Measurements of soil and canopy exchange rates in the Amazon rain forest using Rn-222

    NASA Technical Reports Server (NTRS)

    Trumbore, S. E.; Keller, M.; Wofsy, S. C.; Da Costa, J. M.

    1990-01-01

    Measurements were taken of the emission of Rn-222 from Amazon forest rocks and soils and used as a tracer of ventilation of the forest canopy layer at night. It was determined that the greatest resistance to transfer of trace gases from the soil to the atmosphere lies in the soil air space. Profiles of Rn-222 and CO2 showed steepest concentration gradients in the layer between 0 and 3 m above soil surface. Aerodynamic resistances calculated for this layer from Rn-222 and CO2 varied from 1.6 to 18 s/cm, with greater resistance during the afternoon than at night. The resistance to exchange with air from the entire 41 m layer below the canopy averaged 4.8 s/cm during 13 nights of CO2 profiles. The calculated average time to flush the layer below 41 m is 5.5 hr, and it is concluded that this indicates that significant exchange occurs despite nocturnal stratification.

  19. Demographic properties shape tree size distribution in a Malaysian rain forest.

    PubMed

    Kohyama, Takashi S; Potts, Matthew D; Kohyama, Tetsuo I; Kassim, Abd Rahman; Ashton, Peter S

    2015-03-01

    Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory. PMID:25674691

  20. An instrument design and sample strategy for measuring soil respiration in the coastal temperate rain forest

    NASA Astrophysics Data System (ADS)

    Nay, S. M.; D'Amore, D. V.

    2009-12-01

    The coastal temperate rainforest (CTR) along the northwest coast of North America is a large and complex mosaic of forests and wetlands located on an undulating terrain ranging from sea level to thousands of meters in elevation. This biome stores a dynamic portion of the total carbon stock of North America. The fate of the terrestrial carbon stock is of concern due to the potential for mobilization and export of this store to both the atmosphere as carbon respiration flux and ocean as dissolved organic and inorganic carbon flux. Soil respiration is the largest export vector in the system and must be accurately measured to gain any comprehensive understanding of how carbon moves though this system. Suitable monitoring tools capable of measuring carbon fluxes at small spatial scales are essential for our understanding of carbon dynamics at larger spatial scales within this complex assemblage of ecosystems. We have adapted instrumentation and developed a sampling strategy for optimizing replication of soil respiration measurements to quantify differences among spatially complex landscape units of the CTR. We start with the design of the instrument to ease the technological, ergonomic and financial barriers that technicians encounter in monitoring the efflux of CO2 from the soil. Our sampling strategy optimizes the physical efforts of the field work and manages for the high variation of flux measurements encountered in this difficult environment of rough terrain, dense vegetation and wet climate. Our soil respirometer incorporates an infra-red gas analyzer (LiCor Inc. LI-820) and an 8300 cm3 soil respiration chamber; the device is durable, lightweight, easy to operate and can be built for under $5000 per unit. The modest unit price allows for a multiple unit fleet to be deployed and operated in an intensive field monitoring campaign. We use a large 346 cm2 collar to accommodate as much micro spatial variation as feasible and to facilitate repeated measures for tracking

  1. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain.

    PubMed

    Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-04-01

    We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR × Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil. PMID:21470980

  2. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria.

    PubMed

    Ehigiator, O A; Anyata, B U

    2011-11-01

    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. PMID:21783317

  3. Elevational change in woody tissue CO2 efflux in a tropical mountain rain forest in southern Ecuador.

    PubMed

    Zach, Alexandra; Horna, Viviana; Leuschner, Christoph

    2008-01-01

    Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation. PMID:17938115

  4. Dimethyl sulfide in the Amazon rain forest: DMS in the Amazon

    DOE PAGESBeta

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; et al

    2015-01-08

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate 44 through the formation of gaseous sulfuric acid, which can yield secondary sulfate 45 aerosols and contribute to new particle formation. While oceans are generally 46 considered the dominant source of DMS, a shortage of ecosystem observations prevents 47 an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified 48 ambient DMS mixing ratios within and above a primary rainforest ecosystem in the 49 central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-50 2014). Elevated but highly variable DMS mixing ratios were observed within themore » 51 canopy, showing clear evidence of a net ecosystem source to the atmosphere during 52 both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios 53 lasting up to 8 hours (up to 160 ppt) often occurred within the canopy and near the 54 surface during many evenings and nights. Daytime gradients showed mixing ratios (up 55 to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain 56 event. The spatial and temporal distribution of DMS suggests that ambient levels and 57 their potential climatic impacts are dominated by local soil and plant emissions. A soil 58 source was confirmed by measurements of DMS emission fluxes from Amazon soils as 59 a function of temperature and soil moisture. Furthermore, light and temperature 60 dependent DMS emissions were measured from seven tropical tree species. Our study 61 has important implications for understanding terrestrial DMS sources and their role in 62 coupled land-atmosphere climate feedbacks. 63« less

  5. Dimethyl sulfide in the Amazon rain forest: DMS in the Amazon

    SciTech Connect

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-08

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate 44 through the formation of gaseous sulfuric acid, which can yield secondary sulfate 45 aerosols and contribute to new particle formation. While oceans are generally 46 considered the dominant source of DMS, a shortage of ecosystem observations prevents 47 an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified 48 ambient DMS mixing ratios within and above a primary rainforest ecosystem in the 49 central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-50 2014). Elevated but highly variable DMS mixing ratios were observed within the 51 canopy, showing clear evidence of a net ecosystem source to the atmosphere during 52 both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios 53 lasting up to 8 hours (up to 160 ppt) often occurred within the canopy and near the 54 surface during many evenings and nights. Daytime gradients showed mixing ratios (up 55 to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain 56 event. The spatial and temporal distribution of DMS suggests that ambient levels and 57 their potential climatic impacts are dominated by local soil and plant emissions. A soil 58 source was confirmed by measurements of DMS emission fluxes from Amazon soils as 59 a function of temperature and soil moisture. Furthermore, light and temperature 60 dependent DMS emissions were measured from seven tropical tree species. Our study 61 has important implications for understanding terrestrial DMS sources and their role in 62 coupled land-atmosphere climate feedbacks. 63

  6. Measurements of soil and canopy exchange rates in the Amazon rain forest using sup 222 Rn

    SciTech Connect

    Trumbore, S.E. Lamont-Doherty Geological Observatory, Palisades, NY ); Keller, M. ); Wofsy, S.C. ); Da Costa, J.M. )

    1990-09-20

    Measurements of the emission of {sup 222}Rn from Amazon forest soils, and profiles of {sup 222}Rn in air were used to study the ventilation of the soil atmosphere and the nocturnal forest canopy. The emission of {sup 222}Rn from the yellow clay soils dominant in the study area averaged 0.38 {plus minus} 0.07 atom cm{sup {minus}2} s{sup {minus}1}. Nearby sand soils had similar fluxes, averaging 0.30 {plus minus} 0.07 atom cm{sup {minus}2} s{sup {minus}1}. The effective diffusivity in the clay soil (0.008 {plus minus} 0.004 cm{sup 2} s{sup {minus}1}), was lower than that for the sand soil (0.033 {plus minus} 0.030 cm{sup 2} s{sup {minus}1}). Profiles of {sup 222}Rn and CO{sub 2} in air showed steepest concentration gradients in the layer between 0 and 3 m above the soil surface. Aerodynamic resistances calculated for this layer from {sup 222}Rn and CO{sub 2} varied from 1.6 to 18 s cm{sup {minus}1}, with greater resistance during the afternoon than at night. Time averaged profiles of {sup 222}Rn in the forest canopy measured during the evening and night were combined with the soil flux measurements to compute the resistance of the subcanopy to exchange with overlying air. The integrated nocturnal rate of gas exchange between the canopy layer (0 to 41 m) and overlying atmosphere based on {sup 222}Rn averaged 0.33 {plus minus} 0.15 cm s{sup {minus}1}. An independent estimate of gas exchange, based on 13 nights of CO{sub 2} profiles, averaged 0.21 {plus minus} 0.40 cm s{sup {minus}1}. These exchange rates correspond to flushing times for the 41 m canopy layer of 3.4 and 5.5 hours, respectively. Comparison of {sup 222}Rn and CO{sub 2} profiles show that the nocturnal production of CO{sub 2} by above-ground vegetation was about 20% of the soil emission source, consistent with data from eddy-correlation experiments.

  7. Forest Management Influence On Hydric Production in a Temperate Rain Forest: a Comparative Study of Small Watersheds

    NASA Astrophysics Data System (ADS)

    Alvarez, C.; McPhee, J.

    2007-12-01

    In this work we compare hydric production between two micro-watersheds (surface area less than 10 hectares) covered with Nothofagus oblicua and Nothofagus alpina saplings. One of the watersheds was subject to management by thinning on 2002, and contains 23% less trees, which is equivalent to 33% less basal surface respect to the unmanaged control basin. It is expected that differences be solely related to land use differences given that both watersheds have similar geomorphology. Four years (April 2003 through Jun 2007) of hourly streamflow and precipitation data collected on each watershed are analyzed by separating base flow and direct runoff for specific storms selected to represent different conditions of initial soil moisture. Several hydrograph- separation algorithms are tested in order to increase the robustness of our conclusions. Variations in rainfall- runoff coefficients are analyzed in relation to differences in soil cover and antecedent moisture. Preliminary results show that managed watersheds produce more direct runoff, albeit subject to initial moisture conditions. On the other hand a greater fraction of precipitation becomes baseflow for natural forests. This has important implications for ecosystem hydrologic services valuation and management.

  8. Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest.

    PubMed

    Santos, Renata O; Cadete, Raquel M; Badotti, Fernanda; Mouro, Adriane; Wallheim, Daniela O; Gomes, Fátima C O; Stambuk, Boris U; Lachance, Marc-André; Rosa, Carlos A

    2011-03-01

    Eight strains of a novel yeast species were isolated from rotting wood and wood-boring insects in Atlantic Rain Forest ecosystems in Brazil. Sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that the yeast belongs to the Scheffersomyces clade and that it is related to Candida lignicola and Candida coipomoensis. The new species was isolated from rotting wood of three different localities and a wood-boring insect suggesting that these substrates are its ecological niche. This new yeast species is able to assimilate cellobiose and other compounds related to rotting wood. Strong fermentation of cellobiose in Durham tubes was observed for the strains of this new yeast. The new species produced an intracellular β-glucosidase responsible for cellobiose hydrolysis. The novel species, Candida queiroziae sp. nov., is proposed to accommodate these isolates. The type strain of C. queiroziae is UFMG-CLM 5.1(T) (=CBS 11853(T) = NRRL Y-48722(T)). PMID:21136162

  9. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines. PMID:16012820

  10. A new species of small-eared shrew (Mammalia, Eulipotyphla, Cryptotis) from the Lacandona rain forest, Mexico

    USGS Publications Warehouse

    Guevara, Lázaro; Sánchez-Cordero, Víctor; León-Paniagua, Livia; Woodman, Neal

    2014-01-01

    The diversity and distribution of mammals in the American tropics remain incompletely known. We describe a new species of small-eared shrew (Soricidae, Cryptotis) from the Lacandona rain forest, Chiapas, southern Mexico. The new species is distinguished from other species of Cryptotis on the basis of a unique combination of pelage coloration, size, dental, cranial, postcranial, and external characters, and genetic distances. It appears most closely related to species in the Cryptotis nigrescens species group, which occurs from southern Mexico to montane regions of Colombia. This discovery is particularly remarkable because the new species is from a low-elevation habitat (approximately 90 m), whereas most shrews in the region are restricted to higher elevations, typically > 1,000 m. The only known locality for the new shrew is in one of the last areas in southern Mexico where relatively undisturbed tropical vegetation is still found. The type locality is protected by the Mexican government as part of the Yaxchilán Archaeological Site on the border between Mexico and Guatemala.

  11. Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system

    PubMed Central

    Aiba, Shin-ichiro; Akutsu, Kosuke; Onoda, Yusuke

    2013-01-01

    Background and Aims Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests. Methods By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200–3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras. Key Results Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer–angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures. Conclusions The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments

  12. Spatio-temporal variability of snowmelt and runoff generation during rain-on-snow events in a forested mountain environment

    NASA Astrophysics Data System (ADS)

    Garvelmann, Jakob; Pohl, Stefan; Weiler, Markus

    2014-05-01

    A network consisting of 81 standalone snow monitoring stations (SnoMoS), precipitation measurements, and streamflow data was used to analyze the observed snowcover distribution and melt dynamics during mid-winter rain-on-snow (ROS) events generating flooding in three study catchments with differing elevations, topographic characteristics, and areal extent in the Black Forest region of south-western Germany. The crucial importance of the initial snowcover distribution prior to the event became evident. The contribution of snowmelt to total runoff was on average about 60%, highlighting the significance of snowmelt for the flood generation during ROS. The catchment with the most distinct topography was selected to further investigate the drivers of the spatio-temporal variability of snowmelt and the water available for stormflow runoff. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the SWE distribution within the catchment was applied on an hourly time-step using the observed dynamic at the SnoMoS locations. Based on this analysis the spatial distribution of the initial snowcover and the snowmelt occurring in different parts of the study basin during two ROS events in December 2012 was calculated. The amount and the spatial distribution of water potentially being available for the generation of runoff at the interface between the snowpack and the surface below was calculated considering spatially variable melt rates, water retention capacity of the snow cover and the input of liquid precipitation. Elevation was found to be the most important terrain feature having the biggest influence on the water release from the snowpack. Even though the highest total amounts of water from precipitation and snowmelt were potentially available for runoff in the higher elevations, the snowpack released reduced amounts of water to runoff in these regions. South-facing terrain contributed more to runoff than north facing slopes and more

  13. Rebuilding after collapse: evidence for long-term cohort dynamics in the native Hawaiian rain forest

    USGS Publications Warehouse

    Boehmer, Hans Juergen; Wagner, Helene H.; Jacobi, James D.; Gerrish, Grant C.; Mueller-Dombois, Dieter

    2013-01-01

    Questions: Do long-term observations in permanent plots confirm the conceptual model of Metrosideros polymorpha cohort dynamics as postulated in 1987? Do regeneration patterns occur independently of substrate age, i.e. of direct volcanic disturbance impact? Location: The windward mountain slopes of the younger Mauna Loa and the older Mauna Kea volcanoes (island of Hawaii, USA). Methods: After widespread forest decline (dieback), permanent plots were established in 1976 in 13 dieback and 13 non-dieback patches to monitor the population structure of M. polymorpha at ca. 5-yr intervals. Within each plot of 20 × 20 m, all trees with DBH >2.5 cm were individually tagged, measured and tree vigour assessed; regeneration was quantified in 16 systematically placed subplots of 3 × 5 m. Data collected in the subplots included the total number of M. polymorpha seedlings and saplings (five stem height classes). Here we analyse monitoring data from six time steps from 1976 to 2003 using repeated measures ANOVA to test specific predictions derived from the 1987 conceptual model. Results: Regeneration was significantly different between dieback and non-dieback plots. In dieback plots, the collapse in the 1970s was followed by a ‘sapling wave’ that by 2003 led to new cohort stands of M. polymorpha. In non-dieback stands, seedling emergence did not result in sapling waves over the same period. Instead, a ‘sapling gap’ (i.e. very few or no M. polymorpha saplings) prevailed as typical for mature stands. Canopy dieback in 1976, degree of recovery by 2003 and the number of living trees in 2003 were unrelated to substrate age. Conclusions: Population development of M. polymorpha supports the cohort dynamics model, which predicts rebuilding of the forest with the same canopy species after dieback. The lack of association with substrate age suggests that the long-term maintenance of cohort structure in M. polymorpha does not depend on volcanic disturbance but may be related to

  14. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  15. Evidence for coal forest refugia in the seasonally dry Pennsylvanian tropical lowlands of the Illinois Basin, USA

    PubMed Central

    Stevenson, Robert A.; Van Hoof, Thomas B.; Mander, Luke

    2014-01-01

    The Moscovian plant macroflora at Cottage Grove southeastern Illinois, USA, is a key example of Pennsylvanian (323–299 Million years ago) dryland vegetation. There is currently no palynological data from the same stratigraphic horizons as the plant macrofossils, leaves and other vegetative and reproductive structures, at this locality. Consequently, reconstructions of the standing vegetation at Cottage Grove from these sediments lack the complementary information and a more regional perspective that can be provided by sporomorphs (prepollen, pollen, megaspores and spores). In order to provide this, we have analysed the composition of fossil sporomorph assemblages in two rock samples taken from macrofossil-bearing inter-coal shale at Cottage Grove. Our palynological data differ considerably in composition and in the dominance-diversity profile from the macrofossil vegetation at this locality. Walchian conifers and pteridosperms are common elements in the macroflora, but are absent in the sporomorph assemblages. Reversely, the sporomorph assemblages at Cottage Grove comprise 17 spore taxa (∼16% and ∼63% of the total assemblages) that are known from the lycopsid orders Isoetales, Lepidodendrales and Selaginallales, while Cottage Grove’s macrofloral record fails to capture evidence of a considerable population of coal forest lycopsids. We interpret our results as evidence that the Pennsylvanian dryland glacial landscape at Cottage Grove included fragmented populations of wetland plants living in refugia. PMID:25392752

  16. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  17. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage

    PubMed Central

    Lobo, Elena; Dalling, James W.

    2014-01-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  18. Spatial analysis of charcoal kiln remains in the former royal forest district Tauer (Lower Lusatia, North German Lowlands)

    NASA Astrophysics Data System (ADS)

    Raab, Alexandra; Schneider, Anna; Bonhage, Alexander; Takla, Melanie; Hirsch, Florian; Müller, Frank; Rösler, Horst; Heußner, Karl-Uwe

    2016-04-01

    Archaeological excavations have revealed more than thousand charcoal kiln remains (CKRs) in the prefield of the active opencast lignite mine Jänschwalde, situated about 150 km SE of Berlin (SE Brandenburg, Germany). The charcoal was mainly produced for the ironwork Peitz nearby, which operated from the 16th to the mid-19th centuries. In a first approach, to estimate the dimension of the charcoal production, CKRs were mapped on shaded-relief maps (SRMs) derived from high-resolution LiDAR data (Raab et al. 2015). Subsequently, for a selected test area, identified CKRs on the SRMs were compared with archaeologically excavated CKRs in the field. This survey showed a considerably number of falsely detected sites. Therefore, the data was critically re-evaluated using additional relief visualisations. Further, we extended the CKR mapping to areas which are not archaeologically investigated. The study area, the former royal forest district Tauer, consists of two separate areas: the Tauersche Heide (c. 96 km2 area) N of Peitz and the area Jänschwalde (c. 32 km2 area) NE of Peitz. The study area is characterized by a flat topography. Different former and current anthropogenic uses (e.g., military training, solar power plant, forestry measures) have affected the study area, resulting in extensive disturbances of the terrain surface. The revised CKR abundance in the study area Jänschwalde was considerably smaller than the numbers produced by our first approach. Further, the CKR mapping revealed, that a total record of the CKRs is not possible for various reasons. Despite these limitations, a solid database can be provided for a much larger area than before. Basic statistic parameters of the CKR diameters and all comparative statistical tests were calculated using SPSS. To detect underlying spatial relationships in the CKR site distribution, we applied the Getis-Ord Gi* statistic, a method to test for local spatial autocorrelation between neighbouring sites. The test is

  19. Anti-Streptococcal activity of Brazilian Amazon Rain Forest plant extracts presents potential for preventive strategies against dental caries

    PubMed Central

    da SILVA, Juliana Paola Corrêa; de CASTILHO, Adriana Lígia; SARACENI, Cíntia Helena Couri; DÍAZ, Ingrit Elida Collantes; PACIÊNCIA, Mateus Luís Barradas; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Caries is a global public health problem, whose control requires the introduction of low-cost treatments, such as strong prevention strategies, minimally invasive techniques and chemical prevention agents. Nature plays an important role as a source of new antibacterial substances that can be used in the prevention of caries, and Brazil is the richest country in terms of biodiversity. Objective In this study, the disk diffusion method (DDM) was used to screen over 2,000 Brazilian Amazon plant extracts against Streptococcus mutans. Material and Methods Seventeen active plant extracts were identified and fractionated. Extracts and their fractions, obtained by liquid-liquid partition, were tested in the DDM assay and in the microdilution broth assay (MBA) to determine their minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs). The extracts were also subjected to antioxidant analysis by thin layer chromatography. Results EB271, obtained from Casearia spruceana, showed significant activity against the bacterium in the DDM assay (20.67±0.52 mm), as did EB1129, obtained from Psychotria sp. (Rubiaceae) (15.04±2.29 mm). EB1493, obtained from Ipomoea alba, was the only extract to show strong activity against Streptococcus mutans (0.08 mg/mLrain forest, show potential as sources of new antibacterial agents for use as chemical coadjuvants in prevention strategies to treat caries. PMID:24676578

  20. Disentangling the roles of plant diversity and precipitation in structuring microbial community composition and function in a tropical rain forest

    NASA Astrophysics Data System (ADS)

    McGuire, Krista; Treseder, Kathleen; Fierer, Noah; Turner, Benjamin

    2010-05-01

    Shifting frequency and intensity of precipitation events is expected to impact soil fungi through a variety of complex feedbacks, although the general patterns and mechanisms are not fully understood. Precipitation and plant diversity often covary, and disentangling the relative contribution of each is important for predicting changes in global C and N fluxes. In order to test the relative contributions of plant diversity and precipitation in shaping fungal community structure and function, soil samples (0-10cm) from six established 1-ha plots across a natural precipitation gradient on the isthmus of Panama were collected. These plots co-vary in mean annual precipitation and plant diversity. Fungal DNA was sequenced using general fungal primers for the 18S region and 454 pyrosequencing. We found that total fungal taxa significantly increased with increasing mean annual precipitation, but not with plant diversity. Activity for some extracellular enzymes increased, whereas as others decreased with mean annual precipitation, indicating that the effect of shifting precipitation on nutrient transformations may be process-specific. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in nylon, 2 mm screen litter bags with 1, 25, and 50 species of plant leaf litter. After six months, we found a significant effect of plant litter diversity on decomposition rate, but only after the increase from one to 25 species of leaf litter. Total fungal taxa as determined by 454 sequencing and extracellular enzyme activity did not track plant species richness, suggesting that precipitation may be a more important factor than plant diversity in structuring soil fungi in tropical rain forests.

  1. Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments

    PubMed Central

    Mao, Peili; Zang, Runguo; Shao, Hongbo; Yu, Junbao

    2014-01-01

    Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, and 10%) in order to explore the adaptive strategies of tropical trees to light conditions. Under each light intensity level, the pioneer species, Endospermum chinense (Euphorbiaceae), had higher relative growth rate (RGR), stem mass ratio (SMR), specific leaf area (SLA), and morphological plasticity while the shade tolerant climax species, Parakmeria lotungensis (Magnoliaceae), had higher root mass ratio (RMR) and leaf mass ratio (LMR). RGR of both species was positively related to SMR and SLA under each light level but was negatively correlated with RMR under lower light (30% and 10% full light). The climax species increased its survival by a conservative resource use strategy through increasing leaf defense and root biomass investment at the expense of growth rate in low light. In contrast, the pioneer increased its growth by an exploitative resource use strategy through increasing leaf photosynthetic capacity and stem biomass investment at the expense of survival under low light. There was a trade-off between growth and survival for species under different light conditions. Our study suggests that tree species in the tropical rainforest adopt different strategies in stands of different successional stages. Species in the earlier successional stages have functional traits more advantageous to grow faster in the high light conditions, whereas species in the late successional stages have traits more favorable to survive in the low light conditions. PMID:25019095

  2. Discovery of Sympatric Dwarf Lemur Species in the High-Altitude Rain Forest of Tsinjoarivo, Eastern Madagascar: Implications for Biogeography and Conservation

    PubMed Central

    Blanco, Marina B.; Godfrey, Laurie R.; Rakotondratsima, Mamihasimbola; Rahalinarivo, Vololonirina; Samonds, Karen E.; Raharison, Jean-Luc; Irwin, Mitchell T.

    2009-01-01

    The number of species within the Malagasy lemur genus Cheirogaleus is currently under debate. Museum collections are spotty, and field work, supplemented by morphometric and genetic analysis, is essential for documenting geographic distributions, ecological characteristics and species boundaries. We report here field evidence for 2 dwarf lemur species at Tsinjoarivo, an eastern-central high-altitude rain forest: one, from a forest fragment, displaying coat and dental characteristics similar to C. sibreei (previously described only from museum specimens) and the other, from the continuous forest, resembling individuals of Cheirogaleus found today at Ranomafana National Park, further to the south. This study represents the first confirmation of a living population of grey-fawn, C.-sibreei-like, dwarf lemurs in Madagascar. PMID:19023214

  3. Deposition of trace substances via cloud droplets in the Atlantic Rain Forest of the Serra Do Mar, São Paulo State, SE Brazil

    NASA Astrophysics Data System (ADS)

    Vautz, W.; Pahl, S.; Pilger, H.; Schilling, M.; Klockow, D.

    The Atlantic Rain Forest of the Serra do Mar close to Cubatão, São Paulo State, SE Brazil, is severely affected by the emissions of a big industrial complex. Measurements of trace substance concentrations in air as well as in rain were carried out over a period of 6 years to investigate the interrelation of pollution and vegetation damage. Due to the local atmospheric circulation, orographic clouds occur very frequently at the top of the Serra do Mar, where vegetation damage also is very high. Therefore, additional information was required about trace substance deposition via cloud water. During three field experiments, various samples of cloud water and of the interstitial aerosol were taken by help of a sampling device especially modified for this purpose, and were analysed for the major anions and cations (hydrogen ions, ammonium, chloride, sodium, nitrate and sulphate). The trace substance concentrations found in cloud water were in the same range as for polluted sites in Europe. Over all samples, about 90-100% of the trace substances—both gaseous and particulate matter—found in the atmosphere before a cloud event were found in the cloud water. A resistance model using meteorological input data (wind speed, atmospheric liquid water content) was adapted to the characteristics of the Atlantic Rain Forest to estimate the cloud water deposition to vegetation. The results from cloud water analyses and from modelled cloud water deposition were combined to investigate the ion deposition to the vegetation. A rough estimate of the annual deposition showed, that the deposition via rain is in the order of one magnitude (factor 6-40) higher than that via cloud. The high amount of water deposition via precipitation overcompensates the higher trace substance concentrations in cloud water. Furthermore the trace substance deposition to vegetation via cloud water in the Atlantic Rain Forest is in the order of one magnitude lower than for typical German spruce forests due

  4. Acid rain: Reign of controversy

    SciTech Connect

    Kahan, A.M.

    1986-01-01

    Acid Rain is a primer on the science and politics of acid rain. Several introductory chapters describe in simple terms the relevant principles of water chemistry, soil chemistry, and plant physiology and discuss the demonstrated or postulated effects of acid rain on fresh waters and forests as well as on statuary and other exposed objects. There follow discussions on the economic and social implications of acid rain (for example, possible health effects) and on the sources, transport, and distribution of air pollutants.

  5. Reliable rain rates from optical satellite sensors - a random forests-based approach for the hourly retrieval of rainfall rates from Meteosat SEVIRI

    NASA Astrophysics Data System (ADS)

    Kühnlein, Meike; Appelhans, Tim; Thies, Boris; Nauss, Thomas

    2013-04-01

    Many ecological and biodiversity-oriented projects require area-wide precipitation information and satellite-based rainfall retrievals are often the only option. Using optical and microphysical cloud property retrievals, area-wide information about the distribution of precipitating clouds can generally be provided from optical sensors aboard geostationary (GEO) weather satellites. However, the retrieval of spatio-temporal high resolution rainfall amounts from such sensors bears large uncertainties. In existing optical retrievals, the rainfall rate is generally retrieved as a function of the cloud-top temperature which leads to sufficient results for deep-convective systems but such a concept is inappropriate for any kind of advective/stratiform precipitation formation processes. To overcome this drawback, several authors suggest to use optical and microphysical cloud parameters not only for the rain-area delineation but also for the rain rate retrieval. In the present study, a method has been developed to estimate hourly rainfall rates using cloud physical properties retrieved from MSG SEVIRI data. The rainfall rate assignment is realized by using an ensemble classification and regression technique, called random forests. This method is already widely established in other disciplines, but has not yet been utilized extensively by climatologists. Random forests is used to assign rainfall rates to already identified rain areas in a two-step approach. First, the rain area is separated into areas of precipitation processes. Next, rainfall rates are assigned to these areas. For the development and validation of the new technique, radar-based precipitation data of the German Weather Service is used. The so-called RADOLAN RW product provide gauge-adjusted hourly precipitation amounts at a temporal resolution of one hour. Germany is chosen as the study area of the new technique. The region can be regarded as sufficiently representative for mid-latitudes precipitation

  6. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer. PMID:26755128

  7. Survey of ticks (Acari: Ixodidae) and their rickettsia in an Atlantic rain forest reserve in the State of São Paulo, Brazil.

    PubMed

    Sabatini, Guilherme S; Pinter, Adriano; Nieri-Bastos, Fernanda A; Marcili, Arlei; Labruna, Marcelo B

    2010-09-01

    The current study investigated the occurrence of ticks and their rickettsiae in the Serra do Mar State Park, which encompasses one of the largest Atlantic rain forest reserves of Brazil. From July 2008 to June 2009, a total of 2439 ticks (2,196 free living and 243 collected on hosts) was collected, encompassing the following 13 species: Amblyomma aureolatum (Pallas), Amblyomma brasiliense AragAo, Amblyomma dubitatum Neumann, Amblyomma fuscum Neumann, Amblyomma incisum Neumann, Amblyomma longirostre (Koch), Amblyomma naponense (Packard), Amblyomma nodosum Neumann, Amblyomma ovale Koch, Haemaphysalis juxtakochi Cooley, Ixodes aragaoi Fonseca, Ixodes loricatus Neumann, and Rhipicephalus sanguineus (Latreille). Ticks were submitted to polymerase chain reaction assays targeting portions of the rickettsial genes gltA and ompA. Polymerase chain reaction products were DNA sequenced and compared with corresponding sequences available in GenBank. Rickettsia bellii, a rickettsia of unknown pathogenicity, was detected in one A. aureolatum, one A. ovale, and three A. incisum specimens. At least 8.8% (3/34) of the free-living A. ovale ticks, 13.6% (8/59) of the A. ovale ticks collected from dogs, and 1.9% (1/54) of the R. sanguineus (Latreille) ticks were found to be infected by Rickettsia sp strain Atlantic rain forest, a novel strain that has been shown to cause an eschar-associated spotted fever in the state of Sho Paulo. Our results suggest that A. ovale is the vector of Rickettsia sp strain Atlantic rain forest in the state of São Paulo. PMID:20939390

  8. One-year delayed effect of fog on malaria transmission: a time-series analysis in the rain forest area of Mengla County, south-west China

    PubMed Central

    Tian, Linwei; Bi, Yan; Ho, Suzanne C; Liu, Wenjie; Liang, Song; Goggins, William B; Chan, Emily YY; Zhou, Shuisen; Sung, Joseph JY

    2008-01-01

    Background Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide. PMID:18565224

  9. Stable isotopes in nitrous oxide emitted from tropical rain forest soils and agricultural fields: Implications for the global atmospheric nitrous oxide budget

    NASA Astrophysics Data System (ADS)

    Perez, Tibisay Josefina

    Nitrous oxide (N2O) is an important greenhouse gas and is the primary source of NOx in the stratosphere. Large uncertainties exist in the global N2O budget, mainly due to the high uncertainty associated with source estimates. Recently, stable isotopes of 15N and 18O have been proposed as a tool to better constrain the N2O global budget. This thesis develops analytical methods for constraining and measuring stable isotopes in N2O emitted from soils and reports initial investigations of N2O isotopes from the largest sources in the global N2O budget: tropical rain forest soils and agricultural fields. We found significant differences in the isotopic composition of N 2O emitted from tropical rain forest soils and fertilized agricultural fields. Differences were largest for 15N. Emission-weighted δ 15N-N2O were -26 +/- 2.5‰ s.d., n = 3 (Costa Rican forest), -6.6 +/- 11.3‰ s.d. n = 14 (Brazilian forest) and -36.7 +/- 9.2‰ s.d. n = 19 (Mexican agricultural field and Costa Rican Papaya plantation). We attribute the large range in δ 15N from tropical rain forests, where denitrification is the main source of N2O, to differences in the degree of N2O to N2 reduction. We attribute the very light δ15N values in fertilized agricultural fields to the enhanced nitrogen availability in the soils which facilitates higher fractionation between substrates and products. Similarly, in the Brazilian tropical forest lighter δ 15N-N2O from a local area of enhanced emission is attributed to locally more abundant N- substrate in that particular soil site. If the increase of N2O in the troposphere over the past 100 years is attributable to increased use of N fertilizer, and assuming that light δ 15N- N2O isotopic values are associated with agricultural practices, we expect the δ15N-N2O in the troposphere to have decreased since pre-industrial times. Theoretically, comparison of 15N and 18O signature of emitted N2O with precursors species (NO3 -, NH4+, H2O and O 2) should uniquely

  10. Ranking the Rain Forests.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    1991-01-01

    Described is the Rapid Assessment Program (RAP) in which a team of tropical biologists are able to get to remote, uncharted sites in the tropics and conduct surveys very quickly. The team uses satellite imagery, aerial reconnaissance, and field surveys to produce an inventory of species found in these areas. (KR)

  11. Researching the Rain Forest.

    ERIC Educational Resources Information Center

    Chazdon, Robin L.

    1995-01-01

    An autobiography of a female ecologist working in the Costa Rican rainforest is provided as an inspiration for girls. The scientist briefly tells her life story and describes her research activities. (LZ)

  12. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms

    PubMed Central

    2011-01-01

    Background Understanding how biodiversity is shaped through time is a fundamental question in biology. Even though tropical rain forests (TRF) represent the most diverse terrestrial biomes on the planet, the timing, location and mechanisms of their diversification remain poorly understood. Molecular phylogenies are valuable tools for exploring these issues, but to date most studies have focused only on recent time scales, which minimises their explanatory potential. In order to provide a long-term view of TRF diversification, we constructed the first complete genus-level dated phylogeny of a largely TRF-restricted plant family with a known history dating back to the Cretaceous. Palms (Arecaceae/Palmae) are one of the most characteristic and ecologically important components of TRF worldwide, and represent a model group for the investigation of TRF evolution. Results We provide evidence that diversification of extant lineages of palms started during the mid-Cretaceous period about 100 million years ago. Ancestral biome and area reconstructions for the whole family strongly support the hypothesis that palms diversified in a TRF-like environment at northern latitudes. Finally, our results suggest that palms conform to a constant diversification model (the 'museum' model or Yule process), at least until the Neogene, with no evidence for any change in diversification rates even through the Cretaceous/Paleogene mass extinction event. Conclusions Because palms are restricted to TRF and assuming biome conservatism over time, our results suggest the presence of a TRF-like biome in the mid-Cretaceous period of Laurasia, consistent with controversial fossil evidence of the earliest TRF. Throughout its history, the TRF biome is thought to have been highly dynamic and to have fluctuated greatly in extent, but it has persisted even during climatically unfavourable periods. This may have allowed old lineages to survive and contribute to the steady accumulation of diversity over

  13. Community-wide assessment of pollen limitation in hummingbird-pollinated plants of a tropical montane rain forest

    PubMed Central

    Wolowski, Marina; Ashman, Tia-Lynn; Freitas, Leandro

    2013-01-01

    Background and Aims Although pollen limitation of reproduction (PL) has been widely studied, our understanding of its occurrence in tropical communities, especially for bird-pollinated plants, is underdeveloped. In addition, inclusion of both quantity and quality aspects in studies of PL are generally lacking. Within hummingbird-pollinated plants, a prediction was made for higher PL for the quality than quantity aspects and a minor effect of temporal variation because hummingbirds are constant and efficient pollen vectors but they may transfer low quality pollen. Methods Field hand and open pollination experiments were conducted on 21 species in a tropical montane rain forest over 2 years. The quantity (fruit set and seeds per fruit) and quality (seed weight and germination) aspects of reproduction were assessed as the response to open pollination relative to outcross hand pollination. The relationships between the effect size of quantity and quality aspects of reproduction and predictive plant features (self-incompatibility, autogamy, density and pollinator specialization level) were assessed with phylogenetic generalized linear models. Key Results Just over half of all the species expressed PL for one or more response variables. On average, the severity of PL was strong for one quality variable (seed germination; 0·83), but insignificant for another (seed weight; –0·03), and low to moderate for quantity variables (0·31 for seeds per fruit and 0·39 for fruit set). There was only a minor contribution of temporal variation to PL within the studied species. Common predictors of PL, i.e. phylogenetic relatedness, self-incompatibility, autogamy, plant density and pollinator specialization level, did not adequately explain variation in PL within this community. Conclusions Despite the measurable degree of PL within these hummingbird-pollinated plants, the causes of pollen quality and quantity insufficiency are not clear. Variables other than those tested may

  14. The emergence of modern type rain forests and mangroves and their traces in the palaeobotanical record during the Late Cretaceous and early Tertiary

    NASA Astrophysics Data System (ADS)

    Mohr, Barbara; Coiffard, Clément

    2014-05-01

    The origin of modern rain forests is still very poorly known. This ecosystem could have potentially fully evolved only after the development of relatively high numbers of flowering plant families adapted to rain forest conditions. During the early phase of angiosperm evolution in the early Cretaceous the palaeo-equatorial region was located in a seasonally dry climatic belt, so that during this phase, flowering plants often show adaptations to drought, rather than to continuously wet climate conditions. Therefore it is not surprising that except for the Nymphaeales, the most basal members of extant angiosperm families have members that do not necessarily occur in the continuously wet tropics today. However, during the late Early Cretaceous several clades emerged that later would give rise to families that are typically found today mostly in (shady) moist places in warmer regions. This is especially seen among the monocotyledons, a group of the mesangiosperms, that developed in many cases large leaves often with very specific venation patterns that make these leaves very unique and well recognizable. Especially members of three groups are here of interest: the arum family (Araceae), the palms (Arecaceae) and the Ginger and allies (Zingiberales). The earliest fossil of Araceae are restricted to low latitudes during the lower Cretaceous. Arecaceae and Zingiberales do not appear in the fossil record before the early late Cretaceous and occur at mid latitudes. During the Late Cretaceous, Araceae are represented at mid latitudes by non-tropical early diverging members and at low latitudes by derived rainforest members. Palms became widespread during the Late Cretataceous and also Nypa, a typical element of tropical to subtropical mangrove environments evolved during this time period. During the Paleocene Arecaceae appear to be restricted to lower latitudes as well as Zingiberales. All three groups are again widespread during the Eocene, reaching higher latitudes and

  15. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  16. EFFECTS OF SULFURIC ACID RAIN ON MAJOR CATION AND SULFATE CONCENTRATIONS OF WATER PERCOLATING THROUGH TWO MODEL HARDWOOD FORESTS

    EPA Science Inventory

    Acid precipitation falls on vast areas of forested land, including most of the eastern deciduous forest of the United States. Forest productivity, ground-water quality, and surface waters might all be affected. To document and quantify ecosystem response to the onset of acid prec...

  17. Observations of total peroxy nitrates and total alkyl nitrates during the OP3 campaign: isoprene nitrate chemistry above a south-east Asian tropical rain forest

    NASA Astrophysics Data System (ADS)

    Aruffo, E.; di Carlo, P.; Dari-Salisburgo, C.; Biancofiore, F.; Giammaria, F.; Lee, J.; Moller, S.; Evans, M. J.; Hopkins, J. R.; Jones, C.; MacKenzie, A. R.; Hewitt, C. N.

    2012-02-01

    Measurements of total peroxy nitrates (ΣRO2NO2, ΣPNs), total alkyl nitrates (ΣRONO2, ΣANs) and nitrogen dioxide (NO2) were made above the surface of a Malaysian tropical rain forest in Borneo, using a laser-induced fluorescence instrument developed at the University of L'Aquila (Italy). This new instrument uses the direct excitation of NO2 at 532 nm in order to measure its concentrations detecting by the NO2 fluorescence at wavelengths longer than 610 nm. ΣPNs and ΣANs are indirectly measured after their thermal dissociation into NO2. Observations showed enhanced levels of NO2 during nighttime, an increase of ΣPNs during the afternoon and almost no evident diurnal cycle of ΣANs. The diurnal maximums of 200 pptv for ΣPNs and ΣANs are well below the peaks reported in other forest sites. A box model constrained with measured species, reproduces well the observed ΣPNs, but overestimates ΣANs concentrations. The reason of this model-observation discrepancy could be a wrong parameterization in the isoprene nitrates (INs) chemistry mechanism. Sensitivity tests show that: (1) reducing the yield of INs from the reaction of peroxy nitrates with NO to almost the lowest values reported in literature (5%), (2) reducing the INs recycling to 70% and (3) keeping the INs dry deposition at 4 cm s-1, improve the agreement between modelled and measured ΣANs of 20% on average. These results imply that in the tropical rain forest, even if ΣPNs and ΣANs concentrations are lower than those observed in other North American forests, the yield and dry deposition of INs are similar. Another comparable result is that in the INs oxidation its recycling dominates with only a 30% release of NO2, which has implications on tropospheric ozone production and aerosol budget.

  18. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    USGS Publications Warehouse

    Du, X.; Guo, Q.; Gao, X.; Ma, K.

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.

  19. Simulation of water available for runoff in clearcut forest openings during rain-on-snow events in the western Cascade Range of Oregon and Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Kimball, J.S.; Marks, Danny

    1996-01-01

    Rain-on-snow events are common on mountain slopes within the transient-snow zone of the Pacific Northwest. These events make more water available for runoff than does precipitation alone by melting the snowpack and by adding a small amount of condensate to the snowpack. In forest openings (such as those resulting from clearcut logging), the amount of snow that accumulates and the turbulent- energy input to the snowpack are greater than below forest stands. Both factors are believed to contribute to a greater amount of water available for runoff during rain-on-snow events in forest openings than forest stands. Because increased water available for runoff may lead to increased downstream flooding and erosion, knowledge of the amount of snowmelt that can occur during rain on snow and the processes that control snowmelt in forest openings is useful when making land-use decisions. Snow accumulation and melt were simulated for clearcut conditions only, using an enery- balance approach that accounts for the most important energy and mass exchanges between a snowpack and its environment. Meteorological measurements provided the input for the simulations. Snow accumulation and melt were not simulated in forest stands because interception of precipitation processes are too complex to simulate with a numerical model without making simplifying assumptions. Such a model, however, would need to be extensively tested against representative observations, which were not available for this study. Snowmelt simulated during three rain-on-snow events (measured in a previous study in a clearcut in the transient-snow zone of the H.J. Andrews Experimental Forest in Oregon) demonstrated that melt generation is most sensitive to turbulent- energy exchanges between the air and the snowpack surface. As a result, the most important climate variable that controls snowmelt is wind speed. Air temperature, however, is a significant variable also. The wind speeds were light, with a maximum of 3

  20. The effects of ice storm on seed rain and seed limitation in an evergreen broad-leaved forest in east China

    NASA Astrophysics Data System (ADS)

    Du, Yanjun; Mi, Xiangcheng; Liu, Xiaojuan; Ma, Keping

    2012-02-01

    Extreme climatic events almost universally play a major role in influencing the composition and structure of plant and animal communities, and thus could influence seed production, seed dispersal and seedling recruitment. We explored the effects of ice storm damage on seed rain and seed limitation in a 24-ha permanent forest plot in an evergreen broad-leaved forest in east China. We compared seed production before and after the storm in 2008. We evaluated the following hypotheses: 1) seed production after the ice storm was less than that before the storm; 2) seed limitation after the storm was more severe than before the storm. The results showed that seeds from one species, Eurya muricata, dominated the seed rain after the storm, accounting for more than half of the total seeds. Post-ice storm seed production of species other than E. muricata was only one fifth of that before the storm. Seed production in the second year after the ice storm recovered to pre-storm levels. The results indicate large inter-specific variation in response to the ice storm. Disturbance caused by the ice storm greatly increased seed diversity. The Jaccard similarity of species before and after the ice storm was 58%. There was no significant difference in seed limitation or dispersal limitation before and after the storm, but there was a significant difference in source limitation. Neither seed limitation nor dispersal limitation was correlated with dispersal modes. Only source limitation for rodent dispersed species increased after the ice storm.

  1. The Ecological basis of hunter-gatherer subsistence in African Rain Forests: the Mbuti of eastern Zaire

    SciTech Connect

    Hart, T.B.; Hart, J.A.

    1986-03-01

    The Mbuti pygmies, hunter-gathers of the Ituri Forest of Zaire, trade forest products and labor for agricultural foods. It has been assumed that the Mbuti lived independently in the equatorial forest prior to its penetration by shifting cultivators. We assessed forest food resources (plant and animal) to determine their adequacy to support a hunting and gathering economy. For five months of the year, essentially none of the calorically important forest fruits and seeds are available. Honey is not abundant during this season of scarcity. Wild game meat is available year round, but the main animals caught have low fat content. This makes them a poor substitute for starch-dense agricultural foods, now staples in Mbuti diet. In general, in the closed evergreen forest zone, edible wild plant species are more abundant in agriculturally derived secondary forest than in primary forest. Similarly, they are more common at the savanna ecotone and in gallery forests. We suggest that it is unlikely that hunter-gatherers would have lived independently in the forest interior with its precarious resource base, when many of the food species they exploit are more abundant toward the savanna border.

  2. Histochemical enzyme variation in Onchocerca volvulus microfilariae from rain-forest and Sudan-savanna areas of the Onchocerciasis Control Programme in West Africa

    PubMed Central

    Omar, M. S.; Prost, A.; Marshall, T. F. de C.

    1982-01-01

    Histochemical staining methods for acid phosphatase were used to study the differences among microfilariae of various West African strains of Onchocerca volvulus in both forest and Sudan-savanna onchocerciasis zones. The results have shown statistically significant differences in the staining patterns of microfilarial populations in the two zones. In the rain-forest areas, where onchocerciasis is transmitted by Simulium yahense, S. sanctipauli, S. soubrense and S. squamosum, there were no significant differences of microfilarial staining patterns in patients, by age and sex, between the three Simulium—Onchocerca complexes studied. There was a close relationship between the “strain differences”, as revealed morphoenzymatically, and the clinical picture of the disease in both the forest and the Sudan-savanna zones. The present findings are in favour of the hypothesis that there are intrinsic differences in the strains of the parasite occurring in the two areas. The application of the histochemical means of parasite characterization appears to be a useful tool in differentiating strains of O. volvulus and could contribute towards a better understanding of the epidemiology of human onchocerciasis in different bioclimatic zones where the disease is endemic. ImagesPlate 1 PMID:6186410

  3. The Tropical Rain Forest Information Center: how earth scientists can access and use massive amounts of data and products using internet-based geospatial information systems.

    NASA Astrophysics Data System (ADS)

    Skole, D. L.; Chomentowski, W.; Samek, J.; Oscar, C.; Batzli, S.; Barber, C.; Sayers, A.; Cochrane, M.

    2001-05-01

    The Tropical Rain Forest Information Center (TRFIC) is a NASA-funded data center focusing on data and information services for the global change community and applications for national resources management in tropical countries. It is part of a multi-institutional federation of Earth Science Information Partners (ESIP), an on-going prototyping effort to explore new ways to manage earth science data and information in a highly distributed architecture. The TRFIC is both an analytical facility and an data provider. This paper reviews the development of the ESIP approach and provides a view to new modes of information access for future NASA earth science programs and missions with science-centered analysis and data access occurring at the same facility. The paper provides an overview of the data and information services provided by TRFIC, its technology developments including open web-based geographic information systems, and science products it creates and provides. The technology developments focus on new ways to bring the scientist to the data with internet based analysis tools. These technologies are also making it possible fro almost anyone, anywhere in the world to gain access to massive amounts of remote sensing data, primarily from Landsat, and perform custom analyses suited to their own research and applications. The paper will also describe some of the recent activities of the TRFIC to support national and international science and applications projects including the Global Observation of Forest Cover program, the FAO Forest Resources Assessment Program and the Millennium Ecosystem Assessment.

  4. Water flow pathway and the organic carbon discharge during rain storm events in a coniferous forested head watershed, Tokyo, central Japan

    NASA Astrophysics Data System (ADS)

    Moriizumi, Mihoko; Terajima, Tomomi

    2010-05-01

    The current intense discussion of the green house effect, that has been one of the main focuses on the carbon cycle in environmental systems of the earth, seems to be weakened the importance related to the effect of carbonic materials on substance movement in the aquatic environments; though it has just begun to be referred recently. Because dissolved organic carbon (DOC) in stream flows believes to play a main role of the carbon cycle in the fresh water environment, seasonal changes in DOC discharge were investigated in catchments with various scale and land use, especially in forested catchments which are one of the important sources of DOC. In order to understand the fundamental characteristics of the discharge of dissolved organic materials, stream flows, DOC, and fulvic acid like materials (FA) included in stream flows were measured in a coniferous forested head watershed. The watershed is located at the southeast edge of the Kanto mountain and is 40 km west of Tokyo with the elevation from 720 to 820 m and mean slope gradient of 38 degrees. Geology of the watershed is underlain by the sequence of mud and sand stones in Jurassic and the soil in the watershed is Cambisol (Inceptisols). The watershed composes of a dense cypress and cedar forest of 45 years old with poor understory vegetation. Observations were carried out for 6 rain storms of which the total precipitations ranged between 16.2 and 117.4 mm. The magnitude of the storms was classified into small, middle, and big events on the basis of the total precipitation of around 20, 40, and more than 70 mm. Stream flows were collected during the storm events by 1 hour interval and were passed through the 0.45 μm filters, and then the DOC concentrations in the flows were measured with a total organic carbon analyzer. The relative concentrations of fulvic acid (FA) in the flows were monitored with three dimensional excitations emission matrix fluorescence spectroscopy, because fulvic acid shows distinctive

  5. [Influence of Atlantic Rain Forest remnants on the biological control of Euselasia apisaon (Dahman) (Lepidoptera: Riodinidae) by Trichogramma maxacalii (Voegelé e Pointel) (Hymenoptera: Trichogrammatidae)].

    PubMed

    Murta, Aline F; Ker, Fabrício T O; Costa, Dalbert B; Espírito-Santo, Mário M; Faria, Maurício L

    2008-01-01

    This study evaluated the effects of Atlantic Rain Forest remnants on the natural biological control of Euselasia apisaon (Dahman) by the parasitoid Trichogramma maxacalii (Voegelé e Pointel) in Eucalyptus plantations. The number of E. apisaon eggs/leaf was higher in the center than in the edge of the plantations (23.5 +/- 7.61 vs. 14.8 +/- 3.14), but parasitism showed the reversed pattern (72.4% in the center and 80.5% in the edge). The results indicated that natural regulation exerted by T. maxacalii on populations of E. apisaon may be enhanced by the preservation of fragments of native vegetation surrounding Eucalyptus plantations. PMID:18506305

  6. Catastrophic bifurcations in a second-order dynamical system with application to acid rain and forest collapse

    SciTech Connect

    Muratori, S.; Rinaldi, S. )

    1989-12-01

    A second-order nonlinear dynamical system modelling the interactions of threes and damaging insects in a forest is used to analyze the influence of acidic deposition, an increase of which can cause sudden insect infestations and the collapse of the forest ecosystem. The analysis is carried out by finding the bifurcations of the system and by proving that under suitable conditions, such bifurcations can be catastrophic. In particular, the model explains the case in which the damaging insects are present only at an endemic level as well as the case in which the forest is periodically infested by insects. In the case in which predisposition of forest trees to insect infestation is enhanced by acidic deposition, it is shown that the point at which the first impacts on tree biomass are detectable can be easily quantified by a simple formula which says that the forest that should be affected first are those that have a large carrying capacity of the trees, a large maximum birth rate and a low death rate of the insects, and a low pressure of the predators on the insects. The analysis can also distinguish between smooth impacts (decline of tree biomass) and dramatic impacts (collapse of the forest).

  7. Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril L.

    PubMed Central

    Brandão, A. D.; Del Bem, L. E. V.; Vincentz, M.; Buckeridge, M. S.

    2009-01-01

    During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and β-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source–sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey. PMID:19221141

  8. Convergent structural responses of tropical forests to diverse disturbance regimes.

    PubMed

    Kellner, James R; Asner, Gregory P

    2009-09-01

    Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies. PMID:19614757

  9. Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging.

    PubMed

    Jucker, Tommaso; Sanchez, Aida Cuni; Lindsell, Jeremy A; Allen, Harriet D; Amable, Gabriel S; Coomes, David A

    2016-06-01

    Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) - one of the largest tracts of intact tropical moist forest in West Africa - to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers - with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests. PMID:27516859

  10. Cocoa Intensification Scenarios and Their Predicted Impact on CO2 Emissions, Biodiversity Conservation, and Rural Livelihoods in the Guinea Rain Forest of West Africa

    NASA Astrophysics Data System (ADS)

    Gockowski, Jim; Sonwa, Denis

    2011-08-01

    The Guinean rain forest (GRF) of West Africa, identified over 20 years ago as a global biodiversity hotspot, had reduced to 113,000 km2 at the start of the new millennium which was 18% of its original area. The principal driver of this environmental change has been the expansion of extensive smallholder agriculture. From 1988 to 2007, the area harvested in the GRF by smallholders of cocoa, cassava, and oil palm increased by 68,000 km2. Field results suggest a high potential for significantly increasing crop yields through increased application of seed-fertilizer technologies. Analyzing land-use change scenarios, it was estimated that had intensified cocoa technology, already developed in the 1960s, been pursued in Cote d'Ivoire, Ghana, Nigeria and Cameroon that over 21,000 km2 of deforestation and forest degradation could have been avoided along with the emission of nearly 1.4 billion t of CO2. Addressing the low productivity of agriculture in the GRF should be one of the principal objectives of REDD climate mitigation programs.

  11. [Response of the ant community to attributes of fragments and vegetation in a northeastern Atlantic Rain Forest area, Brazil].

    PubMed

    Gomes, Juliana P; Iannuzzi, Luciana; Leal, Inara R

    2010-01-01

    The objective of this study was to determine the effects of forest fragmentation on ant richness in a landscape of Atlantic Forest in Northeast Brazil. More specifically, the ant richness was related to the attributes of fragments (area and distance from the fragment central point to the edge), landscape (forest cover surrounding the fragments), and tree community (plant density, richness, and percentage of shade tolerant species). The surveys were carried out in 19 fragments located in Alagoas State from October 2007 to March 2008. Samples were collected through a 300 m transect established in the center of each fragment, where 30 1-m² leaf litter samples were collected at 10 m intervals. A total of 146 ant species was collected, which belonged to 42 genera, 24 tribes and nine subfamilies. The attributes of fragments and landscape did not influence ant richness. On the other hand, tree density explained ca. 23% of ant richness. In relation to functional groups, both density and richness of trees explained the richness of general myrmicines (the whole model explained ca. 42% of the variation in this group) and percentage of shade tolerant trees explained the richness of specialist predator ants (30% for the whole model). These results indicate that ant fauna is more influenced by vegetation integrity than by fragment size, distance to edge or forest cover surrounding fragments. PMID:21271055

  12. Soil Changes Induced by Rubber and Tea Plantation Establishment: Comparison with Tropical Rain Forest Soil in Xishuangbanna, SW China

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun

    2012-11-01

    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 --N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 --N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 --N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 --N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 --N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 --N concentrations. Options for improved soil management in plantations are discussed.

  13. An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation.

    PubMed

    Fayle, Tom M; Edwards, David P; Foster, William A; Yusah, Kalsum M; Turner, Edgar C

    2015-06-01

    Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning. PMID:25575674

  14. Highly local environmental variability promotes intrapopulation divergence of quantitative traits: an example from tropical rain forest trees

    PubMed Central

    Brousseau, Louise; Bonal, Damien; Cigna, Jeremy; Scotti, Ivan

    2013-01-01

    Background and Aims In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. Methods Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. Key Results In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species

  15. Evaluation of forest recovery over time and space using permanent plots monitored over 30 years in a Jamaican montane rain forest.

    PubMed

    Chai, Shauna-Lee; Healey, John R; Tanner, Edmund V J

    2012-01-01

    Conservation of tropical forest biodiversity increasingly depends on its recovery following severe human disturbance. Our ability to measure recovery using current similarity indices suffers from two limitations: different sized individuals are treated as equal, and the indices are proportionate (a community with twice the individuals of every species as compared with the reference community would be assessed as identical). We define an alternative recovery index for trees - the Tanner index, as the mean of the quantitative Bray-Curtis similarity indices of species composition for stem density and for basal area. We used the new index to compare the original (pre-gap) and post-gap composition of five experimental gap plots (each 90-100 m(2)) and four control plots over 24-35 years in the Blue Mountains of Jamaica. After 24-35 years, these small gaps surrounded by undisturbed forest had recovered 68% of the sum of per species stem density and 29% of the sum of per species basal area, a recovery index of 47%. Four endemic species were especially reduced in density and basal area. With the incorporation of basal area and stem density, our index reduces over-estimations of forest recovery obtained using existing similarity indices (by 24%-41%), and thus yields more accurate estimates of forest conservation status. Finally, our study indicates that the two kinds of comparisons: 1) over time between pre-gap and post-gap composition and 2) over space between gap plots and spatial controls (space-for-time substitution) yield broadly similar results, which supports the value of using space-for-time substitutions in studying forest recovery, at least in this tropical montane forest. PMID:23155417

  16. Evaluation of Forest Recovery over Time and Space Using Permanent Plots Monitored over 30 Years in a Jamaican Montane Rain Forest

    PubMed Central

    Chai, Shauna-Lee; Healey, John R.; Tanner, Edmund V. J.

    2012-01-01

    Conservation of tropical forest biodiversity increasingly depends on its recovery following severe human disturbance. Our ability to measure recovery using current similarity indices suffers from two limitations: different sized individuals are treated as equal, and the indices are proportionate (a community with twice the individuals of every species as compared with the reference community would be assessed as identical). We define an alternative recovery index for trees – the Tanner index, as the mean of the quantitative Bray-Curtis similarity indices of species composition for stem density and for basal area. We used the new index to compare the original (pre-gap) and post-gap composition of five experimental gap plots (each 90–100 m2) and four control plots over 24–35 years in the Blue Mountains of Jamaica. After 24–35 years, these small gaps surrounded by undisturbed forest had recovered 68% of the sum of per species stem density and 29% of the sum of per species basal area, a recovery index of 47%. Four endemic species were especially reduced in density and basal area. With the incorporation of basal area and stem density, our index reduces over-estimations of forest recovery obtained using existing similarity indices (by 24%–41%), and thus yields more accurate estimates of forest conservation status. Finally, our study indicates that the two kinds of comparisons: 1) over time between pre-gap and post-gap composition and 2) over space between gap plots and spatial controls (space-for-time substitution) yield broadly similar results, which supports the value of using space-for-time substitutions in studying forest recovery, at least in this tropical montane forest. PMID:23155417

  17. Do Epigeal Termite Mounds Increase the Diversity of Plant Habitats in a Tropical Rain Forest in Peninsular Malaysia?

    PubMed Central

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558

  18. Air pollution and changes in forest nitrogen status: Fog and rain deposition and nitrogen losses from forested watersheds in the San Bernardino Mountains. Final report

    SciTech Connect

    Fenn, M.E.; Poth, M.A.

    1998-08-01

    The primary objective of this project was to examine the effects of N deposition on mixed conifer forests in southern California. Studies were conducted at selected sites an air pollution gradient in the San Bernardino Mountains (SBM). The main tasks were: (1) to measure N deposition to the forest in fog and throughfall, (2) to determine spatial and temporal patterns of nitrate export in stream water, and (3) to quantify trace gas fluxes from soil at sites with high and low N deposition. Fog was found to be an important N source at the western end of the SMB due to his high frequency and presence at elevated concentrations. N deposition from throughfall was found to be similar to levels in forests where adverse effects have occurred. Annual fluxes of N from soil were 18-times higher at the western end of the SBM than at the eastern end. The data provide evidence of forest nitrogen saturation caused by the deposition of anthropogenic pollutants over a multi-decade period in the SBM.

  19. A mitochondrial DNA phylogeny indicates close relationships between populations of Lutzomyia whitmani (Diptera: Psychodidae, Phlebotominae) from the rain-forest regions of Amazônia and northeast Brazil.

    PubMed

    Ishikawa, E A; Ready, P D; de Souza, A A; Day, J C; Rangel, E F; Davies, C R; Shaw, J J

    1999-01-01

    Phylogenetic analysis of all 31 described mitochondrial (cytochrome b) haplotypes of Lutzomyia whitmani demonstrated that new material from the State of Rondônia, in southwest Amazônia, forms a clade within a lineage found only in the rain-forest regions of Brazil. This rain-forest lineage also contains two other clades of haplotypes, one from eastern Amazônia and one from the Atlantic forest zone of northeast Brazil (including the type locality of the species in Ilhéus, State of Bahia). These findings do not favour recognizing two allopatric cryptic species of L. whitmani, one associated with the silvatic transmission of Leishmania shawi in southeast Amazônia and the other with the peridomestic transmission of Le. braziliensis in northeast Brazil. Instead, they suggest that there is (or has been in the recent past) a continuum of inter-breeding populations of L. whitmani in the rain-forest regions of Brazil. PMID:10419383

  20. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  1. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  2. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  3. Functional Diversity of Photosynthetic Light Use of 16 Vascular Epiphyte Species Under Fluctuating Irradiance in the Canopy of a Giant Virola michelii (Myristicaceae) Tree in the Tropical Lowland Forest of French Guyana

    PubMed Central

    Rascher, Uwe; Freiberg, Martin; Lüttge, Ulrich

    2011-01-01

    Here we present the first study, in which a large number of different vascular epiphyte species were measured for their photosynthetic performance in the natural environment of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abundant species was analyzed intensely over several months. Moreover, the light environment was characterized with newly developed light sensors that recorded continuously and with high temporal resolution light intensity next to the epiphytes. Light intensity was highly fluctuating and showed great site specific spatio-temporal variations of photosynthetic photon flux. Using a novel computer routine we quantified the integrated light intensity the epiphytes were exposed to in a 3 h window and we related this light intensity to measurements of the actual photosynthetic status. It could be shown that the photosynthetic apparatus of the epiphytes was well adapted to the quickly changing light conditions. Some of the epiphytes were chronically photoinhibited at predawn and significant acute photoinhibition, expressed by a reduction of potential quantum efficiency (Fv/Fm)30′, was observed during the day. By correlating (Fv/Fm)30′ to the integrated and weighted light intensity perceived during the previous 3 h, it became clear that acute photoinhibition was related to light environment prior to the measurements. Additionally photosynthetic performance was not determined by rain events, with the exception of an Aechmea species. This holds true for all the other 15 species of this study and we thus conclude that actual photosynthesis of these tropical epiphytes was determined by the specific and fluctuating light conditions of their microhabitat and cannot be simply attributed to light-adapted ancestors. PMID:22629271

  4. Functional Diversity of Photosynthetic Light Use of 16 Vascular Epiphyte Species Under Fluctuating Irradiance in the Canopy of a Giant Virola michelii (Myristicaceae) Tree in the Tropical Lowland Forest of French Guyana.

    PubMed

    Rascher, Uwe; Freiberg, Martin; Lüttge, Ulrich

    2011-01-01

    Here we present the first study, in which a large number of different vascular epiphyte species were measured for their photosynthetic performance in the natural environment of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abundant species was analyzed intensely over several months. Moreover, the light environment was characterized with newly developed light sensors that recorded continuously and with high temporal resolution light intensity next to the epiphytes. Light intensity was highly fluctuating and showed great site specific spatio-temporal variations of photosynthetic photon flux. Using a novel computer routine we quantified the integrated light intensity the epiphytes were exposed to in a 3 h window and we related this light intensity to measurements of the actual photosynthetic status. It could be shown that the photosynthetic apparatus of the epiphytes was well adapted to the quickly changing light conditions. Some of the epiphytes were chronically photoinhibited at predawn and significant acute photoinhibition, expressed by a reduction of potential quantum efficiency (F(v)/F(m))(30'), was observed during the day. By correlating (F(v)/F(m))(30') to the integrated and weighted light intensity perceived during the previous 3 h, it became clear that acute photoinhibition was related to light environment prior to the measurements. Additionally photosynthetic performance was not determined by rain events, with the exception of an Aechmea species. This holds true for all the other 15 species of this study and we thus conclude that actual photosynthesis of these tropical epiphytes was determined by the specific and fluctuating light conditions of their microhabitat and cannot be simply attributed to light-adapted ancestors. PMID:22629271

  5. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon.

    PubMed

    van Straaten, Oliver; Corre, Marife D; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B; Veldkamp, Edzo

    2015-08-11

    Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion--the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses. PMID:26217000

  6. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon

    PubMed Central

    van Straaten, Oliver; Corre, Marife D.; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B.; Veldkamp, Edzo

    2015-01-01

    Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses. PMID:26217000

  7. Territorial organization of the lowland classic maya.

    PubMed

    Marcus, J

    1973-06-01

    Thus far I have discussed ancient Maya sociopolitical structure from the upper levels of the hierarchy downward. Let me now summarize their territorial organization from the bottom upward, starting at the hamlet level (Fig. 8). The smallest unit of settlement-one usually overlooked by archeological surveys in the lowland rain forest-was probably a cluster of thatched huts occupied by a group of related families; larger clusters may have been divided into four quadrants along the lines suggested by Coe (26). Because of the long fallow period (6 to 8 years) characteristic of slash-and-burn agriculture in the Petén, these small hamlets are presumed to have changed location over the years, although they probably shifted in a somewhat circular fashion around a tertiary ceremonial-civic center for whose maintenance they were partly responsible. These tertiary centers were spaced at fairly regular intervals around secondary ceremonial-civic centers with pyramids, carved monuments, and palace-like residences. In turn, the secondary centers occurred at such regular intervals as to form hexagonal patterns around primary centers, which were still larger, with acropolises, multiple ceremonial plazas, and greater numbers of monuments. In some cases, the distance between secondary centers was roughly twice the distance between secondary and tertiary centers, creating a lattice of nested hexagonal cells. This pattern, which conforms to a Western theoretical construct, was presumably caused by factors of service function, travel, and transport. The pattern was not recognized by the Maya at all. They simply recognized that a whole series of smaller centers were dependent on a primary center and therefore mentioned its emblem glyph. Linking the centers of the various hexagons were marriage alliances between members of royal dynasties, who had no kinship ties with the farmers in the hamlets. Out of the large number of primary centers available to them, the Maya selected four as

  8. Fruit flies (Diptera, Tephritidae) and their associations with native host plants in a remnant area of the highly endangered Atlantic Rain Forest in the State of Espírito Santo, Brazil.

    PubMed

    Uramoto, K; Martins, D S; Zucchi, R A

    2008-10-01

    The results presented in this paper refer to a host survey, lasting approximately three and a half years (February 2003-July 2006), undertaken in the Vale do Rio Doce Natural Reserve, a remnant area of the highly endangered Atlantic Rain Forest located in Linhares County, State of Espírito Santo, Brazil. A total of 330 fruit samples were collected from native plants, representing 248 species and 51 plant families. Myrtaceae was the most diverse family with 54 sampled species. Twenty-eight plant species, from ten families, are hosts of ten Anastrepha species and of Ceratitis capitata (Wiedemann). Among 33 associations between host plants and fruit flies, 20 constitute new records, including the records of host plants for A. fumipennis Lima and A. nascimentoi Zucchi. The findings were discussed in the light of their implications for rain forest conservation efforts and the study of evolutionary relationships between fruit flies and their hosts. PMID:18439337

  9. Rainfall-soil moisture relations in landslide-prone areas of a tropical rain forest, Puerto Rico

    USGS Publications Warehouse

    Larsen, Matthew C.; Torres-Sanchez, Angel J.

    1990-01-01

    Detailed studies of the relation between rainfall and soil moisture are underway at two forested sites on slopes in the CNF. Soil at the sites is characterized by a layer of silty-clay colluvial soil about 1 m thick, which is underlain by up to 10 m of saprolite, and overlies weathered volcaniclastic or quartz-diorite bedrock. Although considerable surface runoff has been observed at the study sites, data show moderate to rapid increases in pore pressure in repsonse to short duration storm events. Pore-pressure increases are greatest in the lower sections of concave slopes apparently due to convergent flow. It is anticipated that these pore-pressure data will provide a means of assessing rainfall characteristics leading to landslide initiation as well as insight to the mechanics of shallow landslides

  10. Differential acetyl cholinesterase inhibition by volatile oils from two specimens of Marlierea racemosa (Myrtaceae) collected from different areas of the Atlantic Rain Forest.

    PubMed

    Souza, Amanda; Silva, Michelle C; Cardoso-Lopes, Elaine M; Cordeiro, Inês; Sobral, Marcos E G; Young, Maria Cláudia M; Moreno, Paulo R H

    2009-08-01

    The volatile oil composition and anti-acetyl cholinesterase activity were analyzed in two specimens of Marlierea racemosa growing in different areas of the Atlantic Rain Forest (Cananéia and Caraguatatuba, SP, Brazil). Component identifications were performed by GC/MS and their acetyl cholinesterase inhibitory activity was measured through colorimetric analysis. The major constituent in both specimens was spathulenol (25.1% in Cananéia and 31.9% in Caraguatatuba). However, the first one also presented monoterpenes (41.2%), while in the Carguatatuba plants, this class was not detected. The oils from the plants collected in Cananéia were able to inhibit the acetyl cholinesterase activity by up to 75%, but for oils from the other locality the maximal inhibition achieved was 35%. These results suggested that the monoterpenes are more effective in the inhibition of acetyl cholinesterase activity than sesquiterpenes as these compounds are present in higher amounts in the M. racemosa plants collected in Cananéia. PMID:19769001

  11. Dero (Allodero) lutzi Michaelsen, 1926 (Oligochaeta: Naididae) associated with Scinax fuscovarius (Lutz, 1925) (Anura: Hylidae) from Semi-deciduous Atlantic Rain Forest, southern Brazil.

    PubMed

    Oda, F H; Petsch, D K; Ragonha, F H; Batista, V G; Takeda, A M; Takemoto, R M

    2015-01-01

    Amphibians are hosts for a wide variety of ecto- and endoparasites, such as protozoans and parasitic worms. Naididae is a family of Oligochaeta whose species live on a wide range of substrates, including mollusks, aquatic macrophytes, sponges, mosses, liverworts, and filamentous algae. However, some species are known as endoparasitic from vertebrates, such as Dero (Allodero) lutzi, which is parasitic of the urinary tracts of frogs, but also have a free-living stage. Specimens in the parasitic stage lack dorsal setae, branchial fossa, and gills. Here we report the occurrence of D. (A.) lutzi associated with anuran Scinax fuscovarius from Semi-deciduous Atlantic Rain Forest in southern Brazil. The study took place at the Caiuá Ecological Station, Diamante do Norte, Paraná, southern Brazil. Seven specimens of S. fuscovarius were examined for parasites but only one was infected. Parasites occurred in ureters and urinary bladder. Previous records of this D. (A.) lutzi include the Brazilian States of Santa Catarina, São Paulo, Rio de Janeiro, and Minas Gerais, as well as Cuba and North America. This is a new locality record for this species in Brazil. Reports of Dero (Allodero) lutzi are rare, due to difficulty of observation, and such events are restricted only the fortuitous cases. It is important to emphasize the necessity of future studies, which are fundamental to the understanding of biological and ecological aspects of this species. PMID:25945624

  12. Environmental factors affecting the distribution of land snails in the Atlantic Rain Forest of Ilha Grande, Angra dos Reis, RJ, Brazil.

    PubMed

    Nunes, G K M; Santos, S B

    2012-02-01

    The distribution and abundance of terrestrial molluscs are affected by environmental factors, but data are lacking for Brazilian land snails. The aim of this study was to understand the relationship between measured environmental factors and the land-snail species composition of two hillsides covered with Atlantic Rain Forest on Ilha Grande. On each hillside, five plots located at 100 m intervals between 100 to 500 m asl were chosen. Each plot was sampled by carrying out timed searches and collecting and sorting litter samples from ten quadrats of 25 × 75 cm. A range of environmental data was measured for each of the quadrats in a plot. A Cluster Analysis was carried out for the richness and abundance data. The environmental variables were analysed using a Pearson Correlation Matrix and Discriminant Analysis. Our results show that the two mountains are similar in species richness, but species composition and abundance are different, probably reflecting observed differences in environmental conditions. The environmental factors associated with compositional variation between the two mountains were: atmospheric temperature, soil temperature, litter depth, and relative air humidity. Distinct luminosity and canopy closure conditions were related to the composition of the land-snail community of one hillside. PMID:22437388

  13. Helminth parasite communities of two Physalaemus cuvieri Fitzinger, 1826 (Anura: Leiuperidae) populations under different conditions of habitat integrity in the Atlantic Rain Forest of Brazil.

    PubMed

    Aguiar, A; Toledo, G M; Anjos, L A; Silva, R J

    2015-11-01

    Adults of Physalaemus cuvieri were collected and necropsied between November 2009 and January 2010. This was carried out in order to report and compare the helminth fauna associated with two populations of this anuran species from the Brazilian Atlantic rain forest under different conditions of habitat integrity. The hosts from the disturbed area were parasitized with five helminth taxa: Cosmocerca parva, Aplectana sp., Physaloptera sp., Rhabdias sp., Oswaldocruzia subauricularis (Nematoda) and Polystoma cuvieri (Monogenea) while those from the preserved area had four helminth taxa: C. parva, Aplectana sp., Physaloptera sp., Rhabdias sp., and Acanthocephalus saopaulensis (Acanthocephala). Prevalence, mean intensity of infection, mean abundance, mean richness, importance index and dominance frequency of helminth component communities were similar in both areas. The helminth community associated with anurans from the disturbed area had higher diversity than that from the preserved area. This study is the first to report on the acanthocephalan parasites of Ph. cuvieri, and the similarity between helminth fauna composition of two host populations under different selective pressures. PMID:26675914

  14. Response of CO2 and H2O fluxes of a mountainous tropical rain forest in equatorial Indonesia to El Niño events

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Ibrom, A.; Panferov, O.; Gushchina, D.; Propastin, P.; Kreilein, H.; June, T.; Rauf, A.; Gravenhorst, G.; Knohl, A.

    2015-03-01

    The possible impact of El Niño-Southern Oscillation (ENSO) events on the main components of CO2 and H2O fluxes in a pristine mountainous tropical rainforest growing in Central Sulawesi in Indonesia is described. The fluxes were continuously measured using the eddy covariance method for the period from January 2004 to June 2008. During this period, two episodes of El Niño and one episode of La Niña were observed. All these ENSO episodes had moderate intensity and were of Central Pacific type. The temporal variability analysis of the main meteorological parameters and components of CO2 and H2O exchange showed a very high sensitivity of Evapotranspiration (ET) and Gross Primary Production (GPP) of the tropical rain forest to meteorological variations caused by both El Niño and La Niña episodes. Incoming solar radiation is the main governing factor that is responsible for ET and GPP variability. Ecosystem Respiration (RE) dynamics depend mainly on the air temperature changes and are almost insensitive to ENSO. Changes of precipitation due to moderate ENSO events did not cause any notable effect on ET and GPP, mainly because of sufficient soil moisture conditions even in periods of anomalous reduction of precipitation in the region.

  15. Southern Rains

    Atmospheric Science Data Center

    2014-05-15

    ...   View Larger image Vigorous vegetation growth in the Southern United States after heavy rains fell during April and ... for atmospheric scattering and absorption effects, and use plant canopy structural models to determine the partitioning of solar ...

  16. Investigating Processes of Neotropical Rain Forest Tree Diversification By Examining the Evolution and Historical Biogeography of the Protieae (BURSERACEAE)

    NASA Astrophysics Data System (ADS)

    Fine, P.; Zapata, F.; Daly, D.

    2014-12-01

    Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil-calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity-dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae.

  17. Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae).

    PubMed

    Fine, Paul V A; Zapata, Felipe; Daly, Douglas C

    2014-07-01

    Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil-calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity-dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae. PMID:24689871

  18. New estimates of temperature response of leaf photosynthesis in Amazon forest trees, its acclimation to mean temperature change and consequences for modelling climate response to rain forests.

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Jans, W.; Vasconcelos, S.; Tribuzy, E. S.; Felsemburgh, C.; Eliane, M.; Rowland, L.; da Costa, A. C. L.; Meir, P.

    2014-12-01

    In many dynamic vegetation models, degradation of the tropical forests is induced because they assume that productivity falls rapidly when temperatures rise in the region of 30-40°C. Apart plant respiration, this is due to the assumptions on the temperature optima of photosynthetic capacity, which are low and can differ widely between models, where in fact hardly any empirical information is available for tropical forests. Even less is known about the possibility that photosynthesis will acclimate to changing temperatures. The objective of this study to is to provide better estimates for optima, as well as to determine whether any acclimation to temperature change is to be expected. We present both new and hitherto unpublished data on the temperature response of photosynthesis of Amazon rainforest trees, encompassing three sites, several species and five field campaigns. Leaf photosynthesis and its parameters were determined at a range of temperatures. To study the long-term (seasonal) acclimation of this response, this was combined with an artificial, in situ, multi-season leaf heating experiment. The data show that, on average for all non-heated cases, the photosynthetic parameter Vcmax weakly peaks between 35 and 40 ˚C, while heating does not have a clearly significant effect. Results for Jmax are slightly different, with sharper peaks. Scatter was relatively high, which could indicate weak overall temperature dependence. The combined results were used to fit new parameters to the various temperature response curve functions in a range of DGVMs. The figure shows a typical example: while the default Jules model assumes a temperature optimum for Vcmax at around 33 ˚C, the data suggest that Vcmax keeps rising up to at least 40 ˚C. Of course, calculated photosynthesis, obtained by applying this Vcmax in the Farquhar model, peaks at lower temperature. Finally, the implication of these new model parameters for modelled climate change impact on modelled Amazon

  19. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    PubMed

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was <4.0. The effects of SAR on soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively. PMID:25893761

  20. Effects of El Nino and La Nina events on water and carbon budgets of tropical rain forests in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Oltchev, A.; Panferov, O.; Kreilein, H.; Priess, J.; Erasmi, S.; Radler, K.; Gravenhorst, G.

    2009-04-01

    Effects of the large scale atmospheric-oceanic ENSO (El Niño-Southern Oscillation) phenomena of the equatorial Pacific on weather conditions and CO2 and H2O budgets of the tropical rain forest in Central Sulawesi (Indonesian archipelago) is quantified using results of model simulations in regional and local scales. For modeling analysis the period from 1995 to 1999 with the strongest El Niño (1997-98) and La Niña (1999-2000) events was selected. To characterize the intensity of an ENSO event the 3-month running means of SST anomalies in Niño 3.4 region (5°N-5°S, 120°W-170°W) or Oceanic Niño Index (ONI) of NOAA was chosen. The warm (El Niño)/cold (La Niña) event threshold is defined as ONI>0.5° / ONI<-0.5° for 5 consequent months, respectively. In the first step, the regional daily patterns of meteorological conditions for the period 1995 to 1999 was derived using the regional SVAT model SVAT-Regio (Olchev et al. 2008a). As input parameters the meteorological data of the German Weather Service was used. In the next step, the temporal variability of CO2 and H2O fluxes during the ENSO events was simulated by a local process-based model Mixfor-SVAT (Olchev et al. 2008b) for two typical forest sites: Nopu (120°05' E, 01°11' S) and Bariri (120°11' E, 01°40' S) located in northern and southern parts of study area. Meteorological conditions in selected forest sites were quite different (Bariri is more wet, and Nopu - more dry). In modelling experiments it was assumed that the forest structure at both experimental sites is the same. Analysis of regionalised meteorological data showed that the impact of ENSO events in Central Sulawesi is manifested in changes of meteorological regime especially during the period from November to May. El Niño is characterized by anomalous alternation of periods with very wet and dry weather, and La Niña - by weather without significant changes. For both experimental sites the maximal evapotranspiration and transpiration

  1. Vegetation as a Mechanism for Increased Vadose Zone Infiltration in the Pacific Lowlands of Nicaragua

    NASA Astrophysics Data System (ADS)

    Niemeyer, R. J.; Fremier, A. K.; Heinse, R.; DeClerck, F.; Chávez Huamán, W.

    2011-12-01

    Expansion of agricultural land in the Pacific Lowlands of Nicaragua coupled with intense seasonal rains increases vulnerabilities to the adverse effects of altered surface and vadose zone hydrologic processes seen in flooding, increased soil loss, as well as pollution of rivers and lakes. A primary hydrologic vadose zone process that is altered with land conversion is infiltration often due to changes in bulk density, soil structure, and vertical vegetation structure. Our aim was to study how vegetation affects the soil physical properties that determine infiltration in the vadose zone. We hypothesized that vegetation would increase saturated hydraulic conductivity (Ks) in more forested plots due to preferential pathways in the soil from root and fauna activity. We determined Ks using a Guelph Permeameter in fifteen plots, including, two pastures, two cultivated areas, and eleven plots of varying degrees of forestation in Rivas, Nicaragua. To quantify the effects of soil physical properties and vegetation on Ks we measured sand, silt, clay, bulk density, and soil organic matter as well as vegetation measurements leaf area index (LAI) and total plot tree basal area (DBH>10cm). We applied the Rosetta pedotransfer function (USDA Salinity Lab) to model Ks from sand, silt, clay, and bulk density measurements. We performed a blue dye tracer study in a pasture and a primary forest plot to explore possible mechanisms for changes in Ks between forest and pasture plots. Clay, sand, LAI, and basal area were all individually significant (p<0.0001) in the regression model. The pedotransfer function modeling resulted in 25.7% of the Ks values from low and medium LAI plots (LAI<3.5) being under predicted (i.e. observed value greater than modeled value), whereas 66.7% of Ks values from high LAI plots were under predicted, partially attributed to increased preferential pathways. The blue dye tracer study revealed 10 times more preferential pathways in the forested plot than in the

  2. Detection of hydrocarbon microseepage in a rain forest environment (Jurua Gas field, northern Brazil) using Landsat MSS data

    SciTech Connect

    Miranda, F.P.; Cunha, F.M.B. )

    1990-05-01

    The Jurua gas field is the first important hydrocarbon accumulation found in the jungle-covered Solimoes basin. The tectonic framework in this area is characterized by a right-lateral transpressional zone (Jurua structural trend). Hydrocarbon traps are anticlines developed along the upthrown block of a reverse fault. The prospective 2,200-m-thick Paleozoic section is unconformably covered by a 2,800-m-thick pile of Mesozoic and Cenozoic continental sediments. Anomalous concentrations of hydrocarbons (C{sub 2}-C{sub 4}) in soil samples are concordantly aligned with the trace of the reverse fault crossing the gas field, indicating that this feature acted as a conduit for hydrocarbon microseepage. Gas-producing wells are located over a tabular watershed which coincides with the northeast-southwest Jurua structural trend. An unsupervised classification of Landsat MSS data over the gas field area reveals that one spectral class of vegetation is aligned with the Jurua structural trend. Field checking shows that the vegetation near the gas-producing well 1-JR-1-AM is not as dense as the forest outside the limits of the Jurua gas field. Two geologic factors may account for the vegetation anomaly over the gas field. (1) The northeast-southwest tabular watershed corresponds to a Pleistocene erosional surface associated with weathering products such as bauxite and laterite. The resulting soil is impermeable and low in nutrients. (2) The spectral behavior of vegetation may represent the response of plants to long-term anaerobic soil conditions brought about by gas leakage from the Paleozoic reservoir.

  3. Cave conservation priority index to adopt a rapid protection strategy: a case study in Brazilian Atlantic rain forest.

    PubMed

    Souza Silva, Marconi; Martins, Rogério Parentoni; Ferreira, Rodrigo Lopes

    2015-02-01

    Cave environments are characterized by possessing specialized fauna living in high environmental stability with limited food conditions. These fauna are highly vulnerable to impacts, because this condition can frequently be easily altered. Moreover, environmental determinants of the biodiversity patterns of caves remain poorly understood and protected. Therefore, the main goal of this work is to propose a cave conservation priority index (CCPi) for a rapid assessment for troglobiotic and troglophile protection. Furthermore, the troglobiotic diversity, distribution and threats have been mapped in the Brazilian Atlantic forest. To propose the CCPi, the human impacts and richness of troglobiotic and troglophile species of 100 caves were associated. Data related to troglomorphic/troglobiotic fauna from another 200 caves were used to map the troglobiotic diversity and distribution. The CCPi reveals extremely high conservation priority for 15% of the caves, high for 36% and average for 46% of the caves. Fourteen caves with extremely high priorities should have urgent conservation and management actions. The geographical distribution of the 221 known troglobiotic/troglomorphic species allowed us to select 19 karst areas that need conservation actions. Seven areas were considered to have urgent priority for conservation actions. The two richest areas correspond to the "iron quadrangle" with iron ore caves (67 spp.) and the "Açungui limestone group" (56 spp.). Both areas have several caves and are important aquifers. The use of the CCPi can prevent future losses because it helps assessors to select caves with priorities for conservation which should receive emergency attention in relation to protection, management and conservation actions. PMID:25528593

  4. Cave Conservation Priority Index to Adopt a Rapid Protection Strategy: A Case Study in Brazilian Atlantic Rain Forest

    NASA Astrophysics Data System (ADS)

    Souza Silva, Marconi; Martins, Rogério Parentoni; Ferreira, Rodrigo Lopes

    2015-02-01

    Cave environments are characterized by possessing specialized fauna living in high environmental stability with limited food conditions. These fauna are highly vulnerable to impacts, because this condition can frequently be easily altered. Moreover, environmental determinants of the biodiversity patterns of caves remain poorly understood and protected. Therefore, the main goal of this work is to propose a cave conservation priority index (CCPi) for a rapid assessment for troglobiotic and troglophile protection. Furthermore, the troglobiotic diversity, distribution and threats have been mapped in the Brazilian Atlantic forest. To propose the CCPi, the human impacts and richness of troglobiotic and troglophile species of 100 caves were associated. Data related to troglomorphic/troglobiotic fauna from another 200 caves were used to map the troglobiotic diversity and distribution. The CCPi reveals extremely high conservation priority for 15 % of the caves, high for 36 % and average for 46 % of the caves. Fourteen caves with extremely high priorities should have urgent conservation and management actions. The geographical distribution of the 221 known troglobiotic/troglomorphic species allowed us to select 19 karst areas that need conservation actions. Seven areas were considered to have urgent priority for conservation actions. The two richest areas correspond to the "iron quadrangle" with iron ore caves (67 spp.) and the "Açungui limestone group" (56 spp.). Both areas have several caves and are important aquifers. The use of the CCPi can prevent future losses because it helps assessors to select caves with priorities for conservation which should receive emergency attention in relation to protection, management and conservation actions.

  5. Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species

    PubMed Central

    Honorio Coronado, Eurídice N; Dexter, Kyle G; Poelchau, Monica F; Hollingsworth, Peter M; Phillips, Oliver L; Pennington, R Toby; Carine, Mark

    2014-01-01

    particular the presence of genetically uniform populations across the south-west, indicate recent colonization. Our findings are consistent with palaeoecological data that suggest recent post-glacial expansion of Amazonian forests in the south. PMID:25821341

  6. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    NASA Astrophysics Data System (ADS)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water

  7. Density-dependent dynamics of a dominant rain forest tree change with juvenile stage and time of masting.

    PubMed

    Norghauer, Julian M; Newbery, David M

    2016-05-01

    Although negative density dependence (NDD) can facilitate tree species coexistence in forests, the underlying mechanisms can differ, and rarely are the dynamics of seedlings and saplings studied together. Herein we present and discuss a novel mechanism based on our investigation of NDD predictions for the large, grove-forming ectomycorrhizal mast fruiting tree, Microberlinia bisulcata (Caesalpiniaceae), in an 82.5-ha plot at Korup, Cameroon. We tested whether juvenile density, size, growth and survival decreases with increasing conspecific adult basal area for 3245 'new' seedlings and 540 'old' seedlings (< 75-cm tall) during an approximately 4-year study period (2008-2012) and for 234 'saplings' (≥ 75-cm tall) during an approximately 6-year study period (2008-2014). We found that the respective densities of new seedlings, old seedlings and saplings were positively, not and negatively related to increasing BA. Maximum leaf numbers and heights of old seedlings were negatively correlated with increasing basal areas, as were sapling heights and stem diameters. Whereas survivorship of new seedlings decreased by more than one-half with increasing basal area over its range in 2010-2012, that of old seedlings decreased by almost two-thirds, but only in 2008-2010, and was generally unrelated to conspecific seedling density. In 2010-2012 relative growth rates in new seedlings' heights decreased with increasing basal area, as well as with increasing seedling density, together with increasing leaf numbers, whereas old seedlings' growth was unrelated to either conspecific density or basal area. Saplings of below-average height had reduced survivorship with increasing basal area (probability decreasing from approx. 0.4 to 0.05 over the basal area range tested), but only sapling growth in terms of leaf numbers decreased with increasing basal area. These static and dynamic results indicate that NDD is operating within this system, possibly stabilizing the M. bisulcata

  8. Limitation of seedling growth by potassium and magnesium supply for two ectomycorrhizal tree species of a Central African rain forest and its implication for their recruitment.

    PubMed

    Neba, Godlove Ambe; Newbery, David McClintock; Chuyong, George Bindeh

    2016-01-01

    In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and

  9. Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon

    NASA Astrophysics Data System (ADS)

    Metcalfe, D. B.; Meir, P.; AragãO, L. E. O. C.; Malhi, Y.; da Costa, A. C. L.; Braga, A.; GonçAlves, P. H. L.; de Athaydes, J.; de Almeida, S. S.; Williams, M.

    2007-12-01

    This study explored biotic and abiotic causes for spatio-temporal variation in soil respiration from surface litter, roots, and soil organic matter over one year at four rain forest sites with different vegetation structures and soil types in the eastern Amazon, Brazil. Estimated mean annual soil respiration varied between 13-17 t C ha-1 yr-1, which was partitioned into 0-2 t C ha-1 yr-1 from litter, 6-9 t C ha-1 yr-1 from roots, and 5-6 t C ha-1 yr-1 from soil organic matter. Litter contribution showed no clear seasonal change, though experimental precipitation exclusion over a one-hectare area was associated with a ten-fold reduction in litter respiration relative to unmodified sites. The estimated mean contribution of soil organic matter respiration fell from 49% during the wet season to 32% in the dry season, while root respiration contribution increased from 42% in the wet season to 61% during the dry season. Spatial variation in respiration from soil, litter, roots, and soil organic matter was not explained by volumetric soil moisture or temperature. Instead, spatial heterogeneity in litter and root mass accounted for 44% of observed spatial variation in soil respiration (p < 0.001). In particular, variation in litter respiration per unit mass and root mass accounted for much of the observed variation in respiration from litter and roots, respectively, and hence total soil respiration. This information about patterns of, and underlying controls on, respiration from different soil components should assist attempts to accurately model soil carbon dioxide fluxes over space and time.

  10. Soil fertility controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations

    NASA Astrophysics Data System (ADS)

    Hassler, E.; Corre, M. D.; Tjoa, A.; Damris, M.; Utami, S. R.; Veldkamp, E.

    2015-06-01

    Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change, and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. At each landscape, we investigated the reference land uses: forest and secondary forest with regenerating rubber, and the converted land uses: rubber (7-17 years old) and oil palm plantations (9-16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land uses were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P < 0.05). Soil CO2 fluxes from the oil palm decreased compared to the other land uses (P < 0.01). Across land uses, annual CO2 fluxes were positively correlated with soil organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm was a result of strongly decomposed soil organic matter due to reduced litter input, and possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land uses was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating decrease in methanotrophic activity at high Al saturation. Reduction in soil CH4 uptake in the converted land uses compared to the reference land uses (P < 0.01) was due to decrease in soil N availability in the converted

  11. Changes in Arbuscular Mycorrhizal Fungal Abundance and Community Structure in Response to the Long-Term Manipulation of Inorganic Nutrients in a Lowland Tropical Forest

    NASA Astrophysics Data System (ADS)

    Sheldrake, Merlin; Rosenstock, Nicholas; Tanner, Ed

    2014-05-01

    The arbuscular mycorrhizal (AM) symbiosis is considered primarily mutualistic. In exchange for up to 30% of plants' total photosynthate, AM provide improved access to mineral nutrients. While there is evidence that AM fungi provide nitrogen, potassium and other nutrients to their host plants, most research has focused on their effect on plant phosphorus uptake. Pot experiments have shown, and field experiments have provided further support, that nutrient availability (primarily P, but also N) is inversely correlated with mycorrhizal colonization, indicating plant control over carbon losses to AM fungi. Yet pot experiments have also shown that some fungal species are more mutualistic than others and that AM colonization may cause decreased plant growth, suggesting that plant control is not absolute. AMF communities are diverse, and it is poorly understood how factors such as adaptation to local soil environment, fungal-plant compatibility, and plant nutrient status combine to shape AMF community structure. We conducted a study to examine the relative effects of N, P, and K addition on the AMF community in a plant species rich tropical forest, given the long-held belief that AMF are primarily involved in plant P uptake, particularly on weathered tropical soils. Our study site is the Barro Colorado Nature Monument in Panama. It is a 13 year-old factorial N, P, and K addition experiment (40 m x 40m plots; n=4) in an AMF dominated, old (>200 yr), secondary, tropical forest. Previous research has shown co-limitation by N, P, and K, but the strongest plant growth responses were obtained with K additions. We analyzed the AMF community using 454 pyrosequencing of the ribosomal small subunit (SSU) on both soils and the roots of the 6 dominant AMF tree species. Additionally, we used the AMF-specific neutral lipid fatty acid (NLFA) biomarker as a measure of AMF biomass. Both AMF biomass and community structure were altered by nutrient additions. AMF biomass in soil was reduced

  12. Soil fertility controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations

    NASA Astrophysics Data System (ADS)

    Hassler, E.; Corre, M. D.; Tjoa, A.; Damris, M.; Utami, S. R.; Veldkamp, E.

    2015-10-01

    Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia, and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. In each landscape, we investigated the reference land-use types (forest and secondary forest with regenerating rubber) and the converted land-use types (rubber, 7-17 years old, and oil palm plantations, 9-16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land-use types were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P < 0.05). Soil CO2 fluxes from the oil palm (107.2 to 115.7 mg C m-2 h-1) decreased compared to the other land-use types (between 178.7 and 195.9 mg C m-2 h-1; P < 0.01). Across land-use types, annual CO2 fluxes were positively correlated with soil organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm were the result of strongly decomposed soil organic matter and reduced soil C stocks due to reduced litter input as well as being due to a possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land-use types was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating a decrease in methanotrophic activity at high Al saturation. Reduction in

  13. Accuracy of satellite rainfall estimates in the Blue Nile Basin: Lowland plain versus highland mountain

    NASA Astrophysics Data System (ADS)

    Gebremichael, Mekonnen; Bitew, Menberu M.; Hirpa, Feyera A.; Tesfay, Gebrehiwot N.

    2014-11-01

    The demand for accurate satellite rainfall products is increasing particularly in Africa where ground-based data are mostly unavailable, timely inaccessible, and unreliable. In this study, the accuracy of three widely used, near-global, high-resolution satellite rainfall products (CMORPH, TMPA-RT v7, TMPA-RP v7), with a spatial resolution of 0.25° and a temporal resolution of 3 h, is assessed over the Blue Nile River Basin, a basin characterized by complex terrain and tropical monsoon. The assessment is made using relatively dense experimental networks of rain gauges deployed at two, 0.25° × 0.25°, sites that represent contrasting topographic features: lowland plain (mean elevation of 719 m.a.s.l.) and highland mountain (mean elevation of 2268 m.a.s.l.). The investigation period covers the summer seasons of 2012 and 2013. Compared to the highland mountain site, the lowland plain site exhibits marked extremes of rain intensity, higher mean rain intensity when it rains, lower frequency of rain occurrence, and smaller seasonal rainfall accumulation. All the satellite products considered tend to overestimate the mean rainfall rate at the lowland plain site, but underestimate it at the highland mountain site. The satellite products miss more rainfall at the highland mountain site than at the lowland plain site, and underestimate the heavy rain rates at both sites. Both sites have uncertainty (root mean square error) values greater than 100% for 3 h accumulations of <5 mm, or daily accumulations of <10 mm, and the uncertainty values decrease with increasing rainfall accumulation. Among the satellite products, CMORPH suffers from a large positive bias at the lowland plain site, and TMPA-RP and TMPA-RT miss a large number of rainfall events that contribute nearly half of the total rainfall at the highland mountain.

  14. Forests, rain and runoff: riverine particulate organic matter in the Pacific North-West and its impact on the Earth's thermostat

    NASA Astrophysics Data System (ADS)

    Smith, J. C.; Galy, A.; Hovius, N.

    2011-12-01

    Export and burial of carbon recently fixed from the atmosphere by plants and soils (as opposed to fossil carbon eroded from bedrock) transfers carbon dioxide from the atmosphere into geological storage. Recent studies suggest that storm-driven erosion of terrestrial biomass (principally through large, deep-seated landslides) can effectively sequester carbon in tectonically and climatically extreme regimes. However, as the contribution of more typical continental terrain remains poorly constrained, it is difficult to evaluate the importance of biomass erosion on a global scale. Moreover, there is insufficient understanding of the processes which mobilise particulate organic matter (POM), its sources and initial pathways and their variation under different hydrologic conditions. We address these issues in the temperate montane forests of Oregon's Coast and Cascade Ranges. We have obtained the C and N concentrations and stable isotope ratios of ~200 samples of POM in riverine suspended sediment from four watersheds, varying in size, geology, climate and vegetation. According to our measurements, the riverine POM comes from multiple carbon stores, which are characterised by distinct values of N/C, δ13C and δ15N, and is mixed during mobilisation and transport. Considerable amounts of POM are mobilised under moderate flow conditions (occurring several times a year), which do not trigger major landslides. Instead, runoff erosion is the principal mobilisation mechanism. We compare the composition of POM in Oregon headwaters to a similar dataset from the Swiss Alps, showing that suspended POM from each location contains both non-fossil and fossil components. Moreover, we show that vegetation is the primary non-fossil end member for the Oregon samples. This contrasts with the Swiss location, where all standing biomass appears to be homogenised through a soil 'window' before erosion. Our findings demonstrate the potential for significant export of POM (in particular, non

  15. Soluble reactive phosphorus (SRP) transport and retention in tropical, rain forest streams draining a volcanic landscape in Costa Rica: In situ SRP amendment to streams and laboratory studies

    USGS Publications Warehouse

    Triska, F.; Pringle, C.M.; Duff, J.H.; Avanzino, R.J.; Zellweger, G.

    2006-01-01

    Soluble reactive phosphorus (SRP) transport/retention was determined in two rain forest streams (Salto, Pantano) draining La Selva Biological Station, Costa Rica. There, SRP levels can be naturally high due to groundwater enriched by geothermal activity within the surfically dormant volcanic landscape, and subsequently discharged at ambient temperature. Combined field and laboratory approaches simulated high but natural geothermal SRP input with the objective of estimating the magnitude of amended SRP retention within high and low SRP settings and determining the underlying mechanisms of SRP retention. First, we examined short-term SRP retention/transport using combined SRP-conservative tracer additions at high natural in situ concentrations. Second, we attempted to observe a DIN response during SRP amendment as an indicator of biological uptake. Third, we determined SRP release/retention using laboratory sediment assays under control and biologically inhibited conditions. Short-term in situ tracer-SRP additions indicated retention in both naturally high and low SRP reaches. Retention of added SRP mass in Upper Salto (low SRP) was 17% (7.5 mg-P m-2 h-1), and 20% (10.9 mg-P m-2 h -1) in Lower Salto (high SRP). No DIN response in either nitrate or ammonium was observed. Laboratory assays using fresh Lower Salto sediments indicated SRP release (15.4 ?? 5.9 ??g-P g dry wt.-1 h -1), when incubated in filter sterilized Salto water at ambient P concentration, but retention when incubated in filter sterilized river water amended to 2.0 mg SRP l-1 (233.2 ?? 5.8 ??g-P g dry wt. -1 h-1). SRP uptake/release was similar in both control- and biocide-treated sediments indicating predominantly abiotic retention. High SRP retention even under biologically saturated conditions, absence of a DIN response to amendment, patterns of desorption following amendment, and similar patterns of retention and release under control and biologically inhibited conditions all indicated

  16. The consequences of pleistocene climate change on lowland neotropical vegetation

    SciTech Connect

    De Oliveira, P.E.; Colinvaux, P.A. )

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  17. Seed rain and seed bank of third- and fifth-order streams on the western slope of the cascade range. Forest Service research paper

    SciTech Connect

    Harmon, J.M.; Franklin, J.F.

    1995-04-01

    The authors compared the composition and density of the on-site vegetation, seed bank, and seed rain of three geomorphic and successional surfaces along third- and fifth- order streams on the western slope of the Cascade Range in Oregon. The on-site vegetation generally was dominated by tree species, the seed bank by herb species, and the seed rain by tree and herb species. Seed rain density generally correspond to the successional stage of the geomorphic surface and frequency of site disturbance, with the youngest and least vegetatively stable geomorphic surfaces having the highest density of trapped viable seeds. The highest density and greatest species richness of seed germinants were found on the intermediate-aged geomorphic surfaces, which had moderate levels of disturbance.

  18. Effect of CH4 and O2 variations on rates of CH4 oxidation and stable isotope fractionation in tropical rain forest soils

    SciTech Connect

    Teh, Yit Arn; Conrad, Mark; Silver, Whendee L.; Carlson, Charlotte M.

    2003-10-01

    Methane-oxidizing bacteria are the primary sink for CH{sub 4} in reduced soils, and account for as much as 90 percent of all CH{sub 4} produced. Methanotrophic bacteria strongly discriminate against the heavy isotopes of carbon, resulting in CH{sub 4} emissions that are significantly more enriched in {sup 13}C than the original source material. Previous studies have used an isotope mass balance approach to quantify CH{sub 4} sources and sinks in the field, based on the assumption that the fractionation factor for CH{sub 4} oxidation is a constant. This study quantifies the effect of systematic variations in CH{sub 4} and O{sub 2} concentrations on rates of CH{sub 4} oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-15 cm depth, and incubated with varying concentrations of CH{sub 4} (100 ppmv, 500 ppmv, 1000 ppmv, and 5000 ppmv) or O{sub 2} (3 percent, 5 percent, 10 percent, and 21 percent). The isotope fractionation factor for CH{sub 4} oxidation was calculated for each incubation using a Rayleigh fractionation model. Rates of CH{sub 4} oxidation varied significantly between CH{sub 4} treatments, with the 100 ppmv CH{sub 4} treatment showing the lowest rate of CH{sub 4} uptake, and the other 3 treatments showing similar rates of CH{sub 4} uptake. Rates of CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. The fractionation factor for CH{sub 4} oxidation varied significantly between the different CH{sub 4} treatments, with the 5000 ppmv CH{sub 4} treatment showing the largest {sup 13}C-enrichment of residual CH{sub 4}. In treatments where CH{sub 4} concentration was not rate-limiting (> 500 ppmv CH{sub 4}), the fractionation factor for CH{sub 4} oxidation was negatively correlated with CH{sub 4} oxidation rate (P < 0.003, r{sup 2} = 0.86). A multiple regression model that included initial CH{sub 4} concentration and CH{sub 4} oxidation rate as independent variables

  19. Pliocene diversification within the South American Forest falcons (Falconidae: Micrastur).

    PubMed

    Fuchs, Jérôme; Chen, Steven; Johnson, Jeff A; Mindell, David P

    2011-09-01

    The Neotropics are one of the most species rich regions on Earth, with over 3150 species of birds. This unrivaled biodiversity has been attributed to higher proportions of mountain ranges, tropical rain forest or rain fall in the forest than in any other major biogeographic regions. Five primary hypotheses aim to explain processes of diversification within the Neotropics; (1) the Pleistocene refuge hypothesis, (2) the riverine barrier hypothesis, (3) the Miocene marine incursions hypothesis, (4) the ecological gradient hypothesis, and (5) the impact of the last Andean uplift serving as a barrier between eastern and western population Andean populations. We assessed these hypotheses to see which best explained the species richness of the forest-falcons (Micrastur), a poorly known lineage of birds that inhabit lowland and mid-elevation humid forest. Our analyses suggest all speciation events within the genus Micrastur probably occurred in the last 2.5-3.6 myrs, at or before the Pliocene/Pleistocene boundary, with the basal split within the genus being 7 myrs old. Hence our data allow us to formerly reject the classical Pleistocene refuge for Micrastur, Our divergence time estimates are younger that dates for the Miocene marine incursions, the riverine barrier and the Andean uplift hypotheses. PMID:21621621

  20. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications

    PubMed Central

    Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to

  1. Seasat synthetic aperture radar ( SAR) response to lowland vegetation types in eastern Maryland and Virginia.

    USGS Publications Warehouse

    Krohn, M.D.; Milton, N.M.; Segal, D.B.

    1983-01-01

    Examination of Seasat SAR images of eastern Maryland and Virginia reveals botanical distinctions between vegetated lowland areas and adjacent upland areas. Radar returns from the lowland areas can be either brighter or darker than returns from the upland forests. Scattering models and scatterometer measurements predict an increase of 6 dB in backscatter from vegetation over standing water. This agrees with the 30-digital number (DN) increase observed in the digital Seasat data. The density, morphology, and relative geometry of the lowland vegetation with respect to standing water can all affect the strength of the return L band signal.-from Authors

  2. Atmospheric dust and acid rain

    SciTech Connect

    Hedin, L.O.; Likens, G.E.

    1996-12-01

    Why is acid rain still an environmental problem in Europe and North America despite antipollution reforms? The answer really is blowing in the wind: atmospheric dust. These airborne particles can help neutralize the acids falling on forests, but dust levels are unusually low these days. In the air dust particles can neutralize acid rain. What can we do about acid rain and atmospheric dust? Suggestions range from the improbable to the feasible. One reasonable suggestion is to reduce emissions of acidic pollutants to levels that can be buffered by natural quantities of basic compounds in the atmosphere; such a goal would mean continued reductions in sulfur dioxide and nitrogen oxides, perhaps even greater than those prescribed in the 1990 Amendments to the Clean Air Act in the U.S. 5 figs.

  3. Primer on acid precipitation. A killing rain: the global threat of acid precipitation

    SciTech Connect

    Pawlick, T.

    1984-01-01

    This article reviews the book A Killing Rain: The Global Threat of Acid Precipitation by Thomas Pawlick which presents an overview of the problems associated with acid rain. The book covers the effects of acid rain on aquatic ecosystems, forests materials, and agriculture. It also deals with abatement technologies and sociopolitical topics associated with acid rain.

  4. Industrial ecotoxicology "acid rain".

    PubMed

    Astolfi, E; Gotelli, C; Higa, J

    1986-01-01

    The acid rain phenomenon was studied in the province of Cordoba, Argentina. This study, based on a previously outlined framework, determined the anthropogenic origin of the low pH due to the presence of industrial hydrochloric acid wastage. This industrial ecotoxicological phenomenon seriously affected the forest wealth, causing a great defoliation of trees and shrubs, with a lower effect on crops. A survey on its effects on human beings has not been carried out, but considering the corrosion caused to different metals and its denouncing biocide effect on plants and animals, we should expect to find some kind of harm to the health of the workers involved or others engaged in farming, and even to those who are far away from the polluting agent. PMID:3758667

  5. Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil.

    PubMed

    Reis, Talita Soares; Ciampi-Guillardi, Maísa; Bajay, Miklos Maximiliano; de Souza, Anete Pereira; Dos Santos, Flavio Antonio Maës

    2015-05-01

    Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self-compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80-216 m) and an upland site (1010-1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (F ST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation-by-distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ∼10-20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for

  6. Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil

    PubMed Central

    Reis, Talita Soares; Ciampi-Guillardi, Maísa; Bajay, Miklos Maximiliano; de Souza, Anete Pereira; dos Santos, Flavio Antonio Maës

    2015-01-01

    Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self-compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80–216 m) and an upland site (1010–1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (FST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation-by-distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ∼10-20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence

  7. The timing of alluvial sedimentation and floodplain formation in the lowland humid tropics of Ghana, Sierra Leone and western Kalimantan (Indonesian Borneo)

    NASA Astrophysics Data System (ADS)

    Thorp, Martin; Thomas, Michael

    1992-04-01

    Temporal patterns in floodplain genesis and alluvial sedimentation in lowlands tropical rain forest zones of Ghana, Sierra Leone and western Kalimantan (Indonesian Borneo) based upon 14C age determinations are described. Alluvial low terraces or buried sediments in West Africa yielded ages of 36-21 ka. In west Kalimantan a widespread episode of alluviation has yielded dates of 54-51 ka. The 20-13 ka interval was characterised by channel incision with valley floor erosion and neither region records sedimentation. Holocene alluvial sedimentation and floodplain construction in West Africa occurred during two temporal intervals: 10-7 ka and 4 ka to present and in western Kalimantan in response to early Holocene sea level rise followed by late Holocene regression and coastal outgrowth. The clustering of 14C dates closely corresponds to regional lake level fluctuations and vegetational changes and to global indications of climatic change. We propose that periods of more frequent episodes of accelerated floodplain erosion and reconstitution, channel morpho-sedimentary activity and alluvial accumulation (1) are responses to interstadial and interglacial periods of higher precipitation following intervening periods of cooler and drier conditions; and (2) may be synchronous during the last 60 ka throughout the African and Asian inner humid lowland tropics.

  8. Heavy rain field measurements

    NASA Technical Reports Server (NTRS)

    Melson, ED

    1991-01-01

    A weight-measuring rain gauge was developed to collect rain data and configured to operate at a high sample rate (one sample pre second). Instead of averaging the rain rate in minutes, hours, and sometime days as normally performed, the rain data collected are examined in seconds. The results of six field sites are compiled. Rain rate levels, duration of downpours, and frequency of heavy rainfall events are presented.

  9. Quasar Rain

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2015-01-01

    Velocity resolved reverberation mapping (VRRM) has shown clear evidence for inflows in the broad emission line (BEL) region of active galactic nuclei: redshifted BELs at zero lag (AGNs, e.g. Arp 151, Bentz et al. 2010; Grier et al. 2013). While radiative transfer in rotating disks can give shorter red side lags than blue, a zero lag has to be along our line of sight, so it is hard to escape infall. The BEL region is normally considered to be rotating or in outflow so this result is a surprise. Infalling BEL gas cannot fall far without the need to lose angular momentum for accreting gas producing an accretion disk.I suggest that quasar continuum irradiation induced cooling instabilities (Chakravorty et al 2009; Krolik, McKee & Tarter 1981) lead to dense BEL clouds condensing out of the semi-ubiquitous warm absorber (WA) outflows found in AGNs and that these clouds may produce a VRRM inflow signature.Unlike WA gas, dense high column density BEL clouds are hard to accelerate with radiation pressure (Risaliti & Elvis 2010; Mushotzky, Solomon & Strittmatter 1972). BEL clouds will thus stall in the outflow and begin to fall back toward the central black hole after a dynamical time, 'raining out' of the WA medium. If these BEL clouds condense out before these outflows reach escape velocity [v(esc)] then this inflow can potentially produce the observed VRRM signature. As the clouds fall back in they will be moving on elliptical orbits supersonically through the WA gas with Mach number ~(2000 km/s)/(100km/s) ~20. This will produce comet-like structures with narrow opening angles, as seen in asymmetric X-ray absorbing 'eclipses' (Maiolino et al. 2010). They will survive only a few months, as required to avoid forming a disk. For this picture to work the condensation time must be less than the acceleration time to v(esc) and the destruction time must be longer than the dynamical time.

  10. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    PubMed

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  11. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest

    PubMed Central

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  12. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  13. Deforestation scenarios for the Bolivian lowlands.

    PubMed

    Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula

    2016-01-01

    all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use. PMID:26604078

  14. Listening To Rain Sticks.

    ERIC Educational Resources Information Center

    Schaffer, Linda; Pinson, Harlow; Kokoski, Teresa

    1998-01-01

    Contains information on rain sticks and other similar musical instruments. Describes procedures for making rain sticks and using them in the study of sound. Discusses the physics of sound and how to utilize computers to study sound with rain sticks. (DDR)

  15. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  16. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  17. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  18. Rain Gauges Handbook

    SciTech Connect

    Bartholomew, M. J.

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  19. No Rain, No Gain

    ERIC Educational Resources Information Center

    Perna, Mark C.

    2005-01-01

    Marketing is like the rain. Some people are quickly aware of it, while others take repeated and consistent drops for quite an extended period of time before they take action. Building on the marketing principles discussed in previous issues, the next key principle to smart marketing is the "Rain Effect." The Rain Effect is the use of consistent…

  20. The role of sex and age in the architecture of intrapopulation howler monkey-plant networks in continuous and fragmented rain forests.

    PubMed

    Benitez-Malvido, Julieta; Martínez-Falcón, Ana Paola; Dattilo, Wesley; González-DiPierro, Ana María; Lombera Estrada, Rafael; Traveset, Anna

    2016-01-01

    We evaluated the structure of intrapopulation howler monkey-plant interactions by focusing on the plant species consumed by different sex and age classes in continuous and fragmented forests in southern Mexico. For this we used network analysis to evaluate the impact of fragmentation on howler population traits and on resource availability and food choice. A total of 37 tree and liana species and seven plant items (bark, immature fruits, flowers, mature fruits, immature leaves, mature leaves and petioles) were consumed, but their relative consumption varied according to sex and age classes and habitat type. Overall, adult females consumed the greatest number of plant species and items while infants and juveniles the lowest. For both continuous and fragmented forests, we found a nested diet for howler monkey-plant networks: diets of more selective monkeys represent subsets of the diets of other individuals. Nestedness was likely due to the high selectivity of early life stages in specific food plants and items, which contrasts with the generalized foraging behaviour of adults. Information on the extent to which different plant species and primate populations depend on such interactions in different habitats will help to make accurate predictions about the potential impact of disturbances on plant-animal interaction networks. PMID:26989638

  1. The role of sex and age in the architecture of intrapopulation howler monkey-plant networks in continuous and fragmented rain forests

    PubMed Central

    Martínez-Falcón, Ana Paola; Dattilo, Wesley; González-DiPierro, Ana María; Lombera Estrada, Rafael; Traveset, Anna

    2016-01-01

    We evaluated the structure of intrapopulation howler monkey-plant interactions by focusing on the plant species consumed by different sex and age classes in continuous and fragmented forests in southern Mexico. For this we used network analysis to evaluate the impact of fragmentation on howler population traits and on resource availability and food choice. A total of 37 tree and liana species and seven plant items (bark, immature fruits, flowers, mature fruits, immature leaves, mature leaves and petioles) were consumed, but their relative consumption varied according to sex and age classes and habitat type. Overall, adult females consumed the greatest number of plant species and items while infants and juveniles the lowest. For both continuous and fragmented forests, we found a nested diet for howler monkey-plant networks: diets of more selective monkeys represent subsets of the diets of other individuals. Nestedness was likely due to the high selectivity of early life stages in specific food plants and items, which contrasts with the generalized foraging behaviour of adults. Information on the extent to which different plant species and primate populations depend on such interactions in different habitats will help to make accurate predictions about the potential impact of disturbances on plant-animal interaction networks. PMID:26989638

  2. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    endangers the existing biota. Concerns about acid (or acidic) rain in its modern sense were publicized by the Swedish soil scientist Svante Odén (1968). He argued, initially in the Swedish press, that long-term increases in the atmospheric deposition of acid could lower the pH of surface waters, cause a decline in fish stocks, deplete soils of nutrients, and accelerate damage to materials. By the 1970s, acidification of surface waters was reported in many countries in Europe as well as in North America. The late twentieth-century rush to understand the impact of acid rain was driven by: (i) reports of damaged or threatened freshwater fisheries and (ii) damaged forests. Perhaps the earliest linkage between acidic surface water and damage to fish was made by Dahl (1921) in southern Norway. There, spring runoff was sufficiently acidic to kill trout. It was not until the 1970s that a strong link was established between depressed pH, mobilization of aluminum from soil, and fish status ( Schofield and Trojnar,1980). The relationship between acidification of soils and forest health started with hypotheses in the 1960s and has slowly developed. Acid rain enhances the availability of some nutrients (e.g., nitrogen), and may either enhance or diminish the availability of others (e.g., calcium, magnesium, potassium, and phosphorus). Damage to anthropogenic structures, human health, and visibility have also raised concerns. The history of these early developments was summarized by Cowling (1982). Since the 1970s, sulfur and nitrogen emissions to the atmosphere have been reduced by 50-85% and 0-30%, respectively, both in North America and Europe. The emission reductions have occurred as a consequence of knowledge gained and economic factors. While recovery of water quality is underway in some areas, problems of acidification persist, and are now complicated by the effects of climate change ( Schindler, 1997).

  3. The genus Guerrerostrongylus (Nematoda: Heligmonellidae) in cricetid rodents from the Atlantic rain forest of Misiones, Argentina: emended description of Guerrerostrongylus zetta (Travassos, 1937) and description of a new species.

    PubMed

    Digiani, María Celina; Notarnicola, Juliana; Navone, Graciela T

    2012-10-01

    Two species of Guerrerostrongylus Sutton and Durette-Desset, 1991, are reported in cricetid rodents from the Atlantic rain forest of Misiones, Argentina. Guerrerostrongylus zetta (Travassos, 1937) is redescribed on the basis of material collected from Oligoryzomys nigripes from Argentina and material loaned by CHIOC from Brazil. It is characterized by a synlophe with about 40-45 (35-48) well-developed cuticular ridges, caudal bursa with long rays 6 and dorsal ray divided at mid-length, and well-sclerotized spicules with marked twisting. It was found with a prevalence of 100% in O. nigripes (14 hosts examined); however, it was not found in its type host Nectomys squamipes (4 hosts examined). Guerrerostrongylus ulysi n. sp., which is described from Sooretamys angouya , differs from the remaining species in the genus mainly by a synlophe with a strong reduction of the cuticular ridges and struts on the right side, and by a heart-shaped caudal bursa, with short rays 6 and a dorsal ray divided distally. It was found with a prevalence of 100% in 5 hosts examined. PMID:22494032

  4. Diverging drought-tolerance strategies explain tree species distribution along a fog-dependent moisture gradient in a temperate rain forest.

    PubMed

    Negret, Beatriz Salgado; Pérez, Fernanda; Markesteijn, Lars; Castillo, Mylthon Jiménez; Armesto, Juan J

    2013-11-01

    The study of functional traits and physiological mechanisms determining species' drought tolerance is important for the prediction of their responses to climatic change. Fog-dependent forest patches in semiarid regions are a good study system with which to gain an understanding of species' responses to increasing aridity and patch fragmentation. Here we measured leaf and hydraulic traits for three dominant species with contrasting distributions within patches in relict, fog-dependent forests in semiarid Chile. In addition, we assessed pressure-volume curve parameters in trees growing at a dry leeward edge and wet patch core. We predicted species would display contrasting suites of traits according to local water availability: from one end favoring water conservation and reducing cavitation risk, and from the opposite end favoring photosynthetic and hydraulic efficiency. Consistent with our hypothesis, we identified a continuum of water use strategies explaining species distribution along a small-scale moisture gradient. Drimys winteri, a tree restricted to the humid core, showed traits allowing efficient water transport and high carbon gain; in contrast, Myrceugenia correifolia, a tree that occurs in the drier patch edges, exhibited traits promoting water conservation and lower gas exchange rates, as well low water potential at turgor loss point. The most widespread species, Aextoxicon punctatum, showed intermediate trait values. Osmotic compensatory mechanism was detected in M. correifolia, but not in A. punctatum. We show that partitioning of the pronounced soil moisture gradients from patch cores to leeward edges among tree species is driven by differential drought tolerance. Such differences indicate that trees have contrasting abilities to cope with future reductions in soil moisture. PMID:23576107

  5. Multi-scale Visualization of Remote Sensing and Topographic Data of the Amazon Rain Forest for Environmental Monitoring of the Petroleum Industry.

    NASA Astrophysics Data System (ADS)

    Fonseca, L.; Miranda, F. P.; Beisl, C. H.; Souza-Fonseca, J.

    2002-12-01

    PETROBRAS (the Brazilian national oil company) built a pipeline to transport crude oil from the Urucu River region to a terminal in the vicinities of Coari, a city located in the right margin of the Solimoes River. The oil is then shipped by tankers to another terminal in Manaus, capital city of the Amazonas state. At the city of Coari, changes in water level between dry and wet seasons reach up to 14 meters. This strong seasonal character of the Amazonian climate gives rise to four distinct scenarios in the annual hydrological cycle: low water, high water, receding water, and rising water. These scenarios constitute the main reference for the definition of oil spill response planning in the region, since flooded forests and flooded vegetation are the most sensitive fluvial environments to oil spills. This study focuses on improving information about oil spill environmental sensitivity in Western Amazon by using 3D visualization techniques to help the analysis and interpretation of remote sensing and digital topographic data, as follows: (a) 1995 low flood and 1996 high flood JERS-1 SAR mosaics, band LHH, 100m pixel; (b) 2000 low flood and 2001 high flood RADARSAT-1 W1 images, band CHH, 30m pixel; (c) 2002 high flood airborne SAR images from the SIVAM project (System for Surveillance of the Amazon), band LHH, 3m pixel and band XHH, 6m pixel; (d) GTOPO30 digital elevation model, 30' resolution; (e) Digital elevation model derived from topographic information acquired during seismic surveys, 25m resolution; (f) panoramic views obtained from low altitude helicopter flights. The methodology applied includes image processing, cartographic conversion and generation of value-added product using 3D visualization. A semivariogram textural classification was applied to the SAR images in order to identify areas of flooded forest and flooded vegetation. The digital elevation models were color shaded to highlight subtle topographic features. Both datasets were then converted to

  6. Size-correlated morpho-physiology of the aroid vine Rhodospatha oblongata along a vertical gradient in a Brazilian rain forest.

    PubMed

    Filartiga, A L; Vieira, R C; Mantovani, A

    2014-01-01

    In this work, we analyse morpho-physiological modifications presented during the allomorphic growth of the aroid vine Rhodospatha oblongata Poepp throughout its ascent into the forest canopy. We test the hypothesis that morphological modifications in the root, shoot and leaf are followed by a gradual improvement of the xylem vascular system in order to increase water acquisition and transport as body size increases. The characterisation of these structural modifications was based on 30-35 specimens divided into six size classes. The dimensions of shoots, leaves and roots were quantified and qualified. The transition from the terrestrial to the epiphytic phase was followed by a simultaneous increase of leaf number and lamina area, together with increased length and diameter of the petiole. Furthermore, as the plant grows, the shoot internodes become shorter and thicker. However, occurrence of aerial roots is the most important characteristic in the ascending phase. In taller individuals, the increase in number of roots with wider xylem vessels guarantees an increased theoretical xylem hydraulic conductance for this growth phase. Along an acropetal direction of the same shoot, the diameter of xylem vessels increased, while the number of vessels per stele area decreased, in contrast with such allometric models as that of West, Brown and Enquist, showing that xylem vessel number and diameter taper in a reverse manner along the same direction. Such structural changes of R. oblongata allow improved foraging for light and water, facilitating the survival of bigger-sized plants of this vine in the canopy. PMID:23614870

  7. Plant herbivory responses through changes in leaf quality have no effect on subsequent leaf-litter decomposition in a neotropical rain forest tree community.

    PubMed

    Cárdenas, Rafael E; Hättenschwiler, Stephan; Valencia, Renato; Argoti, Adriana; Dangles, Olivier

    2015-08-01

    It is commonly accepted that plant responses to foliar herbivory (e.g. plant defenses) can influence subsequent leaf-litter decomposability in soil. While several studies have assessed the herbivory-decomposability relationship among different plant species, experimental tests at the intra-specific level are rare, although critical for a mechanistic understanding of how herbivores affect decomposition and its consequences at the ecosystem scale. Using 17 tree species from the Yasuní National Park, Ecuadorian Amazonia, and applying three different herbivore damage treatments, we experimentally tested whether the plant intra-specific responses to herbivory, through changes in leaf quality, affect subsequent leaf-litter decomposition in soil. We found no effects of herbivore damage on the subsequent decomposition of leaf litter within any of the species tested. Our results suggest that leaf traits affecting herbivory are different from those influencing decomposition. Herbivore damage showed much higher intra-specific than inter-specific variability, while we observed the opposite for decomposition. Our findings support the idea that interactions between consumers and their resources are controlled by different factors for the green and the brown food-webs in tropical forests, where herbivory may not necessarily generate any direct positive or negative feedbacks for nutrient cycling. PMID:25771942

  8. ACTS Rain Fade Compensation

    NASA Technical Reports Server (NTRS)

    Coney, Thom A.

    1996-01-01

    Performance status of the Adaptive Rain Fade Compensation includes: (1) The rain fade protocol is functional detecting fades, providing an additional 10 dB of margin and seamless transitions to and from coded operation; (2) The stabilization of the link margins and the optimization of rain fade decision thresholds has resulted in improved BER performance; (3) Characterization of the fade compensation algorithm is ongoing.

  9. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  10. Lowland tapir (Tapirus terrestris) distribution, activity patterns and relative abundance in the Greater Madidi-Tambopata Landscape.

    PubMed

    Wallace, Robert; Ayala, Guido; Viscarra, Maria

    2012-12-01

    Lowland tapir distribution is described in northwestern Bolivia and southeastern Peru within the Greater Madidi-Tambopata Landscape, a priority Tapir Conservation Unit, using 1255 distribution points derived from camera trapping efforts, field research and interviews with park guards from 5 national protected areas and hunters from 19 local communities. A total of 392 independent camera trapping events from 14 camera trap surveys at 11 sites demonstrated the nocturnal and crepuscular activity patterns (86%) of the lowland tapir and provide 3 indices of relative abundance for spatial and temporal comparison. Capture rates for lowland tapirs were not significantly different between camera trapping stations placed on river beaches versus those placed in the forest. Lowland tapir capture rates were significantly higher in the national protected areas of the region versus indigenous territories and unprotected portions of the landscape. Capture rates through time suggested that lowland tapir populations are recovering within the Tuichi Valley, an area currently dedicated towards ecotourism activities, following the creation (1995) and subsequent implementation (1997) of the Madidi National Park in Bolivia. Based on our distributional data and published conservative estimates of population density, we calculated that this transboundary landscape holds an overall lowland tapir population of between 14 540 and 36 351 individuals, of which at least 24.3% are under protection from national and municipal parks. As such, the Greater Madidi-Tambopata Landscape should be considered a lowland tapir population stronghold and priority conservation efforts are discussed in order to maintain this population. PMID:23253372

  11. Combining moving inlets for measuring gradients of reactive trace gases and thoron measurements for the determination of near surface fluxes -first results from the Amazon rain forest-

    NASA Astrophysics Data System (ADS)

    Sörgel, Matthias; Artaxo, Paulo; Kesselmeier, Jürgen; Quesada, Carlos Alberto; Ferreira de Souza, Rodrigo Augusto; Trebs, Ivonne; Vega, Oscar; Yañez-Serrano, Ana Maria

    2016-04-01

    For many compounds of interest no fast response sensors for the determination of eddy covariance fluxes are available. Therefore, flux-gradient relationships are used. The most common are the aerodynamic gradient method and the modified Bowen ratio method. For those approaches some assumptions have to be made which restrict their use. An alternative approach to calculate these fluxes might be given by the "thoron clock" method. The radon isotope Thoron (220Rn) is exhaled from the soil and has a half life time of 56 seconds. Therefore, it exists in measureable amounts only close to the ground and is hardly advected. Its only source is the radioactive decay of Thorium in soil. As it is a noble gas Thoron is not influenced by biochemical processes in air. Consequently, its concentration profile only depends on vertical mixing and the radioactive decay which is a physical constant. According to Lehmann et al. (1999) and Plake and Trebs (2013) a transport-time can be directly calculated from two heights thoron concentration/activity for the layer in-between without further assumptions. From this transport time the transfer velocity is derived which is then applied to calculate the fluxes of other (reactive) trace gases. A major advantage of the method is that the transport-time is known and using the measured concentration profile the chemical loss of a compound can be directly calculated and corrected for. We have applied this method for a first time in the Amazon rainforest during a field campaign at the ATTO site 150 km North East of Manaus in the dry season of 2014. We measured gradients of NO, NO2, O3, HONO and VOCs by using a movable inlet on a lift system close to the forest floor (0.19 m, 0.52 m and 1.59 m). A Thoron profile was measure in parallel at the lower two heights. First results of the gradients, the transport times and some preliminary flux values will be presented. References: Lehmann, B.E., Lehmann, M., Neftel, A .: 220 Radon calibration of near

  12. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  13. Canada issues booklet describing acid rain

    NASA Astrophysics Data System (ADS)

    A booklet recently released by Environment Canada describes acid rain in terms easily understood by the general public. Although Acid Rain — The Facts tends somewhat to give the Canadian side of this intercountry controversial subject, it nevertheless presents some very interesting, simple statistics of interest to people in either the U.S. or Canada. Copies of the booklet can be obtained from Inquiry Environment Canada, Ottawa, Ontario K1A OH3, Canada, tel. 613-997-2800.The booklet points out that acid rain is caused by emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx). Once released into the atmosphere, these substances can be carried long distances by prevailing winds and return to Earth as acidic rain, snow, fog, or dust. The main sources of SO2 emissions in North America are coal-fired power generating stations and nonferrous ore smelters. The main sources of NOx emissions are vehicles and fuel combustion. From economical and environmental viewpoints, Canada believes acid rain is one of the most serious problems presently facing the country: increasing the acidity of more than 20% of Canada's 300,000 lakes to the point that aquatic life is depleted and acidity of soil water and shallow groundwater is increasing, causing decline in forest growth and water fowl populations, and eating away at buildings and monuments. Acid rain is endangering fisheries, tourism, agriculture, and forest resources in an area of 2.6 million km2 (one million square miles) of eastern Canada, about 8% of Canada's gross national product.

  14. Acid rain and its ecological consequences.

    PubMed

    Singh, Anita; Agrawal, Madhoolika

    2008-01-01

    Acidification of rain-water is identified as one of the most serious environmental problems of transboundary nature. Acid rain is mainly a mixture of sulphuric and nitric acids depending upon the relative quantities of oxides of sulphur and nitrogen emissions. Due to the interaction of these acids with other constituents of the atmosphere, protons are released causing increase in the soil acidity Lowering of soil pH mobilizes and leaches away nutrient cations and increases availability of toxic heavy metals. Such changes in the soil chemical characteristics reduce the soil fertility which ultimately causes the negative impact on growth and productivity of forest trees and crop plants. Acidification of water bodies causes large scale negative impact on aquatic organisms including fishes. Acidification has some indirect effects on human health also. Acid rain affects each and every components of ecosystem. Acid rain also damages man-made materials and structures. By reducing the emission of the precursors of acid rain and to some extent by liming, the problem of acidification of terrestrial and aquatic ecosystem has been reduced during last two decades. PMID:18831326

  15. Understanding acid rain

    SciTech Connect

    Budiansky, S.

    1981-06-01

    The complexities of the phenomenon of acid rain are described. Many factors, including meteorology, geology, chemistry, and biology, all play parts. Varying weather, varying soils, the presence of other pollutants and species differences all act to blur the connections between industrial emissions, acid rain, and environmental damage. Some experts believe that the greatest pH shock to lakes occurs during snow melt and runoff in the spring; others believe that much of the plant damage ascribed to acid rain is actually due to the effects of ozone. Much work needs to be done in the area of sampling. Historical data are lacking and sampling methods are not sufficiently accurate. (JMT)

  16. Lake sensitivity to acid rain

    SciTech Connect

    Shurkin, J.; Goldstein, R.

    1985-06-01

    Research in the Adirondacks suggests that watershed dynamics are the key to a lake's vulnerability to acidification. The Electric Power Research Institute's Integrated Lake-Watershed Acidification Study (ILWAS) produced a computer model that successfully integrated the physical and chemical factors that determine these dynamics. The research required an unprecedented level of awareness of how watersheds work and how rain, soil, forests, and rocks interact. One outcome of the field and laboratory studies was the finding that some soils act as buffers, taking certain ions out of the water, while some added ions. While the ability of the watershed as a whole to neutralize acid is the main determinant of a lake's vulnerability, seasonal changes demonstrate that time is a factor. The model is in demand to test water in other locations and to explore buffering agents. 2 figures.

  17. Impact of Forest Management on Future Forest Carbon Storage in Alaska Coastal Forests

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Kushch, S. A.

    2014-12-01

    The forest in Coastal Alaska are unique in many ways. Two groups of forest types occur in the Alaska region: boreal and temperate rain forests. About eighty-eight percent of these forests are in public ownership. High proportations of reserved forests and old-growth forests make the forests in coastal Alaska differ from that in other coastal regions. This study is focused on how forest management actions may impact the future carbon stocks and flux in coastal Alaska forests. The Forest Inventory and Analysis (FIA) data collected by US Forest Service are the primary data used for estimation of current carbon storage and projections of future forest carbon storage for all forest carbon pools in Alaska coastal forests under different management scenarios and climate change effect.</